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With a view towards applications in nuclear physics, the boson and fermion realization of
the compact sp(4) and noncompact sp(4, R) and their q-deformed versions are investigated and
compared. The deformed realizations are based on distinct deformations of the boson and fermion
creation and annihilation operators. In the boson case there is a simple transformation of the ®classical¯
bosons to q-deformed ones. In the fermion case an additional index is introduced in order to satisfy
the Pauli principle and in this case a simple transformation function between the ®classical¯ and
q-deformed operators is not known. Three important reduction chains of these algebras are explored
in both the classical and deformed cases. For the primary reduction, the su(2) substrusture can be
interpreted in both cases as a pseudospin algebra. The other two reductions in the fermion case
are su(2) algebras, associated with pairing between identical fermions or coupling of two fermions
of different kinds. In the boson case the inˇnite deformed ladder series u0

q(1, 1) and two inˇnite

deformed discrete series u±
q (1, 1) are obtained. Each reduction provides for a complete classiˇcation

of the basis states. In the boson case the initial as well as the deformed representations act in the same
Fock space, but the deformation in the fermion case leads to basis state whose content is very different
from the classical one. In a Hamiltonian theory this implies a dependance of the matrix elements on
the deformation parameter, leading to the possibility of greater Aexibility and richer structures within
the framework of q-deformed algebraic descriptions.

INTRODUCTION

Symplectic algebras can be used to describe many-particle systems. The non-
compact sp(2n,R) and compact sp(2n) versions of these algebras enter naturally
when the number of particles or couplings between the particles change in a pair-
wise fashion from one conˇguration to the next [1]. The applications to nuclear
structure [2, 3] are based on different interpretations of the quantum numbers of
the bosons or fermions used to create the respective representations.

The boson case gives a description of collective vibrational excitations of a
system of particles moving in an n-dimensional harmonic oscillator potential. The
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realization of sp(2n) in terms of fermions has been used to explore pairing corre-
lations in nuclei [4]. For the simplest two-dimensional cases (n = 2) the compact
sp(4) is isomorphic to (∼) o(5) and the noncompact sp(4, R) ∼ o(3, 2) [2]. Both
these cases have interesting physical applications and are easily generalized to
higher dimensions.

In the last decade a lot of effort, from a purely mathematical [5, 6] as well
as physical point of view, has been concentrated on various deformations of the
classical Lie algebras. Deformed algebras introduce a new degree of freedom that
can give a better explanation of nonlinear effects. Their study can also lead to a
deeper understanding of the physical signiˇcance of the deformation. The general
feature of these deformations is that in the limit, when the deformation parameter
q → 1, the q-algebra reverts back to the classical Lie algebra. As a result, many
similarities between the classical Lie algebras and their deformations, especially
with respect to their representations, can be exploited, particularly in physical
applications.

Based on the analogous realization of ®classical¯ and q-deformed boson
representations of sp(4, R) [7] and fermion representations of sp(4) [8], we
will outline the similarities, as well as the important differences, with respect to
their subalgebraic and action space structures. The deformations of the sp(4, R)
and sp(4) algebras are obtained in terms of standard q-bosons and q-deformed
fermions, and following the ®classical¯ procedure, we investigate the enveloping
algebras of sp(4, R) and sp(4) that are so obtained. All the deformed compact
and noncompact subalgebras in both realizations are considered. Methods for
specifying labels of the basis states via eigenvalues of the operators generating
these subalgebras are also presented.

1. DEFORMED CREATION AND ANNIHILATION OPERATORS OF
BOSONS AND FERMIONS

1.1. q-Bosons. The q-deformation in the boson case is obtained by means of
the transformation of the classical bosons b†i and bi, i = ±1 with (b†i )

∗ = bi [9]:

a†i =

√
[Ni]
Ni

b†i , ai =

√
[Ni + 1]
Ni + 1

bi, (1)

where [X ]k ≡ qkX − q−kX

qk − q−k
. Obviously (a†i )

∗ = ai and Ni = b†ibi, i = ±1 are

the classical operators of the number of bosons of each kind. It is possible to
interpret the deformation of the classical boson creation and annihilation operators
b†i and bi, where i = ±1, by analyzing the expansion of the coefˇcients in (1) in
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terms of the deformation parameter τ , introduced as q = eτ :

[Ni]
Ni

= 1 +
1
6

(
N2

i − 1
)
τ2 +

1
12

(
1
10
N4

i − 1
3
N2

i +
7
30

)
τ4 +O

(
τ6

)
. (2)

This is an inˇnite expansion containing all the even powers of the deformation
parameter and also all the even powers of each of the operators Ni, i = ±1.

The q-deformed commutation relations for the deformed oscillator that follow
from (1) are:

aia
†
i − q1a†iai = q−Ni , aia

†
i − q−1a†iai = qNi , (3)

[ai, a
†
k] = 0, i �= k, [a†i , a

†
k] = [ai, ak] = 0. (4)

The commutation relations of the number operator with the q-deformed bosons
are the same as for the classical case:

[Ni, ai] = −ai, [Ni, a
†
i ] = a†i . (5)

1.2. q-Deformed Fermions. In a ®classical¯ realization, fermion creation
c†m,σ and annihilation cm,σ operators, where σ = ±1, are introduced for a state

of total angular momentum j =
2k + 1

2
, where k = 0, 1, 2... with projection m

along the z axis (−j ≤ m ≤ j). These operators satisfy Fermi anticommutation
relations:

{cm′,σ′ , c†m,σ} = δm′,mδσ′,σ, {c†m′,σ′ , c
†
m,σ} = {cm′,σ′ , cm,σ} = 0, (6)

and Hermitian conjugation is given by (c†m,σ)∗ = cm,σ .
In analogy with the boson case, to deform these operators we introduce

Hermitian conjugate operators α†
m,σ and αm,σ, (α†

m,σ)∗ = αm,σ , m = −j,−j +
1, ..., j, σ = ±1, with a q-deformed anticommutation relation that holds for every
σ and m in the form [6]:

αm,σα
†
m,σ + q±1α†

m,σαm,σ = q±Nm,σ , (7)

where Nm,σ = c†m,σcm,σ and Nσ =
∑j

m=−j Nm,σ are the classical fermion
number operators. Their action on the deformed fermion operators is deˇned as
in the classical and boson cases (5):

[Nσ, α
†
m,σ′ ] = δσ,σ′α†

m,σ′ , [Nσ, αm,σ′ ] = −δσ,σ′αm,σ′ , σ, σ′ = ±1. (8)

In this case a simple transformation function of the deformed fermion operators
which depends only on a single term Nm,σ as in (7) is not easy to obtain. To
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facilitate a further comparison with the boson case, we shall use (7) but for the
total sum Nσ, divided by the dimension of the fermion space 2Ωj = 2j+1, along
with the requirement that the deformation is performed only on the σ index:

αm,σα
†
m,σ + q±1α†

m,σαm,σ = q
± Nσ

2Ωj . (9)

Using both anticommutation relations, it follows that α†
m,σαm,σ =

[
Nσ

2Ωj

]
which

yields

∑
m

α†
m,σαm,σ = 2Ωj

[
Nσ

2Ωj

]
,

∑
m

αm,σα
†
m,σ = 2Ωj

[
1 − Nσ

2Ωj

]
. (10)

In the q → 1 limit, assuming that α±
m,σ → c±m,σ, (10) reverts back to the

classical formula for Nσ . This justiˇes the introduction of the weight coefˇcient
ω ≡ 1/(2Ωj) in (9). In this case the analog of (2) is obviously the same, but with

respect to the ratio
Nσ

2Ωj
and thus reveals the dependence of the deformation of the

fermion operators on the dimension of the shell for which they were introduced.
The remaining anticommutation relations for the q-deformed operators can be
chosen from among various possibilities [10] to coincide with the respective
classical ones.

2. q-DEFORMED spq(4, R) and spq(4) ALGEBRAS
AND THEIR SUBALGEBRAIC STRUCTURE

In analogy with the ®classical¯ case we can construct from the q-deformed
bosons the following set of ten operators:

F q
i,j = a†ia

†
j, Gq

i,j = (F q
j,i)

∗ = aiaj , i, j = ±1,

(11)

J± = a†±1a∓1, J0 =
1
2
(N1 −N−1), N = N1 +N−1.

In this representation the raising and lowering operators F q
i,j , G

q
i,j and J+, J− =

J∗
+ are deformed. The centralizing set of operators N and J0 expressed as linear

combinations of the classical number operators N1, N−1 are retained after the
deformation.

The set of generators of the deformed spq(4) algebra analogous to (11), but in
terms of the q-deformed fermion creation and annihilation operators α†

m,σ(αm,σ),
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that fulˇll the anticommutation relations (9), is:

Fσ,σ′ = ξσ,σ′

j∑
m=−j

(−1)j−mα†
m,σα

†
−m,σ′ ,

Gσ,σ′ = ξσ,σ′

j∑
m=−j

(−1)j−mα−m,σαm,σ′ ,

(12)

and

τ+ = E1,−1 = η

j∑
m=−j

α†
m,1αm,−1,

τ− = E−1,1 = η

j∑
m=−j

α†
m,−1αm,1, (13)

τ0 =
1
2
(N1−N−1), N = N1+N−1,

where the constants are deˇned as ξσ,σ′ =
η√

(1 + δσ,σ′)
and η =

1√
2Ωj

. The

operator Fσσ(Gσσ) creates (annihilates) a q-deformed pair of particles of the
same kind and by construction Fσ,σ′ = Fσ′,σ = (Gσ,σ′ )†. The additional index
m �= 0 of the fermion creation and annihilation operators is introduced in order
to construct nonzero operators Fσ,σ and Gσ,σ , but for each particular j we have a
sum over all the m values so the index σ = ±1 deˇnes the algebraic properties of
the generators Fσ,σ′ , Gσ,σ′ and Eσ,σ′ . The two Cartan generators Nσ , σ = ±1,
are not deformed.

It is easy to calculate the commutation relations between the operators from
the two sets (11) and (12), (13) using the q-boson commutation relations (3), (4)
and the q-fermion anticommutation relations (9). They are given in [7, 8] and
in the limit q → 1 revert to the respective commutation relations of the algebra
generators of Sp(4, R) and Sp(4), respectively. So in this way we have generated
the q-deformed boson and fermion representations of Spq(4, R) and Spq(4).

2.1. Reductions of spq(4, R) and spq(4) to Compact Subalgebras. The
reduction to subalgebras in the boson and fermion representations is the same as
in the nondeformed case. The most important of these is the reduction to uq(2)
given in the boson case by N and the operators J0, J± (11) which commute in
the following way:

[J+, J−] = [2J0], [J0, J±] = ±J±, [N, Jk] = 0, k = 0,±. (14)

Since the operatorN acts also as a ˇrst order invariant of uq(2), the decomposition
Uq(2) = SUq(2) ⊗ U(1) is realized, where the suq(2) ∼ soq(3) is generated by
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J0, J±. The second order Casimir operator in this case is given by the operator

J2 = J−J+ + [J0][J0 + 1] =
[
N

2

] [
N

2
+ 1

]
(15)

and is expressed in terms of the ˇrst-order invariant N of Uq(2).
The fermion analog of the same subgroup Uq(2) of Spq(4) is generated by

the set of the operators τ0,±1 and N (13) with commutation relations

[τ+, τ−] =
[
2
τ0

2Ωj

]
, [τ0, τ±] = ±τ±, [N , τσ ] = 0, σ = 0,±. (16)

In this case, in the ˇrst commutator of (16) the resulting operator τ0 is rescaled
by the factor ω. This is also reAected in the second order Casimir operator of the
subgroup SU τ

q (2):

τ 2 = 2Ωj(τ−τ+ + [ωτ0] [τ0 + 1]ω). (17)

The Casimir operators (15) and (17) coincide with the classical ones in the limit
q → 1, but in the fermion case it is not possible to express τ 2 as a function
of N . As a result of the appearance of the shell dependent factor ω indexing the
q-bracket in (17), a different deformation is introduced for the different j-shells,
which gives additional freedom in the physical applications.

In the fermion case three more distinct representations of Uq(2) are realized.
The ˇrst one, a u0

q(2) subalgebra, is generated by the operators

K0
+1 ≡ F1,−1, K0

−1 ≡ G1,−1, K0
0 ≡ N

2
− Ωj , (18)

which commute in the following way:

[K0
+1,K

0
−1] =

[
2
K0

0

2Ωj

]
, [K0

0 ,K
0
±1] = ±K0

±1,

(19)
[τ0,K0

k] = 0, where k = 0,±1.

The operator τ0 (13) commutes with the generators of su0
q(2) (19) and acts as a

ˇrst order invariant of u0
q(2) = su0

q(2)⊕u(1). The operators K0
k , k = ±1 couple

q-deformed particles of two different kinds. The second order Casimir operator
of the subgroup SU0

q (2) is given by

C2(SU0
q (2)) = 2Ωj

(
K0

−1K
0
+1 +

[
ωK0

0

] [
K0

0 + 1
]
ω

)
, (20)

which coincides with the classical invariant in the limit q → 1. Note that again
the factor ω appears in the deformed invariant.
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Next, two mutually complementary subalgebras su+
q (2) and su−q (2) of spq(4)

are given by the operators:

F±
+1 = F±1,±1, G±

−1 = G±1,±1, E±
0 =

N±
2

− Ωj

2
. (21)

They have the following commutation relations:[
F±

+1, G
±
−1

]
= ρ±[4ωE±

0 ],
[
E±

0 , F
±
+1

]
= F±

+1,
[
E±

0 , G
±
−1

]
= −G±

−1, (22)

with ρ± =
q±1 + q±ω

2
. The ˇrst order invariants N∓1 of u±q (2) give the extension

of su±q (2) to the subgroup u±q (2) = su±q (2) ⊕ u∓(1). The operator F±
+1 (G±

−1)
creates (destroys) a q-deformed pair of particles of the same kind. The Casimir
invariant of the subgroup SU±

q (2) is given by

C2(SU±
q (2)) = Ωj

(
G±

−1F
±
+1 + ρ±

[
2ωE±

0

] [
E±

0 + 1
]
2ω

)
. (23)

The Casimir operator coincides with the classical one in the limit q → 1. In this
expression the deformation factor 2ω indicates that these two subalgebras give
the short roots of spq(4). In the q-deformed case the factors ρ± distinguish the
eigenvalues of the second order invariants of the two mutually complementary
subgroups, which is an important difference from the ®classical¯ and boson cases.

2.2. Noncompact Subalgebras of Spq(4, R). So far we have focused on
compact structures; we now turn to a consideration of the noncompact cases that
appear in the boson representation of spq(4, R). The boson counterpart of u0

q(2)
is a deformation u0

q(1, 1) [9] generated by the boson analogs of (18):

K0
+ = F q

1,−1, K0
− = Gq

1,−1, K0
0 =

1
2
(N + 1), J0. (24)

Their commutators differ from (19) by a sign and rescaling factor in the ˇrst one:[
K0

+,K
0
−

]
= −

[
2K0

0

]
,

[
K0

0 ,K
0
±
]

= ±K0
±. (25)

The operator J0 (11) commutes with the generators K0
i , i = 0,±1 of su0

q(1, 1)
and acts as a ˇrst order invariant of u0

q(1, 1) = su0
q(1, 1) ⊕ uJ0(1). The second

order Casimir invariant of SU0
q (1, 1) is given by

(K0)2 ≡
[
K0

0

] [
K0

0 − 1
]
−K0

+K
0
− = [J0]

2 −
[
1
2

]2

, (26)

which is expressed ˇnally in terms of the squared q-deformed brackets of the ˇrst
order invariant J0, a result that does not hold in the fermion case.
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Finally, the two mutually complementary deformed representations u±q (1, 1)
[9], each realized by only one kind of q-boson, are the respective analogs of
u±q (2). The operators

K±
+ =

1
[2]
F q
±1,±1, K±

− =
1
[2]
Gq

±1,±1, K±
0 =

1
2

(
N±1 +

1
2

)
, N∓1 (27)

commute among themselves in the following way:[
K±

+ ,K
±
−

]
= −[2K±

0 ]2,
[
K±

0 ,K
±
±

]
= ±K±

± . (28)

The nondeformed operators N∓1 extend the su±q (1, 1) to u±q (1, 1) and act as
ˇrst-order Casimir invariants. The second-order Casimir invariant in this case, as
in the classical case, is a constant but a q-number:

(K±)2 = [K±
0 ]2[K±

0 + 1]2 −K±
−K

±
+ = 1/([2]2)

(
[1/2]2 − 1

)
. (29)

3. ACTION SPACE OF THE BOSON REALIZATION OF spq(4, R)

The action space of the deformed boson representation of spq(4, R) can
be written down directly since there exists a simple transformation between the
classical and q-bosons (1) which implies that this action space is equivalent to
the classical case. As is well known, the classical bosons act in a Hilbert space
H with a vacuum |0〉 so that bi |0〉 = 0. The scalar product in H is chosen so
that b†i is the Hermitian conjugate of bi [(b†i )

∗ = bi] and 〈0|0〉 = 1. The vectors

|ν1, ν−1〉 =
(b†1)

ν1(b†−1)
ν−1√

ν1!ν−1!
|0〉, (30)

where ν1, ν−1 run over all nonnegative integers, form an orthonormal basis in H.
In terms of the deformed boson operators, the basis vectors (30) are (ai|0〉 = 0):

|ν1, ν−1〉 =
(a†1)

ν1 (a†−1)
ν−1√

[ν1]![ν−1]!
|0〉 ≡

(b†1)
ν1(b†−1)

ν−1√
ν1!ν−1!

|0〉, (31)

where [X ]! = [1][2][3]...[X ]. They are the common eigenvectors of the boson
number operators N1 = b†1b1, N−1 = b†−1b−1 and N = N1 +N−1:

N1|ν1, ν−1〉 = ν1|ν1, ν−1〉, N−1|ν1, ν−1〉 = ν−1|ν1, ν−1〉,
N |ν1, ν−1〉 = ν|ν1, ν−1〉, J0|ν1, ν−1〉 = i0|ν1, ν−1〉,

(32)

where ν = ν1 + ν−1 and i0 = (ν1 − ν−1)/2.
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The deformed boson representation of spq(4, R) is reducible and decomposes
into two irreducible ones, each acting in the subspaces H+ and H− of H labeled
by the eigenvalue of the invariant operator P = (−1)N , where H+ is spanned
by the vectors (30) with ν = ν1 + ν−1 even and H− with ν odd, respectively. It
follows from the reduction of spq(4, R) that an irreducible unitary representation
(IUR) of Uq(2) is realized in each Hν

± space and therefore into a direct sum of
eigensubspaces of N deˇned by the condition that ν is ˇxed.

The decomposition of each H± space into a direct sum of eigenspaces of J0

with eigenvalue i0, induces an irreducible (ladder) representation of the u0
q(1, 1),

Hi0
± . The operators N = N1 + N−1 and J0 =

1
2
(N1 − N−1) can be consid-

ered as another complete set of operators, both diagonal in the basis (31) and
therefore uniquely specifying the states. This follows from the Howe duality for
the quantum groups U0

q (1, 1) and Uq(2) as mutually centralizing subgroups of
Spq(4, R) [11]. The spaces H+ and H− are also decomposed into direct sums of
eigensubspaces of N−1 and N1 so in each Hν∓1

± an IUR of u±(1, 1) is realized.
3.1. Even Space of the Bosons. In what follows we will consider the H+

space with ν = ν1 + ν−1 even. The states of H− can be obtained from the
H+ states with the help of the operators a†k and ak (k = ±1). The later can be
considered to be the odd generators of the superalgebraic extension of the even
spq(4, R). Looking forward to future applications, we represent the basis states
|ν1, ν−1〉 ∈ H+ as

|n1,n0, n−1〉 = η(n1,n0, n−1)(T 1
1 )n1(T 1

0 )n0(T 1
−1)

n−1 |0〉 ≡ |ν1, ν−1〉. (33)

The operators T 1
k , k = 0,±1 are components of a ˇrst rank tensor with respect to

the SUq(2) subgroup of Spq(4, R) obtained from its pair raising generators F q
i,j

(11) in the following way for k = 1/2(i+ j):

T 1
k=1/2(i+j) =

√
[1 + δi,−j ]F

q
i,jq

1/2(iNj+jNi), i, j = ±1. (34)

The newly introduced quantum numbers ni (i = 0,±1), which are needed to
specify the states, are integers restricted by the linkages:

ν1 = 2n1 + n0, ν−1 = 2n−1 + n0, (35)

where η(n1,n0, n−1) is the normalization factor. This representation of the basis
states is useful for a consideration of appropriate mapping procedures [12]. Note
that

ν = 2n = 2n1 + 2n0 + 2n−1, j0 =
1
2
(ν1 − ν−1) = n1 − n−1. (36)

The basis states (33) are presented in Table 1, below where ν enumerates the
rows and i0 the columns:
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Table 1.

ν/i0 3 2 1 0 −1 −2 −3

0 |0, 0, 0〉
2 |1, 0, 0〉 |0, 1, 0〉 |0, 0, 1〉

4 |2, 0, 0〉 |1, 1, 0〉 |0, 2, 0〉
|1, 0, 1〉 |0, 1, 1〉 |0, 0, 2〉

6 |3, 0, 0〉 |2, 1, 0〉 |1, 2, 0〉
|2, 0, 1〉

|0, 3, 0〉
|1, 1, 1〉

|0, 2, 1〉
|1, 0, 2〉 |0, 1, 2〉 |0, 0, 3〉

...
...

...
...

...
...

...
...

We now can consider two extreme cases for possible values of the additional
quantum number n0:

1. n0 takes on maximal values. In this case we have n−1 = 0 or n1 = 0 at
ν1 �= ν−1 and n−1 = n1 = 0 at ν1 = ν−1. There are two possibilities:

• ν1 ≥ ν−1 and the coupling of T 1
0 is to the maximal degree for the states

|n1, n0, 0〉, where n1 = j0, maxn0 = ν−1, n−1 = 0.

• ν1 ≤ ν−1, with states |0, n0, n−1〉 with n1 = 0, maxn0 = ν1, n−1 = −j0.
This case corresponds to a coupling to maximal degree for the operator T0

(the upper states in Table 1). With it we move along the columns by acting
on the minimal weight state an inˇnite number of times. So this basis is
associated with the u0

q(1, 1) subalgebra of sp(4, R).

2. n0 takes on minimal values. Since we are in the space H+, the in-
tegers ν1 and ν−1 are simultaneously even or odd. For ν1 and ν−1 even,

the states |n1, 0, n−1〉 with
(
n1 =

ν1

2
, minn0 = 0, n−1 =

ν−1

2

)
are realized.

For ν1 and ν−1 odd, we have |n1, 1, n−1〉 with

(
n1 =

ν1

2
− 1

2
, minn0 = 1,

n−1 =
ν−1

2
− 1

2

)
. In this way the q-deformed oscillators are coupled to maxi-

mal degrees in n1 and n−1 for the components T 1
1 and T 1

−1 (bosons of the same
kind). The basis states in H+ represented as |n1, n0, n−1〉 vectors, in the case of
minn0 = 0 or 1 are the ones below the states corresponding to the ˇrst case.

Each state from the left (right) diagonals of the pyramid on Table 1 is obtained
by the action on the minimal weight state with the raising operators T1(T−1),
respectively. These basis states correspond to the reduction of spq(4, R) to the
two mutually complementary subalgebras u±q (1, 1). These two forms of the basis
states are equivalent. The transition between Case 1 and Case 2 is realized by
means of the relation

(T 1
0 )2 = q−1[2]T 1

1 T
1
−1. (37)
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3.2. Even Space of the Deformed Fermions. In general, the classical fermion
operators act in a ˇnite space Ej for a particular j-level. The ˇnite nature of the
representation is due to the Pauli principle, c†m,σc

†
m,σ|0〉 = 0, that allows no more

than 2Ωj identical fermions in a single j-shell. In Ej the vacuum |0〉 is deˇned
by cm,σ|0〉 = 0 and the scalar product is chosen so that 〈0|0〉 = 1.

The states that span the Ej space consist of different numbers of fermion
creation operators acting on the vacuum. They form an orthonormal basis in
each space and are eigenvectors of the fermion number operators N1, N−1 and
hence of the total number operator N = N1+N−1. In this way they span two
subspaces E±

j labeled by the eigenvalue of the invariant operator P = (−1)N of
Sp(4). To explore pairing correlations in nuclei, we will consider the even space
E+

j , which contains states of fermions coupled pairwise. Usually representations
of Sp(4) are labeled by the largest eigenvalue of the number operator N and the
reduced isospin of the uncoupled fermions in the corresponding state [1]. In each
representation of Sp(4) the maximum number of particles is 4Ωj and the respec-
tive state consists of no uncoupled fermions (reduced isospin zero). It follows
that only one quantum number is needed, namely Ωj . Within a representation,
Ωj is dropped from the labeling of the states. Thus the symmetric representation
consists of states of a system with a total angular momentum J = 0+.

In general, the q-deformed fermion operators act as in the classical case in
a ˇnite metric space Ej for each particular j-level, with a vacuum |0〉 deˇned
by αm,σ |0〉 = 0 and 〈0|0〉 = 1. The q-deformed states are different from the
classical ones, but reduce to the classical ones in the limit q → 1.

In analogy with the boson case, we can deˇne the fermion representations in
terms of q-deformed boson-like creation F †

k (annihilation G−k) operators related
to the Spq(4) generators (12) in the following way:

F †
k = F †

1
2 (σ+σ′)

≡ Fσ,σ′ (G−k = G− 1
2 (σ+σ′) ≡ Gσ,σ′), (38)

where k =
1
2
(σ+ σ′) = 0,±1, σ, σ′ = ±1. The operators (38) can be considered

as components of a tensor of rank 1 with respect to the subgroup SU τ
q (2). These

operators create a pair of q-fermions coupled to a total angular momentum J = 0
and a total isospin T = 1. In analogy with the classical limit and the boson case
(33), a set of vectors that span each space E+

j in the q-deformed case can be
chosen to be of the form:

|µ1, µ0, µ−1) =
(
F †

1

)µ1
(
F †

0

)µ0
(
F †
−1

)µ−1

|0〉 . (39)

The basis is obtained by orthonormalization of (39). The basis states (39) are
uniquely speciˇed by the classiˇcation schemes which use the suq(2) subalgebras
and the relevant Cartan generators Å the nondeformed operators N±1, or equiv-
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Table 2.

µ/i 2 1 0 −1 −2

0 |0, 0, 0)

2 |1, 0, 0) |0, 1, 0) |0, 0, 1)

4 |2, 0, 0) |1, 1, 0)
|1, 0, 1)
|0, 2, 0)

|0, 1, 1) |0, 0, 2)

6
|2, 0, 1)
|1, 2, 0)

|1, 1, 1)
|0, 3, 0)

|1, 0, 2)
|0, 2, 1)

8
|2, 0, 2)
|1, 2, 1)
|0, 4, 0)

alently the set N and τ0. The eigenvalues of these operators that label the basis
states coincide with the ones in the classical case.

States (39) are the eigenvectors of the fermion number operators N1, N−1:

N1 |µ1, µ0, µ−1) = (2µ1 + µ0) |µ1, µ0, µ−1) , (40)

N−1 |µ1, µ0, µ−1) = (2µ−1 + µ0) |µ1, µ0, µ−1) , (41)

or equivalently of the operators N = N1 + N−1 and τ0 =
1
2
(N1 −N−1) which

are both diagonal in the basis (39):

N |µ1, µ0, µ−1) = µ |µ1, µ0, µ−1) , µ = 2(µ1 + µ−1 + µ0). (42)

τ0 |µ1, µ0, µ−1) = i |µ1, µ0, µ−1) , i = µ1 − µ−1. (43)

Their eigenvalues can be used to classify the basis within a representation Ωj .
The basis states labeled by |µ1, µ0, µ−1) for Ω3/2 = 2 are shown in Table 2,
where µ enumerates the rows; and i, the columns.

In the fermion representation the basis vectors are degenerate in the sense that
more than one of the common eigenstates of the operators N and τ0 have one and
the same eigenvalues {µ, i} and thus belong to one and the same cell of Table 2.
Here a relation analogous to (37) exists only for the maximum weight states; an
additional quantum number is needed to specify them completely. In the fermion
realization of spq(4) the eigenvalue of the second order Casimir operator, which
is related to the seniority quantum number, is used to label the states.

1. The reduction chain Spq(4) ⊃ SU
0
q(2)⊗Uq(1)τ0

describes pairing between
fermions of different types and corresponds to Case 1 for bosons with maximum
n0 value. These states are the last ones in each of the cells in Table 2. The
seniority quantum number s = (µ1 + µ−1)max introduced in the basis state
labeling scheme, |i, 2(µ1 +µ−1)max, µ), comes from the eigenvalue of the second
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order Casimir operator for this q-deformed subalgebra:

C2(SU0
q (2))|µ1, µ0, µ−1) =

= 2Ωj

[
1

2Ωj

]
[Ωj − s]ω[(Ωj − s+ 1)]ω|µ1, µ0, µ−1). (44)

2. The other reduction, Spq(4) ⊃ U q(2)N±
⊃ SU±

q (2) ⊃ U q(1)N∓
, intro-

duces deformation in the model of coupled fermions of the same kind and corre-
sponds to Case 2 for bosons with minimal n0 value. The basis states are placed
ˇrst in each cell in Table 2. In this limit the labeling is |µ∓1, µ0 max, µ±1), where
µ0 max = {0 or 1} is the seniority quantum number. The action of the Casimir
operator on the states is given by

C2(SU±
q (2)) |µ1, µ0, µ−1) =

= ρ± Ωj

[
1
Ωj

] [
Ωj−µ0max

2

]
2ω

[
Ωj−µ0 max

2
+1

]
2ω

|µ1, µ0, µ−1) . (45)

In the deformed case the action of the Casimir invariant of SU+
q (2) differs

from that of the Casimir invariant of SU−
q (2) by the factor ρ+/ρ−.

The deformed basis states are labeled by the classical eigenvalues of the
invariant operators of the reduction in each of the cases considered. The matrix
elements, particularly of the raising and lowering generators of spq(4) and the
second order invariants, are also deformed which leads to different results in
physical applications. The deformation may lead to basis states whose content is
very different from the classical case, since there is no known simple function
that transforms the classical fermion operators c†m,σ and cm,σ into the q-deformed
ones, α†

m,σ and αm,σ. Indeed, a smooth function may not exist since the anti-
commutation relations (9) hold simultaneously with both signs for one and the
same σ, as deˇned by (9).

CONCLUSIONS

Deformed boson and fermion realizations of the simplest two-dimensional
algebra, spq(4, R) and spq(4), have been introduced. We have investigated their
subalgebras as well as the action spaces of their representations. Without going
into a detailed investigation of the relations between these algebraic constructions
that would require mapping procedures or a consideration of equivalent tensor
structures, we were able to study their similarities and differences based on their
®classical¯ realization, which are important in considering physical applications
of the theory.
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First of all the construction of the generators of both the algebras is analogous
in terms of bilinear combinations of deformed boson or fermion creation and
annihilation operators. In the boson case there is a simple transformation of the
®classical¯ bosons to the q-deformed ones. In the fermion case an additional
index is needed to satisfy the Pauli principle, so in practice spq(4) is realized as
a subalgebra of the direct product spq(4) ⊕ sp(2j + 1). A simple transformation
function between the ®classical¯ and q-deformed operators is not known.

For the two primary reductions, the suq(2) substructure can be interpreted as
a quasi-spin algebra. The other two reductions, which apply in the fermion case,
are suq(2) algebras that can be associated either with pairing between identical
fermions or the coupling of two fermions of different kinds. In the boson case the
inˇnite deformed ladder series u0

q(1, 1) and two inˇnite deformed discrete series
u±q (1, 1) correspond to the pairing limits of the compact case.

In the boson case the classical as well as the deformed representations act in
the same Fock space, which is inˇnite dimensional. The basis states are nonde-
generate. Although different coupling schemes for the boson creation operators
can be considered, there is a relation between the algebraic generators which links
them.

The deformation in the even fermion case leads to basis states whose content
is very different from the classical one. In this case the basis states can be
degenerate, but each reduction provides a complete classiˇcation of the basis
states, including a resolution of the degeneracy. In limiting cases the respective
subalgebras provide for a physical interpretation of the different kinds of pairing
with an associated seniority quantum number which appears in the eigenvalues of
the respective second-order Casimir invariants.

The matrix elements of the second-order invariants and the deformed gen-
erators of spq(4, R) and spq(4) were also deformed. This introduced a new
parameter which leads to different results in physical applications. In particular,
in the fermion case this deformation depends on the dimension of the shell.

This work was partially supported by the US National Science Foundation
through a regular grant (9970769) and a cooperative agreement (9720652) that
includes matching from the Louisiana Board of Regents Support Fund.
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