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The dynamics of a particle, moving in background electromagnetic and gravitational ˇelds, is
revisited from a Lie group cohomological perspective. Physical constants characterising the particle
appear as central extension parameters of a group which is obtained from a previously extended
kinematical group (Poincar:e or Galilei) by making local some subgroup. The corresponding dynamics
is generated by a vector ˇeld inside the kernel of a presymplectic form, which is derived from
the canonical left-invariant one-form on the extended group. The nonrelativistic (Newtonian) limit
is derived from the geodesic motion via an InéonéuÄWigner contraction. A deeper analysis of the
cohomological structure reveals the possibility of a new force associated with a nontrivial mixing
of gravity and electromagnetism leading to testable predictions, such as a mass difference between
charged particles and antiparticles.

1. GENERAL SETTING

The spirit of the work, we are presenting in this talk, is that of clarifying the
underlying algebraic structure behind the dynamics of a particle, moving inside
a background ˇeld. We will see how the constants characterising the properties
of the particle and its couplings can be understood in terms of the parameters
associated with the central extensions of certain groups, thus bringing into scene
group-cohomological concepts.

In order to motivate the role of central extensions, let us recall some basic
and well-known facts with the help of an example which probably represents
the simplest physical system one can imagine: the free particle with Galilei
symmetry. In order to deˇne the system we make use of the Poincar:eÄCartan
form with support on what we can call evolution space (obtained from phase
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space by adding time, (x, p, t)):

ΘPC = pdx− p2

2m
dt.

A realization of the Galilei group on evolution space is the following:

x′ = x+A+ V t, XA =
∂

∂x
,

(∗) t′ = t+B, XB =
∂

∂t
,

p′ = p+mV, XV = m
∂

∂p
+ t

∂

∂x
.

However when we check the invariance of the Poincar:eÄCartan form under the
Galilei group, for instance from the inˇnitesimal point of view, we realize that its
variation under the action of boosts is not zero but, rather, a total differential:

LXV ΘPC = d(mx) �= 0,

thus leading to the idea of semi-invariance. Of course, this is not a problem at the
classic level, since the classic equations of motion are not sensitive to a variation
of the Lagrangian by a total derivative (the Lagrangian is closely related to the
Poincar:eÄCartan form, in such a way that the former can be obtained by evaluating
the latter on the trajectories of the particle). Despite it is not an unavoidable need,
let us raise to the level of a postulate the claim for strict invariance and let us
consider what consequences we can derive from this assumption.

In order to implement such a strict invariance, let us extend the evolution
space with a new variable ζ = eiφ which transforms under the Galilei group in
such a way that the variation of its total differential inside a modiˇed one-form,
Θ ≡ ΘPC + dφ, cancels the term d(mx). That is,

dφ′ = dφ− d(mx).

The ˇnite action of the Galilei group on this new variable is:

ζ′ = ζ exp (−i[(1/2)mV 2t+mV x+ ϕ]),

(where ϕ is a new group parameter needed for consistency of the group law) which
together with the action on the rest of the variables of the extended evolution
space (∗), allow us to compute the inˇnitesimal generators of the symmetry,
whose commutators are the following:

[X̃B, X̃A] = 0, [X̃B, X̃V ] = X̃A, [X̃A, X̃V ] = mX̃ϕ.
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We notice the appearance of a central term in the last commutator. The claim for
strict invariance thus leads to the centrally extended Galilei group.

The crucial feature about the requirement of a central extension to achieve
strict invariance is that it is not linked to a particular realization of the group, but it
is a consequence of its intrinsic algebraic structure, in fact, its group-cohomology.
This suggests to consider the group itself as the starting point in the deˇnition of
the dynamics of a physical system.

Basically this is the aim of the so-called Group Approach to Quantization
(GAQ) (see [1] and references therein) which tries to derive the dynamics directly
in a quantum setting by starting from the symmetry of the corresponding physical
system, so that group-cohomology plays a central role in the process. Even
though the main stress of the approach leans on its quantum aspects, it also has
nontrivial implications at the (semi-)classic level, which is the one we are going
to emphasize here.

The extended phase space and the Poincar:eÄCartan form are generalized by
objects that can be recovered from the centrally extended symmetry group. The
latter has the structure of a principal ˇbre bundle G̃ with base the nonextended
group G and ˇbre the U(1) group of phase invariance of Quantum Mechanics.
The relevant cohomology in the construction is that of G.

The object generalizing the Poincar:eÄCartan form is that component of the
left-invariant canonical one-form on the group which is dual to the vertical (or

central) vector ˇeld, Θ = θL(ζ)
. By its own construction, this Θ generalizing

ΘPC + dφ (to be called quantization one-form) is invariant under the left action
of the extended group (meanwhile ΘPC is only semi-invariant under G̃/U(1)).

For the sake of completeness, let us brie[y present the fundamentals of GAQ.
The main goal is to construct a unitary and irreducible representation of the basic
symmetry in such a way that the generators become hermitian operators. It relies
on the rather basic observation on the possibility of constructing two different
actions for the group by making use of the group law:

g′′ = g′ ∗ g = Lg′g = Rgg
′.

This two actions do commute, which at the inˇnitesimal level is expressed in the
trivial commutators,

[X̃L
a , X̃

R
b ] = 0 ∀a, b.

We can choose, for instance, the right-invariant vector ˇelds to represent the
operators corresponding to the inˇnitesimal generators of the group (â ≈ X̃R

a ),
acting on the complex U(1)-functions deˇned over the group. This representation,
usually named prequantization, is highly reducible as can be directly seen from
the fact that there is a whole set of nontrivial vector ˇelds commuting with the
representation of the group (the generators of the other action indeed). A way
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of reducing the representation would be achieved by imposing a trivial action
of these left-invariant vector ˇelds, but this is not allowed due to the presence
of central terms. Thus, we are forced to look for a maximal set which can be
trivialized in a consistent way. This generalizes that in the language of geometrical
quantization is known as a polarization. Once one imposes this polarization as
a set of conditions on the wave functions (X̃L

a Ψ = 0), we obtain the reduction
leading to the quantum representation.

Regarding classical dynamics, the form Θ can be seen as the potential of a
presymplectic form, in such a way that the solution space (i. e., the phase space)
is obtained from the group by getting rid of those variables inside the kernel of
dΘ. In this way, the vector ˇelds inside this kernel can be seen as generalized
equations of motion [2]. In principle, there is a certain ambiguity in choosing the
Hamiltonian vector ˇeld, but this problem will not arise in the systems we shall
consider here.

Let us review the free Galilean particle in order to illustrate this technique.
From the realization of the extended Galilei group on the extended phase we
presented above, we can derive a suitable group law and use it to compute the
right- and left-invariant vector ˇelds (we identify A with x, V with v, B with t
and ϕ with φ)

X̃L
t =

∂

∂t
+ v

∂

∂x
+

1
2
mv2 ∂

∂φ
, X̃R

t =
∂

∂t
,

X̃L
x =

∂

∂x
, X̃R

x =
∂

∂x
+mv

∂

∂φ
,

X̃L
v =

∂

∂v
+mx

∂

∂φ
, X̃R

v =
∂

∂v
+ t

∂

∂x
+mtv

∂

∂φ
,

X̃L
φ =

∂

∂φ
, X̃R

φ =
∂

∂φ

and the quantization one-form

Θ ≡ θLφ
= −mxdv − 1

2
mv2dt+ dφ,

where the two ˇrst terms correspond to the original Poincar:eÄCartan form (the
apparent interchange between x and v can be restored by introducing a trivial
coboundary into the cocycle of the extended group law).

A polarization suitable to obtain the quantum representation is spanned by
X̃x, X̃t. After imposing the U(1)-function condition and the polarization we
arrive at the Schréodinger equation in momentum space.
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2. INTERACTIONS

2.1. Electromagnetism. Up to now we have sketched two alternative ways
of considering the role of the symmetry group when dealing with the dynamics
of a physical system. The ˇrst one makes use of a particular realization of the
group on an extended phase space, meanwhile the second one (that of GAQ)
emphasizes the singular role of the group, considering it as the departing point
in the analysis. Now we are going to switch on interactions and consider the
situation from both perspectives, beginning with the case of electromagnetism.

A natural question that one can formulate, when considering the centrally
extended Galilei group, is what happens if we turn into local the U(1) part of the
symmetry [3]. The Lie algebra is then composed of the former Galilei generators
realized on the extended phase space, together with the tensor product of local
functions and the central term: f(x, t) ⊗Xφ. But when we check the invariance
of the modiˇed Poincar:eÄCartan form under the new generators, semi-invariance
reappears into scene:

Lf⊗Xφ
Θ = df.

We follow here the same strategy as before, that is, we look for new variables
extending the phase space and compensating the variation of a newly modiˇed
one-form under the symmetry group. Fortunately, in this case there are natural
guesses and we are able to ˇnd new variables A0, Ax, transforming in the desired
way (A′ = A − df ). The realization of the ˇelds in the newly extended phase
space (x, p, t, φ, A0, Ax) is

XB =
∂

∂t
, XA =

∂

∂x
,

XV = t
∂

∂x
+m

∂

∂p
−mx

∂

∂φ
+Ax

∂

∂A0
,

f ⊗Xφ = −f ∂

∂φ
− ∂f

∂x

∂

∂Ax
+
∂f

∂t

∂

∂A0
.

The new strictly invariant one-form is:

Θ = pdx− p2

2m
dt−AxdX +A0dt+ dφ,

from which the Lorentz force felt by the particle can be derived [3].
As an alternative approach, we apply the techniques of GAQ to this problem,

which results in a more automatic algorithm and a more general treatment. In
fact, if we consider an arbitrary group G̃ whose inˇnitesimal generators are
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{XA}, (A = 1, ..., n) and an invariant subgroup ({Xa}, a = 1, ...,m < n), thus
satisfying,

[XA, Xa] = Cb
AaXb,

we can make local this invariant subgroup, obtaining an algebra spanned by

{fa ⊗Xa, XA},

and whose new commutators are

[XA, f
a ⊗Xa] = fa ⊗ [XA, Xa] + LXAf

a ⊗Xa =

= fa ⊗ Cb
AaXb + LXAf

a ⊗Xa.

One then applies the quantization program, consequently obtaining the quantiza-
tion one-form Θ in the proccess.

In the case of a particle inside the electromagnetic ˇeld, we are dealing
with the Galilei group extended by U(1)(x, t), that is, φ = φ(x, t). In order to
parametrize properly the quantization group we make the formal splitting between
the rigid and the local part,

φ(x, t) = φ(0, 0) + φµ(x, t)xµ

≡ φ+Aµ(x, t)xµ.

We apply then the previous rule for computing the commutators, thus producing
an inˇnite-dimensional algebra. The recipe of GAQ suggests us to centrally
extend this algebra. Even though the algebra is inˇnite-dimensional, an analysis
of the cohomology reveals that the relevant part for the dynamics of a particle
inside the background ˇeld is the following ˇnite-dimensional subalgebra:

[X̃L
t , X̃

L
x ] = 0, [X̃L

t , X̃
L
v ] = −X̃L

x , [X̃L
t , X̃

L
Ax

] = 0,

[X̃L
t , X̃

L
A0

] = −qX̃L
φ , [X̃L

x , X̃
L
v ] = mX̃L

φ , [X̃L
x , X̃

L
Ax

] = qX̃L
φ ,

[X̃L
x , X̃

L
A0

] = 0, [X̃L
v , X̃

L
Ax

] = X̃L
A0
, [X̃L

v , X̃
L
A0

] = 0,

where, apart from the central term related to the inertial mass, m, a new central
parameter, q, appears being eventually interpreted with the aid of motion equations
as the charge of the particle.

After the exponentiation of the group, we compute the quantization one-form
which turns out to be

Θ = −mx · dv − qx · dA −
(

1
2
mv2 + qA0

)
dt+ dφ,
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i. e., the Poincar:eÄCartan one-form of a particle inside an electromagnetic ˇeld
plus the differential of the central parameter, dφ.

In order to derive the equations of motion of the particle we have to force
the functions Ai to depend on the position of the particle, A = A(xparticle). The
vector ˇeld X in the kernel of Θ, that is, satisfying iXdΘ = 0 is

X =
∂

∂t
+ v

∂

∂x
− q

m

[(
∂Ai

∂xj
− ∂Aj

∂xi

)
vj +

∂A0

∂xi
+
∂Ai

∂t

]
∂

∂vi
,

and its trajectories are governed by the following equations:

dx
dt

= v, m
dv
dt

= q

[
v ∧ (∇ ∧ A) − ∇A0 −

∂A
∂t

]
.

If we deˇne

∇ ∧ A ≡ B, −∇A0 −
∂A
∂t

≡ E,

we obtain the standard expression for the Lorentz force,

m
dv
dt

= q[E + v ∧B].

We have studied this electromagnetic example in the Galilean scheme for
pedagogical reasons, but we must point out that everything can be reproduced
in the relativistic case, starting from the Poincar:e group and resulting in the
corresponding ˇnal expression.

2.2. Electromagnetism and Gravity Mixing. We address now a more in-
volved system and, in order to deal with it, we use the most algorithmic of the
techniques we have presented so far, GAQ.

Starting from the (pseudo-)extended Poincar:e group∗ we make local, instead
of the central U(1), the space-time translation subgroup. These local translations
can be seen as local diffeomorphisms, thus suggesting the emergence of gravity
notions into scene [4].

The 1 + 1 (for simplicity) pseudoextended Poincar:eÄLie algebra can be writ-
ten as:

[P0, P ] = 0, [P0,K] = P, [P,K] = −P0 −mXφ.

An interesting phenomenon shows up when making the space-time translations
local by introducing what we might call gravity generators, f ⊗ P . In fact, the
computation of the commutators with the general rule, brings about

[K, f ⊗ P ] = (LXf) ⊗ P + f ⊗ P0 + f ⊗Xφ.

∗Poincar:e group with the time generator redeˇned by the central term P0 → P0 + mXφ.
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That is, by making local the translation subgroup in the (pseudo-)extended
Poincar:e group, the appearance of a local U(1) symmetry is implied. This is
a consequence of the fact that the space-time translations subgroup is no longer
invariant, once the Poincar:e group has been pseudoextended. As we saw in the
previous subsection, making local the central term leads to the coupling of the
particle with an electromagnetic force. Therefore, we ˇnd that introducing the
gravitational ˇeld offers the possibility of an automatic (potential) coupling of it
with an electromagnetic ˇeld.

In order to derive the corresponding dynamics, we undertake exactly the same
path we followed in the case of pure electromagnetism. Thus, we make a formal
splitting between the rigid translations and the local part,

fµ ⊗ Pµ = (fµ(0) + hµσxσ) ⊗ Pµ,

where the variables hµσ will represent the dynamical part of the metric. We
can calculate the Lie algebra and study the possible extensions. In this case
the cohomological structure is more complicated and, in fact, the algebra we are
presenting below does not exhaust all the possibilities, even though it is rich
enough to provide proˇtable insights. In its 1 + 1 version (without rotations) is
given by

[X̃v, X̃x] = −X̃t + (m+ qk)cX̃φ, [X̃v, X̃t] = −X̃x,

[X̃v, X̃h00 ] = −X̃h0x − 1
q
(mc− g)X̃Ax ,

[X̃v, X̃h0x ] = −X̃h00 + X̃hxx −
[
c

(
k − 2m

q

)
+

2g
q

]
kcX̃A0 ,

[X̃v, X̃hxx ] = X̃h0x + kcX̃Ax , [X̃v, X̃A0 ] = −X̃Ax , [X̃v, X̃Ax ] = −X̃A0 ,

[X̃x, X̃h0x ] = −X̃t −mcX̃φ, [X̃x, X̃hxx ] = −X̃x, [X̃x, X̃Ax ] = qX̃φ,

[X̃t, X̃h00 ] = X̃t + gX̃φ, [X̃t, X̃h0x ] = X̃x, [X̃t, X̃A0 ] = −qX̃φ,

[X̃h00 , X̃h0x ] = X̃v +
1
q
(mc− g + qkc)X̃Ax , [X̃h00 , X̃A0 ] = X̃A0 ,

[X̃h0x , X̃hxx ] = X̃v + kcX̃Ax , [X̃h0x , X̃A0 ] = X̃Ax ,

[X̃h0x , X̃Ax ] = −X̃A0 , [X̃hxx , X̃Ax ] = X̃Ax .

There are several comments regarding these commutators. Firstly, we notice a
new central parameter g in the commutator between the time translation generator
and the 00 component of the metric, which is essentially related to the coupling
between the particle and the gravitational ˇeld, that is, to the gravitational mass. It
is very important to realize that cohomology does not imply this dynamical mass
to be related to the inertial one, m, both of them being, therefore, in principle
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independent. Secondly, it does appear a parameter k coupling the gravitational
ˇeld and the electromagnetic ˇeld. This parameter implies a shift in the inertial
mass by kq. On the other hand, a nondesired pathological behaviour arises
for noncharged particles due to the presence of nonanalytical 1/q terms in the
commutators.

Another strange feature in the previous relations is the fact that we expect
to recover standard physics when switching off the k parameter. But even in
this case a coupling between gravity and electromagnetism remains active, thus
spoiling the consistency of the dynamics from a physical point of view. A way
out of this situation is achieved by imposing g = mc.

That is, if we make the dynamical mass to be proportional to the inertial one,
one can check that the conventional theory is recovered in the case k = 0. In a
sense, this is a way of obtaining the equivalence principle in an algebraic language
as a consistency condition. As a by-product the nonanalytical dependence in q
disappears, thus making consistent the theory for noncharged particles.

Regarding the nonrelativistic limit of this system, this can be achieved via
an InéonéuÄWigner contraction with respect to the subalgebra spanned by X̃t, X̃Ax

(plus rotations in the three-dimensional case). The contracted algebra, with the
g = mc condition imposed, shows the role of the cohomological parameters in a
more explicit way:

[X̃v, X̃x] = (m+ kq)X̃φ, [X̃v, X̃t] = −X̃x, [Xv, X̃h00 ] = 0,

[Xv, X̃h0x ] = kX̃A0 , [Xv, X̃hxx ] = 0, [X̃v, X̃A0 ] = 0,

[X̃v, X̃Ax ] = −X̃A0, [X̃x, X̃h0x ] = −mX̃φ, [X̃x, X̃hxx ] = 0,

[X̃x, X̃Ax ] = qX̃φ, [X̃t, X̃h00 ] = mX̃φ, [X̃t, X̃h0x ] = X̃x,

[X̃t, X̃A0 ] = −qX̃φ, [X̃h00 , X̃h0x ] = 0, [X̃h00 , X̃A0 ] = 0,

[X̃h0x , X̃hxx ] = 0, [X̃h0x , X̃A0 ] = 0, [X̃h0x , X̃Ax ] = −X̃A0 , [X̃hxx , X̃Ax ] = 0.

The next step is exponentiating the algebra and constructing the quantization
one-form from which the equations of motion can be derived. In this case, the
more complicated structure of the algebra turns the exponentiation into a rather
involved process and, therefore, we must follow a consistent order by order
procedure which can be found in [5]. The equations of motion derived in this
way correspond to the ˇrst nontrivial terms approximating the complete equations
and have this form:

dx
dt

= v, (m+ kq)
dv
dt

= q

[
v ∧ (∇ ∧ A0) − ∇A0 − ∂A

∂t

]
−
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−m

[
v ∧ (∇ ∧ h) − ∇h00 − ∂h

∂t

]
+
m

4
∇(h · h) −

− kq

2

[
v ∧ (∇ ∧ h) − 1

4
∇(h · h) − ∂h

∂t

]
.

On the kinematical part, the left-hand side, we notice what was already foreseen at
the Lie-algebraic level: the kinematical mass is corrected by a term proportional to
k and the charge of the particle. On the dynamical side, the ˇrst line is again the
expression of the Lorentz force, meanwhile the second line exactly corresponds
to the geodesic motion in its ˇrst nontrivial perturbative expression (linearized
gravity), which is the one obtained when working in the group law up to the third
order in group variables as we have done, and which is also known as gravito-
electromagnetism [6]. The last line is proportional to the mixing parameter k
and shows the appearance of a new force of electromagnetic behaviour but of
gravitational origin, consequence of this new possibility opened by the analysis
of the cohomology of the underlying symmetry.

CONCLUSIONS

We have seen how the physical constants, characterizing the particle and
its couplings, arise from the parameters associated with the cohomology of the
symmetry underlying the physical system.

Known interactions, as electromagnetism and gravity, are derived by making
local some invariant subgroups in the kinematical symmetry of the particle and,
when exploring the possibilities that the Lie algebra offers, we have also found a
new force as a consequence of the mixing of the standard previous interactions.
A crucial observation in this process is underlining the relevance of making local
the appropriate symmetry (translations) after the (pseudo-)extension of the group
has taken place. This endows this new interaction with a quantum origin since the
extended group is intrinsically tied to the quantum dynamics of the corresponding
system [7].

An in principle testable consequence of this mixing between gravity and
electromagnetism is a mass difference between charged particles and antiparticles
by 2 kq. The current uncertainties in the values of such pairs (such as electron-
positron) represent an upper limit for the constant k, implying a very small value
for the latter (consistent with its quantum origin), even though with strong and
fundamental implications, specially the violation of CPT symmetry∗.

∗We would like to thank S. Vinitsky for pointing out the potential relevance of these results in
the context of Lamb-shift experiments in antihydrogen [8].
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Finally, the presence of the new force could have important consequences in
scenarios with extremely strong gravitational ˇelds representing, for instance, a
correction to the behaviour of collapsing matter.
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