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ABOUT FORCES, ACTING ON RADIATING CHARGE
B. V. Khachatryan∗

Physics Department, Yerevan State University, Armenia

It is shown, that the force acting on a radiating charge is stipulated by two reasons Å owing to
exchange of a momentum between radiating charge and electromagnetic ˇeld of radiation, and also
between a charge and ˇeld accompanying the charge.

It is well known that the charged particle moving with acceleration radiates,
and as a result an additional force (apart from the external one, F0) Å force of
radiation reaction acts on it. In the present paper it is shown that this force (we
shall call it as a self-action force or simply by self-action) is a sum of two parts:
the ˇrst force is due to the exchange of the momentum between a particle and
radiation ˇelds, i. e., the ˇelds, which go away to inˇnity. For the second force
in the exchange of a momentum the ˇelds, accompanying a charge participate as
well. These ˇelds do not go away to inˇnity, i. e., at inˇnity they have zero ?ux
of energy (details see below).

We shall start with the momentum conservation law for a system of charge
and electromagnetic ˇeld [1, 2]

d

dt

(
P +

1
4πc

∫
V

[EH] dV

)
=

1
4π

∮
S

{
E (nE) + H (nH) − E2 + H2

2
n
}

dS,

(1)

where P is the particle momentum; E and H are the vectors for electromagnetic
ˇeld; n is the normal to the surface S, enclosing volume V . In the right-hand
side of formula (1) the external force F0 is omitted. From (1) we can see that,
apart from external force, two forces act on the particle: force f1, expressed by a
surface integral, and force f2, expressed by a volume integral.

As a surface S we shall take sphere of a large radius R → ∞, with the centre
at the point of instantaneous place of the charge, then n = R/R. For E and H
we shall use the known expressions for the ˇelds created by a charged particle
moving with arbitrary velocity v (t) [2, 3]

H = [nE] , E (r, t) =
e (n− β)
γ2R2x3

+
e

cRx3

[
n

[
n− β, β̇

]]
, (2)

∗e-mail: saharyan@www.physdep.r.am



ABOUT FORCES, ACTING ON RADIATING CHARGE 175

where cβ = v, γ =
(
1 − β2

)−1/2
, x = 1 − nβ, β̇ ≡ dβ/dt. Note, that

all quantities in the right-hand side of equation (2) are taken at the moment
t′ = t − R (t′) /c.

Calculating the force f1 we have to substitute in (1) the term with the lowest
order of R−1 (the second term on the right in (2)), corresponding, to spherical
electromagnetic ˇelds going away to inˇnity, i. e., radiation ˇelds. Then, taking
into account the remark after formula (2), it is possible to write the force f1 in
the form

f1 = −
∮

S

E2

4π
ndS = −

∮
n

dIn

c
, (3)

where dIn is the energy, radiated per unit of time in the element of the solid
angle dΩ in an arbitrary direction n [3]

dIn =
e2

4πcx3


β̇2 +

2
x

(
nβ̇

) (
ββ̇

)
−

(
nβ̇

)2

γ2x2


 dΩ. (4)

The formula (3) allows the following clear interpretation of the origin of the
force f1: the radiation in a direction n per unit time carries away with itself
momentum ndIn/c, and therefore, the charge acquires a momentum −ndIn/c.
As the change of a momentum per unit time is equal to the acting force, then as
a result of radiation in a direction n the force will act on the particle, equal to
df1 = −ndIn/c. Integrating over all directions (over total solid angle), we get
the expression for the force f1 (details for calculation see in [4]):

f1 = −I

c
β, I =

2e2

3c
γ4

(
β̇2 + γ2

(
ββ̇

)2
)

. (5)

Here I is the instantaneous power of radiation, being a relativistic invariant and
having the form [3, 5]

I = −2
3
ce2 duk

ds

duk

ds
. (6)

In this formula uk = dxk/ds is the four-velocity and ds = cdt/γ is the
Minkowskian interval (we follow the notations in the book [3]).

Now we turn to the force f2. Here it is necessary to take into account the
contribution of both summands in formula (2). The calculations are too long and,
as is easy to see, lead to integrals, divergent at both small and long distances.
The latters are related to the divergences of the self-energy and momentum for
the point charge ˇeld. To avoid these difˇculties, we shall act as follows. Let's
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write a three-dimensional equation of motion dp/dt = f = f1+ f2 in the four-
dimensional (covariant) form

dpi

dt
= gi = gi

1 + gi
2, (7)

by entering the four-dimensional momentum pi = mcui = (γmc,p) and force

gi =
(γ

c
fβ, γ/cf

)
. In formula (7) it is necessary to deˇne gi

2. Taking into

account (5) and (6), it is easy to see that gi
1 has the form

gi
1 =

2e2

3c

duk

ds

duk

ds
ui. (8)

As follows from the deˇnition of the force f2 and formula (2), where the
vectors β and β̇ enter only, four-dimensional vector gi

2 can be expressed through
the vectors ui, dui/ds and d2ui/ds2 only. The ˇrst possibility disappears as
for v = const, should be gi

2 = 0. The summand containing dui/ds is united
with a left-hand side of equation (7) and leads to the renormalization of the
charged particle mass, so that there remains the possibility gi

2 = αd2ui/ds2,
where α = 2e2/3c is a number (four-dimensional scalar) which is determined
from the requirement that for an arbitrary four-dimensional force gi should be
giui = 0 (to see this it is necessary to use identity uiui = 1 and its consequences
as well). Hence

gi
2 =

2e2

3c

d2ui

ds2
. (9)

From (9) the expression for three-dimensional force f2 follows which we give for
the reference purposes

f2 =
2e2

3c2
γ2

{
β̈ + γ2β̇2β + 3γ2

(
ββ̇

)
β̇ + γ2

(
ββ̈

)
β + 4γ4

(
ββ̇

)2

β

}
.

The formulas (7)Ä(9) lead to the well-known expression (see, for example, [3])
for the four-dimensional self-action force gi

gi =
2e2

3c2
γ2

(
d2ui

ds2
+

duk

ds

duk

ds
ui

)
.

Hence, for the three-dimensional self-action force f we ˇnd (compare to the
corresponding formulas in [6, 7])

f =
2e2

3c2
{A + [β [βA]]} , (10)

where A ≡ γ4
(
β̈ + 3γ2

(
ββ̇

)
β̇

)
.
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In the nonrelativistic case (β � 1), at ˇrst approximation over β from (10)
we get the following expression for the self-action force (by the way, we shall
indicate that there was an error in the formula (6) in article [5])

f =
2e2

3c2
β̈ +

2e2

c2

(
ββ̇

)
β̇. (11)

This force differs from the conventional one f ′ =
2e2

3c2
β̈, in which the essential

defect is inherent: for uniformly accelerated motion
(
β̈ = 0

)
, the force of radi-

ation reaction f ′ is zero, while the radiation is not equal to zero
(
β̇ �= 0

)
. The

force (11) is deprived of this defect and always is nonzero if the radiation is

nonzero
(
β̇ �= 0

)
. If β̈ �= 0 and the ˇrst summand in the right-hand side of (11)

dominates, then f = f ′; depending on the law β (t), the second summand can
dominate. Generally, for β � 1, for self-action force it is necessary to use the
formula (11).

The above mentioned allows us to state that the total self-action force acting
on a radiating charge is determined by formula (10) and it is more appropriate
to call a reaction force of radiation the force f1 determined by formula (5). This
force is always nonzero when the particle moves with acceleration and hence
radiates.

From this point of view let's consider again uniformly accelerated motion
(for arbitrary velocities). It is known that the condition for uniformly accelerated
motion has the form [7]

d2ui

ds2
+

duk

ds

duk

ds
ui = 0, (12)

(thence gi = 0) or in three-dimensional notations

β̈ + 3γ2
(
ββ̇

)
β̇ = 0. (13)

As a result for this motion the vector A goes to zero and this is the case for the
self-action force. However the radiation and radiation reaction force are nonzero,
because the acceleration is nonzero. The latter can be easily obtained from the
equation dp/dt = F0 + f and is determined by the formula

mcγβ̇ = F0 + f − β (βf0) − β (βf ) . (14)

In our case for β||F0, F0 = const, the acceleration is equal to

cβ̇ =
F0

mγ3
. (15)
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Hence, for the uniformly accelerated motion the only force acting on charge is
the external force F0 (it can be easily checked that for the acceleration (15) the
self-action force is zero). For β → 1 the acceleration tends to zero, and in the

case β → 0 the acceleration, as it is expected, is equal to
F0

m
.
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