an application of vector coherent state THEORY TO THE $S O(5)$ PROTON-NEUTRON QUASI-SPIN ALGEBRA
 W. Berej

Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland

Abstract

Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra representations and coupling coefficients, has been used for many groups of interest in actual physical applications. We show that VCS construction of a rotor type can be performed for the $S O(5) \sim S p(4)$ quasi-spin group where the relevant physical subgroup $S U(2) \times U(1)$ is generated by the isospin operators and the number of particle operators.

Vector coherent state (VCS) theory [1, 2] provides a powerful technique for the evaluation of the matrix representations and the coupling coefficients for Lie algebras of interest in physics. The most commonly used VCS construction involves a boson expansion in terms of a set of Bargmann variables. In a more recent development VCS theory was used for the $S U(3) \supset S O(3)$ algebra chain [3] to generate rotor expansions in terms of standard angular variables. Subsequently, this method was applied to construct irreducible representations (irreps) for the Wigner supermultiplet $S U(4) \supset S U(2) \times S U(2)$ [4] and for $S O(5)$ in an $S O(3)$ basis [5]. The latter case is essential for instance in the classification of multiple quadrupole phonon states in the Bohr model.

The purpose of this paper is to point out that there is another example of a Lie algebra with nuclear structure applications in which a coherent state rotor expansion leads to the explicit expressions for the matrix elements of the generators. This is the algebra of the $S O(5)$ proton-neutron quasi-spin group introduced in connection with the charge-independent pairing problem [6]. The set of the generators of this group consists of the $J=0, T=1$ pair creation operators $A^{\dagger}\left(M_{T}\right)$ in the single j shell, the pair annihilation operators $A\left(M_{T}\right)$, the isospin operators $T_{ \pm}, T_{0}$ and the number of particle operator N. The last four operators span the $U(2)=S U_{T}(2) \oplus U(1)$ core subalgebra which is of great importance from the physical point of view. It is worth mentioning that the same algebra chain $S p(4) \sim S O(5) \supset S U(2) \oplus U(1)$ but with different physical meanings of the generators has been recently used in the theory of high T_{c} superconductivity [7], in the analysis of the spin-mass content of the Bhabha particle [8] and in the discussion of the structure of the most general neutrino mass Hamiltonian [9].

There is another subalgebra which is important for our consideration. It is the direct sum of two commuting $S U(2)$ subalgebras called the neutron and proton quasi-spins and spanned by the sets:

$$
\begin{array}{ll}
I_{+}=A^{\dagger}(1), & J_{+}=A^{\dagger}(-1) \\
I_{-} & =A(1), \\
J_{-} & =A(-1), \\
I_{0} & =\frac{1}{2}\left(N_{0}+T_{0}\right),
\end{array} \quad J_{0}=\frac{1}{2}\left(N_{0}-T_{0}\right), ~ l
$$

where $N_{0}=(1 / 2) N-(j+(1 / 2))$.
The irrep of the $S O(5)$ algebra is conveniently labeled by the highest weight $\left(\omega_{1} \omega_{2}\right)$, i. e., the eigenvalues of the operators $H_{1} \equiv N_{0}$ and $H_{2} \equiv T_{0}$ when acting on the highest weight state. It can be checked that these labels are related to the seniority v and the reduced isospin t : $\omega_{1}=(j+(1 / 2))-(v / 2), \omega_{2}=t$. For brevity, we will denote the irrep labels by (ωt).

The $S O(5) \supset S U_{I}(2) \oplus S U_{J}(2)$ subalgebra chain provides four labels I, I_{0}, J, J_{0} to completely specify the basis states within the irrep of the $S O(5)$ algebra. Unfortunately, they are not good quantum numbers. However, when the transformation properties of the basis states under the isospin rotations are used to label the states, one faces the so-called missing label problem because of the occurrence of a nontrivial multiplicity in the generic irrep of $S O(5)$.

We start the construction by taking the set of simple states constructed by adding the proton-proton and neutron-neutron pairs to the state $|v t\rangle$, which by definition does not contain the pairs of coupled nucleons:

$$
|p, \alpha\rangle \equiv A^{\dagger}(-1)^{\alpha} A^{\dagger}(1)^{p-\alpha}|v t\rangle
$$

where $p=(1 / 2)(N-v)$ is the number of the nucleon pairs. These states, which we will call intrinsic, have remarkable properties. It is easy to check that the highest weight state is of this form, with $p=2 \omega, \alpha=\omega$. The action of one of six generators $N, T_{0}, A^{\dagger}(\pm 1), A(\pm 1)$ on an intrinsic state gives also a state from this set. The result of the action of the operators creating or annihilating neutron-proton pair in the intrinsic state is equal to the result of the action of the isospin laddering operators T_{+}or T_{-}on another intrinsic state with a proper factor:

$$
\begin{aligned}
A^{\dagger}(0)|p, \alpha\rangle & =\frac{1}{\sqrt{2}(p+1)} T_{+}|p+1, \alpha+1\rangle \\
A(0)|p, \alpha\rangle & =\frac{p-\alpha}{\sqrt{2}} T_{-}|p-1, \alpha-1\rangle
\end{aligned}
$$

This property is essential for the construction presented in this contribution. Moreover, every intrinsic state $|p, \alpha\rangle$ is the eigenstate of the operators $I^{2}, I_{0}, J^{2}, J_{0}$
and it can be labeled by the following values of the quasi-spin numbers:

$$
\begin{aligned}
I & =\frac{1}{2}(\omega-t), & J & =\frac{1}{2}(\omega+t) \\
I_{0} & =p-\alpha-\frac{1}{2}(\omega-t), & J_{0} & =\alpha-\frac{1}{2}(\omega+t)
\end{aligned}
$$

It means that the intrinsic states are represented by a corner point on the diagram of admissible I, J values for a given irrep of $S O(5)$.

In general, the intrinsic states do not have a well defined isospin, though it is clearly seen that the third component of the isospin in the state $|p, \alpha\rangle$ has the exact value $K_{T}=t+p-2 \alpha$ (we assume that the state $|v t\rangle$ has maximal isospin projection t). As has already been shown [10], the complete basis which reduces the $S O(5) \supset S U(2) \oplus U(1)$ subalgebra chain for the generic irrep (ω, t) can be constructed by the Elliott projection technique applied to the states introduced above:

$$
\left|(\omega t) N \alpha T M_{T}\right\rangle=\mathbf{P}_{M_{T} K_{T}}^{T} A^{\dagger}(-1)^{\alpha} A^{\dagger}(1)^{p-\alpha}|v t\rangle
$$

where α is used as the fourth label to completely label the basis states within the irrep and $\mathbf{P}_{M_{T} K_{T}}^{T}$ denotes the projection operator for the algebra $S U(2)$, which can be taken in the Löwdin-Shapiro form:

$$
\begin{aligned}
& \mathbf{P}_{M_{T} K_{T}}^{T}=(2 T+1) \sqrt{\frac{\left(T+M_{T}\right)!\left(T+K_{T}\right)!}{\left(T-M_{T}\right)!\left(T-K_{T}\right)!}} \times \\
& \quad \times \sum_{r} \frac{(-1)^{r}}{r!(2 T+r+1)!}\left(T_{-}\right)^{r+T-M_{T}}\left(T_{+}\right)^{r+T-K_{T}}
\end{aligned}
$$

or in equivalent integral form (the Hill-Wheeler integral):

$$
\mathbf{P}_{M_{T} K_{T}}^{T}=\frac{2 T+1}{8 \pi^{2}} \int d \Omega \mathcal{D}_{M_{T} K_{T}}^{T}(\Omega) R(\Omega)
$$

where $R(\Omega)$ is the rotation operator with Euler angles Ω in the isospin space and $\mathcal{D}_{M_{T} K_{T}}^{T}(\Omega)$ denotes its matrix element (the Wigner function). Other details concerning the construction, especially the method of choosing the linearly independent elements as the projected states form in fact overcomplete set, can be found in [10]. The general expressions for the overlaps $\left\langle(\omega t) N \alpha T M_{T} \mid(\omega t) N \alpha^{\prime} T M_{T}\right\rangle$ and $\left\langle(\omega t) I I_{0} J J_{0} \mid(\omega t) N \alpha^{\prime} T M_{T}\right\rangle$ have also been derived.

For the sake of brevity, we will omit henceforth the $S O(5)$ irrep labels (ωt) and instead of $\left|(1 / 2)(\omega-t), I_{0},(1 / 2)(\omega+t), J_{0}\right\rangle$ for the intrinsic state we will simply write $\left|I_{0} J_{0}\right\rangle$. The possibility of projecting the basis means that the rotated
states $R(\Omega)\left|I_{0} J_{0}\right\rangle$ span the full representation space. According to the general prescription for the construction of the rotor vector coherent state realization

$$
|\Psi\rangle \longrightarrow \Psi(\Omega)=\sum_{\rho}|\rho\rangle\langle\rho| R(\Omega)|\Psi\rangle,
$$

where ρ stands for the subalgebra irrep labels, a state $\left|N \alpha T M_{T}\right\rangle$ of v unpaired nucleons and $p=(1 / 2)(N-v)$ nucleon pairs with definite isospin quantum numbers T, M_{T} is represented by the VCS wave function:

$$
\Psi_{\alpha T M_{T}}^{p}(\Omega)=\sum_{I_{0} J_{0}}\left|I_{0} J_{0}\right\rangle\left\langle I_{0} J_{0}\right| R(\Omega)\left|N \alpha T M_{T}\right\rangle
$$

where the summation is restricted to one index by the condition $I_{0}+J_{0}=p-\omega$. This expression can be transformed to:

$$
\sum_{K_{T}}\left|I_{0} J_{0}\right\rangle\left\langle I_{0} J_{0} \mid N \alpha T K_{T}\right\rangle\left\langle N \alpha T K_{T}\right| R(\Omega)\left|N \alpha T M_{T}\right\rangle
$$

where $I_{0}-J_{0}=K_{T}$. The expansion for the VCS function can be finally written as:

$$
\Psi_{\alpha T M_{T}}^{p}(\Omega)=\sum_{K_{T}} a_{K_{T}}^{p}(\alpha T) \mathcal{D}_{K_{T} M_{T}}^{T}(\Omega) \xi_{K_{T}}^{p}
$$

where

$$
\begin{aligned}
a_{K_{T}}^{p}(\alpha T) & \equiv\left\langle I_{0} J_{0} \mid N \alpha T K_{T}\right\rangle \\
\mathcal{D}_{K_{T} M_{T}}^{T}(\Omega) & =\left\langle N \alpha T K_{T}\right| R(\Omega)\left|N \alpha T M_{T}\right\rangle \\
\xi_{K_{T}}^{p} & \equiv\left|I_{0} J_{0}\right\rangle
\end{aligned}
$$

with two conditions introduced above: $I_{0}+J_{0}+\omega=p, I_{0}-J_{0}=K_{T}$. Thus, we have functions which take vector values in the carrier space for $((1 / 2)(\omega-t)(1 / 2)(\omega+t))$ irrep of the subalgebra $S U_{I}(2) \oplus S U_{J}(2)$.

The VCS realization $\Gamma(X)$ of any operator X is defined by:

$$
[\Gamma(X) \Psi](\Omega)=\sum_{I_{0} J_{0}}\left|I_{0} J_{0}\right\rangle\left\langle I_{0} J_{0}\right| R(\Omega)|\Psi\rangle
$$

from which follows that the number operator and the isospin operators act in the standard way:

$$
\begin{aligned}
\Gamma(N) \Psi_{\alpha T M_{T}}^{p} & =(2 p+v) \Psi_{\alpha T M_{T}}^{p} \\
\Gamma\left(T_{0}\right) \Psi_{\alpha T M_{T}}^{p} & =M_{T} \Psi_{\alpha T M_{T}}^{p} \\
\Gamma\left(T_{ \pm}\right) \Psi_{\alpha T M_{T}}^{p} & =\sqrt{\left(T \mp M_{T}\right)\left(T \pm M_{T}+1\right)} \Psi_{\alpha T M_{T} \pm 1}^{p}
\end{aligned}
$$

To proceed further in order to obtain the VCS realizations of the generators $A^{\dagger}\left(M_{T}\right)$ and $A\left(M_{T}\right)$ we note that the triplets

$$
\left\{A^{\dagger}(1), A^{\dagger}(0), A^{\dagger}(-1)\right\} \text { and }\{-A(1), A(0),-A(-1)\}
$$

transform under isospin rotations as the components of spherical tensors of rank 1:

$$
R(\Omega) \mathcal{T}_{\nu}^{1} R\left(\Omega^{-1}\right)=\sum_{\mu} \mathcal{D}_{\mu \nu}^{1}(\Omega) \mathcal{T}_{\mu}^{1}
$$

Hence, for any generator $X \equiv \mathcal{T}_{\nu}^{1}$:

$$
\begin{aligned}
{\left[\Gamma(X) \Psi_{\alpha T M_{T}}^{p}\right](\Omega)=} & \sum_{K_{T}}\left|I_{0} J_{0}\right\rangle\left\langle I_{0} J_{0}\right| R(\Omega) \mathcal{T}_{\nu}^{1} R\left(\Omega^{-1}\right)\left|N \alpha T K_{T}\right\rangle \times \\
& \times\left\langle N \alpha T K_{T}\right| R(\Omega)\left|N \alpha T M_{T}\right\rangle= \\
= & \sum_{\mu, K_{T}}\left|I_{0} J_{0}\right\rangle\left\langle I_{0} J_{0}\right| \mathcal{T}_{\mu}^{1}\left|N \alpha T K_{T}\right\rangle \mathcal{D}_{K_{T} M_{T}}^{T}(\Omega) \mathcal{D}_{\mu \nu}^{1}(\Omega)
\end{aligned}
$$

Now it remains to determine the matrix elements $\left\langle I_{0} J_{0}\right| \mathcal{T}_{\mu}^{1}\left|N \alpha T K_{T}\right\rangle$. Due to the properties of the intrinsic states it is done very easily as $A^{\dagger}(\pm 1), A(\pm 1)$ acting to the left produce another intrinsic state, while the generators $A^{\dagger}(0), A(0)$ have well-defined right action. We get for example:

$$
\begin{aligned}
& \left\langle I_{0} J_{0}\right| A(1)\left|N \alpha T K_{T}\right\rangle= \\
& \quad=\sqrt{\left(I_{0}+1-\frac{\omega-t}{2}\right)\left(\frac{\omega+t}{2}+t-I_{0}-J_{0}\right)}\left\langle I_{0}+1, J_{0} \mid N \alpha T K_{T}\right\rangle \\
& \left\langle I_{0} J_{0}\right| A^{\dagger}(0)\left|N \alpha T K_{T}\right\rangle= \\
& =-\frac{\left(I_{0}-(\omega-t) / 2\right) \sqrt{\left(T-K_{T}\right)\left(T+K_{T}\right)}}{\sqrt{2\left(J_{0}-(\omega+t) / 2\right)\left((\omega-t) / 2+\omega-J_{0}+1\right)}}\left\langle I_{0}, J_{0}-1 \mid N \alpha T, K_{T}+1\right\rangle .
\end{aligned}
$$

Let us recall that the formulas for the overlaps $\left\langle I_{0} J_{0} \mid N \alpha T K_{T}\right\rangle$ are known. There is a systematic procedure [5] to find the reduced matrix elements. It starts with the expression for $\left[\Gamma(X) \times \psi_{T}^{p}\right]_{T^{\prime} M_{T}^{\prime}}^{p^{\prime}}$ and exploits the results presented above but it will not be discussed here.

In conclusion, we have achieved a very simple vector coherent state realization of rotor type for the $S O(5)$ quasi-spin algebra. It is hoped that it will facilitate the evaluation of the coupling coefficients in this case. The complete results of the investigation will be published elsewhere.

REFERENCES

1. Rowe D. J. // J. Math. Phys. 1984. V.25. P. 2662.
2. Hecht K. T. The Vector Coherent State Method and Its Application to Problems of Higher Symmetries. N. Y.: Springer, 1987.
3. Rowe D. J., LeBlanc R., Repka J. // J. Phys. A. 1989. V. 22. P. 1309.
4. Hecht K. T. // J. Phys. A. 1994. V.27. P. 3445.
5. Rowe D. J. // J. Math. Phys. 1994. V. 35. P. 3163.
6. Helmers K. // Nucl. Phys. 1961. V. 23. P. 594;

Flowers B. H., Szpikowski S. // Proc. Phys. Soc. 1964. V. 86. P. 673;
Ichimura M. // Prog. Theor. Phys. 1964. V. 32. P. 757;
Hecht K. T. // Nucl. Phys. 1965. V. 63. P. 177;
Parikh J. C. // Ibid. P. 214;
Ginocchio J. N. // Ibid. V.74. P. 321.
7. Zhang S.-C. // Science. 1997. V. 275. P. 1089.
8. Smirnov Yu. F., Sharma A. // J. Math. Phys. 1999. V.40. P. 3881.
9. Balantekin A. B., Öztürk N. // Phys. Rev. D. 2000. V.62. P. 053002.
10. Szpikowski S., Berej W. // J. Phys. A. 1990. V. 23. P. 3409.

