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QUANTUM MOTION ALGEBRAS
A. G�o�zd�z∗, M. Pietrow∗∗

Institute of Physics, Department of Mathematical Physics,

University of Maria Curie-Sk�lodowska, Lublin, Poland

The notion of the groups of motions as the groups of elementary changes of quantum states
leads to the quantum motion algebras. These algebras can be considered as a good tool for analysis
of quantum motion in the many-body problems and also in more fundamental quantum mechanics.

INTRODUCTION

The idea to generate the whole state space of a physical system from a
single state, or a family of simple states, was proposed over forty years ago by
D. L. Hill, J. A. Wheeler, and J. J. Grifˇn and named the Generator Coordinate
Method (GCM) [1, 2]. It has been very successful in many branches of quantum
physics. It is very elegant and powerful method in many-body problems in
atomic, molecular and nuclear physics. On the other hand, as is very well known,
the symmetries play very important role in both classical and quantum physics.
It is also important to notice that in many cases the same group structures are
responsible for description of a classical system and its quantum counterpart.

A combination of both ideas, leads to the algebraic generator coordinate
method [1Ä3] useful for description of different kinds of physical problems, e. g.,
[4Ä6].

Some preliminary results about the structure of the algebra have been pub-
lished in [3]. However the physical intuition requires that the group of motion G,
responsible for the excitations of the system, should belong to the full algebra of
motions. The algebra obtained in [3] does not contain the group G itself because
it is a Banach ∗-algebra L1(G) which cannot contain the unit element [4Ä7].

The purpose of this introductory paper is to give an outline and extension of
the ideas lying behind the notion of the Quantum Motion Algebra (QMA) given
in [8].

In addition, we consider a possible quantum origin of the de Broglie relation
between the linear momentum and wave vector for relativistic objects to show
the other ˇeld of applications of the formalism.
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1. GROUP OF MOTION

The classical motion can be described as some changes of states (the gener-
alized positions and the appropriate generalized velocities) along a trajectory in
the conˇguration space. For isolated systems, the evolution operator generates
changes from one state (position and velocity) to another one. The family of
evolution operators furnish the one parameter group. The parameter is identiˇed
with usual time parameter. This idea can be generalized to the notion of the
group of motion G as the group responsible for ®shifts¯ of a physical system
under consideration from one to another physical state. The classical G motion
(the motion generated by the group G) can be related to the appropriate group
element g ∈ G. The composition of the group elements g1g2 . . . gn can be in-
terpreted as a composition of subsequent movements determined by the ®shifts¯
gn, gn−1, . . . , g1 (just in this order, like the composition of transformations). The
inverse element g−1 ∈ G represents an inverse G motion and the neutral element
in G can be interpreted as the movement which does not change any physical
state of the system.

Though, there are a lot of principal differences between classical and quantum
physics, it seems to be possible to extend the idea of the group of motions,
deˇned above, to the quantum world. It seems to be even more appropriate. One
can consider the groups which correspond to our geometrical understanding of
some motions like spaceÄtime translations, space rotations, Lorentzian motions,
dilatations and many others. These groups are able to change the states of the
physical system (with the extension mentioned in the end of the section) according
to our imagination about such kind of motions. In addition, one can consider non-
classical types of quantum motions like rotations in the isospin space, the motions
generated by different ®charges¯ and other quantities related to symmetries. A
good example of the group of quantum motion is also the group of unitary
transformations from one to another Slater determinant describing excitations
of a set of independent particles. Many well known group theoretical models
provide numerous examples of the group of motions understood as the group of
transformations among the states of the physical system under consideration.

However, in quantum case the group of motion G is insufˇcient to describe
the full possibilities of quantum motion. In the quantum mechanics, the super-
position principle requires to create the whole linear space of allowed states for
the system. Because of this we need to consider an algebra of quantum motions
containing the group of motion G generating the elementary motions (excitations).

2. ALGEBRA OF QUANTUM MOTIONS

As was mentioned in the previous section, for quantum systems we have no
unique path of the motion but the system can choose different paths with some



146 G\O\ZD\Z A., PIETROW M.

probability amplitudes. In addition, one can observe the linear combinations of
the paths. This suggests that the idea of group of motion itself is not sufˇcient
and we should extend the group of motion to the structure which is able to include
the superposition principle. The natural extension of the group of motion is to
consider the formal sums:

τ̆ =
∑
g∈G

τ(g)g (1)

and the formal integrals [3] ∫
G

dgu(g)g (2)

which are able to describe the interference of elementary motions with amplitudes
of motions given either by the discrete function τ(g) or the function u(g). As
can be seen from the deˇnition (1) the group of motion will be included in this
structure.

It can be easily shown that instead of rather complicated symbolic integrals
(2) it is more convenient to consider the amplitudes of motions u(g) themselves,
as in [3].

It means we should consider the algebra of elements of the general form:

S = u + τ̆ , (3)

where the functions u ∈ L1(G) are integrable functions with the norm given by
the standard formula [4]:

‖u‖L1 =
∫

G

dg|u(g)| <∞ (4)

and the coefˇcients τ(g) belong to the space l1(G) of inˇnite sequences with the
norm [4]:

‖τ̆‖l1 =
∑
g∈G

|τ(g)| <∞. (5)

The addition ®+¯ of elements (3) corresponds to quantum interference of motions
and it is deˇned in a natural way. If S1 = u1 + τ̆1 and S2 = u2 + τ̆2, then

S1 + S2 = u1 + u2 + τ̆ , (6)

where
τ̆ = τ̆1 + τ̆2 =

∑
g∈G

(τ1(g) + τ2(g))g. (7)

There exists also the multiplication ®◦¯ of two and more elements (3). One can
obtain the explicit form of the multiplication by a composition of two motions
(operators) [3]. In principle, it can be viewed as a composition of two ®wave
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packets¯. This binary operation is associative and bilinear with respect to the
addition (interference). Because of this, it is enough to deˇne it between more
elementary objects of the algebra than the elements (3).

Namely, for u, v ∈ L1(G) and g, h ∈ G one can write

(u ◦ v)(g) =
∫

G

dg′u(g′)v(g′−1
g)u ◦ g = ∆G(g)LR

g−1ug ◦ u = LL
g−1ug ◦ h = gh,

(8)
where

LR
g′u(g) = u(gg′)LL

g′u(g) = u(g−1g) (9)

denotes the right and left shifts on the group manifold and gh the group multi-
plication, respectively. The function ∆G(g) is called the modular function of the
group G and it is determined by the right shifts of the left Haar measure [10].

To make unique the deˇnition of the modular function let us denote by dg
the left invariant Haar measure for the group G. Then the modular function is
deˇned by the following relation:

d(gg′) = ∆G(g′−1)dg. (10)

Similarly to the ˇrst condition in (6) the last one leads also to the convolution
operation. Denoting by τ̆k =

∑
g∈G τk(g)g, where k = 1, 2, two elements of

l1(G) after using of (8) one obtains

τ̆1 ◦ τ̆2 =
∑
g∈G

( ∑
g′∈G

τ1(g′)τ2(g′−1
g)

)
g. (11)

One can show that the set of elements (3) together with both binary operations
(6) and (8) (one needs also introduce an obvious operation, multiplication by a
number) and the norm

‖S‖ = ‖u‖L1 + ‖τ̆‖l1 (12)

furnish the Banach algebra. It consists of two subalgebras QM ′(G) which can
be identiˇed with the group algebra L1(G) and the second one QM ′′(G) which
is isomorphic to the group algebra l1(G). First represents the ®continuous sums¯
of the elementary motions and the second one the discrete series of interfering
elementary motions. Formally one can write the QM(G) algebra to be a direct
sum:

QM(G) = QM ′(G) ⊕QM ′′(G). (13)

The subalgebra QM ′(G) is two-sided ideal within the algebra QM(G). This
is an important property which shows that the composition of ®discrete¯ and
®continuous¯ motions always lead to ®continuous¯ case.
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Within the classical mechanics one can easily imagine a notion of inverse
motion. This intuition is not obvious for the quantum world, however for el-
ementary motions g ∈ G the inverse group element g−1 represents the inverse
quantum motion. In general case one can only think about an analog of inverse
motion. More detailed analysis allows one to deˇne an additional operation within
the algebra QM(G). In special case of elementary motions it gives an inverse
motion, for QM ′(G) motions see [9]. This is the unitary involutive operation
deˇned as follows:

u�(g) ≡ ∆G(g)u∗(g−1), g� ≡ g−1, (S�)� ≡ S, (α1S1 + α2S2)� ≡ α∗
1S

�
1 + α∗

2S
�
2,

(14)
where u ∈ QM ′(G), g ∈ G, S1, S2 ∈ QM(G), α1 and α2 are complex num-
bers. The involution �, in further considerations, plays a role of the operation of
Hermitian conjugation in the states space generated by the algebra of motions.

The algebra of quantum motions QM(G) deˇned above is a combination
(nontrivial extension) of well-known, within the theory of locally compact groups
representations, the ∗-Banach group algebras L1(G) and less-known l1(G) [11].
On the other hand, it can be also found to be isomorphic to a subalgebra of the
algebra of measures [9].

The construction described above seems to be the appropriate extension of
the notion of the group of motion G to the quantum world.

3. METASTATE AND THE STATES SPACE

In Section 2 we have derived the Banach algebra with involution called the
quantum motion algebra, QM(G), which could possibly be able to describe the
structure of quantum motion for the system in question. However, the group of
motion determines only what kind of motion is under consideration. The question
arises what is the physical system which is moving? This can be determined by
the metastate known from algebraic approach to quantum mechanics [5, 10].

The metastate is a non-negative, appropriately normalized continuous linear
functional on the algebra of motions QM(G). The metastate plays the role of
the generator state, known in the generator coordinate method, from which the
whole state space is created.

The most general positive and continuous functional can be written in the
form (u ∈ QM ′(G) and τ̆ =

∑
g∈G τ(g)g ∈ QM ′′(G)):

〈ρ;u + τ̆〉 = 〈ρ;u〉 + 〈ρ; τ̆〉, (15)

where

〈ρ;u〉 =
∫

g∈G

dg〈ρ; g〉u(g) (16)
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and
〈ρ; τ̆ 〉 =

∑
g∈G

〈ρ; g〉τ(g), (17)

where the complex function 〈ρ; g〉 called the metastate kernel satisˇes the follow-
ing conditions:

(a) 〈ρ; g〉 : G → C;
(b) 〈ρ; e〉 = 1, where e denotes the unity in G;
(c)

〈
ρ; g−1

〉
= 〈ρ; g〉∗;

(d) for every ˇnite sequences of complex numbers α1, α2, . . . , and points on
the group manifold g1, g2, . . . , the following relation holds∑

i,j

α∗
i

〈
ρ; g−1

i gj

〉
αj ≥ 0.

In most applications the metastate kernel can be written in quite familiar form

〈ρ; g〉 = Tr (ρT (g)), (18)

where ρ is a quantum density operator and T (g) denotes a unitary representation
of the group G.

Because, it can happen that for a given z ∈ QM(G)〈
ρ; z� � z

〉
= 0. (19)

To construct the state space one needs to consider the quotient structure

QM(G)/Rρ, (20)

where Rρ consists of elements z ∈ QM(G) for which 〈ρ; z� ◦ z〉 = 0. Rρ is the
left ideal in the algebra QM(G) and one can use the so-called GelfandÄNeumarkÄ
Segal construction (GNS) [5]. After standard completion procedure (20) converts
into the Hilbert space of states

K ∼ QM(G)/Rρ (21)

with the scalar product generated by the metastate:

〈clK(S1)|clK(S2)〉 ≡ 〈ρ;S�
1 ◦ S2〉,

where the vector corresponding to S ∈ QM(G) is denoted clK(S) (class of S)
or in more traditional form |S〉.

One needs to notice that in the space of states K there is the cyclic vector
clK(eG)

clK(S) = S clK(eG) (22)
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which allows one to generate all other vectors from the state space K. The
element eG is the unit element in the group of motions G. In other words, it is
enough to ˇnd the structure of a single state to have immediatelly the structure of
all other state vectors. The outline of general construction for the compact groups
of motions can be found in [8]. It is much more difˇcult to ˇnd the corresponding
construction for noncompact but locally compact groups. This problem requires
further extensive investigations.

The construction above is a generalization of the generator coordinate method.
Using it one can reproduce all the results of GCM for cases where the gener-
ator coordinates can be interpreted as some group parameters. In addition, as
generating states one can use here also the density matrices choosing the appro-
priate form of the metastate kernel, as in (18), what is impossible for traditional
GCM. The method used above is also sometimes useful for the construction of
irreducible representations of locally compact groups (using instead of QM(G)
the corresponding algebra of measures [11]).

4. THE GENERALIZATION OF THE DE BROGLIE RELATION

In the following we consider a nonstandard model using the Poincar\e group
G = ISO(1, 3) as a group of motions. This group is the group of rather
complicated global structure and we conˇne our considerations to the case of
spinless, massive particles, i. e., to the scalar representations only.

The elements of the group G = ISO(1, 3) can be parametrized by four-
translations denoted by the index T , a proper, orthochronous Lorentz transfor-
mation which will be denoted by the index L and the usual three-dimensional
rotations indicated by R. Using this notation the element of the Poincar\e group
can be written as:

g(x, v,Ω) = xT vLΩR ∈ ISO(1, 3), (23)

where xT is four-translation about the four-vector x; similarly vL denotes the
Lorentz transformation determined by the four-velocity v and ˇnally ΩR repre-
sents the usual rotation about the Euler angles Ω = (Ω1,Ω2,Ω3).

A nearly quite general form of metastate kernel, for scalar representation of
massive particle, can be constructed as an average of the standard form of action
of the irreducible representations of the Poincar\e group:

〈ρ;xT vLΩR〉 =
∫

R3

d3q
2q0

Ψ0(q)∗eiqxΨ0(Λ−1q), (24)

where Λ = vLΩR, the function Ψ0(q) we assume to be invariant under the
orthogonal group O(3) and q0 =

√
µ2 + q2. The Hilbert space of states obtained
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by GNS procedure with the metastate determined by (24) fulˇlls the condition:

|xT vLΩ′
R〉 = |xT vLΩR〉, (25)

i. e., the elementary states corresponding to group elements are independent of ro-
tations. Because all other states can be expressed by states (25), we have spinless
representation. In this model, the vectors (25) are interpreted as states represent-
ing ®positions¯ in the (10 − 3 = 7)-dimensional conˇguration space consisted
of points (x, v). More precisely, this conˇguration space can be constructed in
the form of group theoretical orbits of the Poincar\e group. To simplify notation,
below, instead of vL the usual symbol for Lorentz transformation Λ is used.

For further purpose we need to deˇne the observable of the wave four-vector.
This observable seems to be determined by the spectral family projecting onto
representations of the four-dimensional translation subgroup, the Poincar\e group:

Mk(k) =
(

1
2π

)4 ∫
R4

d4x e−ikxxT , (26)

where xT ∈ T 4 ⊂ ISO(1, 3) ⊂ QM(G). This observable measures the probabil-
ity of ˇnding in the given state the ®space-time periodicity¯ equal to four-vector
k, i. e., the wave properties of the state under consideration. More exactly, the
operator (26) is operator-valued distribution and, in principle, we should consider
the operators Mk(∆) measuring the probability that k belongs to the set ∆ ⊂ R4.
However, we follow the standard procedures in quantum mechanics. Usually, the
wave four-vector is identiˇed, by de Broglie relation, with the linear momentum
four-vector. The question is if this relation can be derived?

First we write the hermitian operator corresponding to the wave four-vector
observable. It can be easily written having in mind the spectral theorem:

k̂ν =
∫

R4
d4kkνMk(k). (27)

Now, let us imagine the particle in the state |xT vL〉. According to the interpreta-
tion given above the particle can be viewed as localized in the space-time point
x. Λ = vL corresponds to another set of properties which will be cleariˇed in the
end of the section.

The probability of ˇnding k in the localized state can be obtained as:

〈xT Λ|Mk(k)|xT Λ〉 =
(

1
2π

)4 ∫
R4

d4x′ e−i(Λ−1k)x′ 〈ρ;x′T 〉 . (28)

Using the form of the metastate kernel (24) from (28) we get the following
formula:

〈xT Λ|Mk(k)|xT Λ〉 = δ(κ0 − (Λ−1k)0)
|Ψ0(Λ−1k)|2

2κ0
, (29)
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where κ0 =
√
µ2 +

∑3
l=1[(Λ−1k)l]2. The equation (29) allows one to calculate

the expectation values of the components of the wave four-vector

〈k̂ν〉 =
∫

R4
d4k kν〈xT Λ|Mk(k)|xT Λ〉 =

=
∫

R4
d4k (Λk)ν δ

(√
µ2 + k2 − k0

) |Ψ0(k)|2
2k0

. (30)

Because we assumed that the function Ψ0(k) is invariant under O(3) group we
have also that

|Ψ0(k0,−k)|2 = |Ψ0(k0,+k)|2 (31)

and the integral (30), after the integration over k0, can be expressed as

〈k̂ν〉 = (Λ−1)0ν

∫
R3

d3k
2k0

√
µ2 + k2|Ψ0(k0,k)|2, (32)

where k0 =
√
µ2 + k2.

The Λ0
ν coefˇcients represent the covariant components of the four-velocity

components of our particle. This means that the expectation value of the wave
four-vector operator k̂ for free motion of localized particle is proportional to the
velocity four-vector. This is an extension of known de Broglie relation. It is
important to notice here that in classical theory the contravariant componets of
the wave four-vector are the ®physical¯ ones, i. e., proportional to velocity. Here
we are using the covariant componets what leads to the opposite sign of three-
velocity. The proportionality coefˇcient is dependent on structure of the metastate,
however, expanding into series the function

√
µ2 + k2 under the integral (32) we

see that

〈k̂ν〉 = (Λ−1)0ν

{
µ+

∫
R3

d3k

2
√
µ2 + k2

k2

2µ
|Ψ0(k0,k)|2 + . . .

}
. (33)

In the ˇrst approximation the integral in (32) is proportional to the invariant mass
determined in the metastate kernel. This mass can be also found calculating the
expectation values of the square of the wave four-vector operator:

〈k̂2〉 = 〈xT Λ|k̂2|xT Λ〉 = µ2. (34)

This result allows one to assume that the integral in the formula (32) can be
interpreted as the mass of the particle in the localized state |xT Λ〉.

In this section there has been shown only schematic model of alternative
description of space-time relations in relativistic quantum physics. The QM(G)
formalism allows one to generate a big variety of models covariant in respect to
a given group of motions.
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