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A fermion representation of the compact symplectic sp(4) algebra provides a natural description
of the pairing interaction in nuclei. In the nondeformed and deformed cases the reduction chains to
different realization of u(2) and uq(2) are explored for multiple orbits. One of the realizations is
associated with the SU(2) group of the valene isospin. The other reductions describe pairing between
identical fermions or proton-neutron conˇguratrions. Microscopic nondeformed and deformed Hamil-
tonians are expressed in terms of the generators of sp(4) and spq(4). In both cases eigenvalues of
the Hamiltonian are ˇt to experimental ground state energies which allows the role of the deformation
to be investigated. The q-deformation parameter varies the pairing strength, thereby providing for a
nonlinear expansion of the nuclear collective motion.

INTRODUCTION

The pairing problem in nuclear physics was originally investigated [1] as a
means for describing binding energies of nuclei and their low-lying vibrational
spectra [2]. Common solutions invoked group theory which is a powerful tool
for exploring symmetries: (SU(2) model) [3Ä5], (SO(5) model) [6], (SO(8)
model) [7], (IBM ) [8]. The importance of isovector pairing [9] leads naturally
to the SO(5) seniority model [10,11], which introduces a relation between like-
particles and protonÄneutron (pn) isovector pairing modes. Recently, there has
been renewed interest in this problem through studies of exotic nuclei with proton
excess or with N ≈ Z [12].

Based on a fermion realization of sp(4) (isomorphic to so(5)), our aim is to
investigate the properties of the pairing interaction by considering the symplectic
algebra to be a dynamical symmetry algebra. This yields an isospin breaking
phenomenological Hamiltonian written in terms of the group generators. The
limiting cases of sp(4) correspond to different reductions to u(2) and reveal
the properties of different coupling modes of the isovector pairing interaction.
A generalization to multiple shells provides a classiˇcation scheme for nuclear
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ground states when the valence nucleons occupy more than a single orbit. This
introduces shell structure into the theory and allows for an investigation of the
dependence of pairing correlations on the dimensionality of the model space.

A q-deformation of the classical algebraic structure is introduced in order
to provide for novel, richer and more exact reproduction of pairing features in
nuclei, including nonlinearity of the interactions and the respective changes of the
pairing strength parameters. An analysis of the results, obtained by the ˇtting of
the model parameters to experimental data in both the deformed and nondeformed
cases, provides for a reliable prediction of the binding energies of nuclei, some
of which are unknown and of contemporary interest.

1. GENERALIZED FERMION REPRESENTATION OF sp(4) ALGEBRA
AND ITS DEFORMATION

The sp(4) algebra is realized in terms of fermion creation (annihilation) op-
erators c†j,m,σ (cj,m,σ), −j ≤ m ≤ j, σ = ±1, where these operators create (an-
nihilate) a particle of type σ in a state of total angular momentum j = (2k+1)/2,
k = 0, 1, 2, . . . , with projection m on the z axis [13]. They satisfy Fermi anti-
commutation relations {cj′,m′,σ′ , c†j,m,σ} = δj′,jδm′,mδσ′,σ, {c†j′,m′,σ′ , c

†
j,m,σ} =

{cj′,m′,σ′ , cj,m,σ} = 0, and the Hermitian conjugation relation: (c†j,m,σ)∗ =
cj,m,σ. The usual single-orbit fermion realization of the sp(4) algebra can be
extended very easily to a multiple-orbit theory [5]. For a given σ, the dimension
of the fermion space is 2Ω =

∑
j 2Ωj =

∑
j(2j + 1), with the convention that∑

j is a sum over the number of orbitals p. A pair of fermions can be created or
annihilated by the operators

Aσ,σ′ = ξ
∑
j,m

(−)j−mc†j,m,σc
†
j,−m,σ′ , Bσ,σ′ = ξ

∑
j,m

(−)j−mc j,−m,σcj,m,σ′ ,

(1)

where ξ = 1/
√

2Ω(1 + δσ,σ′) and Aσ,σ′ = (Bσ,σ′)∗, Aσ,σ′ = Aσ′,σ, Bσ,σ′ =
Bσ′,σ . The number preserving Weyl generators are deˇned as

Dσ,σ′ =
1√
2Ω

∑
j,m

c†j,m,σcj,m,σ′ . (2)

Based on different interpretations of the quantum number σ, the generators (1)
and (2) have different physical meaning. When σ distinguishes between pro-
tons (σ = 1) and neutrons (σ = −1), the Cartan generators of the Sp(4) group
Nσ≡

√
2ΩDσ,σ enter as the number of the valence protons and valence neutrons,

respectively. The valence fermions are created (annihilated) by c†j,m,σ (cj,m,σ)
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above the pairing vacuum state of the nuclear system, which is a doubly-magic
core.

In the nondeformed limit, the generators of the Sp(4) group τ±1 ≡ D±1,∓1,
τ0 = (N1 −N−1)/2 and N = N+1 +N−1 close on the uτ (2) subalgebra. In this
case the creation (annihilation) operator A(σ+σ′)/2≡ Aσ,σ′ (B(σ+σ′)/2≡ Bσ,σ′),
σ, σ′ = ±1, is a tensor of the ˇrst rank {A}0,±1 ({B}0,±1) with respect to the
SU τ (2) subgroup. The operators A0,±1 (B0,±1) create (annihilate) a pair of
fermions coupled to total angular momentum and parity Jπ = 0+ and constitute
boson-like objects. Other two realizations of the u(2) subalgebra include the
following generators: A0, B0, D0 ≡ N/2 − Ω and τ0 of u0(2); A±1, B±1,
D±1 ≡ (N±1/2) − (Ω/2) and N∓1 of u±(2).

The deformation of the spq(4) algebra can be introduced in terms of

q-deformed creation (annihilation) operators α†
j,m,σ (αj,m,σ), (α†

j,m,σ)∗ = αj,m,σ ,

assuming that α(†)
j,m,σ → c

(†)
j,m,σ in the limit q → 1. The deformed single-

particle operators are deˇned through their anticommutation relation in the form
{αj,m,σ, α

†
j,m′,σ}q±1 = q±Nσ/2Ωδm,m′ , and through the action of the ®classical¯

operators of the number of fermions of each kind, [Nσ, α
†
j,m,σ′ ] = δσ,σ′α†

j,m,σ′

and [Nσ, αj,m,σ′ ] = −δσ,σ′αj,m,σ′ (σ, σ′ = ±1). Two of the generators of the
respective deformed Spq(4) group remain nondeformed, N±1. The rest of the
generators are given in terms of the q-deformed fermion operators:

F σ,σ′ = ξ
∑
j,m

(−)j−mα†
j,m,σα

†
j,−m,σ′ , Gσ,σ′ = ξ

∑
j,m

(−)j−mαj,−m,σαj,m,σ′ ,

(3)

E1,−1 =
1√
2Ω

∑
j,m

α†
j,m,1αj,m,−1, E−1,1 =

1√
2Ω

∑
j,m

α†
j,m,−1αj,m,1, (4)

where F σ,σ′ =F σ′,σ = (Gσ,σ′)∗. In the deformed case, the three different re-
alizations of spq(4) are given in terms of the following deformed generators:
T±≡ E±1,∓1 , T0 ≡ τ0 and N of uτ

q (2); F0, G0, K0 ≡ (N/2) − Ω and T0

of u0
q(2); F±1, G±1,K±1 = (N±1/2) − (Ω/2) and N∓1 of u±q (2), where the

deformed creation (annihilation) operators F(σ+σ′/2)≡ Fσ,σ′ (G(σ+σ′)/2≡ Gσ,σ′),
σ, σ′ = ±1, are components of a vector F0,±1 (G0,±1) with respect to the SU τ

q (2)
subgroup. In the ˇrst realization of the unitary subalgebra, suτ (2), the generators
τ are associated with the isospin of the valence particles. The other three limits
describe pairing between particles of different types (SU0(2): pn) and coupling
between identical particles (SU±(2): pp or nn). The commutation relations and
all consecutive formulae remain the same as derived in [13], but with Ωj → Ω.

The nondeformed (deformed) fermion operators act in ˇnite space, with a
vacuum |0〉 (〈0|0〉 = 1) deˇned by cj,m,σ|0〉 = 0 (αj,m,σ|0〉 = 0) for each shell
j. The q-deformed states in general differ from the classical ones but coincide
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in the limit q → 1. The nondeformed and q-deformed basis sets are obtained by
orthonormalization of vectors, which can be expressed in terms of the ®boson-like
creation operators¯, acting on the vacuum state [14]:

|Ω;n1, n0, n−1) = (A1)
n1 (A0)

n0 (A−1)
n−1 |0〉 , (5)

|Ω;n1, n0, n−1)q = (F 1)
n1 (F 0)

n0 (F−1)
n−1 |0〉 , (6)

where n1, n0, n−1 are the total number of pairs of each kind, pp, pn, nn,
respectively. A symmetric representation of Sp(4) is labelled by one quantum
number Ω, which is related to the eigenvalue of the second-order Casimir operator
of the Sp(4) group [15] and which is dropped from the labelling of the states
within a representation. The states (5) and (6) are eigenvectors of the number
operators N±1, N and τ0 with eigenvaluesN± = 2n±1+n0, n = 2(n1+n−1+n0)
and i = n1 − n−1, respectively.

In Table 1, each of the uq(2) realizations is given along with the invariant
operator of ˇrst order, the eigenvalues of the second-order Casimir invariant of
suq(2), and the corresponding eigenvectors (basis states) where by deˇnition
[X ]k = (qkX − q−kX)/(qk − q−k) and ρ± = (q±1 + q±(1/2Ω))/2. In each
limit, ν0 = n1 + n−1 and ν1 = n0 are the respective seniority quantum numbers
that count the number of remaining pairs that can be formed after coupling the
fermions in the primary pairing mode. The eigenvalues of the Casimir invariant
of SU+

q (2) and SU−
q (2) differ within the coefˇcient ρ±, which sets the difference

between proton pairs and neutron pairs. All the q formulae revert back to the
®classical¯ ones in the limit when q → 1.

Table 1. Reduction limits of Spq(4)

uµ
q (2) C1(U

µ
q (2)) Eigenvalues of C2(SUµ

q (2)) Basis states

uτ
q (2) N 2Ω

[
1

2Ω

]
[T ] 1

2Ω
[T + 1] 1

2Ω
|n, τ, i〉

u0
q(2) T0 2Ω

[
1

2Ω

] [
2Ω − 2ν0

2

]
1

2Ω

[(
2Ω−2ν0

2
+1
)]

1
2Ω

|n1, n0, 0)
|0, n0, n−1)

u±
q (2) N∓ ρ± Ω

[
1

Ω

] [
Ω−ν1

2

]
1
Ω

[
Ω−ν1

2
+1

]
1
Ω

|n1, 0, n−1)
|n1, 1, n−1)

2. APPLICATIONS TO NUCLEAR STRUCTURES

In our approach, we use a phenomenological Hamiltonian of a system with
symplectic dynamical symmetry, expressed through the generators of the Sp(q)(4)
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group [14],

H = −εN −GA0B0 − F (A+1B+1 +A−1B−1) −

− CN(N − 1)
2

−D
(
τ2
0 − N

4

)
, (7)

in the nondeformed case, and in the q-deformed case

H = −εN −GqF0G0 − Fq(F+1G+1 + F−1G−1) −

− Cq
N(N − 1)

2
−Dq

(
τ2
0 − N

4

)
, (8)

where ε is a Fermi energy, and G(q), F(q), C(q) and D(q) are constant interaction
strength parameters (G(q) ≥ 0, F(q) ≥ 0). The G and F terms account for pairing
between nonidentical and identical particles, respectively, and give the ground
state pairing energy εpair. The last two terms (C, D) arise naturally from the
microscopic picture of the interaction Hamiltonian [4] and can be written through
the other two diagonal operators N+1 and N−1. In this way, the energy operator
(7) contains the quantity N+N−, which is connected to the deformation of the
nuclei [16]. This means the Hamiltonian is applicable in the whole Ω space
including regions of deformed nuclei. As a consequence of the Pauli principle,
the particle-hole description enters naturally in the pairing terms only and gives
the decrease in energy with respect to a ground state with no pairing [17].

An important feature of the phenomenological Hamiltonian (7) is that it
breaks the isospin symmetry (F �= G), which allows distinct isospin values to
contribute to the ground state of a nucleus with a given n and i in unique
ways [18]. This is different from other applications of nondeformed and deformed
sp(4) or o(5) algebras with isospin invariant Hamiltonians [11, 12, 19].

The eigenvalue of the deformed pairing Hamiltonian can be expanded in
orders of κ (q = exp (κ)) in each limit:

εqpair

∣∣∣
SU0(2)

= −Gqεpn

{
1 +

κ
2

24Ω2

{
(n2

0 − 4Ω2 − 1) +
4Ω2

n2
0

ε2pn

}
+O(κ4)

}
,

(9)

εqpair

∣∣∣
SU+(2)⊗SU−(2)

= −Fq

{
εpp

(
1 + κ

1 + 2Ω
4Ω

+

+
κ

2

6Ω2

{(
n2

1 −
Ω2

2
− 5

8

)
+

Ω2

n2
1

ε2pp

})
+ εnn

(
1 − κ

1 + 2Ω
4Ω

+

+
κ

2

6Ω2

{(
n2
−1 −

Ω2

2
− 5

8

)
+

Ω2

n2
−1

ε2nn

})
+ O(κ3)

}
, (10)
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where the nondeformed energies εpn =
G

Ω
n0

2Ω −N + n0 + 1
2

, εpp(nn) =
F

Ω
n±1

(Ω − n±1 − n0 + 1) are the zeroth order approximation of the corresponding
deformed pairing energies. While the protonÄneutron interaction is even with
respect to the deformation parameter κ, the identical particle pairing includes
also odd terms as a consequence from the introduced coefˇcient ρ±.

Eigenvalue of Hamiltonians (7) and (8) gives a phenomenological formula for
estimating the ground state energy of nuclei in a (N, τ0) classiˇcation

Fig. 1. Coulomb corrected binding energy (in
MeV) versus τ0 for isotopes of nuclei with Z =
20 to Z = 28 in the 1f7/2 (Ω = 4) level

scheme. Its positive value is de-
ˇned to be the binding energy of
the system, |BE|, which can be
ˇt to the measured binding energy.
The latter needs to be corrected for
the Coulomb energy since it is not
accounted for by the model, |H | =
|BEexp|+VCoul, where we use the
Coulomb potential from [20].

In both the nondeformed and
deformed cases, the ground state
energies (eigenvalues of (7) and
(8)) are ˇt to the experimental bind-
ing energies [21] of several groups
of nuclei: (I) Ω = 2 (1d3/2) with a
32
16S core; (II) Ω = 4 (1f7/2) with
a 40

20Ca core; (III) Ω = 11 (2p3/2, 1f5/2, 2p1/2, 1g9/2) with a 56
28Ni core; and (IV)

Ω = 16 (1g7/2, 2d5/2, 2d3/2, 1h11/2, 3s1/2) with a 100
50 Sn core. For the nonde-

formed case, the ˇtting procedure parameters and statistics are shown in Table 2.
In these cases the Coulomb corrected experimental values were used:

Eexp
B (N+, N−) = |BEexp(N+, N−)| − |BEexp|core + VCoul(N+, N−),

where |BEexp|core is the binding energy of the core. The single-particle energies
were considered ˇtting parameters in all cases but Sn, for which the values were
taken from theoretical calculations [22].

In Table 2, S ≡
(∣∣Eth

B

∣∣ − |Eexp
B |

)2
is the residual sum of squares and the

statistical factor χ ≡
√
S/(Nd − np) deˇnes the goodness of the ˇt, where Nd is

the number of data in the statistics and np is the number of ˇtting parameters. In
all cases there is a good agreement with the experiment (small χ), as shown in
Table 2 as well as in Fig. 1 for the second case.

In general, the pairing strength decreases as the nuclear mass increases. This
fact is well known, but only for the identical particle case [2]. The theoretical
model with a sp(4) dynamical symmetry algebra reproduces the properties of
identical nucleon pairing (εpp + εnn) [3Ä5, 17] which has its maximum at half
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Fig. 2. Identical and nonidentical particle energies (in MeV) versus τ0 for the isotopes of
nuclei with Z = 20 to Z = 28 in 1f7/2: 1, � Å N = 8; 2, � Å N = {6, 10}; 3, • Å
N = {4, 12}; 4, � Å N = {2, 14}; × Å N = {0, 16}

shell (Fig. 2, a). The protonÄneutron coupling (εpn) (Fig. 2, b) has its maximum
when N+ = N− (τ0 = 0), which is consistent with α-clustering theories [23] and
the charge independence in the region of light nuclei when protons and neutrons
ˇll the same shells [9, 24]. In that region, the nonidentical particle energy is
bigger than the identical particle energy for odd-odd nuclei and are of the same
order as for evenÄeven nuclei (Fig. 3), which is consistent with good isospin
symmetry in evenÄeven nuclei.

For multiple orbits the pairing correlations and coupling modes depend on
the dimensionality of the space. We investigated a possible sub-shell closure

Table 2. Parameters and statistics, q = 1

(I) (II) (III) (IV)

G/Ω, MeV 2.13 1.17 0.54 0.52
F/Ω, MeV 2.10 1.10 0.45 0.36
C, MeV 1.42 0.64 0.23 0.19
D, MeV Ä0.02 Ä0.16 Ä0.18 Ä0.09
ε, MeV 7.19 8.25 8.84 9.41
S, MeV2 0.03 34.53 511.5 809.5
χ, MeV 0.08 0.99 1.85 2.04
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for nuclei above the 56Ni core. Closing the shell at 80Zr (Fig. 4, a, c) or 100Sn
(Fig. 4, b, d) changes not only the ˇtting parameters but also the mode and magni-

Fig. 3. Nonidentical and identical particles
energies (in MeV) and total pairing en-
ergy (in MeV) vs. N− when N+ = N−
for the nuclei in 1f7/2: 1, � Å εpn;
2, � Å εpair; 3, • Å εpp + εnn

tude of coupling. When N+ = N−, the
expected behavior is obtained for Ω =
11, which is similar to the behavior of
the nuclei above the 40Ca core (Fig. 3).
Also, there is a signiˇcant difference in
the dominant mode of the isotopes (an
example is N+ = 8, Fig. 4): in the region
around N+ = N− with Ω = 11 the pn
pairing dominates, and only further away
from that region the like-particle mode is
dominant. In comparison with the single
level cases, the closing at 100Sn can be
regarded as the correct behavior (Fig. 4,
b, d).

The ˇtting procedure for (8) was per-
formed for all cases, (I) to (IV), with
q-deformation included (Table 3). The
ˇt for nuclei in multiple orbits, (III)∗ and (IV)∗, includes only isotopes with

Fig. 4. Nonidentical and identical particles energies (in MeV) and total pairing energy
(in MeV) vs. N− when N+ = N− (a, b) and N+ = 8 (c, d) for nuclei above 56Ni:
a, c) Ω = 6; b, d) Ω = 11. 1, � Å εpn; 2, � Å εpair; 3, • Å εpp + εnn
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N+ = {0, 1} and isotones with N− = {2Ω − 1, 2Ω}. The corresponding
nondeformed limit is labeled by q = 1 and the deformation parameter is not
a part of the ˇtting procedure in that case. The single-particle energies were
kept ˇxed and their values taken from the nondeformed ˇt, or from theoretical
calculations [22].

Fig. 5. pn pairing strength Gq (in MeV) (a) and identical particle pairing strength Fq (in
MeV) (b) for (N+, N−) nuclei vs. q

The ˇts with and without a deformation can be compared by using the residual
sum of squares (S) which is always smaller in the deformed case. Although the
deformation does not change the parameters within the uncertainties in the case
of a single level, for multiple orbits the role of the deformation parameter is
signiˇcant when not all nuclei of a major shell are used in the ˇtting procedure.
This turns out to be very important for ˇtting nuclei in the region where the
binding energy of most of the proton-rich isotopes are not yet measured and
therefore cannot be included in the ˇt. For these cases, the deformation varies the
pairing strength parameters. This property of the q deformation is consistent with
the change of the pairing strength with respect to q (Fig. 5). The change of the pn
pairing strength Gq with changes in the deformation parameter is relatively small
for q values around q = 1 but it increases as q �= 1 (Fig. 5 and Table 3). The
parameter Fq decreases monotonically with q only for nuclei without nn coupling
and it increases for nuclei with a primary nn coupling. Fq is always smaller than
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F (q = 1) when both the pp and nn coupling modes exist. Even though both
SU±

q (2) groups are complementary, the different behavior of the multiplication
constants ρ± is responsible for different changes of Fq in various isotopes, in
contrast with the like-particle SUq(2) seniority model of [25].

Table 3. Parameters and statistics. The q = 1 case for (I) and (II) is the same as in
Table 2. Fits for (III)∗ and (IV)∗ include only isotopes with N+ = {0, 1} and isotones
with N− = {2Ω − 1, 2Ω}

(I) (II) (III)∗ (IV)∗

q 0.99 1.04 1 1.62 1 1.60
G/Ω, MeV 2.13 1.17 0.41 0.48 0.51 0.59
F/Ω, MeV 2.10 1.10 0.42 0.43 0.30 0.37
C, MeV 1.42 0.64 0.23 0.23 0.19 0.18
D, MeV Ä0.02 Ä0.16 Ä0.17 Ä0.17 0.09 Ä0.09
ε, MeV 7.19 8.25 8.84 8.84 9.41 9.41

S, MeV2 0.03 34.25 294.2 90.59 226.47 93.55
χ, MeV 0.08 0.99 2.59 1.45 2.15 1.60

The ˇtting procedure not only estimates the magnitude of the pairing strength
and describes the type of the dominant coupling mode but it also can be used
to predict binding energies of nuclei that have not been measured. From the ˇt
for the case of 1f7/2, the binding energy of the proton-rich nucleus of 48Ni is
estimated to be 347.98 MeV. A much more interesting region includes the nuclei
above the core of 56Ni. The neutron-rich isotopes are used in the ˇt in order

to predict the ground state energy ESp(4)
B of the nuclei on the proton-rich side.

Several of them (for which data was available) are compared to [26], with the
percent difference 8.78 % and the tendency the theoretically predicted binding

energies ESp(4)
B to be smaller than the semiempirical estimates [26].

CONCLUSION

A deformation of the sp(4) algebra was obtained. Deformed subalgebras
of sp(4) were identiˇed and the important reduction chains Spq(4) ⊃ U(1) ⊗
SUq(2) constructed. A phenomenological Hamiltonian was written in terms of
the generators of Sp(4) and used to describe pairing correlations. The theory was
tested by ˇtting calculated energies to experimental binding energies for single
j level as well as for multiple orbits. In general, the ˇtting procedure yielded
results that were in good agreement with the experiment. The results did not call
for isospin invariance, which could be the case if the pairing parameters F and
G turn out to be equal.
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The theoretical model with sp(4) dynamical symmetry algebra and its q-de-
formed version was used to investigate the properties of the pairing interaction.
The protonÄneutron interaction was found to be bigger than the identical particle
interaction in oddÄodd light nuclei and both interactions were found to be of the
same order of magnitude in evenÄeven nuclei. The dominant coupling mode and
its strength were found to depend on the dimension of the occupied valence space.

The results show that the q-deformed case gives the best overall ˇt. It requires
an increase in the coupling strength of the protonÄneutron pairs. When q > 1,
the neutron (proton) pairs are more strongly (weakly) bound and vice versa for
q < 1.

The binding energy of nuclei in the proton-rich region were predicted using
a simple microscopic model based on a symplectic symmetry. In doing this we
were able to suggest a reliable form for the pairing interaction.

This work was supported in part by the US National Science Foundation
through a regular grant (9970769) and a cooperative agreement (9720652) that
includes matching from the Louisiana Board of Regents Support Fund.
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