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q-PLANE WAVE SOLUTIONS OF q-MAXWELL
EQUATIONS

V. K.Dobrev, S. T. Petrov

Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Soˇa

We give new solutions of the quantum conformal deformations of the full Maxwell equations in
terms of deformations of the plane wave.

INTRODUCTION

One of the purposes of quantum deformations is to provide an alternative
of the regularization procedures of quantum ˇeld theory. Applied to Minkowski
space-time the quantum deformations approach is also an alternative to Connes'
noncommutative geometry [1]. The ˇrst problem to tackle in a noncommutative
deformed setting is to analyze the behavior of the wave equations analogues. Here
we continue the study of hierarchies of deformed equations derived in [2,3] with
the use of quantum conformal symmetry. One hierarchy involves the massless
representations of the conformal group and is parametrized by a nonnegative
integer r [3]. The case r = 0 corresponds to the q-d'Alembert equation, while
for each r > 0 there are two couples of equations involving ˇelds of conjugated
Lorentz representations of dimension r + 1. The construction of solutions of the
hierarchy was started in [4] with the q-d'Alembert equation. One of the solutions
given was a deformation of the plane wave as a formal power series in the
noncommutative coordinates of q-Minkowski space-time and four-momenta. (For
the latter deformations we use the one from [2] since, unlike the other known
examples [5Ä7], it is related to a deformation of the conformal group.) This
q-plane wave has some properties analogous to the classical one but is not an
exponent or q exponent. Thus, it differs conceptually from the classical plane
wave and may serve as a regularization of the latter. For the equations labelled
by r > 0 it turned out that one needs a second q deformation of the plane wave
in a conjugated basis [8]. The solutions of the hierarchy in terms of the two
q-plane waves were given in [8] for r = 1 and in [9] for r > 1. Later these two
q-plane waves were generalized and correspondingly more general solutions of
the hierarchy were given in [10]. Another hierarchy is the Maxwell hierarchy [2].
The two hierarchies have only one common member Å the Maxwell equations Å
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they are the lowest member of the Maxwell hierarchy and the r = 2 member of
the massless hierarchy. The compatibility of the solutions of the free q-Maxwell
equations with the q-potential equations was studied [11]. In the present paper
we study the full q-Maxwell equations and the compatibility of their solutions
with the conservation of the current. The results of Section 2 are all new.

1. PRELIMINARIES

First we introduce new Minkowski variables:

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2, (1)

which (unlike the xµ) have deˇnite group-theoretical interpretation as part of a
six-dimensional coset of the conformal group SU(2, 2) (as explained in [2]). In
terms of these variables, e. g., the d'Alembert equation is:

�ϕ = (∂−∂+ − ∂v∂v̄)ϕ = 0. (2)

In the q-deformed case we use the noncommutative q-Minkowski space-time
of [2] which is given by the following commutation relations (with λ ≡ q− q−1):

x±v = q±1vx±, x±v̄ = q±1v̄x±, x+x− − x−x+ = λvv̄, v̄v = vv̄, (3)

with the deformation parameter being a phase: |q| = 1. Relations (3) are pre-
served by the antilinear anti-involution ω:

ω(x±) = x±, ω(v) = v̄, ω(q) = q̄ = q−1, (ω(λ) = −λ). (4)

The solution spaces consist of formal power series in the q-Minkowski coor-
dinates (which we give in two conjugate bases):

ϕ =
∑

j,n,�,m∈ZZ+

µjn�m ϕjn�m, ϕjn�m = ϕ̂jn�m, ϕ̃jn�m, (5)

ϕ̂jn�m = vjxn
−x�

+v̄m, (6)

ϕ̃jn�m = v̄mx�
+xn

−vj = ω(ϕ̂jn�m). (7)

The solution spaces (5) are representation spaces of the quantum algebra Uq(sl(4)).
For the latter we use the rational basis of Jimbo [12]. The action of Uq(sl(4)) on
ϕ̂jn�m was given in [13], and on ϕ̃jn�m in [8]. Further we suppose that q is not
a nontrivial root of unity.
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In order to write our q-deformed equations in compact form it is necessary
to introduce some additional operators. We ˇrst deˇne the operators:

M̂±
κ ϕ =

∑
j,n,�,m∈ZZ+

µjn�m M̂±
κ ϕjn�m, κ = ±, v, v̄, (8)

T±
κ ϕ =

∑
j,n,�,m∈ZZ+

µjn�m T±
κ ϕjn�m, κ = ±, v, v̄, (9)

and M̂±
+ , M̂±

− , M̂±
v , M̂±

v̄ , resp., act on ϕjn�m by changing by ±1 the value of
j, n, �,m, resp., while T±

+ , T±
− , T±

v , T±
v̄ , resp., act on ϕjn�m by multiplication by

q±j , q±n, q±�, q±m, resp. We shall use also the ®logs¯ Nκ such that Tκ = qNκ .
Now we can deˇne the q-difference operators:

D̂κϕ =
1
λ
M̂−1

κ

(
Tκ − T−1

κ

)
ϕ =

1
λ
M̂−1

κ

(
qNκ − q−Nκ

)
ϕ. (10)

Note that when q → 1, then D̂κ → ∂k. Using (8) and (10) the q-d'Alembert
equation may be written as [3, 8], respectively,

(qD̂−D̂+TvTv̄ − D̂vD̂v̄) TvT−T+Tv̄ϕ̂ = 0, (11)

(D̂−D̂+ − qD̂vD̂v̄TvTv̄) T−T+ϕ̃ = 0. (12)

Note that when q → 1 both equations (11), (12) go to (2). Note that the
operators in (8), (10)Ä(12) for different variables commute, i. e., we have passed to
commuting variables. However, keeping the normal ordering it is straightforward
to pass back to noncommuting variables.

Next we recall that Maxwell's equations are part also of Maxwell's hierar-
chy of equations. The quantum conformal deformation of the equations of the
hierarchy are [2]:

qI
+
n qF

+
n =q Jn, qI

−
n qF

−
n =q Jn, (13)

where in the basis (6) the operators are:

qI
+
n =

1
2
(
(qD̂v + M̂z̄D̂+(T−Tv)−1Tv̄)T−[n + 2 −Nz]q −

− q−n−2(D̂−T− + q−1M̂z̄D̂v̄ − λM̂vM̂z̄D̂−D̂+Tv̄)T−1
− D̂z

)
T+TvTzT

−1
z̄ , (14)

qI
−
n =

1
2
(D̂v̄ + qM̂zD̂+Tv̄T−T−1

v − qλM̂vD̂−D̂+Tv̄)Tv̄[n + 2 −Nz̄]q −

− 1
2
qn+3(D̂− + qM̂zD̂vT−)D̂z̄T−Tv̄, (15)
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while in the basis (7) the operators are:

qI
+
n =

1
2
q(D̂v + M̂z̄D̂+T−T−1

v̄ Tv)Tv[n + 2 −Nz]q −

− 1
2
qn+3(D̂− + M̂z̄D̂v̄T− + λq−1M̂vM̂z̄D̂−D̂+T−1

v̄ T−)D̂zT−Tv, (16)

qI
−
n =

1
2
(
(D̂v̄Tv̄T− + M̂zD̂+Tv +

+ q−1λM̂vD̂−D̂+T−)[n + 2 −Nz̄]q −
− q−n−2(D̂− + M̂zD̂vT

−1
− )D̂z̄Tv̄

)
T+Tz̄T

−1
z . (17)

Note that for q = 1, (14), (15) coincide with (16), (17), respectively. Maxwell's
equations ∂µFµν = Jν , εµνρσ∂

µF ρσ = 0 are obtained from (13) for n = 0,
q = 1, substituting the ˇxed helicity constituents F± by: F+ = z2(F+

1 +
iF+

2 ) − 2zF+
3 − (F+

1 − iF+
2 ), F− = z̄2(F−

1 − iF−
2 ) − 2z̄F−

3 − (F−
1 + iF−

2 ),
F±

k = Fk0 ± (i/2)εk�mF�m = Ek ± iHk, J0 = z̄z(J0 + J3) + z(J1 + iJ2) +
z̄(J1 − iJ2)+ (J0 − J3), and then comparing the coefˇcients of the resulting ˇrst
order polynomials in z and z̄.

We shall look for solutions of the full q-Maxwell equations in terms of
deformations of the plane wave. Let us ˇrst recall these deformations from [10].
The ˇrst deformation is given in the basis (6):

êxpq(k, x) =
∞∑

s=0

1
[s]q!

ĥs,

[s]q! ≡ [s]q[s− 1]q . . . [1]q, [0]q! ≡ 1, [n]q ≡ qn − q−n

q − q−1
,

(18)

ĥs = βs
∑

a,b,n∈ZZ+

(−1)s−a−bqn(s−2a−2b+2n)+a(s−a−1)+b(−s+a+b+1)qPs(a,b)

Γq(a− n + 1)Γq(b − n + 1)Γq(s− a− b + n + 1)[n]q!
×

× ks−a−b+n
v kb−n

− ka−n
+ kn

v̄ v
nxa−n

− xb−n
+ v̄s−a−b+n, (19)

(βs)−1 =
s∑

p=0

q(s−p)(p−1)+p

[p]q![s− p]q!
,

where the momentum components (kv, k−, k+, kv̄) are supposed to be non-
commutative between themselves (obeying the same rules (3) as the q-Minkowski
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coordinates), and commutative with the coordinates. Further, Γq is a q deforma-
tion of the Γ function, of which here we use only the properties: Γq(p) = [p−1]q!
for p ∈ IN , 1/Γq(p) = 0 for p ∈ ZZ−; Ps(a, b) is a polynomial in a, b. Note

that (ĥs)|q=1 = (kx)s and thus (êxpq(k, x))|q=1 = exp (kx). This q-plane wave
has some properties analogous to the classical one but is not an exponent or
q-exponent, cf. [14]. This is enabled also by the fact (true also for q = 1) that
solving the equations may be done in terms of the components ĥs. This deforma-
tion of the plane wave generalizes the original one from [4] to obtain which one
sets Ps(a, b) = 0, in which case we shall use the notation fs for the components
from [4] since:

(ĥs)Ps(a,b)=0 = fs. (20)

Each ĥs satisˇes the q-d'Alembert equation (11) on the momentum q cone:

Lk
q ≡ k−k+ − q−1kvkv̄ = k+k− − qkvkv̄ = 0. (21)

The second deformation is given in the basis (7):

ẽxpq(k, x) =
∞∑

s=0

1
[s]q!

h̃s, (22)

h̃s = β̃s
∑
a,b,n

(−1)s−a−bqn(2a+2b−2n−s)+a(a−s−1)+b(s−a−b+1)qQs(a,b)

Γq(a− n + 1)Γq(b− n + 1)Γq(s− a− b + n + 1)[n]q!
×

× kn
v̄ k

a−n
+ kb−n

− ks−a−b+n
v v̄s−a−b+nxb−n

+ xa−n
− vn, (23)

(β̃s)−1 =
s∑

p=0

q(p−s)(p−1)+p

[p]q![s− p]q!
,

where Qs(a, b) are arbitrary polynomials. If the latter are zero, then ẽxpq(k, x)
becomes the q-plane wave deformation found in [8]. The h̃s have the same
properties as the ĥs but the conjugated basis is used; in particular, they satisfy
the q-d'Alembert equation (12) on the momentum q cone (21).

2. SOLUTIONS OF THE q-MAXWELL EQUATIONS

First we shall use the basis (6). The solutions of (13) for n = 0 in the
homogeneous case (J = 0) are:

F̂h± .=
(
qF

±
0

)
J=0

=
∞∑

m,s=0

1
[s]q!

F̂h±
ms (k)fs, (24)
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F̂h+
ms (k) =

m∑
i=0

(m−i∑
j=0

p̂ms1
ij ki

vk
m−i−j
− kj

v̄(kv − qs+6zk−)(kv − qs+3zk−) +

+ p̂ms2
i ki

vk
m−i
v̄ (kv − qs+6zk−)(k+ − qs+3zkv̄) +

+
m−i∑
j=0

p̂ms3
ij ki

vk
m−i−j
+ kj

v̄(k+ − qs+6zkv̄)(k+ − qs+3zkv̄)
)
, (25)

F̂h−
ms (k) =

m∑
i=0

(m−i∑
j=0

r̂ms1
ij ki

vk
m−i−j
− kj

v̄(kv̄ − q−1z̄k−)(kv̄ − z̄k−) +

+ r̂ms2
i ki

vk
m−i
v̄ (k+ − q−1z̄kv)(kv̄ − z̄k−) +

+
m−i∑
j=0

r̂ms3
ij ki

vk
m−i−j
+ kj

v̄(k+ − q−1z̄kv)(k+ − z̄kv)
)
, (26)

where p̂msa
i(j) , r̂

msa
i(j) are independent constants. The check that these are solutions

is done for commutative Minkowski coordinates and noncommutative momenta
on the q cone. The terms with m = 0 of the solutions (24)Ä(26), were obtained
earlier [9] (later they were generalized using more general q-plane waves [10]).
The solution (26) can be written in terms of the deformed plane wave if we
suppose that the r̂msa

i(j) for different s coincide: r̂msa
i(j) = r̂ma

i(j). Then we have:

F̂h− =
∞∑

m=0

F̂h−
m (k) expq (k, x), F̂h−

m (k) = F̂h−
ms (k). (27)

In the inhomogeneous case the solutions of (13) for n = 0 are:

qJ
0 = z̄zĴ+ + zĴv + z̄Ĵv̄ + Ĵ−, (28)

Ĵκ =
∞∑

m,s=0

1
[s]q!

Ĵms
κ (k)fs−1, κ = ±, v, v̄, (29)

Ĵms
+ (k) = −K̂s

m(k)k−,

Ĵms
− (k) = −q−s−2K̂s

m(k)k+,

Ĵms
v (k) = K̂s

m(k)kv̄, (30)

Ĵms
v̄ (k) = q−s−2K̂s

m(k)kv,

K̂s
m(k) .= γ̂s

vk
m+1
v + γ̂s

−km+1
− + γ̂s

+km+1
+ + γ̂s

v̄k
m+1
v̄ ,
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qF
±
0 = F̂± + F̂h±, (31)

F̂± =
∞∑

m,s=0

1
[s]q!

F̂±
ms(k)fs, (32)

F̂+
ms(k) = 2dsq

−s
(
(q−s−5γ̂s

−km
− + zγ̂s

vk
m
v )(kv − qs+3zk−) +

+ (q−s−5γ̂s
v̄k

m
v̄ + zγ̂s

+km
+ )(k+ − qs+3zkv̄)

)
,

F̂−
ms(k) = 2dsq

−2s−2
(
(γ̂s

−km
− + q−2z̄γ̂s

v̄k
m
v̄ )(kv̄ − z̄k−) +

+ (γ̂s
vk

m
v + q−2z̄γ̂s

+km
+ )(k+ − z̄kv)

)
,

where ds = βs/βs+1. As in the homogeneous case we cannot make F̂+
ms(k)

independent of s. We can make F̂−
ms(k) independent of s by choosing γ̂s

κ ∼
q2sd−1

s , but we cannot make Ĵms
κ (k) independent of s.

Since we work with the full Maxwell equations we have also to check the q
deformation of the current conservation ∂νJν = 0:

I13J = 0, (33)

I13 = q3[Nz − 1]qTzD̂z̄D̂vTvT−T+ + qD̂zTzD̂z̄D̂−TvT+ +

+ q[Nz − 1]qTz[Nz̄ − 1]qD̂+T+Tv̄ +

+ q−1[Nz̄ − 1]qD̂zTzD̂v̄TvT
−1
− T+ −

− λM̂v[Nz̄ − 1]qD̂zTzD̂−D̂+TvT
−1
− T+Tv̄. (34)

Substituting (28), (29) in the above we get:

qJs
+(k)k+ + Js

v (k)kv + qs+2Js
v̄kv̄ + qs+1Js

−(k)k− = 0. (35)

The latter is fulˇlled by the explicit expressions in (30), but we should note that
these expressions fulˇl also the following splittings of (35):

qJs
+(k)k+ + Js

v (k)kv = 0, qJs
v̄ (k)kv̄ + Js

−(k), k− = 0, (36)

Js
+(k)k+ + qs+1Js

v̄ (k)kv̄ = 0, Js
v (k)kv + qs+1Js

−(k)k− = 0. (37)

Furthermore the expressions from (30) fulˇl also:

qJs
+(k)kv̄ + Js

v (k)k− = 0, qJs
v̄ (k)k+ + Js

−(k)kv = 0, (38)



50 DOBREV V. K., PETROV S. T.

Js
+(k)kv + qs+1Js

v̄ (k)k− = 0, Js
v (k)k+ + qs+1Js

−(k)kv̄ = 0. (39)

Now we shall use the basis (7). Then solutions of (13) for n = 0 in the
homogeneous case (J = 0) are:

F̃h± .=
(
qF

±
0

)
J=0

=
∞∑

m,s=0

1
[s]q!

F̃h±
ms (k)h̃s, (40)

F̃h+
ms (k) =

m∑
i=0

(m−i∑
j=0

p̃ms1
ij ki

v̄k
m−i−j
− kj

v(kv − zk−)(kv − qzk−) +

+ p̃ms2
i ki

v̄k
m−i
v (k+ − zkv̄)(kv − qzk−) +

+
m−i∑
j=0

p̃ms3
ij ki

v̄k
m−i−j
+ kj

v(k+ − zkv̄)(k+ − qzkv̄)
)
, (41)

F̃h−
ms (k) =

m∑
i=0

(m−i∑
j=0

r̃ms1
ij ki

v̄k
m−i−j
− kj

v(kv̄ − qs+1z̄k−)(kv̄ − qs+2z̄k−) +

+ r̃ms2
i ki

vk
m−i
v̄ (kv̄ − qs+1z̄k−)(k+ − qs+2z̄kv) +

+
m−i∑
j=0

r̃ms3
ij ki

vk
m−i−j
+ kj

v̄(k+ − qs+1z̄kv)(k+ − qs+2z̄kv)
)
, (42)

where p̃msa
i(j) , r̃msa

i(j) are independent constants; Qs(a, b) = 0 in h̃s. The terms
with m = 0 of the solutions (40)Ä(42) were obtained earlier in [9] (and using the
generalized q-plane wave in [10]). The solution (41) can be written in terms of
the deformed plane wave if we suppose that the p̃msa

i(j) for different s coincide:
p̃msa

i(j) = p̃ma
i(j). Then we have:

F̃h+ =
∞∑

m=0

F̃h+
m (k)ẽxpq(k, x), F̃h+

m (k) = F̃h+
ms (k). (43)

In the inhomogeneous case the solutions of (13) for n = 0 are:

qJ
0 = z̄zJ̃+ + zJ̃v + z̄J̃v̄ + J̃−, (44)

J̃κ =
∞∑

m,s=0

1
[s]q!

J̃ms
κ (k)h̃s−1, κ = ±, v, v̄, (45)
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J̃ms
+ (k) = −qs+1K̃s

m(k)k−,

J̃ms
− (k) = −q−1K̃s

m(k)k+,

J̃ms
v (k) = K̃s

m(k)kv̄, (46)

J̃ms
v̄ (k) = qsK̃s

m(k)kv,

K̃s
m(k) .= γ̃s

vk
m+1
v + γ̃s

−km+1
− + γ̃s

+km+1
+ + γ̃s

v̄k
m+1
v̄ ,

qF
±
0 = F̃± + F̃h±, (47)

F̃± =
∞∑

m,s=0

1
[s]q!

F̃±
ms(k)h̃s, (48)

F̃+
ms(k) = 2d̃sq

s−2
(
(γ̃s

−km
− + q−1zγ̃s

vk
m
v )(kv − qzk−) +

+ (γ̃s
v̄k

m
v̄ + q−1zγ̃s

+km
+ )(k+ − qzkv̄)

)
,

F̃−
ms(k) = 2d̃s

(
(q−s−3γ̃s

−km
− + qz̄γ̃s

v̄k
m
v̄ )(kv̄ − qs+2z̄k−) +

+ (q−s−3γ̃s
vk

m
v + qz̄γ̃s

+km
+ )(k+ − qs+2z̄kv)

)
,

where d̃s = β̃s/β̃s+1, Qs(a, b) = 0 in h̃s. We cannot make F̃−
ms(k) or

J̃ms
κ (k) independent of s. We can make F̃+

ms(k) independent of s by choosing
γ̃s

κ ∼ q−sd̃−1
s .

Also here we shall check whether the q deformation of the current conserva-
tion (33) is fulˇlled. The analog of (34) in the basis (7) is:

I13 = [Nz − 1]qD̂z̄Tz̄D̂vTv̄T+T−1
− + qD̂z̄Tz̄D̂zD̂−Tv̄T+ +

+ q[Nz̄ − 1]qTz̄[Nz − 1]qD̂+T+Tv + q2[Nz̄ − 1]qD̂zTz̄D̂v̄Tv̄T−T+ −
− λqM̂v[Nz̄ − 1]qD̂zTz̄D̂−D̂+T−T+. (49)

Then the analog of (35) is:

Js
+(k)k+ + qsJs

v (k)kv + Js
v̄kv̄ + qsJs

−(k)k− = 0. (50)

The latter is fulˇlled by the explicit expressions in (46), but we should note that
these expressions fulˇl also the following splittings of (50):

Js
+(k)k+ + qsJs

v (k)kv = 0, Js
v̄ (k)kv̄ + qsJs

−(k)k− = 0, (51)
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Js
+(k)k+ + Js

v̄ (k)kv̄ = 0, Js
v (k)kv + Js

−(k)k− = 0. (52)

Furthermore the expressions from (46) fulˇl also:

Js
+(k)kv̄ + qsJs

v (k)k− = 0, Js
v̄ (k)k+ + qsJs

−(k)kv = 0, (53)

Js
+(k)kv + Js

v̄ (k)k− = 0, Js
v (k)k+ + Js

−(k)kv̄ = 0. (54)

3. SUMMARY AND OUTLOOK

We have given new solutions of the full q-Maxwell equations in two con-
jugated bases (6) and (7). The solutions of the homogeneous equations are also
new (the old solutions are special cases). We see that the roles of the solutions
F+ and F− are exchanged in the two conjugated bases. We note also that the
currents components are different: Ĵms

κ �= J̃ms
κ (for q �= 1, κ �= v), and in both

cases they cannot be made independent of s. Thus, there is no advantage of
choosing either of the bases (6) or (7). It may be also possible to use both in a
ConnesÄLott type model [15].
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