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JORDANÄBRANSÄDICKE THEORY AS
GENERALIZATION OF EINSTEIN THEORY OF

GRAVITATION
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Yerevan State University, Armenia

Different representations of JBD theory arising at conformal transformations of metrics are
considered. Propositions establishing mathematical equivalence of these representations, which allows
one to generate new solutions in other representations based on known exact solutions in one of the
representations, are formulated. It is shown, in particular, how one can obtain new solutions in GR
based on known solutions in JBD theory of gravitation, and vice versa.

INRODUCTION

Einstein's relativistic ideas and the idea of Minkowski that physical events
occur in the four-dimensional space-time enabled uniˇcation of the electric and
magnetic ˇelds of the classical electrodynamics. On creation of the general
theory of relativity, the quest for uniˇcation of the then known two types of
interactions, electromagnetic and gravitational, was natural. Kaluza [1] inferred
that the expression for the electromagnetic ˇeld tensor

Fαβ =
(
∂Aβ

∂xα
− ∂Aα

∂xβ

)

(the Greek indices run the values 0, 1, 2, 3; A is the 4-potential of the electro-
magnetic ˇeld) will be contained in the deˇnition of the Christoffel symbols

Γαβγ =
1
2

(
∂gαγ

∂xβ
+

∂gβγ

∂xα
− ∂gαβ

∂xγ

)
,

if, following Minkowski, an additional ˇfth dimension is introduced in the theory.
In such a ˇve-dimensional manifold with the metric form

ds2 = GABdxAdxB, A,B = µ, 5,
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where

GAB =
(

gµν gµ5

g5ν g55

)
,

and under the assumption that

g55 = const, and
∂(. . . )
∂x5

= 0.

Kaluza found
1. for the electromagnetic ˇeld tensor:

Fαγ = Γα5γ =
(
∂Aγ

∂xα
− ∂Aα

∂xγ

)
, if Aα =

1
2
gα5,

2. for the action of the theory:

W =
∫ √

−(5)g

(
−

(5)R

16πG
+ Lm

)
d5x,

where
(5)R = (4)R + GFµνFµν

and, as a result of vanishing the variations W with respect to gµν and Aµ, ten
ˇeld equations of the Einstein theory of gravitation and the system of Maxwell
equations.

Considering the transformation properties of the ˇve-dimensional KaluzaÄ
Klein theory [1, 2] with respect to the uniˇed group of gauge and general coor-
dinate transformations

K ∪G4 −→ G5

Jordan (see, e. g., [3]) concluded that under such transformations g55 turns out to
be not a constant, as Kaluza thought, but rather a scalar

ǵ55(x́) = g55(x) ≡ y(x),

GAB =
(

gµν gµ5

g5ν y(xα)

)
.

In realization of Dirac hypothesis (®decrepited¯ gravitation) [4, 5] Jordan
assumes that in each space-time point, the scalar y(xα) substitutes gravitation
constant, whereas y ∼ 1/G, and formulates a theory of gravitation, which is
different from GR:

W =
∫ √

−g

[
− y

16π

(
(4)rR− ζ

yµyµ

y2

)
+ Lm

]
d4x, (1)
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Gµ
ν =

8π
y
T µ

ν +
∇νy

µ

y
+ ζ

yνy
µ

y2
− δµ

ν

(
∇αy

α

y
+

ζ

2
yαy

α

y2

)
, (2)

∇αy
α =

8πT
3 + 2ζ

. (3)

Here ζ is a dimensionless coupling constant of theory. In 1961 Dicke and Brans
[6, 7] utilized the heuristic idea of Mach on the in`uence of remote masses on the
origin of inertia and formulated a theory with the same ˇeld equations. The course
of their argumentation is based of Sciama [8] relation, which easily results from
simple estimation reasonings: On the one hand, a particle being at a distance r
from the centre of the body of mass m falls on it acceleration a = Gm/r2; on the
other hand, assumming, following the Mach principle, that acceleration depends
not only on the gravitational effect of ˇxed bodies, but also on the distribution of
matter in the vicinity of a probe particle, which gives a ∼ mc2R/Mr2, where M
is the mass of the Universe observable part and R is its radius, we obtain after
the comparison of these expressions

GM

c2R
∼ 1.

The latter can be rewritten in an equivalent form

1
G(r)

=
∑ mi

c2(r − ri)
.

Thus, in JordanÄBransÄDicke theory (1)Ä(3) of gravity, scalar is created
by matter and nongravitational ˇelds, and more precisely is obeying a type of
wave equation with a source as a trace of energy-momentum of the matter and
nongravitational ˇelds. The in`uence of scalar ˇeld on the movement of particles
is manifested not through direct interaction, but thanks to change of metric tensor
caused by that ˇeld. In this case one of achievements of GR is saved: it follows
from ˇeld equations that the covariant divergency of energy-momentum tensor of
matter and nongravitational ˇelds becomes zero,

∇µT
µ
nu = 0,

which ensures compliance with the requirements of week principle of equiva-
lence Å test uncharged, spinless particles and rays of light move along geodesic
lines. The JordanÄBransÄDicke theory satisˇed the following condition, it is
necessary, according to Dicke, for a gravitational theory to be true:

1. The theory has to be complete, i. e., the analysis of the results of any
trustworthy experiments, can be conducted on the basis of ®ˇrst principles¯.
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2. The theory has to be self-agreed, i. e., prediction of the results of any
experiment, received through different means shall coincide.

3. The theory has to be relativistic, i. e., nongravitational laws of physics
shall be reduced to relations of Special Theory of Relativity.

4. The theory has to be true in Newtonian limit.
In recent years, the number of papers related to the JBD theory considerably

increased due to a renewed interest in gravitation theories with a scalar ˇeld. We
think, there are several reasons for that:

1. Renormalization of gauge theories with spontaneous symmetry breakdown
is ensured only if a scalar (Higgs) ˇeld is introduced.

2. Supersymmetrical theories reveal the existence of scalar ˇelds with whole
(0) and half-integer (3/2) spins.

3. In Friedman cosmological model, expansion is described by scale factor
a(t) which characterizes the change of the distance between cosmic objects,
depending on time, while a ∼ t1/2 or a ∼ t2/3. In other words, the cosmic
scale factor increases slow enough. However, if one extrapolates it for the past,
then too large values a(t) correspond to small values of t from the point of
view of modern observations, that is why the classical Friedman model cannot
be extrapolated for the early stage of evolution of Universe. On the other hand,
Friedman model survived the test on correspondence with observation data, that
is why there is no necessity to modify the model itself, but it is necessary to limit
its applications with reasonable values of t from the low end: Friedman model
is in compliance with observations, if one takes into account, that the Universe
evolution takes place in accordance with prescriptions of that model starting from
t ∼ 10−34 s. New model, which works in a gap between Planck tpl ∼ 5 · 10−43 s
until that moment, shall give the initial conditions of standard Friedman model,
whereas the expansion regime has to be different (power or exponential).

4. Power or exponential (®in`ational¯) growth of scale factor permits the
ˇelds which imitate the matter, the state of which is simulated by the equation
P = −ε (P Å pressure, ε Å density of energy). Indeed, in this case the
source of gravitational ˇeld is not the energy, but also the pressure, which brings
to gravitational repulsion and, thus, ensures in`ational regime. In this case the
energy density remains unchanged, because the work of the forces of pressure
compensated the loss of energy in the process of exponential expansion.

5. At his time Einstein introduced the so-called cosmological constant Λ into
the equations of his theory of gravitation. However, after Friedman's work, and,
especially after Hubble's discovery, he considered the introduction of Λ as a big
mistake. At present many researchers are tended to the necessity to reanimate this
parameter, because it is not difˇcult to prove, that the cosmological constant in
Einstein equations mimics the equation of state for matter with P = −ε. Indeed,
if P = Λc4/8πG and P = −ε, then Tµν = (ε + P )uµuν − Pgµν = Λgµν . Thus,
introduction of Λ allows in`ationary stage of the evolution of universe.
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1. NEWTONIAN LIMIT OF JBD THEORY

For slow motion v2/c2 	 1 and weak gravitational ˇelds Gm/c2r 	 1

g00 ≈ 1 +
2ϕ
c2

= 1 − 2Gm

c2r
, g0i = 0, gik = diag (−1,−1,−1).

If one looks for solution of JBD theory equation in the form

y ≈ y0(1 + σ), g00 ≈ 1 + g,

then

�σ = 4π
(
− 2
y0(3 + 2ζ)

)
ρ, �g = 4π

(
− 4(2 + ζ)
y0(3 + 2ζ)

)
ρ.

At the condition σ, g ∼ 0(1/r), the solution of these equations is:

σ(r, t) =
2

y0(3 + 2ζ)
I, g(r, t) = − 4(2 + ζ)

y0(3 + 2ζ)
I.

Comparing it with the solution of Newtonian potential

ϕ(r, t) = −GI, I =
∫

ρ(ŕ, t)dV́
| r − ŕ |

we'll ˇnd

y0 =
2(2 + ζ)
G(3 + 2ζ)

, σ = −ϕ/(2 + ζ), g = −2Gm

c2r
.

2. CONFORMAL CORRESPONDENCE OF THE JBD AND GR THEORIES

Let two conformly connecting spaces V4 and V̄4 are given in the same man-
ifold, which have Riemann structure

ds̄2 = σ2(x)ds2 = σ2(x)gµνdx
µdxν , ḡµν = σ2(x)gµν . (4)

One can connect local conform transformations with utilization of different sys-
tems of units of measurement of physical parameters [9Ä11]. It is natural to
assume, that

c̄ = c, �̄ = �. (5)

Let us assume also that

Aµ = Āµ (but Āµ = ḡµνĀν = (σ)−2Aµ).
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On the other hand,

uµ =
dxµ

ds
=

dxµ

σ−1ds̄
= σūµ, uµ = gµνu

ν = σ−1ūµ.

For the units of measurement of:
distances Å l̄ = σl,
time Å t̄ = σt,
mass Å m̄ = σ−1m,
energy density Å ε̄ = σ−4ε, etc.

Let us assume, that metric tensor of space V4 obeys the equations of tensor-
scalar theory of gravitation, which are obtained from variation of the action

W =
∫ √

−g

[
−F (φ)R +

1
2

Φ(φ)gµνφµφν + Lm

]
d4x. (6)

Let us move into conformly connected space V̄4 in accordance with

ḡµν =
F (φ)
F0

gµν , F0 = const,

then

W̄ =
∫ √

−ḡ

[
−F0R̄ +

1
2
ḡµνψµψν + L̄m

]
d4x, (7)

where

ψα = φα

√
3F0

F́ 2

F 2
+ F0

Φ
F
, F́ =

∂F

∂φ
.

Corresponding equations have the following form:

Ḡαβ =
1

2F0
(T̄m

αβ + T̄ s
αβ), ḡαβ∇αψβ = 0,

T̄ s
αβ = ψαψβ − 1

2
ḡαβ ḡ

µνψµψν .

Let us select F0 = 1/2κ0 = c3/16πG, now we can formulate
Statement 1. Tensor-scalar theories of gravitation (6) in conformly connected

space with a metric tensor

ḡµν = (F (φ)/F0)gµν ,

are conformly equivalent to GR in a form of minimally linked scalar ˇeld.
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Let now gµν(x) of the space V4 is obeying to the equations of JBD theory

Gµ
ν =

8π
y
T µ

ν +
∇νy

µ

y
+ ζ

yνy
µ

y2
− δµ

ν

(
∇αy

α

y
+

ζ

2
yαy

α

y2

)
, (8)

∇αy
α =

8πT
3 + 2ζ

(9)

or in equivalent form

Rµ
ν =

8π
y

[
T µ

ν − δµ
ν

1 + ζ

3 + 2ζ
T

]
+

∇νy
µ

y
+ ζ

yνy
µ

y2
,

R = −16π
y

ζ

3 + 2ζ
T + ζ

yαy
α

y2
.

Here ζ is the dimensionless coupling constant of JBD theory.
Equations (8) and (9) can be obtained through variation of action

W =
∫ √

−g

[
− y

16π

(
R − ζ

yµyµ

y2

)
+ Lm

]
d4x (10)

by gµν and y(x). Let us note, that action (10) is a special case of (6), if one puts
F = y/16π, (F0 = y0/16π ≡ 1/2κ), Φ = ζy/8π, φµ = yµ/y and is transformed
into GilbertÄEinstein action at y = y0 and ζ → ∞.

Let us move into conformly corresponding space Ṽ4, the metric tensor of
which

g̃µν =
( y

y0

)k

gµν . (11)

In this case

W̃ =
∫ √

−g̃

[
− 1

2κ

( y

y0

)1−k
(
R̃− A

2
g̃αβ yαyβ

y2

)
+ L̃m

]
d4x. (12)

Here a notation is introduced

A = (3 + 2ζ) − 3(1 − k)2, k = 1 −
√

3 + 2ζ −A

3
. (13)

Variation of (12) by g̃αβ and y brings to the equations

G̃α
β = κ

( y

y0

)k−1

T̃α
β +

(A

2
− k(1 − k)

)yβy
α̃

y2
+

+ δα
β (k(1 − k) −A/4)

yµy
µ̃

y2
+

1 − k

y
[∇̃βy

α̃ − δα
β ∇̃µy

µ̃], (14)
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(1 − k)R̃−A(1 + k)
yαy

α̃

2y2
+ A

∇̃αy
α̃

y
= 0. (15)

Combining the convolution of equation (14)

−R̃ = κ
( y

y0

)k−1

T̃ −
(
A

2
− 3k(1 − k)

)
yαy

α̃

y2
− 3(1 − k)

∇̃αy
α̃

y
(16)

with (15) we obtain equation, which deˇnes gravitational scalar

∇̃αy
α̃

y
− k

yα̃yα

y2
= κ(1 − k)

( y

y0

)k−1 T̃

3 + 2ζ
. (17)

Thus, as a result of conform transformations (11) ˇeld equations (8) and (9) in
the space Ṽ4 are being transformed into (14) and (17).

Comment 1. Let us redeˇne the gravitational scalar of JBD theory in a way,
that

ỹ

y0
=

( y

y0

)1−k

(18)

and let us introduce a dimensionless coupling constant

ζ̃ =
A

2(1 − k)2
= −3

2
+

3 + 2ζ
2(1 − k)2

. (19)

In new notations action (10) obtains the form

W̃ =
∫ √

−g̃

[
− ỹ

16π

(
R̃− ζ̃

ỹµỹµ

ỹ2

)
+

( ỹ

y0

)1−k2

Lm

]
d4x. (20)

Content of this comment proves,
Statement 2. JBD theory equations are invariant with respect to conform

transformations for any k �= 1 if one redeˇnes the gravitational scalar and
redenote coupling constant in accordance with (18) and (19) (at k = 2, ζ̃ = ζ).

Einstein representation of JBD theory. Let us consider action (12) for the
case, when the exponent of the power of conform factor in (11) k = 1, A = 3+2ζ.
Let us introduce

φα =
yα

y

√
(3 + 2ζ)y0

16π
(21)

and let us rewrite action (12) in the form

W̃ =
∫ √

−g̃

[
− R̃

2κ
+

1
2
g̃αβφαφβ + L̃m

]
d4x. (22)
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Here

2κ =
16π
y0

=
8πG(3 + 2ζ)

2 + ζ
. (23)

The following equation corresponds to action (22)

G̃αβ = κ
(
T̃m

αβ + φαφβ − 1
2
gαβ g̃

µνφµφν

)
, (24)

g̃αβ∇̃αφβ = 0. (25)

Let us note, that

• The equation (25) arises as a consequence of covariant constancy of Gµν .

• Einstein gravitational constant is renormalized according to (23). Thus, one
can consider, that the following was proved:

Statement 3. JBD theory equations are transformed into GR equations as a
result of conform transformation (11) with k = 1, redenoted Einstein gravitational
constant and a source in a form of a sum of energy-momentum tensors of the
matter, nongravitational ˇelds and minimally coupled scalar ˇeld.

In other words, the conform transformations transfer JBD theory from its
own representation into Einstein representation. Whereas, if in its own represen-
tation the gravitational constant G changes from point to point proportionally to
gravitational scalar, but universal constants c, � and the mass of the particles
remain unchanged, then in Einstein representation G, c and � are constant, but
the masses in different space-time points are different m̃ = (y/y0)−1/2m.

Let us move into other space V̆4, according to the following relations:

ğµν =
1
4
z(n+1)/n[1 + z−n]2gµν , (26)

ψ =
6
κ̃

zn − 1
zn + 1

, n =

√
3 + 2ζ

3
, z = (y/y0)n. (27)

In this case (10) is transformed into

W̆ =
∫ √

−ğ

[
− 1

2κ
R̆

(
1 − 1

6
κψ2

)
+

1
2
ğαβψαψβ + L̆m

]
d4x, (28)

which proves the following
Statement 4. The JBD equations are transformed into GR equations by

conform transformation (26), (27) with a source in a form of nongravitational
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ˇelds and conformly coupled massless scalar ˇeld ψ, which satisˇes to PenroseÄ
ChernikovÄTagirov equation:

ğαβ∇̆αψβ − 1
6
R̆ψ = 0. (29)

Comment 2. Let us neglect the term (−R̆/2κ) in action (28) and let us add
Higgs potential (λψ4/12). Let us transform conformly the resulting expression

W̆ =
∫ √

−ğ

[
1
12

R̆ψ2 +
1
2
ğαβψαψβ − 1

12
λψ4 + L̆m

]
d4x, (30)

selecting conform factor in a way, that, as a result, the potential of scalar ˇeld
would be transformed into constant and ®kinetic¯ term would be absorbed by
additions, conditioned by conformal factor. The following transformations satisfy
to those conditions:

ψ̂ =
ψ

χ
= ε = const, ψ = εχ, ĝαβ = χ2ğαβ . (31)

Let us introduce also

κ̂ = − 6
ε2

and Λ =
1
2
λε2,

then

Ŵ =
∫ √

−ĝ
[
− 1

2κ̂
(R̂ + 2Λ) + L̂m

]
d4x. (32)

This result (see also [12]) allows the following interpretation: violation of confor-
mal symmetry may bring to the induction of gravitational ˇeld by conform scalar
ˇeld.

3. ELECTROVACUUM SOLUTION OF GR WITH MINIMAL COUPLED
SCALAR FIELD

We use elecrtovacuum spherically-symmetrical solution of JBD equations
[14]

ds2 =
1
F 2

f1/ηdt2 −

− F 2f (a−1/η)

[
du2 +

u2 − k2

1 − v2
dv2 + (u2 − k2)(1 − v2)dϕ2

]
.
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Here

f =
u− k

u + k
, k = η

√
m2 −Q2, 2F = q + (2 − q)f (2−a)/2η,

q =
√

1 + Q̃2, Q̃2 =
2ηQ

k(2 − a)
,

m is the mass; Q is the charge of the source of gravitational ˇeld. Gravitational
scalar

y = y0f
−a/2η,

and the only nonvanishing component of the tension of the electromagnetic ˇeld

E =
Q

u2

f (a−2)/2η

F 2(1 − k2/u2)
.

The constants η and a are connected through relation

η2 = (a− 1)2 + a +
1
2
ζa2

and are parametrized by central density (or pressure) of each of the member of
the family of self-graviting bodies. This solution can be rewritten in uniform
coordinates R or in modiˇed coordinates of curvature x with substitution

u = x− k = R(1 + k2/4R2)

(let us note, that dv2/(1 − v2) + (1 − v2)dϕ2 = dθ2 + sin2 θdϕ2). Conform
transformation ḡµν = (y/y0)gµν transforms the JBD theory equation into GR
equation with a source in a form of minimally coupled scalar ˇeld, and the
solution of these equations can be obtained through conform transformation from
the solutions of the problem in JBD theory and it has the following form:

ds̄2 =
fn

F 2
dt2 − F 2f−n[du2 + (u2 − k2)dΩ2],

ϕ = −
√

1 − n2

2
ln f, E =

Q

u2

f−n

F 2(1 − k2/u2)
.

Here

k =
√

m2 −Q2, n2 ≤ 1, Q̃ =
Q

kn
,

the remaining notations are the previous ones. Substitution

u = R
(

1 − k2

4R2

)
= r − k
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enables to rewrite this solution in homogeneous coordinates R or in curvature
coordinates r. If one introduces a new coordinate z in such a way, that

f =
u− k

u + k
= e−z , e−z = e−ϕ

√
2/(1−n2),

then

ds̄2 =
e−nz

F 2
dt2 − k2

sh2 z/2
F 2 enz

[ dz2

sh2 z/2
+ dΩ2

]
.

In special case of absence of electric ˇeld (F = 1) this solution coincides with
the one obtained by Stanjukovich and Melnikov [13]. Let us introduce x = z/2,
τ = 2kt, α = −2n, H = 2kF , then

ds̄2 =
eαx

H2
dτ2 − H2e−αx

4 sh2 x

(
4dx2

sh2 x
+ dΩ2

)
, ϕ = x

√
4 − α2

2
.

4. STATIONARY GRAVITATIONAL FIELD WITH AXIAL SYMMETRY

The ˇeld equations of the Einstein and the JordanÄBransÄDicke gravitation
theories are essentially nonlinear, which makes their solution difˇcult. Never-
theless, the number of the known solutions is rather large, though only some of
them go well together with the true physical problems, i. e., can be interpreted
physically. (Rather a complete and consistent set of exact solutions GR is given
in [15].) From a point of view of physical applications of most interest is the
study of such gravitational ˇelds which possess certain symmetry.

Space-time, corresponding to the stationary gravitational ˇeld with axial sym-
metry, admits a group of motions with two linearly independent and commuting
Killing vectors ξ, η. In accord with the problem symmetry we choose coordinates
so that

xµ = (t, xi, ϕ), µ, ν... = 0, i, 3, i, k... = 1, 2.

Then,
ξ = ξµ∂/∂xµ, ξµ = δµ

0 , η = ην∂/∂xν , ην = δν
3 .

In a general case, after rejecting four components of the metric tensor, whose
equality to zero follows from invariance of the metric with respect to individual
time inversions (t �→ −t) and the azimuthal angle (ϕ �→ −ϕ), we write down the
metric of the stationary, axial-symmetric space-time in the form

ds2=ds2
I−ds2

II, ds
2
I =e2α (dt−qdϕ)2 −e2γdϕ2, ds2

II=e2β
(
dx1

)2
+e2µ

(
dx2

)2
.

Such a metric form is invariant under
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• the transformation

xa = αa
b x́

b, αa
b = const, a, b,= 0, 3

in particular including a simultaneous inversion of time and azimuth (t, ϕ) �→
(−t,−ϕ);

• general transformations

xi = xi(x́k),

on the two-dimensional surface x1x2.
Invariance with respect to specular re`ection (t, ϕ) �→ (−t,−ϕ) physically

means that a motion of a source of a gravitational ˇeld is a mere rotation around
the symmetry axis, i. e., space-time corresponding to this metric is related to the
rotating body.

Let us specialize the coordinates in such a way, that β = µ. One of the
combinations of ˇeld equations appears to be the Laplace equation. Let us select
that one and harmonic function conjugated to it as coordinates

x́1 = z(x1, x2), x́2 = ρ(x1, x2),

and let us perform the metric conform transformation (see [16])

ḡµν = ygµν ,

then

ds̄2 = yds2 = ψ(dt− qdϕ)2 − ρ2dϕ2 − Φ2

ψ
(dz2 + dρ2),

ψ = y e2α, Φ = y eα+β .

Let us introduce

G = eν−pσ

(
1 −q
−q q2 − ρ2e−2ν

)
, p =

√
3 + 2ζ.

The ˇeld equation of the block with indices (0,3)

∇(g−1∇g) = 0.

The remaining equations have the following form

ln (ḡik),z =
1
2
ρ Sp (f,zf,ρ), ln (ḡik),ρ = −1

ρ
+

ρ

4
Sp (f2

,ρ − f2
,z),

f,i = g−1g,i.
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Thus, the system of ˇeld equations of JBD theory in Weil canonical coordinates
and after conform transformations has such a form, as GR equations of analogous
problem, which allows one to formulate the following

Statement 5. If the set

y, e2α, e2β, q, A,B

is electrovacuum solution of stationary axially symmetric problem of JBD theory
in Weil canonical coordinates, then the analogous GR problem has the following
solution

y e2α, y e2β/Φ2(3+2ζ)
y , q, A,B.

And vice versa: one can ˇnd by known solution of GR the solution of analogous
problem of JBD theory, if y and Φy are known.

Example: Axially symmetric solution of GR with charge. Let us use
statement 5 for transformation of the electrovacuum static solution of the JBD
theroy [14] (see point 4) to the corresponding GR solution. After simple calcula-
tions we obtain an axially symmetric electrovacuum new solution of the Einstein
equations:

ds2 =
k2

F 2

(
x− 1
x + 1

)n

dt2 − F 2

(
x + 1
x− 1

)n{
(x2 − 1)(1 − y2)dϕ2 +

+
(

x2 − 1
x2 − y2

)n2

(x2 − y2)
[

dx2

x2 − 1
+

dy2

1 − y2

]}
,

F =
m + 2r0

2n

[
1 − m− 2r0

m + 2r0

(
x− 1
x + 1

)n]
, k =

2r0
n

, 2r0 =
√

m2 −Q2,

E =
Q

F 2(x2 − 1)

(
x− 1
x + 1

)n(
x2 − 1
x2 − y2

)(1−n2)/2

,

g00 ≈ 1 − 2m
r

+
DP2(cos θ)

r3
+ ..., D =

2
3
n2 − 1
n2

m(m2 −Q2).
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