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RECURRENCE TIMES IN DYNAMICAL SYSTEMS VIA
A QUASICRYSTAL APPROACH

R. Twarock

Department of Mathematics, City University, London, UK

Integrable Hamiltonian system can be characterized via the recurrence time spectra of their
Poincar5e maps. We show here that the gaps in the recurrence time spectra can be determined via
techniques from the theory of cut-and-project quasicrystals and we thus derive new results for the
gap-problem.

INTRODUCTION

A standard tool in the analysis of the orbit structure of nonlinear dynamical
systems are Poincar5e maps (ˇrst return maps) [1]. These are discrete maps which
arise via a restriction of the continuous system to a suitably chosen hypersurface
in phase space.

In the case of integrable Hamiltonian systems with two degrees of freedom
and two integrals of motion, it is known that the phase space trajectories lie on
a two-dimensional manifold which is topologically equivalent to a 2-torus, and
the Eow on the surface of these tori can be analyzed via a Poincar5e map with
domain of deˇnition (Poincar5e section) given by the manifold S1, that is a circle.
Quasiperiodic solutions are characterized by the fact that they cut the manifold
S1 densely, whereas periodic solutions cut it only a ˇnite number of times.

A typical Poincar5e map is

Tβx = (x + β)mod 1, β ∈ R, (1)

which with the choice x0 = 0 as a starting value leads to the following sequence
of points

xn = nβ mod1 (2)

on the Poincar5e section S1.
It has been suggested [6] to use this sequence as a means to characterize

the Hamiltonian system it is associated to, in particular, to characterize a general
integrable Hamiltonian system by the recurrence time spectrum of its Poincar5e
map.
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Deˇnition 1. Let xn = nβ mod 1 with x0 = 0 be the sequence associated to
an orbit x(t), t ≥ 0, with x(0) = 0 of a Hamiltonian system.

For any interval I ⊂ [0, 1), we call

Nβ(I) := {n ∈ N |nβ mod 1 ∈ I} (3)

the set of recurrence times or the recurrence times spectrum of x(t) in I .
Furthermore, we call

Gβ(I) := {∆i = mi+1 − mi|mi ∈ Nβ(I)} (4)

the gaps in the recurrence time spectrum.
For any interval I = [a, a + d) ⊂ [0, 1) and β irrational it is known (for

example [2, 8, 9]) that one has at most three different recurrence times (®3-gap
theorem¯) given by:

∆1 = min
n∈N

{nβ mod 1 < d},
∆2 = min

n∈N
{nβ mod 1 > 1 − d},

∆3 = ∆1 + ∆2 not always realized.

(5)

This result has been generalized [3, 4] to disconnected intervals of the form
I = [0, a) ∪ (b, 1), 0 < a < b < 1, thus proving that at most three different gaps
exist in the recurrence time spectrum for any connected subset I ⊂ S1.

It is shown here that the gap problem for recurrence times is related to a prob-
lem in the theory of cut-and-project quasicrystals and that techniques developed
in the theory of cut-and-project quasicrystals can successfully be implemented
to derive new results for the gap-problem. In particular, apart from providing a
simple alternative proof for known results, we obtain in this way

• Information on the sequence of recurrence times other than the nearest-
neighbour distances.

• A generalization to higher dimensional Hamiltonian systems, for which
at present only numerical results exist. For the gaps Gβ(Ik) in the sequence
(T -denoting transposition)

xn = n(β1, β2, . . . , βk)T mod 1, βj irrational (6)

in an arbitrary convex set Ik in the unit cube in Rk, numerical results for
k ≤ 6 suggest [7] the existence of k + 1 basic gaps from which all other can be
obtained by integer-valued linear combinations. An analytical proof for this fact
is provided in [10] for a large set of irrational numbers using the correspondence
between cut-and-project quasicrystals and recurrence times, which is given in this
contribution.
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1. CUT-AND-PROJECT QUASICRYSTALS AS MODELS FOR
APERIODIC POINT SETS

To each irrationality which is a Pisot number, we can associate an aperiodic
point set or cut-and-project quasicrystal.

Deˇnition 2. A Pisot number is a real solution x of an algebraic equation
with integer coefˇcients, such that |x| > 1 and |xj | < 1 for all other solutions xj .

An example for a Pisot number is the golden mean τ = (1/2)(1 +
√

5).
Together with τ ′ := (1/2)(1 −

√
5), it is a solution of

x2 = x + 1 (7)

with |τ | > 1 and |τ ′| < 1. Using the ring of integers in the algebraic extension
of the rational numbers Q[

√
5], that is

Z[τ ] := {a + τb|a, b ∈ Z}, (8)

and the Galois-automorphism in Q[
√

5], that is

′ : c +
√

5d �→ c −
√

5d for c, d ∈ Q, (9)

which restricted to Z[τ ] gives

′ : a + τb �→ a + τ ′b for a, b ∈ Z, (10)

we obtain
Deˇnition 3. A one-dimensional cut-and-project quasicrystal related to the

irrationality τ is the aperiodic point set

Σ(Ω) := {x ∈ Z[τ ]|x′ ∈ Ω},

where Ω is a bounded interval in R, called acceptance window.
Ω controls how many points are admitted in the set. For example, if Ω =

[0, 1], the condition imposed by the acceptance window implies

Σ([0, 1]) :=
{[

1 +
b

τ

]
+ bτ |b ∈ Z

}
∪ {0}. (11)

The points nearest to the origin 0 are:

. . . ,−τ, 0, 1, 1 + τ, 2 + 2τ, 2 + 3τ, 3 + 4τ,

4 + 5τ, 4 + 6τ, 5 + 7τ, 5 + 8τ, 6 + 9τ, . . . (12)

and it is easy to see from (11) or (12) that the distances between adjacent points
are of the length 1, τ or τ2, where 1 is an exceptional tile which occurs precisely
once between 0 and 1.
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2. QUASICRYSTAL LANGUAGE FOR RECURRENCE TIMES

We connect here the quasicrystal picture with the recurrence time spectrum
of the sequence xn = τn mod 1.

Deˇnition 4. For x = a + τb ∈ Σ(I) we call b the τ component of x.
Then we have:
Lemma 1. The τ components of the nearest-neighbour distances in Σ(I)

correspond to the gaps Gτ (I) in the recurrence time spectrum Nτ (I) of xn =
nτ mod 1 for any interval I ⊂ [0, 1].
Proof. Due to τ + τ ′ = 1 we have

nτ mod 1 = n(1 − τ ′)mod 1
= −nτ ′ mod 1 .

(13)

Thus there exists a ∈ N0 with 0 ≤ −a − τ ′n < 1 such that

nτ mod 1 = −a − τ ′n. (14)

Since 0 ≤ −a − τ ′n < 1 ⇔ 0 ≥ a + τ ′n > −1, we obtain furthermore

{nτ mod 1|n ∈ N0} ={a + τ ′n|n, a ∈ N0 with a + τ ′n ∈ (−1, 0]}
=(Σ((−1, 0])N0)

′.
(15)

Here, the index N0 at Σ((−1, 0]) means a restriction to quasicrystal points
x = a+τb with a, b ∈ N0, and ′ denotes conjugation of the points in Σ((−1, 0])N0

under the (Galois-)automorphism.
Similarly, for any (not necessarily connected) I ⊂ [0, 1) we have

{nτ mod 1|n ∈ N0} ∩ I

={a + τ ′n|a, n ∈ N0, a + τ ′n ∈ −I}
=(Σ(−I)N0)

′.

(16)

In order to obtain the gaps in the recurrence time spectrum Nτ (I), we use
that Σ(−I)N0 = −Σ(I)N0 , which implies that the nearest-neighbour distances
in these two cut-and-project quasicrystals coincide and thus have the same τ
components.

Finally, the fact that the τ components of the nearest-neighbour distances
of the quasicrystal points in Σ(I)N0 correspond to the gaps in the recurrence
time spectrum is a consequence of the fact that for any I ⊂ [0, 1) and a + τb,
c + τd ∈ Σ(I) we have

a + τb < c + τd ⇔ b < d. (17)
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In particular, any information about the sequence of tiles in Σ(I) automati-
cally relates to an information on the corresponding sequence of recurrence times.

Based on Lemma 1, it is possible to compute the gaps in the recurrence time
spectrum for two-dimensional Hamiltonian systems related to the irrationality τ .
For this, we will need the following results on the minimal distances, that is the
nearest-neighbour distances, in cut-and-project quasicrystals:

If Σ(Ω) denotes a quasicrystal with open acceptance window Ω of length d
with d ∈ (τk−1, τk] then we have [5]:

• Information on the number and shape of minimal distances:
Å The minimal distance in Σ(Ω) is equal to τ1−k.
Å If d �= τk , then Σ(Ω) has three types of tiles of length τ1−k , τ2−k, and

τ3−k .
Å If d = τk, then the quasicrystal Σ(Ω) has only two types of tiles with

lengths τ1−k and τ2−k . (An exception occurs if Ω has boundary points in Z[τ ].
Then there is one exceptional tile of length τ3−k.)

• Information on the sequence formed by the minimal distances:
Å In Σ(Ω), two tiles with the length equal to the minimal distance are never

adjacent.
Å In Σ(Ω), a nontrivial string formed only by tiles of the type τ2−k has

length at most two and occurs if d ∈ (2τk−2, τk].
Å In Σ(Ω), a nontrivial string formed only by tiles of the type τ3−k has

length at most two and occurs if d ∈ (τk−1, 2τk−2).
Then, using furthermore
Deˇnition 5. The sequence Ak given by

Ak+2 = Ak+1 + Ak, A1 = 1, A0 = 0

is called the Fibonacci sequence,
we obtain

Theorem. For any interval I = [a, a + d) ⊂ [0, 1] the sequence xn =
nτ mod 1, n ∈ N0, has at most three different gaps in the recurrence time
spectrum Gτ (I) which are given in dependence on d.

In particular, for d ∈ (τk−1, τk] with k ∈ −N0 these are A1−k, A2−k

and A3−k, where Ak denotes the Fibonacci sequence. If d �= τk , all three are
realized; for d = τk , A3−k does not appear.

Proof. According to Lemma 1, the recurrence times correspond exactly to the
tiles in Σ((a, a+d)). Furthermore, due to the results on the tiles of cut-and-project
quasicrystals (3), these are

Å for d ∈ (τk−1, τk] with d �= τk: τ1−k, τ2−k, and τ3−k;
Å for d = τk: τ1−k and τ2−k.
Then, using that τk = Akτ+Ak−1 where Ak denotes the Fibonacci sequence,

the claim follows.
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This result is generalized to disconnected intervals in the following
Lemma 2. The recurrence times for xn = nτ mod 1 in the interval I =

[0, a) ∪ (b, 1) ⊂ [0, 1), 0 < a < b < 1, and Î = (b − 1, a) coincide, that is

Gτ (I) = Gτ (Î). (18)

Proof. Since Σ(Ω+1) = 1+Σ(Ω), Σ(b−1, a) differs from Σ([0, a)∪ (b, 1))
by the fact that some of its points are translated by 1. Thus, calling S, M , and
L the three minimal distances of Σ((b − 1), a), it follows that Σ([0, a) ∪ (b, 1))
has minimal distances in the set {S, M, L, S ± 1, M ± 1, L ± 1}.

Since the addition or subtraction of 1 to or from the length of a minimal
distance does not change the τ component of the minimal distance, the claim
follows.

With this, it has been shown that for any connected subset I of S1 there exist
at most three gaps in the recurrence time spectrum of xn = nτ mod 1 in I , and
that their size depends on the size of I .

On top of the types of tiles, one also obtains information on the tiling sequence
from the quasicrystal approach:

1. The results of Florek and Slater state that the sum ∆1 + ∆2 may appear
as a third gap in the recurrence time spectrum. From the quasicrystal approach
we know exactly under which condition it happens. It is the case precisely if the
length of the interval representing the Poincar5e section is given by d �= τk .

2. Since the sequence of recurrence times corresponds to the τ component
of the quasicrystal points in consecutive order, information on the sequence of
minimal distances translates one-to-one into information about the recurrence
times. Denoting as S (=small), M (=medium), and L (=large) the three minimal
distances in the quasicrystal, or, the three gaps in the recurrence time sequence,
we have

(a) The smallest entry S does never occur twice in a row.
(b) The medium entry M occurs at most twice in a row, and only if d ∈

(2τk−2, τk].
(c) The largest entry L (sum of S and M ) occurs at most twice in a row and

only if d ∈ (τk−1, 2τk−2).

3. GENERALIZATIONS

The toy model situation in the previous section, which is characterized by
a restriction to the irrationality τ and to two-dimensional Hamiltonian systems,
allows for various generalizations. In particular, more general classes of irrational
numbers (Pisot numbers) can be treated in two dimensions along similar lines,
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and furthermore the setting can be generalized to higher dimensional Hamiltonian
systems. Both approaches are treated in detail in [10]; here, we sketch the
corresponding results only brieEy.

3.1. Generalization to Other Irrationalities in Two Dimensions. Similar
considerations as for the case of the irrational number τ apply also to Pisot
numbers given by the so-called + and Ä families. These are solutions of the
following equations

x2 = mx + 1, for m = 1, 2, 3, . . . ,
x2 = mx − 1, for m = 3, 4, 5, . . . ,

(19)

and are given by

β =
m +

√
m2 ± 4
2

, β′ =
m −

√
m2 ± 4
2

(20)

with

β + β′ = m, ββ′ = ±1. (21)

As before, the gaps in the recurrence time spectrum for xn = nβ mod 1 in
I ⊂ [0, 1) follow from the minimal distances of a cut-and-project quasicrystal, in
this case Σβ(I), and results about the nearest-neighbour distances in Σβ((c, c+d])
[5] can be used along similar lines, leading to the fact that there are three gaps
of the form

1, m, m + 1 , (22)

where the exact value of m depends on the length of the interval I as explained
in [10].

3.2. Generalization to Higher Dimensional Hamiltonian Systems. In the
case of an N -dimensional Hamiltonian system with N integrals of motion, the
corresponding Poincar5e map leads to sequences of the form

xn = n




β1

·
·

βN−1


 mod 1, (23)

where β1, . . . , βN−1 denote any irrational numbers, and where the Poincar5e sec-
tion IN−1

a := [0, a1] × . . . × [0, aN−1] is a subset of the unit cube in RN−1.
If βj , j = 1, . . . , N − 1 are Pisot numbers from the +- and −-families, then

it can be shown analytically that all gaps are (integer-)linear combinations of a
set of N basic gaps [10]. This proves the numerical results and conjecture of
Slater [7] for the class of irrationalities which are related to +- and −-families.
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CONCLUSION

It has been shown that quasicrystal techniques can be applied for the study
of the recurrence time spectrum of Hamiltonian systems. This correspondence
has lead to a new and simple proof for known results about recurrence times.
Furthermore, this technique, presented here, leads to new results on the sequence
formed by the recurrence times, as well as to analytical results for the open
problem of a generalization to higher dimensional Hamiltonian systems, thus
conˇrming a conjecture of Slater, which is based on numerical results.
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