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A general procedure, based on the Bethe ansatz, is proposed for ˇnding algebraic solutions for
low-lying J−0 states of 2k nucleons interacting with one another through a T −1 charge independent
pairing interaction. Results provided by Richardson are shown to be valid for up to two pairs, k ≤ 2;
we gave expressions for up to three pairs, k ≤ 3. The results shown that a set of highly nonlinear
equations must be solved for 3k ≥ 3.

INTRODUCTION

While large-scale shell-model calculations are useful for reproducing ex-
perimental data, insight into the physical underpinnings of many-body quantum
phenomena, such as the structure of atomic nuclei, requires a deeper understand-
ing of underlying principles that can only be achieved through a study of the
system's symmetries, those underlying properties that dictate its gross structure.

In this article we review some recent novel algebraic approaches used to
explore special features of atomic nuclei: quadrupole collectivity and the scissors
mode as revealed through SU(3) [1]; and exact solutions for the pairing problem
via the Bethe ansatz and inˇnite-dimensional group algebras [2]. The use of de-
formed algebraic structures to predict binding energies of exotic nuclei is covered
in a companion article [3]. Important recent work on the latter can also be found
in [4,5].
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1. QUADRUPOLE COLLECTIVITY AND THE SCISSORS MODE IN
DEFORMED NUCLEI

Experimental nuclear physicists continue to challenge theorists with interest-
ing new observations. Measurements of new levels, some lying below 3 MeV,
raise questions about the nature of collective excitations in atomic nuclei. Heavy
deformed nuclei with A ≥ 150 are good candidates for probing these degrees of
freedom. It follows that microscopic calculations for these nuclei are important
for gaining a deeper understanding of the corresponding structures. Of special
interest, for example, is the nature of excited 0+ bands and the fragmentation of
the ground state M1 strength distribution [6Ä10].

The pseudo-SU3 model is a tool that can be used to probe the microscopic
nature of collective phenomena in heavy deformed nuclei. Recent results have
been reported for the 160,162,164Dy and 168Er nuclei [11]. These nuclei, as for the
Gd isotopes studied earlier [12], exhibit well-developed ground-state rotational
bands as well as states that are associated with excited low-lying Kπ = 0+ and
Kπ = 2+ bands. Here we give an overview of an application of the pseudo-SU3

model in these cases; in particular, we will focus on its ability to make reasonable
predictions for observed low-lying 1+ states, the ground-stateM1 sum rule and its
corresponding energy-weighted centroid, and the observed fragmentation of this
M1 strength. The results will illustrate how this particular ®novel¯ application
of group theory leads to a much deeper understanding of a complex microscopic
phenomena in nuclear physics.

1.1. Model Space and Hamiltonian Parameters. Rare earth nuclei are con-
sidered to have closed shells at Nπ = 50 for protons and Nν = 82 for neutrons.
To build basis states we considered the following open shells: ηπ = 4 for protons
and ην = 5 for neutrons along with their intruder state complements, h11/2 for
protons and i13/2 for neutrons, even though particles in these unique-parity in-
truder levels are only considered to renormalize the normal-parity conˇgurations
through the use of an effective charge. These oscillator shells have a complemen-
tary pseudo-harmonic oscillator shell structure given by η̃σ (σ = π, ν) = ησ −1.
Approximately 20 pseudo-SU3 irreducible representation (irreps) with the largest
values for the second order Casimir operator (C2 where Q · Q = 4C2 − 3L2),
were used to build the basis states.

The pseudo-SU3 Hamiltonian used in the analysis is given by:

H = Hπ
sp +Hν

sp − 1
2
χQ ·Q−GπH

π
P −GνH

ν
P +

+ aJ2 + bK2
J + a3C3 + asymC2. (1)

Strengths of the quadrupole-quadrupole (Q · Q) and pairing interactions (Hσ
P )

were ˇxed, respectively, at values typical of those used by other authors, namely,
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Table 1. Parameters of the pseudo-SU3 Hamiltonian

Parameter 168Er 164Dy 162Dy 160Dy

�ω 7.40 7.49 7.52 7.55
χ · 10−3 6.84 7.12 7.27 7.42

Dπ −0.283 −0.286 −0.287 −0.289
Dν −0.198 −0.200 −0.201 −0.202
Gπ 0.125 0.128 0.130 0.131
Gν 0.101 0.104 0.105 0.106

a · 10−3 −2.1 −2.0 0.0 1.0
b 0.022 0.00 0.08 0.10

asym · 10−3 0.80 1.20 1.40 1.45
a3 · 10−4 0.75 0.65 1.32 1.36

χ = 35 A5/3 MeV, Gπ = 21/A MeV and Gν = 19/A MeV. The spherical
single-particle terms in this expression have the form

Hσ
sp =

∑
iσ

(Cσliσsiσ +Dσl2iσ
). (2)

Since only pseudo-spin zero states were considered, matrix elements of the spin-
orbit part of this interaction vanish identically. Calculations were carried out
under the assumption that the single-particle orbitÄorbit (l2) interaction strengths
were ˇxed by systematics [13], Dσ(σ = π, ν) = �ωκσµσ, �ω = 41/A1/3 with κσ

and µσ assigned their usual oscillator values [13], namely, κπ = 0.0637, µπ =
0.60;κν = 0.0637, µν = 0.42.

Relative excitation energies for states with angular momentum 0+ are de-
termined mainly by the quadrupoleÄquadrupole interaction. The single-particle
terms and pairing interactions mix these states. With the strength of these in-
teractions ˇxed as in Table 1, the 0+

2 states lie very close to their experimental
counterparts while the 0+

3 states usually lie slightly above the experimental ones.
Of the four ®free¯ parameters in the Hamiltonian, a was adjusted to reproduce
the moment of inertia of the ground state band, a3 was varied to yield a best ˇt
to the energy of the second 0+ state (the energy of the third 0+ was not included
in the ˇtting and as the results given below show these all fall slightly higher
than their experimental counterparts), asym was adjusted to give a best ˇt to the
ˇrst 1+ state, and b was ˇt to the value of the band-head energy of the Kπ = 2+

band.
In the rotational model the projection K of angular momentum on the body-

ˇxed symmetry axis is a good quantum number. For each intrinsic state with
a given value of K there is a set of levels with L = K , K + 1, K + 2, . . . ,
except for K = 0 when L is either even or odd depending on the intrinsic (D2)
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symmetry of the conˇguration. Elliott [14] used group-theoretical methods to
investigate classiˇcation schemes for particles in a three-dimensional harmonic
oscillator potential for which the underlying symmetry is SU3. He noted that the
angular momenta in an irrep of SU3 can be grouped in a similar way to that of
the rotor, the differences being that there are a ˇxed number of K values and that
each band supports a ˇnite number of L values rather than being of inˇnite length.
The angular momentum content of an SU3 irrep (λ, µ) can be sorted into K bands
according to the following rule [15]: K = min (λ, µ), min (λ, µ) − 2, . . . , 1 or
0, where L = (λ + µ), (λ + µ) − 2, . . . , 1 or 0 for K = 0 and L = K , K + 1,
K + 2, . . . , (λ + µ) − K + 1 for K �= 0. Hence, for 160Dy with leading SU3

irrep (28,8) we have L = 0, 2, . . . , 36 for the K = 0 band, L = 2, 3, . . . , 35
for the K = 2 band, etc.

1.2. Applications Å B(E2) and B(M1) Transition Strengths. Theoretical
and experimental [16] B(E2) transition strengths between the states in the ground
state band in 162Dy are shown in Table 2. The agreement between the calculated
and experimental numbers is excellent. The B(E2; 21 → 41) is equal to within
1 % of the experimental value, and the last two calculated B(E2) values differ
from the experimental values by less than 0.1 e2·b2 which is well within the
experimental error. Excellent agreement with experimental B(E2) data is also
observed in 162Dy and 164Dy. Contributions to the quadrupole moments from
the nucleons in the unique parity orbitals are parameterized through an effective
charge [15], ef , with eν = ef , and eπ = 1 + ef , so the E2 operator is given
by [15]: Qµ = eπQπ + eνQν .

Table 2. Experimental and theoretical B(E2) transition strengths between members of
ground state band of 162Dy

Ji → Jf B(E2; Ji → Jf ), e2 · b2

Exp. Theory

01 → 21 5.134 ± 0.155 5.134
21 → 41 2.675 ± 0.102 2.635
41 → 61 2.236 ± 0.127 2.325
61 → 81 2.341 ± 0.115 2.201

Theoretical intraband B(E2) transition strengths between the states in the
K = 2 and the ˇrst and second excited K = 0 bands are given in Table 3. Note
that the strengths of the transition probabilities are consistent across all four bands
(Tables 2 and 3).

Another test for the theory is the M1 transition strength distributions that
can be obtained using eigenvectors of the diagonalized Hamiltonian (1). The
calculated and experimentalM1 strength distributions for the Dy nuclei are given
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in Fig. 1. For illustrative purposes, the energies and M1 transition spectra are
given opposite one another.

Table 3. Theoretical B(E2) transition strengths between states of the K = 2, K = 02,
and K = 03 bands of 162Dy. The energies are labeled with the subindex γ for the
K = 2 band, a, and b for the ˇrst and second excited K = 0 bands

K = 2 K = 02 K = 03

2γ → 3γ 2.480 0a → 2a 4.193 0b → 2b 3.517
2γ → 4γ 1.060 2a → 4a 2.272 2b → 4b 1.901
3γ → 4γ 1.630 4a → 6a 2.153 4b → 6b 2.017
4γ → 5γ 1.145 6a → 8a 2.175 6b → 8b 2.030
4γ → 6γ 1.625
5γ → 6γ 0.716
6γ → 7γ 0.607
6γ → 8γ 1.685

Table 4. Total B(M1) strength from experiment [16] and the present calculation

∑
B(M1), µ2

N

Nucleus Experiment Calculated

Pure SU3 Theory

160Dy 2.48 4.24 2.32
162Dy 3.29 4.24 2.29
164Dy 5.63 4.36 3.05

The starting point for a geometric interpretation of the scissors mode within
the framework of the SU3 shell model is the well-known relation of the SU3

symmetry group to Rot (3), the symmetry group of the rotor [17,18]. The struc-
ture of the intrinsic Hamiltonian allows for a rotor-model interpretation of the
coupled SU3 irreps (λπ , µπ) and (λν , µν) for protons and neutrons, respectively.
According to the Littlewood rules [19] for coupling Young diagrams, the allowed
product conˇguration can be expressed in mathematical terms by using three inte-
gers (m, l, k): (λπ , µπ)⊗(λν , µν) = ⊕m,l,k(λπ +λν−2m+l, µπ+µν−2l+m)k,
where the parameters l and m are deˇned in a ˇxed range given by the values
of the initial SU3 representations. In this formulation, k serves to distinguish be-
tween multiple occurrences of equivalent (λ, µ) irreps in the tensor product. The
number of k values is equal to the outer multiplicity, ρmax (k = 1, 2, . . . , ρmax).

The l and m labels in this formuation can be identiˇed [20] with excitation
quanta of a two-dimensional oscillator involving relative rotations (θ, the angle
between the principal axes of the proton and neutron system, and φ, the angle
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Fig. 1. Energy spectra of 160Dy, 162Dy, and 164Dy obtained using Hamiltonian (1). ®Exp.¯
represents the experimental results and ®Th.¯ the calculated ones. Figures b, d, and f give
the theoretical and experimental M1 transition strengths from the J = 0 ground state to
various J = 1 states

between semiaxes of the proton and neutron system) of the protonÄneutron system,
m = nθ, l = nφ. These correspond to two distinct types of 1+ motion, the scissors
and twist modes, and their realization in terms of the pseudo-SU3 model.
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The SU3 irreps obtained from the tensor product that contain a Jπ = 1+ state
are those corresponding to (m, l, k) = (1, 0, 1), (0, 1, 1), (1, 1, 1), and (1, 1, 2).
A pure SU3 picture gives rise of a maximum of four 1+ states that are associated
with the scissors, twist, and double degenerate scissors-plus-twist modes [(1,1,1)
and (1,1,2)] [20]. Results for the Dy isotopes, assuming a pure pseudo-SU3

scheme, are given in Table 6.

Table 5. B(M1) transition strengths (µ2
N ) in the pure symmetry limit of the pseudo-

SU3 model. The strong coupled pseudo-SU3 irrep (λ, µ)gs for the ground state is
given with its proton and neutron subirreps and the irreps associated with the 1+

states, (λ′, µ′)1+ . In addition, each transition is labeled as a scissors (s), or twist (t), or
combination mode

Nucleus [(λπ, µπ) (λπ, µπ) (λ, µ)]gs (λ, µ)1+ B(M1) Mode

160,162Dy (10, 4) (18, 4) (28, 8) (29, 6) 0.56 t
(26, 9) 1.77 s
(27, 7)1 1.82 s+ t
(27, 7)2 0.083 t+ s

164Dy (10, 4) (20, 4) (30, 8) (31, 6) 0.56 t
(28, 9) 1.83 s
(29, 7) 1.88 s+ t
(29, 7) 0.09 t+ s

The experimental results [16] given in Fig. 1, b, d, f suggest a much larger
number of 1+ states with nonzeroM1 transition probabilities from the 0+ ground
state. The SU3 breaking residual interactions lead to a fragmentation in the M1
strength distribution, since the ground state 0+ is in that case a combination of
several SU3 irreps, each will allow M1 transitions to other SU3 irreps. Overall,
the total M1 strength is in reasonable agreement with the experimental results
(Table 4). In 164Dy the total M1 strength is slightly underestimated, which may
be due to spin admixtures in the wave function, which is not included in this work.

1.3. Conclusions Regarding ®Novel¯ Pseudo-SU(3) Applications. This
study of 160,162,164Dy shows that pseudo-spin zero neutron and proton conˇgura-
tion with a relatively few pseudo-SU3 irreps with the largest C2 values sufˇces
to obtain good agreement with known experimental results. The Hamiltonian that
was used included single-particle energies, the quadrupoleÄquadrupole interaction,
and neutron and proton pairing terms, all with strengths ˇxed by systematics, plus
four smaller rotor-like terms with strengths that were varied to maximize agree-
ment with observations. A consistent set of ®free¯ parameters was obtained. The
results generated extended beyond quantities that were used in the ˇtting proce-
dure, including intraband B(E2) strengths and the M1 strength distribution of
the ground state (Table 5).
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The M1 strength distributions were not ˇt to the data. Nevertheless, in
all cases the summed strength was found to be in good agreement with the
experiment numbers. The pseudo-SU3 model therefore offers a microscopic
shell-model interpretation of the ®scissors¯ mode [21], and in addition, it reveals
a ®twist¯ degree of freedom that corresponds to allowed relative angular motion
of the proton and/or neutron subdistribution [20]. By adding one-body and two-
body pairing interactions to the Hamiltonian, it was possible to describe the
experimentally observed fragmentation of the M1 strength. The results suggest
that more detailed microscopic description of other properties of heavy deformed
nuclei, such as g factors and beta decay, may ˇnally be within reach of a bona
ˇde microscopic theory. In summary one can certainly say that the SU(3) picture
yields a ®novel¯ twist to the concept of the scissors mode in deformed nuclei!

2. PAIRING CORRELATIONS AND NOVEL ALGEBRAIC STRUCTURES

Pairing is an important residual interaction in nuclear physics [22Ä25]. Typ-
ically, after adopting a mean-ˇeld approach, the pairing interaction is treated
approximately using either BardeenÄCooperÄSchrieffer (BCS) or HartreeÄFockÄ
Bogoliubov (HFB) methods, sometimes in conjunction with correction terms eval-
uated within the Random-Phase Approximation (RPA). However, both the BCS
and HFB approximations suffer from serious deˇciencies such as the particle
number nonconservation. While remedies may exist, often they do not yield bet-
ter physics Å such is the case for higher-lying excited states in nuclear physics
that are a natural part of the spectrum of the pairing Hamiltonian.

Exact solutions of the mean-ˇeld plus pairing model were ˇrst studied for
the equal strength pairing model [26]. Recently, generalizations that include state
dependent pairing have been considered. In these cases, the Bethe ansatz has been
evoked, from which excitation energies and the corresponding wave functions
can be determined through a set of nonlinear equations. This particular ®novel¯
application of group theory involves the use of an inˇnite-dimensional algebra.
While solving these nonlinear equations is not always practical when the number
of levels and valence nucleon pairs are large, which applies for well-deformed
nuclei, the method can be used to explore the role of pairing correlations in
lighter systems [27Ä29]. As is well known, an equal strength pairing interaction,
which is used in many applications, is not a particularly good approximation for
well-deformed nuclei. In order to study pairing interactions for well-deformed
nuclei, a hard-core BoseÄHubbard model was adopted, which is equivalent to
a mean-ˇeld plus nearest-level pairing theory [2]. This model is also exactly
solvable, and is applied to describe well-deformed nuclei in the rare-earth and
actinide regions.



NOVEL APPLICATIONS OF GROUP THEORY IN NUCLEAR PHYSICS 61

2.1. New Algebraic Bethe Ansatz Approach. The general pairing Hamil-
tonian for spherical nuclei can be written as

Ĥ =
∑
jm

εja
†
jmajm −

∑
jj′

cjj′S
+(j)S−(j′), (3)

where the εj are single-particle energies and S±(j) and S0(j) are the pairing
operators for a single-j shell, and cjj′ is the strength of the pairing interaction
between the j and j′ shells. In nondegenerate cases, εj are real numbers that
are not equal to each other. In this case one can assume that the parameters cjj′

can be expanded in terms of the εj as cjj′ =
∑

mn gmnε
m
j ε

n
j′ , where {gmn} is

a set of parameters to be determined. Hence, similarly to the separable pairing
case [27Ä29], we introduce the operators {Sµ

n ; µ = 0,+,−; n = 0, 1, 2, . . .}
with

S+
n =

∑
j

εnj S
+(j), S−

n =
∑

j

εnj S
−(j), S0

n =
∑

j

εnj S
0(j). (4)

The operators {Sµ
n}, which form a half-positive inˇnite-dimensional Lie algebra

ŜU(2) without central extension, satisfy the following commutation relations:

[S+
m, S

−
n ] = 2S0

m+n, [S0, S±] = ±S±
m+n. (5)

Using these ŜU(2) generators, one can rewrite the Hamiltonian (3) as

Ĥ =
∑

j

εjΩj + 2S0
1 −

∑
mn

gmnS
+
mS

−
n , (6)

where Ωj = (2j + 1)/2. In order to diagonalize the Hamiltonian (6), we use the
following Bethe ansatz wave function:

|k; ζ〉 = NS+(x(ζ)
1 )S+(x(ζ)

2 ) . . . S+(x(ζ)
k )|0〉, (7)

where N is a normalization constant; ζ is an additional quantum number used to
distinguish different eigenstates with the same number of pairs k, and |0〉 is the
pairing vacuum state,

S+(x(ζ)
r ) =

∑
m

amS
+
m(x(ζ)

r ) (8)

in which {am} and {x(ζ)
r } are two sets of c numbers to be determined and

S+
m(x(ζ)

r ) =
∑

j

εmj

1 − εjx(ζ)
r

S+
j . (9)
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In solving the corresponding eigenvalue equation we observe that like the
separable pairing case [28], auxiliary conditions are necessary to cancel the so-
called unwanted terms, and these can be chosen as

∑
ν

aνε
ν
jGij =

∑
s

c
(i)
s (r, q)

1 − εjz(i)s (r, q)
, (10)

where {c(i)s (r, q)} and {z(i)s (r, q)} are two other sets of unknown c numbers to be
determined and Gnj =

∑
m gnmε

m
j . One can prove that the k-pair eigenenergies

are given by

E
(ζ)
k =

k∑
i=1

2

x
(ζ)
i

. (11)

Furthermore, the c numbers {am} (m = 0, 1, . . . , p−1), {x(ζ)
r } (r = 1, 2, . . . , k),

{c(i)s (r, q)} and {z(i)s (r, q)} (0 ≤ i, s ≤ p− 1, 1 ≤ r �= q ≤ k) must satisfy

ai

x
(ζ)
µ

= Λi(x(ζ)
µ ) +

∑
ν �=µ

x
(ζ)
ν

x
(ζ)
ν − x(ζ)

µ

Aµ
i (x(ζ)

ν ) (12)

and

∑
s

c
(i)
s (r, q)(z(i)s (r, q))2

(1 − εjz(i)s (r, q))(z(i)s (r, q) − x(ζ)
r )(z(i)s (r, q) − x(ζ)

q )
=

=
ai

(1 − εjx(ζ)
r )(1 − εjx(ζ)

q )
(13)

for ˇxed j, i, and r �= q, where

Λm(x) =
∑
nµ

〈S0
µ+n(x)〉aµgmn (14)

with

〈S0
µ+n(x)〉 =

1
2

∑
j

ενj (τ − Ωj)
1 − εjx

, (15)

τ =
∑

j τj is the seniority quantum number of the pairing vacuum and

Aµ
i (xν) = ai −

∑
s

c
(i)
s (µ, ν)xν

z
(i)
s (µ, ν) − xν

. (16)
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As a simple example of the theory, we consider the J = 0 pairing of the
evenÄeven oxygen isotopes 18−26O. The neutron single-particle energies εj are
taken from the energy spectra of 17O with ε1/2 = −3.273, ε3/2 = 0.941, and
ε5/2 = −4.143 MeV. These values are all relative to the binding energy of 16O,
which is taken to be zero. The two-body general pairing strengths cjj′ in MeV
are taken from the J = 0 two-body matrix elements of the universal ds-shell
Hamiltonian [30] with c 1

2
1
2

= 2.125, c 3
2

3
2

= 1.092, c 5
2

5
2

= 0.940, c 1
2

3
2

= 0.766,
c 1

2
5
2

= 0.765, and c 3
2

5
2

= 1.301. Using these data, we have calculated the pairing
excitation energies (in MeV) as shown in Table 6.

Table 6. Pairing excitation energies (in MeV) for evenÄeven 18−26O calculated from
Eqs. (11)Ä(16)

ζ k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0 −12.60 −24.15 −31.12 −37.94 −37.82 −34.77
1 −8.10 −19.27 −26.75 −29.92 −27.14 Å
2 0.62 −11.26 −21.60 −27.95 −25.21 Å
3 Å −7.63 −17.51 −18.76 Å Å
4 Å 2.41 −9.24 −16.02 Å Å
5 Å Å −4.77 Å Å Å

Fig. 2. EvenÄodd mass difference
P (A) = E(A)+E(A−2)−2E(A−1)
for Ni isotopes calculated by the GP,
SSP, and ESP, respectively, where
E(A) is the total binding energy, and
dots are the experimental quantities

One can assume a separable strength
pairing (SSP) interaction, cjj′ = cjc

∗
j′ .

Though strong, this assumption is physi-
cally motivated because it links the pairÄ
pair interaction strength to the individual
pair formation probability. Furthermore,
it is expected to be better than the equal
strength pairing (ESP) approximation for
which cjj′ = |G| for all orbitals. In this
case, the corresponding Bethe ansatz equa-
tions can be simpliˇed, which was reported
in [28]. In Fig. 2, evenÄodd mass differ-
ences for Ni isotopes calculated by the gen-
eral pairing (GP), separable strength pairing
(SSP), and equal strength pairing (ESP), re-
spectively, are plotted, which shows the SSP
is indeed a good approximation to the nu-
clear pairing problem. In our calculation,
the 2p3/2, 1f5/2, and 2p1/2 single-particle energies are taken from the experi-
mental spectrum of 57Ni with ε3/2 = 0, ε1/2 = 1.113, and ε5/2 = 0.769 MeV.
The parameters cjj′ (in MeV) in the GP case are obtained from the effective two-
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body matrix given by [31], which yields c 1
2

1
2

= 0.89, c 3
2

3
2

= 0.46, c 5
2

5
2

= 0.58,
c 1

2
3
2

= 0.69, c 1
2

5
2

= 0.32, c 3
2

5
2

= 0.46. In the SSP calculation, the parameters cj
were determined as follows: Firstly, calculate the seniority zero one-pair ground
state wave function, |k = 1〉 =

∑
j c

′
jS

+
j |0〉, from the J = 0 two-body pairing

Hamiltonian without single-particle terms in the GP case. Then, reconstruct
the SSP two-body part HSSP

pairing = −
∑

jj′ cjc
∗
j′S

+
j S

−
j′ , where cj =

√
gc′j and

g is a real parameter, using the generalized pairing operator
∑

j c
′
jS

+
j as done

in [27], which should reproduce the seniority zero one-pair ground state energy
derived in the GP case. This yields c1/2 = 0.75, c3/2 = 0.68, and c5/2 = 0.65.
And ˇnally, the pairing strength in the ESP is taken from [32, 33], which gives
|G| = 0.33 MeV.

2.2. Nearest-Level Pairing Approximation for Well-Deformed Nuclei. As
shown previously, the Bethe ansatz approach to exact solutions of the mean-ˇled
plus general pairing requires one to solve a large number of nonlinear equations.
Such a procedure is not practical when the number of levels and valence nucleon
pairs are large, which is usually the case for well-deformed nuclei. Recently,
a hard-core BoseÄHubbard model was proposed [2], which is equivalent to a
mean-ˇeld plus nearest-level pairing theory. As is well known, an equal strength
pairing interaction, which is used in many applications, is not a particularly good
approximation for well-deformed nuclei. In [34], a level-dependent Gaussian-type
pairing interaction with

Gij = A e−B(εi−εj)
2

(17)

was used, where i and j each represent doubly occupied levels with single-particle
energies εi and εj . The parameters A < 0 and B > 0 are adjusted in such a
way that the location of the ˇrst excited eigensolution lies approximately at the
same energy as for the constant pairing case. Of course, there is some freedom
in adjusting the parameters, allowing one to control in a phenomenological way
the interaction among the levels. Expression (17) implies that scattering between
particle pairs occupying levels with single-particle energies that lie close are
favored; scattering between particle pairs in levels with distant single-particle
energies are unfavored. As an approximation, this pairing interaction was further
simpliˇed to the nearest-level coupling, namely, Gij is given by (17) if the levels
i and j lie adjacent to one another in energy, with Gij taken to be 0 otherwise.
Hence, the Hamiltonian can be expressed as

Ĥ =
∑

i

εi +
∑
i,j

′
tijbi

+bj , (18)

where the ˇrst sum runs over the orbits occupied by a single fermion which occurs
in the description of odd-A nuclei or broken pair cases, and the second primed



NOVEL APPLICATIONS OF GROUP THEORY IN NUCLEAR PHYSICS 65

sum runs only over levels that are occupied by pairs of fermions. For the nearest-
level pairing interaction case the t-matrix is given by tii = 2εi +Gii = 2εi + A
and tii+1 = ti+1i = Gii+1 with tij = 0 otherwise. The fermion pair operators in
this expression are given by

bi
+ = ai

+aī
+, bi = aīai, (19)

where ai
+ is the ith level single-fermion creation operator and a+

ī
is the corre-

sponding time-reversed state. The Nilsson Hamiltonian is used to generate the
mean-ˇeld. In this case there is at most one valence nucleon pair or a single
valence nucleon in each level due to the Pauli principle. Equivalently, these
pairs can be treated as bosons with projection onto the subspace with no doubly
occupied levels.

The eigenstates of (18) for k -pair excitation can be expressed as

|k; ξ, (nj1 , nj2 , . . . , njr )nf 〉 =
∑′

i1<i2...<ik

C
(ξ)
i1i2...ik

×

× bi1†bi2† . . . bik

†|(nj1 , nj2 , . . . , njr )nf 〉, (20)

where j1, j2, . . . , jr are the levels occupied by r single particles, the prime indi-
cates that i1, i2, . . . , ik cannot be taken to be j1, j2, . . . , jr in the summation,
and nf is the total numbers of single valence nucleons, that is nf =

∑
j nj . Since

only evenÄeven and odd-A nuclei are treated without including broken pair cases
in this paper, r is taken to be 1 for odd-A nuclei, and 0 for evenÄeven nuclei. In

Eq. (20), C(ξ)
i1i2...ik

is a determinant given by

∣∣∣∣∣∣∣∣∣∣∣

gξ1
ii

gξ1
i2

· · · gξ1
ik

gξ2
ii

gξ2
i2

· · · gξ2
ik

· · · · · · · · · · · ·

gξk

ii
gξk

i2
· · · gξk

ik

∣∣∣∣∣∣∣∣∣∣∣
, (21)

where ξ is a shorthand notation for a selected set of k eigenvalues of the t matrix
without the corresponding r rows and columns denoted as t̃, which can be used
to distinguish the eigenstates with the same number of pairs, k, and gξp is the pth
eigenvector of the t̃ matrix.

The excitation energies corresponding to (20) can be expressed as

E
(ξ)
k =

r∑
i=1

εji +
k∑

j=1

E(ξj), (22)
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where the ˇrst sum runs over r Nilsson levels, each occupied by a single valence
nucleon, which occurs in odd-A nuclei or in broken pair cases; the second one is
a sum of k different eigenvalues of the t̃ matrix. Obviously, t̃ is a (k−r)×(k−r)
matrix, since those orbits occupied by single valence nucleons are excluded re-
sulting from the Pauli blocking. E(ξp) is the pth eigenvalue of the t̃-matrix,
that is ∑

j

t̃ijgj
ξp = E(ξp)gi

ξp . (23)

Hence

Ĥ |k; ξ, (nj1 , nj2 , . . . , njr )nf 〉 =

=
∑

i1<i2<...<ik

k∑
µ=1

∑
P

(−)P

(
r∑

i=1

εji + E(ξP (µ))

)
×

× g(ξP(1))

i1
g
(ξP (2))

i2
. . . g

(ξP(µ))

iµ
. . . g

(ξP(k))

ik
bi1

†bi2
† . . . bik

†|(nj1 , nj2 , . . . , njr )nf 〉 =

= E
(ξ)
k |k; ξ, (nj1 , nj2 , . . . , njk

)nf 〉, (24)

where P runs over all permutations; E(ξµ) is the µth eigenvalue of the t̃ matrix.
Eq. (22) is valid for any k. If one assumes that the total number of orbits is N for
evenÄeven nuclei, the k-pair excitation energies are determined by the sum of k
different eigenvalues chosen from the N eigenvalues of the t̃ matrix with r = 0,
the total number of excited levels is N !/k!(N − k)!. While for odd-A nuclei or
broken pair cases, the levels that are occupied by the single valence nucleons
should be excluded in the original t matrix. In the latter case, the eigenvalue
problem (18) can be solved simply by diagonalizing the corresponding t̃ matrix
as shown in Eq. (22).

Nuclei in the rare-earth and actinide regions are ˇtted by the mean-ˇeld plus
nearest-level pairing model using the axial-symmetric Nilsson potential as the
mean-ˇeld. In this case, exact solutions can be obtained by using the above simple
method. As for the binding energy, the contributions from the real quadrupoleÄ
quadrupole interaction are expected to be relatively small [35]. This conclusion
applies to low-lying 0+ excited states as well as ground states. As shown in [36],
contributions from the pairing interaction are very important to the low-lying
excited 0+ states in these deformed regions. Hence, the position of low-lying 0+

states is an estimate based on the Nilsson mean-ˇeld plus pairing approximation.
As examples, binding energies and low-lying 0+ states of 226−234Th, 230−240U,
and 236−243Pu isotopes were ˇtted. Table 7 shows the binding energy results
as well as pairing excitation energies of the theory for 226−234Th, 230−240U, and
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Table 7. Calculated binding and pairing excitation energies are compared with the
corresponding experimental values for various 226−234Th, 230−240U, and 236−243Pu
isotopes. Bth and Bexp denote, respectively, the theoretical and experimental binding
energies [37]

Spin Pairing excitation
Nucleus and Bexp, MeV Bth, MeV Energies of Energies of

parity exp., MeV th., MeV

226Th 0+ −1730.54 −1732.17 02
+ 0.805 02

+ 0.999
1+

22
3.226

1+

22
1.299

227Th
1+

2
−1736.00 −1733.97

1+

23
5.188

1+

23
1.391

1+

24
6.495

1+

24
1.415

228Th 0+ −1743.10 −1739.30 02
+ 0.831 02

+ 0.718
5+

22
0.029

5+

22
0.057

229Th
5+

2
−1748.36 −1744.42

5+

23
0.317

5+

23
0.516

230Th 0+ −1755.16 −1756.90 02
+ 0.635 02

+ 1.199
5+

22
0.241

5+

22
0.907

231Th
5+

2
−1760.27 −1764.21

5+

23
0.302

5+

23
1.204

5+

24
0.317

5+

24
1.230

02
+ 0.730 02

+ 1.647
232Th 0+ −1766.71 −1768.66 03

+ 1.079 03
+ 2.585

233Th
1+

2
−1771.50 −1772.92

1+

22
0.310

1+

22
0.907

02
+ 0.810 02

+ 1.066
234Th 0+ −1777.69 −1779.81 03

+ 1.150 03
+ 2.562

04
+ 1.470 03

+ 2.904

231U
5−

2
−1758.72 −1761.26 Å

5−

22
0.646

232U 0+ −1760.00 −1758.94 02
+ 0.691 02

+ 0.961
5+

22
0.340

5+

22
0.732

233U
5+

2
−1771.74 −1770.23

5+

23
0.546

5+

23
0.803

02
+ 0.809 02

+ 0.747
234U 0+ −1778.59 −1774.41 03

+ 1.044 03
+ 0.933

04
+ 1.781 04

+ 1.696
7−

22
0.670

7−

22
0.826
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End of Table 7

Spin Pairing excitation
Nucleus and Bexp , MeV Bth, MeV Energies of Energies of

parity exp., MeV th., MeV

235U
7−

2
−1783.89 −1780.23

7−

23
0.700

7−

23
1.056

02
+ 0.919 02

+ 0.913
236U 0+ −1790.44 −1786.71 03

+ 2.155 03
+ 1.186

04
+ 2.750 04

+ 2.319
1

2 2

+

0.846
1

2 2

+

0.586

237U
1

2

+

−1795.56 −1795.48
1

2 3

+

0.905
1

2 3

+

0.700

02
+ 0.925 02

+ 0.877
238U 0+ −1801.715 −1802.22 03

+ 0.993 03
+ 2.874

5

2 2

+

0.193
5

2 2

+

0.185

239U
5

2

+

−1806.52 −1810.23
5

2 3

+

0.734
5

2 3

+

0.459

5

2 4

+

0.757
5

2 4

+

0.786
240U 0+ −1812.45 −1815.41 Å 02

+ 0.100
236Pu 0+ −1790.46 −1792.36 02

+ 3.000 02
+ 0.645

7

2 2

−
0.691

7

2 2

−
0.617

237Pu
7

2

−
−1795.56 −1795.87

7

2 3

−
0.696

7

2 3

−
2.173

02
+ 0.942 02

+ 0.407
03

+ 1.134 03
+ 1.987

238Pu 0+ −1801.72 −1799.96 04
+ 1.229 04

+ 2.170
05

+ 1.427 05
+ 2.681

239Pu
1

2

+

−1806.52 −1805.12
1

2 2

+

0.753
1

2 2

+

0.354

02
+ 0.860 02

+ 1.030
240Pu 0+ −1812.45 −1810.68 03

+ 1.089 03
+ 2.144

04
+ 1.526 04

+ 2.626
5

2 2

+

0.233
5

2 2

+

0.088

241Pu
5

2

+

−1816.64 −1816.09
5

2 3

+

0.801
5

2 3

+

0.587
242Pu 0+ −1822.41 −1821.89 02

+ 0.956 02
+ 1.186

7

2 2

−
0.333

7

2 2

−
0.845

243Pu
7

2

−
−1826.63 −1828.63

7

2 3

−
0.450

7

2 3

−
1.146

7

2 4

−
0.742

7

2 4

−
1.815
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236−243Pu, with the corresponding experimental values taken from [37]. The
parameters A and B in Eq. (17) were ˇt as follows to maximize agreement with
experiment:

A = α1 + β1k + γ1nf , B = α2 + β2k + γ2nf , (25)

where αi, βi, and γi are parameters that were ˇt for each isotope.
2.3. Conclusions Related to ®Novel¯ Algebraic Approaches. In conclusion,

mean-ˇled plus general pairing interaction models are exactly solvable. In these
cases the Bethe ansatz can be evoked, from which excitation energies and the
corresponding wave functions can be determined through a set of nonlinear equa-
tions. These exact solutions are accessible for valence particle or hole pairs,
k ≤ 4. Therefore, the method can be applied to ds and fp shell nuclei. However,
solving these nonlinear equations is not practical when the number of levels and
valence nucleon pairs are large, which applies for well-deformed nuclei. In the
latter case, a hard-core BoseÄHubbard model was adopted, which is equivalent to
a mean-ˇeld plus nearest-level pairing theory. This model is also exactly solv-
able, and is applied to describe well-deformed nuclei in the rare-earth and actinide
regions. Because of the exact solvability, many physical quantities, such as occu-
pation number probabilities, moment of inertia, electromagnetic transition rates,
as well as one-particle and two-particle transfer reaction rates can be calculated
exactly, which will be reported elsewhere.
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