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Two approaches of N = 2 fractional supersymmetric quantum mechanics of order k are studied
in a complementary way. The ˇrst one, based on a generalized WeylÄHeisenberg algebra Wk (that
comprizes the afˇne quantum algebra Uq(sl2) with qk = 1 as a special case), apparently contains
solely one bosonic degree of freedom. The second one uses generalized bosonic and k-fermionic
degrees of freedom. As an illustration, a particular emphasis is put on the fractional supersymmetric
oscillator of order k.

INTRODUCTION

Supersymmetric quantum mechanics (SSQM) needs two degrees of freedom:
one bosonic degree (described by a complex variable) and one fermionic degree
(described by a Grassmann variable). From a mathematical point of view, we
then have a Z2 grading of the Hilbert space of physical states (involving bosonic
and fermionic states). Fractional supersymmetric quantum mechanics (FSSQM)
of order k is an extension of ordinary SSQM for which the Z2 grading is replaced
by a Zk grading with k ∈ N \ {0, 1}. The Zk grading corresponds to a bosonic
degree of freedom (described again by a complex variable) and a para-fermionic
or k-fermionic degree of freedom (described by a generalized Grassmann variable
of order k). In other words, to pass from ordinary supersymmetry or SSQM to
fractional supersymmetry or FSSQM of order k, we retain the bosonic variable
and replace the fermionic variable by a para-fermionic or k-fermionic variable.

A possible approach to FSSQM of order k thus amounts to replace fermions
by para-fermions of order k − 1. This yields para-supersymmetric quantum
mechanics as ˇrst developed, with one boson and one para-fermion of order 2,
by Rubakov and Spiridonov [1] and extended by various authors [2Ä7]. An
alternative approach to FSSQM of order k consists in replacing fermions by
k fermions which are objects interpolating between bosons (for k → ∞) and

∗Current address: Laboratoire de Physique de la MatiOere CondensPee, FacultPe des Sciences,
UniversitPe Ibn Zohr, BP 28/S, Agadir, Morocco.



84 DAOUD M., KIBLER M.

fermions (for k = 2) and which satisfy a generalized Pauli exclusion principle
according to which one cannot put more than k− 1 particles on a given quantum
state [8]. The k fermions take their origin in a pair of q- and q̄-oscillator algebras
(or q- and q̄-uon algebras) with

q =
1
q̄

:= exp
(

2πi
k

)
, (1)

where k ∈ N \ {0, 1}. Along this line, a fractional supersymmetric oscillator was
derived in terms of boson and k-fermion operators in Ref. 9.

Fractional supersymmetric quantum mechanics was also developed without
an explicit introduction of k-fermionic degrees of freedom [10, 11]. In this
respect, FSSQM of order k = 3 was worked out by Quesne and Vansteenkiste
[11] owing to the introduction of the Cλ-extended oscillator algebra. Their work
is an extension of the construction by Plyushchay [10] of SSQM, viz., FSSQM
of order k = 2, with one bosonic degree of freedom only.

The connection between FSSQM (and thus SSQM) and quantum groups has
been worked out by several authors [12Ä20] mainly with applications to exotic
statistics in mind. In particular, LeClair and Vafa [12] studied the isomorphism
between the afˇne quantum algebra Uq(sl2) and N = 2 FSSQM in D = 1 + 1
dimensions when q2 goes to a root of unity (N is the number of supercharges);
in the special case where q2 → −1, they recovered ordinary SSQM.

It is the aim of this paper to approach N = 2 FSSQM of order k from
different routes: (i) ˇrst, from a generalized WeylÄHeisenberg algebra Wk (de-
ˇned in Sec. 1) and (ii) second, in terms of generalized bosonic and k-fermionic
operators (Secs. 3 and 4). In Sec. 2, a fractional supersymmetric Hamiltonian is
derived from the generators of Wk and specialized to the case of a fractional
supersymmetric oscillator. In Sec. 4, this fractional supersymmetric oscillator is
further investigated on the basis of a Q-uon approach to the algebra Wk, with Q
going to a kth root of unity. Finally, differential realizations, involving bosonic
and generalized Grassmannian variables, of FSSQM are given in Sec. 5 for some
particular cases of Wk .

1. A GENERALIZED WEYLÄHEISENBERG ALGEBRA Wk

1.1. The Algebra. For ˇxed k, with k ∈ N \ {0, 1}, we deˇne a generalized
WeylÄHeisenberg algebra, denoted as Wk , as an algebra spanned by four linear
operators X− (annihilation operator), X+ (creation operator), N (number oper-
ator) and K (grading operator) acting on some Hilbert space and satisfying the
following relations:

[X−, X+] =
k−1∑
s=0

fs(N) Πs, (2a)
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[N,X−] = −X−, [N,X+] = +X+, (2b)

[K,X+]q = [K,X−]q̄ = 0, (2c)

[K,N ] = 0, (2d)

Kk = 1, (2e)

where q is the kth root of unity given by (1). In Eq. (2a), the fs are reasonable
functions (see below) and the operators Πs are polynomials in K deˇned by

Πs :=
1
k

k−1∑
t=0

q−st Kt (3)

for s = 0, 1, . . . , k − 1. Furthermore, we suppose that the operator K is unitary
(K† = K−1), the operator N is self-adjoint (N † = N ), and the operators X−
and X+ are connected via Hermitean conjugation (X†

− = X+). The functions
fs: N 	→ fs(N) must satisfy the constrain relation fs(N)† = fs(N) (with
s = 0, 1, . . . , k − 1) in order that X+ = X†

− be veriˇed.

1.2. Projection Operators. It is clear that we have the resolution of the
identity operator

k−1∑
s=0

Πs = 1

and the idempotency relation

ΠsΠt = δ(s, t)Πs,

where δ is the Kronecker symbol. Consequently, the k self-adjoint operators Πs

are projection operators for the cyclic group Zk = {1,K, . . . ,Kk−1} of order k
spanned by the generator K . In addition, these projection operators satisfy

ΠsX+ = X+Πs−1 ⇔ X−Πs = Πs−1X− (4)

with the convention Π−1 ≡ Πk−1 and Πk ≡ Π0 (more generally, Πs+kn ≡ Πs

for n ∈ Z). Note that Eq. (3) can be reversed in the form

Kt =
k−1∑
s=0

qts Πs

with t = 0, 1, . . . , k − 1.
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1.3. Representation. We now consider an Hilbertean representation of the
algebra Wk. Let F be the HilbertÄFock space on which the generators of Wk

act. Since K obeys the cyclicity condition Kk = 1, the operator K admits the
set {1, q, . . . , qk−1} of eigenvalues. It thus makes it possible to graduate, via a
Zk-grading, the representation space F of the algebra Wk as

F =
k−1⊕
s=0

Fs, (5a)

where
Fs := {|kn + s〉 : n ∈ N} (5b)

with
K|kn + s〉 = qs|kn + s〉.

Therefore, to each eigenvalue qs (with s = 0, 1, . . . , k−1) we associate a subspace
Fs of F . It is evident that

Πs|kn + t〉 = δ(s, t) |kn + s〉

and, thus, the application Πs: F → Fs yields a projection of F onto its subspace
Fs.

The action of X± and N on F can be taken to be

N |kn + s〉 = n|kn + s〉

and
X−|kn + s〉 =

√
F (n) |k(n− 1) + s− 1〉, s �= 0, (6a)

X−|kn〉 =
√

F (n) |k(n− 1) + k − 1〉, s = 0, (6b)

X+|kn + s〉 =
√

F (n + 1) |k(n + 1) + s + 1〉, s �= k − 1, (6c)

X+|kn + k − 1〉 =
√

F (n + 1) |k(n + 1)〉, s = k − 1. (6d)

The function F is a structure function that fulˇlls the initial condition F (0) = 0
(see Refs. 21, 22). Furthermore, it satisˇes

X−X+ = F (N + 1), X+X− = F (N)

and

F (N + 1) − F (N) =
k−1∑
s=0

fs(N) Πs

which admits the classical solution F (N) = N for fs = 1 (s = 0, 1, . . . , k − 1).
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1.4. Particular Cases. The algebra Wk covers a great number of situations
encountered in the literature [9Ä11, 23, 24]. These situations differ by the form
given to the right-hand side of (2a) and can be classiˇed as follows.

(i) As a particular case, the algebra W2 for k = 2 with

[X−, X+] = 1 + cK, [N,X±] = ±X±,

[K,X±]+ = 0, [K,N ] = 0, K2 = 1,

where c is a real constant (f0 = 1 + c, f1 = 1− c), corresponds to the CalogeroÄ
Vasiliev [23] algebra considered by Gazeau [24] for describing a system of two
anyons, with an Sl(2,R) dynamical symmetry, subjected to an intense magnetic
ˇeld and by Plyushchay [10] for constructing SSQM without fermions. Of course,
for k = 2 and c = 0 we recover the algebra describing the ordinary or Z2-graded
supersymmetric oscillator.

If we deˇne

cs =
1
k

k−1∑
t=0

q−ts ft(N), (7)

with the functions ft chosen in such a way that cs is independent of N (for
s = 0, 1, . . . , k − 1), the algebra Wk deˇned by

[X−, X+] =
k−1∑
s=0

csK
s, (8)

together with Eqs. (2b)Ä(2e), corresponds to the Cλ-extented harmonic oscillator
algebra introduced by Quesne and Vansteenkiste [11] for formulating FSSQM of
order 3. The latter algebra was explored in great detail in the case k = 3 [11].

(ii) Going back to the general case where k ∈ N \ {0, 1}, if we assume in
Eq. (2a) that fs = G is independent of s with G(N)† = G(N), we get

[X−, X+] = G(N). (9)

We refer the algebra Wk deˇned by Eq. (9) together with Eqs. (2b)Ä(2e) to as
a nonlinear WeylÄHeisenberg algebra. The latter algebra was considered by the
authors as a generalization of the Zk-graded WeylÄHeisenberg algebra describing
a generalized fractional supersymmetric oscillator [9].

(iii) As a particular case, for G = 1 we have

[X−, X+] = 1, (10)

and here we can take
N := X+X−. (11)
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The algebra Wk deˇned by Eqs. (10) and (11) together with Eqs. (2b)Ä(2e) cor-
responds to the Zk-graded WeylÄHeisenberg algebra connected to the fractional
supersymmetric oscillator studied in Ref. 9.

(iv) Finally, it is to be noted that the afˇne quantum algebra Uq(sl2) with
qk = 1 can be considered as a special case (with the generators J− ≡ X−,
J+ ≡ X+, q−J3 ≡ K−1, and q+J3 ≡ K , where J3 ≡ N ) of the generalized
WeylÄHeisenberg algebra Wk . This result is valid for all the representations
(studied in Ref. 25) of the algebra Uq(sl2).

2. A GENERAL SUPERSYMMETRIC HAMILTONIAN

2.1. Supercharges. We are now in a position to introduce supercharges which
are basic operators for the formulation of FSSQM. We deˇne the supercharge
operators Q− and Q+ by

Q− := X−(1 − Π1), (12a)

Q+ := X+(1 − Π0), (12b)

or alternatively

Q− := X−(Π2 + . . . + Πk−2 + Πk−1 + Π0), (13a)

Q+ := X+(Π1 + Π2 + . . . + Πk−2 + Πk−1). (13b)

Indeed, we have here one of k, with k ∈ N\{0, 1}, possible equivalent deˇnitions
of the supercharges Q− and Q+ corresponding to the k circular permutations of
the indices 0, 1, . . . , k−1. Obviously, we have the Hermitean conjugation relation
Q†

− = Q+. Thus, our approach corresponds to a N = 2 formulation of FSSQM
of order k (N/2 is the number of independent supercharges). By making use
of the commutation relations between the projection operators Πs and the shift
operators X− and X+ (see Eqs. (4)), we easily get

Qm
− = Xm

− (Π0 + Πm+1 + Πm+2 + . . . + Πk−1), (14a)

Qm
+ = Xm

+ (Π1 + Π2 + . . . + Πk−m−1 + Πk−m) (14b)

for m = 0, 1, . . . , k − 1. By combining Eqs. (12) or (13) and (14), we obtain
Qk

− = Qk
+ = 0. Hence, the supercharge operators Q− and Q+ are nilpotent

operators of order k.
We continue with some relations at the basis of the derivation of a super-

symmetric Hamiltonian. The central relations are

Q+Qm
− = X+Xm

− (1 − Πm)(Π0 + Πm+1 + . . . + Πk−1), (15a)
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Qm
−Q+ = Xm

− X+(1 − Π0)(Πm + Πm+1 + . . . + Πk−1) (15b)

with m = 0, 1, . . . , k− 1. From Eqs. (15), we can derive the following identities
giving Qm

−Q+Q	
− with m + � = k − 1.

(i) We have
Q+Qk−1

− = X+Xk−1
− Π0, (16a)

Qk−1
− Q+ = Xk−1

− X+Πk−1 (16b)

in the limiting cases corresponding to (m = 0, � = k−1) and (m = k−1, � = 0).
(ii) Furthermore, we have

Qm
−Q+Q	

− = Xm
− X+X

	
−(Π0 + Πk−1) (16c)

with the conditions (m �= 0, � �= k − 1) and (m �= k − 1, � �= 0).
2.2. The Hamiltonian. Following Rubakov and Spiridonov [1], we consider

the multilinear relation

Qk−1
− Q+ + Qk−2

− Q+Q− + . . . + Q+Qk−1
− = Qk−2

− H,

where H is an operator that depends on the algebra Wk. The operator H deˇnes
the Hamiltonian for a supersymmetric system associated to Wk. This dynamical
system, that we shall refer to a fractional or Zk-graded supersymmetric system,
depends on the functions fs occurring in the deˇnition (1) of Wk. By repeated
use of Eqs. (1) and (16), we ˇnd that the most general expression of H is

H = (k − 1)X+X− −
k∑

s=k−2

s−1∑
t=2

(t− 1) ft(N − s + t)Πs −

−
k−1∑
s=1

k−1∑
t=s

(t− k) ft(N − s + t)Πs (17)

in terms of the product X+X−, the operators Πs and the functions fs. In the
general case, we can check that

H† = H (18)

and
[H,Q−] = [H,Q+] = 0. (19)

Equations (18) and (19) show that the two supercharge operators Q− and Q+

are two (nonindependent) constants of the motion for the Hamiltonian system
described by the self-adjoint operator H . From Eqs. (17)Ä(19), it can be seen
that the Hamiltonian H is a linear combination of the projection operators Πs

with coefˇcients corresponding to isospectral Hamiltonians (or supersymmetric
partners) associated to the various subspaces Fs with s = 0, 1, . . . , k − 1.
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2.3. Particular Cases. The general, expression (17) for the Hamiltonian H
can be particularized to some interesting cases. These cases correspond to the
above-mentioned forms of the generalized WeylÄHeisenberg algebra Wk.

(i) In the particular case k = 2, by taking f0 = 1+ c and f1 = 1− c, where c
is a real constant, the Hamiltonian (17) gives back the one derived by Plyushchay
[10] for SSQM.

More generally, by restricting the functions ft in Eq. (17) to constants (in-
dependent of N ) deˇned by

ft =
k−1∑
s=0

qts cs

in terms of the constants cs (cf. Eq. (7)), the so-obtained Hamiltonian H corre-
sponds to the Cλ oscillator fully investigated for k = 3 in Ref. 11.

(ii) In the case fs = G (independent of s = 0, 1, . . . , k − 1), i. e., for
a generalized WeylÄHeisenberg algebra Wk deˇned by (2b)Ä(2e) and (9), the
Hamiltonian H can be written as

H = (k − 1)X+X− −
k−1∑
s=2

s−1∑
t=1

G(N − t)(1 − Π1 − Π2 − . . .− Πs) +

+
k−1∑
s=1

k−s−1∑
t=0

(k − s− t)G(N + t) Πs. (20)

The latter expression was derived in Ref. 9.
(iii) If G = 1, i. e., for a WeylÄHeisenberg algebra deˇned by (2b)Ä(2e) and

(10), Eq. (20) leads to the Hamiltonian

H = (k − 1)X+X− + (k − 1)
k−1∑
s=0

(
s + 1 − 1

2
k

)
Πk−s (21)

for a fractional supersymmetric oscillator. The energy spectrum of H is made of
equally spaced levels with a ground state (singlet), a ˇrst excited state (doublet), a
second excited state (triplet), . . . , a (k−2)-th excited state ((k−1)-plet) followed
by an inˇnite sequence of further excited states (all k-plets).

(iv) In the case where the algebra Wk is restricted to Uq(sl2), the correspond-
ing Hamiltonian H is given by Eq. (17) where the ft are simple coefˇcients. This
yields

H = (k − 1)J+J− +
1

sin (2π/k)

k∑
s=k−2

s−1∑
t=2

(t− 1) sin
4πt
k

Πs +

+
1

sin (2π/k)

k−1∑
s=1

k−1∑
t=s

(t− k) sin
4πt
k

Πs. (22)
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Alternatively, Eq. (22) can be rewritten in the form (20) where X± ≡ J± and
N ≡ J3 and where the function G is deˇned by

G(X) := −[2X ]q,

where the symbol [ ]q is deˇned by

[2X ]q :=
q2X − q−2X

q − q−1

with X an arbitrary operator or number. The quadratic term J+J− can be
expressed in the term of the Casimir operator J2 of Uq(sl2). Thus, the so-
obtained expression for the Hamiltonian H is a simple function of J2 and J3.

3. A DEFORMED-BOSON + k-FERMION APPROACH TO FRACTIONAL
SUPERSYMMETRY

3.1. A Deformed-Boson + k-Fermion Realization of Wk . In this section, the
main tools consist of k pairs (b(s)−, b(s)+) with s = 0, 1, . . . , k− 1 of deformed
bosons and a pair (f−, f+) of k fermions. The operators f± satisfy

[f−, f+]q = 1, fk
− = fk

+ = 0,

and the operators b(s)± satisfy the commutation relation

[b(s)−, b(s)+] = fs(N), (23)

where the functions fs with s = 0, 1, . . . , k − 1 and the operator N occur
in Eq. (2). In addition, the pairs (f−, f+) and (b(s)−, b(s)+) are two pairs
of commuting operators and the operators b(s)± commute with the projection
operators Πt with s, t = 0, 1, . . . , k−1. We also introduce the linear combinations

b− :=
k−1∑
s=0

b(s)− Πs, b+ :=
k−1∑
s=0

b(s)+ Πs.

It is immediate to verify that we have the commutation relation

[b−, b+] =
k−1∑
s=0

fs(N) Πs, (24)

a companion of Eq. (23).
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We are now in a situation to ˇnd a realization of the generators X−, X+ and
K of the algebra Wk in terms of the b's and f 's. Let us deˇne the shift operators
X− and X+ by

X− := b−

(
f− +

fk−1
+

[[k − 1]]q!

)
, (25)

X+ := b+

(
f− +

fk−1
+

[[k − 1]]q!

)k−1

, (26)

where the new symbol [[ ]]q is deˇned by

[[X ]]q :=
1 − qX

1 − q

with X an arbitrary operator or number and where the q-deformed factorial is
given by [[n]]q! := [[1]]q [[2]]q . . . [[n]]q for n ∈ N∗ (and [[0]]q! := 1). It is also

always possible to ˇnd a representation for which the relation X†
− = X+ holds.

Furthermore, we deˇne the grading operator K by

K := [f−, f+]. (27)

In view of the remarkable property(
f− +

fk−1
+

[[k − 1]]q!

)k

= 1,

we obtain
[X−, X+] = [b−, b+]. (28)

Equations (24) and (28) show that Eq. (2a) is satisˇed. It can be checked also
that the operators X−, X+ and K satisfy Eqs. (2c) and (2e). Of course, Eqs. (2b)
and (2d) have to be considered as postulates. However, note that the operator N
is formally given in terms of the b's by

F (N + 1) = b−b+ =
k−1∑
s=0

b(s)−b(s)+ Πs,

F (N) = b+b− =
k−1∑
s=0

b(s)+b(s)− Πs,

with the help of the structure function F introduced in Sec. 1. We thus have a
realization of the generalized WeylÄHeisenberg algebra Wk by multilinear forms
involving k pairs (b(s)−, b(s)+) of deformed-boson operators (s = 0, 1, . . . , k−1)
and one pair (f−, f+) of k-fermion operators.
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3.2. The Resulting Hamiltonian. The supercharges Q− and Q+ can be
expressed by means of the deformed-bosons and k fermions. By using the
identity

Πs

(
f− +

fk−1
+

[[k − 1]]q!

)n

=

(
f− +

fk−1
+

[[k − 1]]q!

)n

Πs+n,

with s = 0, 1, . . . , k − 1 and n ∈ N, Eqs. (12) can be rewritten as

Q− =

(
f− +

fk−1
+

[[k − 1]]q!

)
k−1∑
s=1

b(s)− Πs+1,

Q+ =

(
f− +

fk−1
+

[[k − 1]]q!

)k−1 k−1∑
s=1

b(s + 1)+ Πs,

with the convention b(k)+ = b(0)+. Then, the supersymmetric Hamiltonian H
given by Eq. (17) assumes the form

H = (k − 1)
k−1∑
s=0

Fs(N)Πs −
k∑

s=k−2

s−1∑
t=2

(t− 1) ft(N − s + t)Πs −

−
k−1∑
s=1

k−1∑
t=s

(t− k) ft(N − s + t)Πs,

in terms of the operators b(s)±, the projection operators Πs (that may be written
with k-fermion operators), the structure functions Fs and the structure constants
fs with s = 0, 1, . . . , k − 1.

4. THE FRACTIONAL SUPERSYMMETRIC OSCILLATOR

4.1. A Special Case of Wk. In this section, we deal with the particular
case where fs = 1 and the deformed bosons b(s)± ≡ b± are independent of
s with s = 0, 1, . . . , k − 1. We thus end up with a pair (b−, b+) of ordinary
bosons, satisfying [b−, b+] = 1, and a pair (f−, f+) of k-fermions. The ordinary
bosons b± and the k fermions f± may be considered as originating from the
decomposition of a pair of Q-uons when Q goes to the root of unity q.

Here, the two operators X− and X+ are given by Eqs. (25) and (26), where
now b± are ordinary boson operators. They satisfy the commutation relation
[X−, X+] = 1. Then, the number operator N may be deˇned by

N := X+X−, (29a)
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which is amenable to the form

N = b+b−. (29b)

Finally, the grading operator K is still deˇned by Eq. (27). We can check that
the operators X−, X+, N and K so-deˇned generate the generalized WeylÄ
Heisenberg algebra Wk deˇned by Eq. (2) with fs = 1 for s = 0, 1, . . . , k − 1.
The latter algebra Wk can thus be realized with multilinear forms involving
ordinary boson operators b± and k-fermion operators f±.

4.2. The Resulting Fractional Supersymmetric Oscillator. The supercharge
operators Q− and Q+ as well as the Hamiltonian H associated to the algebra
Wk introduced in Sec. 3.2 (in terms of the operators b−, b+, f− and f+) can
be constructed according to the prescriptions given in Sec. 2. This leads to the
expression

H = (k − 1)b+b− + (k − 1)
k−1∑
s=0

(
s + 1 − 1

2
k

)
Πk−s

to be compared with Eq. (21).
Most of the properties of the Hamiltonian H are essentially the same as the

ones given above for the Hamiltonian (21). In particular, we can write

H =
k∑

m=1

HmΠm, Hm := (k − 1)
(
b+b− +

1
2
k + 1 −m

)

and thus H is a linear combination of projection operators with coefˇcients Hm

corresponding to isospectral Hamiltonians (remember that Πk := Π0).
To close this section, let us mention that the fractional supercoherent state

|z, θ) introduced in Ref. 9 is a coherent state corresponding to the Hamiltonian
H . As a point of fact, we can check that the action of the evolution operator
exp (−iHt) on the state |z, θ) gives

exp (−iHt) |z, θ) = exp
[
− i

2
(k − 1)(k + 2)t

]
|e−i(k−1)tz, e+i(k−1)tθ),

i. e., another fractional supercoherent state.

5. DIFFERENTIAL REALIZATIONS

In this section, we consider the case of the algebra Wk deˇned by Eqs. (2b)Ä
(2e) and Eq. (8) with c0 = 1 and cs = cδ(s, 1), c ∈ R, for s = 1, 2, . . . , k − 1.
In other words, we have

[X−, X+] = 1 + cK, Kk = 1, (30a)
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[K,X+]q = [K,X−]q̄ = 0, (30b)

which corresponds to the Cλ-extended oscillator. The operators X−, X+, and K
can be realized in terms of a bosonic variable x and its derivative d/dx satisfying
[d/dx, x] = 1 and a k-fermionic variable (or generalized Grassmann variable) θ
and its derivative d/dθ satisfying [1, 12] (see also Refs. 2Ä8)

[
d

dθ
, θ

]
q̄

= 1, θk =
(

d

dθ

)k

= 0.

Of course, the sets {x, d/dx} and {θ, d/dθ} commute. It is a simple matter of
calculation to derive the two following identities

(
d

dθ
+

θk−1

[[k − 1]]q̄!

)k

= 1

and (
d

dθ
θ − θ

d

dθ

)k

= 1,

which are essential for the realizations given below.
As a ˇrst realization, we can show that the shift operators

X− =
d

dx

(
d

dθ
+

θk−1

[[k − 1]]q̄!

)k−1

− c

x
θ, X+ = x

(
d

dθ
+

θk−1

[[k − 1]]q̄!

)
,

and the Witten grading operator

K =
[
d

dθ
, θ

]

satisfy Eqs. (30). This realization of X−, X+ and K clearly exibits the bosonic
and k-fermionic degrees of liberty via the sets {x, d/dx} and {θ, /d/dθ}, respec-
tively. In the particular case k = 2, the k-fermionic variable θ is an ordinary
Grassmann variable and the supercharge operators Q− and Q+ take the simple
form

Q− =
(

d

dx
− c

x

)
θ, Q+ = x

d

dθ
. (31)

(Note that the latter realization for Q− and Q+ is valid for k = 3, too.)
Another possible realization of X− and X+ for arbitrary k is

X− = P

(
d

dθ
+

θk−1

[[k − 1]]q̄!

)k−1

− c

x
θ, X+ = X

(
d

dθ
+

θk−1

[[k − 1]]q̄!

)
,
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where P and X are the two canonically conjugated quantities

P :=
1√
2

(
x +

d

dx
− c

2x
K

)
, X :=

1√
2

(
x− d

dx
+

c

2x
K

)
.

This realization is more convenient for a Schréodinger type approach to the super-
symmetric Hamiltonian H . According to Eq. (17), we can derive an Hamiltonian
H involving bosonic and k-fermionic degrees of freedom. To illustrate this point,
let us continue with the particular case k = 2. It can be seen that the supercharge
operators (31) must be replaced by

Q− =
(
P − c

X

)
θ, Q+ = X

d

dθ
.

(Note the formal character of Q− since the deˇnition of Q− lies on the existence
of an inverse for the operator X .) Then, we obtain the following Hamiltonian

H = −1
2

[(
d

dx
− c

2x
K

)2

− x2 + K + c(1 + K)

]
.

For c = 0, we have

H = −1
2

d2

dx2
+

1
2
x2 − 1

2
K

that is the Hamiltonian for an ordinary super-oscillator, i. e., a Z2-graded super-
symmetric oscillator. Here, the bosonic character arises from the bosonic variable
x and the fermionic character from the ordinary Grassmann variable θ in K .

6. CONCLUDING REMARKS

A ˇrst facet of this work concerns an approach of N = 2 FSSQM of order k
(k ∈ N\{0, 1}) in D = 1+1 dimensions through a generalized WeylÄHeisenberg
algebra Wk which is an extension of the CalogeroÄVasiliev algebra [23]. We have
seen how the algebra Wk is connected to the quantum algebra Uq(sl2) with qk =
1. This approach of FSSQM, in the spirite of the pioneer works in Refs. 10,11,
differs from the one developed in Refs. 1Ä7 via the introduction of two degrees of
freedom, a bosonic one and a para-fermionic one. At ˇrst glance, our approach
seems to be of an entirely bosonic character. However, the para-fermionic or
k-fermionic character is hidden behind the (KleinÄWitten) operator K . This op-
erator ensures a Zk-grading of the Hilbert space F of the physical states according
to the decomposition F =

⊕k−1
s=0 Fs. The generators of Wk (and consequently

of Uq(sl2)) have been used for constructing a general fractional supersymmet-
ric Hamiltonian H which is a linear combination of projection operators on the
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subspaces Fs (s = 0, 1, . . . , k − 1), the coefˇcients of which being isospec-
tral Hamiltonians. The general Hamiltonian H covers the particular case of the
fractional supersymmetric oscillator.

A second facet of this paper is devoted to a Q-uon approach of N = 2
FSSQM of order k with Q going to q = exp (2πi/k). The bosonic and
k-fermionic degrees of freedom are present since the very beginning, a situation
which parallels the �a la Rubakov and Spiridonov [1, 2] construction of para-
supersymmetric quantum mechanics. Indeed, the Q-uon → boson + k-fermion
decomposition was obtained when Q ❀ q has been exploited for building a re-
alization of Wk corresponding to the fractional supersymmetric oscillator. This
approach of FSSQM is especially appropriate for deriving the fractional superco-
herent states associated to this fractional supersymmetric oscillator. In addition,
it is appropriate to the writing of supercharges and fractional supersymmetric
Hamiltonians in terms of ordinary bosonic variables and generalized Grassmann
variables, as shown with the speciˇc differential realizations of Sec. 5.

The two approaches of FSSQM developed in this paper are obviously com-
plementary. In this direction, it is to be emphasized that this work might be useful
for generating isospectral Hamiltonians for exactly integrable potentials and for
constructing their coherent states.

Finally, two comments of a group-theoretical nature are in order. First, we
have shown here that supercharges and fractional supersymmetric Hamiltonians
can be expressed from the generators of Uq(sl2), with q a kth root of unity, in a
way independent of the representations chosen for the quantum algebra Uq(sl2).
This approach is different from the one in Refs. 12, 15 where nilpotent and
cyclic representations of Uq(sl2), with q2 being a root of unity, are separately
considered for an investigation of N = 2 FSSQM in D = 1 + 1 dimensions.
Second, the algebra Uq(sl2) has not to be confused with the algebra spanned
by the supercharges Q− and Q+ and the Hamiltonian H . The latter algebra
coincides with the Z2-graded Lie algebra sl(1/1) for q = −1, i. e., k = 2, in the
case of N = 2 SSQM. An open question is to ˇnd the algebra spanned by Q−,
Q+, and H for k ≥ 3 in the case of N = 2 FSSQM. In another terminology, can
N = 2 FSSQM of order k be described by a q-deformed algebra (with qk = 1)
that gives back sl(1/1) for q = −1? It is hoped that the results of this paper
shall shed light on this question.
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