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AN APPLICATION OF VECTOR COHERENT STATE
THEORY TO THE SO(5) PROTONÄNEUTRON

QUASI-SPIN ALGEBRA
W.Berej

Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland

Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra rep-
resentations and coupling coefˇcients, has been used for many groups of interest in actual physical
applications. We show that VCS construction of a rotor type can be performed for the SO(5) ∼ Sp(4)
quasi-spin group where the relevant physical subgroup SU(2) × U(1) is generated by the isospin
operators and the number of particle operators.

Vector coherent state (VCS) theory [1, 2] provides a powerful technique
for the evaluation of the matrix representations and the coupling coefˇcients for
Lie algebras of interest in physics. The most commonly used VCS construction
involves a boson expansion in terms of a set of Bargmann variables. In a
more recent development VCS theory was used for the SU(3) ⊃ SO(3) algebra
chain [3] to generate rotor expansions in terms of standard angular variables.
Subsequently, this method was applied to construct irreducible representations
(irreps) for the Wigner supermultiplet SU(4) ⊃ SU(2) × SU(2) [4] and for
SO(5) in an SO(3) basis [5]. The latter case is essential for instance in the
classiˇcation of multiple quadrupole phonon states in the Bohr model.

The purpose of this paper is to point out that there is another example
of a Lie algebra with nuclear structure applications in which a coherent state
rotor expansion leads to the explicit expressions for the matrix elements of the
generators. This is the algebra of the SO(5) protonÄneutron quasi-spin group
introduced in connection with the charge-independent pairing problem [6]. The
set of the generators of this group consists of the J = 0, T = 1 pair creation
operators A†(MT ) in the single j shell, the pair annihilation operators A(MT ),
the isospin operators T±, T0 and the number of particle operator N . The last
four operators span the U(2) = SUT (2) ⊕ U(1) core subalgebra which is of
great importance from the physical point of view. It is worth mentioning that
the same algebra chain Sp(4) ∼ SO(5) ⊃ SU(2) ⊕ U(1) but with different
physical meanings of the generators has been recently used in the theory of high
Tc superconductivity [7], in the analysis of the spin-mass content of the Bhabha
particle [8] and in the discussion of the structure of the most general neutrino
mass Hamiltonian [9].
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There is another subalgebra which is important for our consideration. It is the
direct sum of two commuting SU(2) subalgebras called the neutron and proton
quasi-spins and spanned by the sets:

I+ = A†(1), J+ = A†(−1),
I− = A(1), J− = A(−1),

I0 =
1
2
(N0 + T0), J0 =

1
2
(N0 − T0),

where N0 = (1/2)N − (j + (1/2)).
The irrep of the SO(5) algebra is conveniently labeled by the highest weight

(ω1ω2), i. e., the eigenvalues of the operators H1 ≡ N0 and H2 ≡ T0 when
acting on the highest weight state. It can be checked that these labels are related
to the seniority v and the reduced isospin t: ω1 = (j + (1/2)) − (v/2), ω2 = t.
For brevity, we will denote the irrep labels by (ωt).

The SO(5) ⊃ SUI(2) ⊕ SUJ(2) subalgebra chain provides four labels
I, I0, J, J0 to completely specify the basis states within the irrep of the SO(5)
algebra. Unfortunately, they are not good quantum numbers. However, when the
transformation properties of the basis states under the isospin rotations are used
to label the states, one faces the so-called missing label problem because of the
occurrence of a nontrivial multiplicity in the generic irrep of SO(5).

We start the construction by taking the set of simple states constructed by
adding the protonÄproton and neutronÄneutron pairs to the state |vt〉, which by
deˇnition does not contain the pairs of coupled nucleons:

|p, α〉 ≡ A†(−1)αA†(1)p−α|vt〉,

where p = (1/2)(N−v) is the number of the nucleon pairs. These states, which
we will call intrinsic, have remarkable properties. It is easy to check that the
highest weight state is of this form, with p = 2ω, α = ω. The action of one
of six generators N,T0, A

†(±1), A(±1) on an intrinsic state gives also a state
from this set. The result of the action of the operators creating or annihilating
neutronÄproton pair in the intrinsic state is equal to the result of the action of
the isospin laddering operators T+ or T− on another intrinsic state with a proper
factor:

A†(0) |p, α〉 =
1√

2(p+ 1)
T+|p+ 1, α+ 1〉,

A(0) |p, α〉 =
p− α√

2
T−|p− 1, α− 1〉.

This property is essential for the construction presented in this contribution. More-
over, every intrinsic state |p, α〉 is the eigenstate of the operators I2, I0, J

2, J0
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and it can be labeled by the following values of the quasi-spin numbers:

I =
1
2
(ω − t), J =

1
2
(ω + t),

I0 = p− α− 1
2
(ω − t), J0 = α− 1

2
(ω + t).

It means that the intrinsic states are represented by a corner point on the diagram
of admissible I, J values for a given irrep of SO(5).

In general, the intrinsic states do not have a well deˇned isospin, though it
is clearly seen that the third component of the isospin in the state |p, α〉 has the
exact value KT = t+ p− 2α (we assume that the state |vt〉 has maximal isospin
projection t). As has already been shown [10], the complete basis which reduces
the SO(5) ⊃ SU(2) ⊕ U(1) subalgebra chain for the generic irrep (ω, t) can be
constructed by the Elliott projection technique applied to the states introduced
above:

|(ωt)NαTMT 〉 = PT
MT KT

A†(−1)αA†(1)p−α|vt〉,

where α is used as the fourth label to completely label the basis states within the
irrep and PT

MT KT
denotes the projection operator for the algebra SU(2), which

can be taken in the LéowdinÄShapiro form:

PT
MT KT

= (2T + 1)

√
(T +MT )!(T +KT )!
(T −MT )!(T −KT )!

×

×
∑

r

(−1)r

r!(2T + r + 1)!
(T−)r+T−MT (T+)r+T−KT

or in equivalent integral form (the HillÄWheeler integral):

PT
MT KT

=
2T + 1

8π2

∫
dΩ DT

MT KT
(Ω)R(Ω),

where R(Ω) is the rotation operator with Euler angles Ω in the isospin space and
DT

MT KT
(Ω) denotes its matrix element (the Wigner function). Other details con-

cerning the construction, especially the method of choosing the linearly indepen-
dent elements as the projected states form in fact overcomplete set, can be found
in [10]. The general expressions for the overlaps 〈(ωt)NαTMT |(ωt)Nα′TMT 〉
and 〈(ωt)II0JJ0|(ωt)Nα′TMT 〉 have also been derived.

For the sake of brevity, we will omit henceforth the SO(5) irrep labels (ωt)
and instead of |(1/2)(ω − t), I0, (1/2)(ω + t), J0〉 for the intrinsic state we will
simply write |I0J0〉. The possibility of projecting the basis means that the rotated
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states R(Ω)|I0J0〉 span the full representation space. According to the general
prescription for the construction of the rotor vector coherent state realization

|Ψ〉 −→ Ψ(Ω) =
∑

ρ

|ρ〉〈ρ|R(Ω)|Ψ〉,

where ρ stands for the subalgebra irrep labels, a state |NαTMT 〉 of v unpaired
nucleons and p = (1/2)(N − v) nucleon pairs with deˇnite isospin quantum
numbers T,MT is represented by the VCS wave function:

Ψp
αTMT

(Ω) =
∑
I0J0

|I0J0〉〈I0J0|R(Ω)|NαTMT 〉,

where the summation is restricted to one index by the condition I0 + J0 = p−ω.
This expression can be transformed to:∑

KT

|I0J0〉〈I0J0|NαTKT 〉〈NαTKT |R(Ω)|NαTMT 〉,

where I0 − J0 = KT . The expansion for the VCS function can be ˇnally written
as:

Ψp
αTMT

(Ω) =
∑
KT

ap
KT

(αT ) DT
KT MT

(Ω) ξp
KT
,

where

ap
KT

(αT ) ≡ 〈I0J0|NαTKT 〉,
DT

KT MT
(Ω) = 〈NαTKT |R(Ω)|NαTMT 〉,
ξp
KT

≡ |I0J0〉

with two conditions introduced above: I0 + J0 + ω = p, I0 − J0 = KT .
Thus, we have functions which take vector values in the carrier space for
((1/2)(ω − t)(1/2)(ω + t)) irrep of the subalgebra SUI(2) ⊕ SUJ(2).

The VCS realization Γ(X) of any operator X is deˇned by:

[Γ(X)Ψ](Ω) =
∑
I0J0

|I0J0〉〈I0J0|R(Ω)|Ψ〉,

from which follows that the number operator and the isospin operators act in the
standard way:

Γ(N)Ψp
αTMT

= (2p+ v)Ψp
αTMT

,

Γ(T0)Ψp
αTMT

= MT Ψp
αTMT

,

Γ(T±)Ψp
αTMT

=
√

(T ∓MT )(T ±MT + 1)Ψp
αTMT ±1.
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To proceed further in order to obtain the VCS realizations of the generators
A†(MT ) and A(MT ) we note that the triplets

{A†(1), A†(0), A†(−1)} and {−A(1), A(0),−A(−1)}

transform under isospin rotations as the components of spherical tensors of rank 1:

R(Ω) T 1
ν R(Ω−1) =

∑
µ

D1
µν(Ω) T 1

µ .

Hence, for any generator X ≡ T 1
ν :

[Γ(X)Ψp
αTMT

](Ω) =
∑
KT

|I0J0〉〈I0J0|R(Ω)T 1
ν R(Ω−1)|NαTKT 〉 ×

× 〈NαTKT |R(Ω)|NαTMT 〉 =

=
∑

µ,KT

|I0J0〉〈I0J0|T 1
µ |NαTKT 〉 DT

KT MT
(Ω) D1

µν(Ω).

Now it remains to determine the matrix elements 〈I0J0|T 1
µ |NαTKT 〉. Due to the

properties of the intrinsic states it is done very easily as A†(±1), A(±1) acting
to the left produce another intrinsic state, while the generators A†(0), A(0) have
well-deˇned right action. We get for example:

〈I0J0|A(1)|NαTKT 〉 =

=

√(
I0+1 − ω−t

2

) (
ω+t

2
+t−I0−J0

)
〈I0+1, J0|NαTKT 〉,

〈I0J0|A†(0)|NαTKT 〉 =

= − (I0 − (ω − t)/2)
√

(T −KT )(T +KT )√
2(J0 − (ω + t)/2)((ω − t)/2+ω−J0+1)

〈I0, J0−1|NαT,KT +1〉.

Let us recall that the formulas for the overlaps 〈I0J0|NαTKT 〉 are known. There
is a systematic procedure [5] to ˇnd the reduced matrix elements. It starts with

the expression for [Γ(X)×ψp
T ]p

′

T ′M ′
T

and exploits the results presented above but

it will not be discussed here.
In conclusion, we have achieved a very simple vector coherent state real-

ization of rotor type for the SO(5) quasi-spin algebra. It is hoped that it will
facilitate the evaluation of the coupling coefˇcients in this case. The complete
results of the investigation will be published elsewhere.



AN APPLICATION OF VECTOR COHERENT STATE THEORY 105

REFERENCES

1. Rowe D. J. // J. Math. Phys. 1984. V. 25. P. 2662.

2. Hecht K. T. The Vector Coherent State Method and Its Application to Problems of Higher Sym-
metries. N. Y.: Springer, 1987.

3. Rowe D. J., LeBlanc R., Repka J. // J. Phys. A. 1989. V. 22. P. 1309.

4. Hecht K. T. // J. Phys. A. 1994. V. 27. P. 3445.

5. Rowe D. J. // J. Math. Phys. 1994. V. 35. P. 3163.

6. Helmers K. // Nucl. Phys. 1961. V. 23. P. 594;
Flowers B. H., Szpikowski S. // Proc. Phys. Soc. 1964. V. 86. P. 673;
Ichimura M. // Prog. Theor. Phys. 1964. V. 32. P. 757;
Hecht K. T. // Nucl. Phys. 1965. V. 63. P. 177;
Parikh J. C. // Ibid. P. 214;
Ginocchio J. N. // Ibid. V. 74. P. 321.

7. Zhang S.-C. // Science. 1997. V. 275. P. 1089.

8. Smirnov Yu. F., Sharma A. // J. Math. Phys. 1999. V. 40. P. 3881.

9. Balantekin A. B., éOztéurk N. // Phys. Rev. D. 2000. V. 62. P. 053002.

10. Szpikowski S., Berej W. // J. Phys. A. 1990. V. 23. P. 3409.


