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A review is given of some recently obtained results on analytic contractions of Lie algebras
and Lie groups and their application to special function theory. The contractions considered are from
O(3) to E(2) and from O(2, 1) to E(2), or E(1, 1). The analytic contractions provide relations
between separable coordinate systems on various homogeneous manifolds. They lead to asymptotic
relations between basis functions and overlap functions for the representations of different groups.

INTRODUCTION

Lie-algebra contractions were introduced into physics by Inéonéu and Wigner [1]
in 1953 as a mathematical expression of a philosophical idea, namely the corre-
spondence principle. This principle tells us that whenever a new physical theory
surplants an old one, there should exist a well deˇned limit in which the results
of the old theory are recovered. More speciˇcally Inéonéu and Wigner established
a relation between the Lorentz group and the Galilei one in which the former
goes over into the latter as the speed of light satisˇes c → ∞.

The theory of Lie-algebra contractions (and deformations) has acquired a life
of its own. It provides a framework in which large sets of Lie algebras can be
embedded into families depending on parameters. All algebras in such a family
have the same dimension, but they are not mutually isomorphic [2].

Two types of Lie-algebra contractions exist in the literature. The ˇrst are
standard InéonéuÄWigner contractions [1, 3, 4]. They can be interpreted as singular
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changes of basis in a given Lie algebra L. Indeed, consider a basis {e1, . . . , en}
of L and a transformation fi = Uik(ε)ek, where the matrix U realizing the
transformation depends on some parameters ε. For ε → 0 (i. e., some, or all
of the components of ε vanishing) the matrix U(ε) is singular. In this limit
the commutation relations of L change (continuously) into those of a different,
nonisomorphic, Lie algebra L′.

More recently, ®graded contractions¯ have been introduced [5Ä7]. They are
more general than the InéonéuÄWigner ones and can be obtained by introducing pa-
rameters modifying the structure constants of a Lie algebra L1 in a manner res-
pecting a certain grading and then taking limits when these parameters go to zero.

It is well known that there exists an intimate relationship between the the-
ory of special functions and Lie group theory, well presented in the books of
Vilenkin [8], Talman [9], and Miller [10]. In fact all properties of large classes
of special functions can be obtained from the representation theory of Lie groups,
making use of the fact that the special functions occur as basis functions of
irreducible representations, as matrix elements of transformation matrices, as
ClebschÄGordon coefˇcients, or in some other guise. Recently, the class of func-
tions treatable by group theoretical and algebraic methods has been extended to the
so-called q-special functions that have been related to quantum groups [11Ä13].

One very fruitful application of Lie theory in this context is the algebraic
approach to the separation of variables in partial differential equations [14Ä19].
In this approach separable coordinate systems (for LaplaceÄBeltrami, HamiltonÄ
Jacobi and other invariant partial differential equations) are characterized by com-
plete sets of commuting second order operators. These lie in the enveloping al-
gebra of the Lie algebra of the isometry group, or in some cases of the conformal
group, of the corresponding homogeneous space.

A question, that up to the last few years has received little attention in the
literature, is that of connections between the separation of variables in different
spaces, e. g., in homogeneous spaces of different Lie groups. In particular, it
is of interest to study the behavior of separable coordinates, sets of commuting
operators and the corresponding separated eigenfunctions under deformations and
contractions of the underlying Lie algebras.

A recent series of papers [20Ä29] has been devoted to this new aspect of
the theory of Lie-algebra and Lie-group contractions: the relation between the
separation of variables in spaces of nonzero constant curvature and in ^at spaces.
The curved spaces were realized as spheres Sn ∼ O(n + 1)/O(n), Lorentzian
hyperboloids Hn ∼ O(n, 1)/O(n), or O(n, 1)/O(n − 1, 1). The ^at spaces
where either Euclidean En, or pseudo-Euclidean E(n − 1, 1) ones. The curved
and ^at spaces were related by a contraction of their isometry groups and the
corresponding isotropy groups of the origin.

The essential point of these articles was the introduction of ®analytic contrac-
tions¯. The contraction parameter is R which is either the radius of the sphere
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Sn, or the corresponding quantity x2
0 − x2

1 − ... − x2
n = R2 for the hyperboloid.

The contractions are ®analytic¯ because the parameter R ˇgures not only in the
structure constants of the original Lie algebra, but also in the coordinate systems,
in the operators of the Lie algebra, in the invariant operators characterizing the
coordinate systems, in the separated eigenfunctions and the eigenvalues.

Once the parametrization displaying the parameter R is established, it is
possible to follow the contraction procedure R → ∞ explicitly for all quanti-
ties: for the Lie algebra realized by vector ˇelds, the LaplaceÄBeltrami operators,
the second-order operators in the enveloping algebras, characterizing separable
systems of coordinates, the separated ordinary differential equations, the eigen-
functions and the coefˇcients of the interbases expansions.

For two-dimensional spaces all types of coordinates were considered; for
example, contractions of O(3) to E(2) relate elliptic coordinates on S2 to elliptic
and parabolic coordinates on E2. They also relate spherical coordinates on S2

to polar and Cartesian coordinates on E2 [20,22,24]. Similarly, all 9 coordinate
systems on the H2 hyperboloid can be contracted to at least one of the four
systems on E2, or one of the 10 separable systems on E1,1 [21,23].

Contractions from Sn to En were considered for subgroup type coordinates
in Refs. 25, 26, 28, for subgroup type coordinates and certain types of elliptic and
parabolic ones.

The main application of analytic contractions in this context is to derive
special function identities, specially asymptotic formulas. Among other possible
applications we mention the theory of ˇnite dimensional integrable and superin-
tegrable systems [30,31].

In this paper we restrict ourselves to two-dimensional spaces of constant
curvature.

1. SEPARATION OF VARIABLES IN TWO-DIMENSIONAL SPACES
OF CONSTANT CURVATURE

1.1. Operator Approach to the Separation of Variables. Let us ˇrst consider
a quite general two-dimensional Riemannian, pseudo-Riemannian or complex
Riemannian spaces with a metric

ds2 = gik duiduk, u = (u1, u2). (1.1)

In this space we introduce a classical free Hamiltonian

H = gik(u)pipk, (1.2)
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where pi = −∂H/∂ui are the momenta classically conjugate to the coordinates
ui. We also introduce the corresponding LaplaceÄBeltrami operator

∆LB =
1
√
g

∂

∂ui
√
ggik

∂

∂uk
. (1.3)

We will be interested in two related question:
1. What are the quadratic polynomials on phase space

Q = aik(u)pipk (1.4)

that Poisson commute with the Hamiltonian

{Q,H} =
2∑

i=1

(
∂Q

∂ui

∂H

∂pi
− ∂Q

∂pi

∂H

∂ui

)
= 0? (1.5)

In other words, when do quadratic (in the momenta) integrals of motion
exist? Respectively what are the second-order Hermitian operators

Q = {aik(u)∂ui∂uk
} (1.6)

(where the bracket denotes symmetrization) that Lie commute with the LaplaceÄ
Beltrami operator

[Q,H ] = QH −HQ = 0? (1.7)

2. Do the HamiltonÄJacobi and LaplaceÄBeltrami equations in the considered
space allow the separation of variables, and if so, how do we classify and con-
struct separable coordinates? By separation of variables for the HamiltonÄJacobi
equation we mean additive separation

gik
∂S

∂ui

∂S

∂uk

= λ, (1.8)

S = S1(u1, λ, µ) + S2(u2, λ, µ). (1.9)

For the LaplaceÄBeltrami operator we have in mind multiplicative separation

∆Ψ = λΨ, Ψ = Ψ1(u1, λ, µ)Ψ2(u2, λ, µ). (1.10)

In both cases λ and µ are the separation constants.
In this review article we shall mainly be interested in the LaplaceÄBeltrami

operators in different spaces. However, some aspects of separation are simpler to
discuss for the HamiltonÄJacobi equation. In two-dimensional Riemannian space
the two equations separate in the same coordinate systems.
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The existence of integrals of motion that are either linear or quadratic in the
momenta was analyzed by Darboux [32] and Koenigs [33] in a note published in
Volume 4 of Darboux's lectures. In particular it was shown that a metric (1.1)
can allow 0, 1, 2, 3 or 5 linearly independent quadratic integrals. The case of
5 quadratic integrals occurs if and only if the metric corresponds to a space of
constant curvature. In this case the second-order integrals are ®reducible¯. That
means that the metric allows precisely three ˇrst-order integrals

Li = ai(u)p1 + bi(u)p2, u = (u1, u2), i = 1, 2, 3 (1.11)

and all second-order integrals are expressed as second-order polynomials (with
constant coefˇcients) in terms of the ˇrst-order ones:

Q =
3∑

i,k=1

AikLiLk, Aik = const. (1.12)

If the polynomial Q is the square of a ˇrst-order operator L, then it will provide
a subgroup type coordinate. This is best seen by considering the corresponding
ˇrst-order operator

X = ξ(u1, u2)∂u1 + η(u1, u2)∂u1 (1.13)

that generates a one-dimensional subgroup of the isometry group G. From
(u1, u2) we transform to the new coordinates (v1, v2) ®straightening out¯ the
vector ˇeld (1.13) to the form

X = ∂v1 . (1.14)

Then v1 will be an ignorable variable. The complementary variable v2 =
φ(u1, u2) can be replaced by an arbitrary function of v2, the ignorable vari-
able v1 can be replaced by f(v1) + g(v2), where both f and g are arbitrary. The
separable coordinates are v1 and v2 (with the above-mentioned arbitrariness).

Now let us assume that an irreducible quadratic integral Q as in (1.4) is known
for a considered metric (1.1) (that is, Q is not square of a linear integral). We
can then impose that two equations be satisˇed simultaneously. In the classical
case they are

gik
∂S

∂ui

∂S

∂uk

= λ, aik
∂S

∂ui

∂S

∂uk

= µ. (1.15)

Similarly, we can consider the quantum mechanics of a free particle in such a
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space and write two simultaneous equations

ĤΨ =
(

1
√
g

∂

∂ui
√
ggik

∂

∂uk

)
Ψ = λΨ,

Q̂Ψ =
(

1
√
g

∂

∂ui
√
gaik

∂

∂uk

)
Ψ = µΨ.

(1.16)

Separable coordinates for the two systems (1.15) and (1.16) are obtained by
simultaneously transforming Ĥ and Q̂ to a standard form, in which the matrices
gik and aik of (1.15) (and (1.16)) are diagonal. This can be done by solving the
characteristic equation

|aik − ρ gik| = 0. (1.17)

If two distinct roots ρ1 and ρ2 exist, they will provide separable coordinates,
at least over the ˇeld of complex number. If we are considering real spaces,
then it may happen that ρ1 and ρ2 are real only in part of the space and do not
parametrize the entire space. We will see below that this indeed happens for
instance in the pseudo-Euclidean plane E1,1.

The roots ρ1 and ρ2 can be replaced by any functions u = u(ρ1), v = v(ρ2).
This freedom can be used to transform H and Q simultaneously to the form

H =
1

α(v) + β(u)
(p2

u + p2
v) = λ,

Q =
1

α(v) + β(u)
(β(u)p2

u − α(v)p2
v) = µ.

(1.18)

The Hamiltonian H in (1.18) is in its Liouville form [34]. The separated equations
are

αH + Q = αλ + µ, βH −Q = βλ− µ (1.19)

for the HamiltonÄJacobi equation and similarly

(αĤ + Q̂)Ψ = (αλ + µ)Ψ, (βĤ − Q̂)Ψ = (βλ− µ)Ψ (1.20)

for the LaplaceÄBeltrami equation.
Let us now restrict ourselves to two-dimensional spaces M of constant cur-

vature, that is to the Euclidean plane E2, pseudo-Euclidean plane E1,1, sphere S2

and two-, or one-sheeted hyperboloid H2. Each of these has a three-dimensional
isometry group G. The Lie algebra L of G has in each case a standard basis
which we denote {X1, X2, X3}.
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The LaplaceÄBeltrami operator Ĥ = ∆LB (1.3) is in each case proportional
to the Casimir operator Ĉ of the Lie algebra L. The operator Q commuting with
H will have the form

Q̂ =
3∑

i,k=1

AikXiXk, Aik = Aki, (1.21)

where A is a constant matrix. Let g ∈ G be an element of the Lie algebra of the
isometry group of the considered space. Let us rewrite Eq. (1.21) in matrix form

Q̂ = uTAu, uT = {X1, X2, X3}. (1.22)

The transformation g acting on the space M induces a transformation u′ = gu on
the Lie algebra L. The Casimir operator ∆LB stays invariant, but Q̂ transforms
to

Q̂ = u
′T gTAgu

′
. (1.23)

Thus, for spaces of constant curvature a classiˇcation of operators Q̂ commuting
with Ĥ reduces to a classiˇcation of symmetric matrices A = AT into equivalence
classes under the congruence transformation

A′ = gTAg, g ∈ G. (1.24)

This problem, as we shall see below, can be reduced to that of classifying elements
of Jordan algebras into equivalence classes.

Furthermore, the operator Ĉ of L can also be written in the form

Ĉ = uTCu, C =


 c1

c2
c3


 . (1.25)

Two matrices A and Ã will give equivalent coordinate systems if they satisfy

Ã = λgTAg + µC, λ 
= 0, (1.26)

where λ and µ are real constants.
1.2. Separable Coordinate Systems in the Euclidean Plane. The Lie algebra

of the isometry group E(2) is given by

L = x2∂x1 − x1∂x2 , P1 = ∂x1 , P2 = ∂x2 . (1.27)

The operator Q̂ of Eq. (1.21) will in this case be

Q̂ = aL2 + b1(LP1 + P1L) + b2(LP2 + P2L) +

+ c1P
2
1 + c2P

2
2 + 2c3P1P2. (1.28)
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An E(2) transformation matrix will be written as

g =
(

1 ξT

0 R

)
, ξT = (ξ1, ξ2), R ∈ IR2, RTR = I. (1.29)

The matrix A of Eq. (1.22) is

A =
(

a bT

b S

)
, S =

(
c1 c3
c3 c2

)
, bT = (b1, b2), (1.30)

and C of (1.25) is

C =


 0

1
1


 , (1.31)

since the Casimir operator is

C = ∆ = P 2
1 + P 2

2 . (1.32)

The transformation (1.26) with λ = 1 has two invariants in the space of symmetric
matrices A, namely

I1 = a, I2 = {[a(c1 − c2) − (b21 − b22)]2 + 4(ac3 − b1b2)2}1/2. (1.33)

Correspondingly, the operator Q̂ can be transformed into one of four canonical
forms

1) I1 = 0, I2 = 0, QC = P 2
1 , (1.34)

2) I1 
= 0, I2 = 0, QR = L2, (1.35)

3) I1 = 0, I2 
= 0, QP = LP2 + P2L, (1.36)

4) I1 
= 0, I2 
= 0, QE = L2 −D2P 2
2 , D2 =

I2
I2
1

. (1.37)

The ˇrst two forms correspond to subgroup-type coordinates. Thus, QC

of (1.34) corresponds to Cartesian coordinates, in which P1 = ∂x (and also
P2 = ∂y) is already straightened out. Both x and y are ignorable. The second,
QR, corresponds to polar coordinates

x = r cosφ, y = r sinφ (1.38)

in which L = ∂φ is straightened out so that φ is an ignorable variable.
The coordinates corresponding QP of (1.36) are the parabolic coordinates

x =
1
2

(u2 − v2), y = uv. (1.39)
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Equivalently, if we take Q̃P = LP1 + P1L, the prescription (1.17) leads to

x = uv, y =
1
2

(u2 − v2). (1.40)

Finally, QE of Eq. (1.37) corresponds to elliptic coordinates in the plane. They
can be written as

x = D cosh ξ cos η, y = D sinh ξ sin η. (1.41)

The results are presented in Table 1.
1.3. Separable Coordinate Systems in the Pseudo-Euclidean Plane. The

Lie algebra of the isometry group E(1, 1) can be represented by

K = (t∂x + x∂t) , P0 = ∂t, P1 = ∂x. (1.42)

The second-order operator (1.21) is

Q̂ = aK2 + b0(KP0 + P0K) + b1(KP1 + P1K) +

+ c0P
2
0 + c1P

2
1 + 2c2P0P1. (1.43)

Equivalently, the matrix A of (1.24) is

A =
(

a bT

b c

)
, C =

(
c0 c2
c2 c1

)
, bT = (b0, b1). (1.44)

We will classify the operators Q̂ into conjugate classes and the action of the
group E(1, 1), including the re^actions

Π0 : (x, t) → (x,−t), Π1 : (x, t) → (−x, t). (1.45)

An element of E(1, 1), acting on the Lie algebra (K,P0, P1) can be represented
as

g =
(

1 ξT

0 Λ

)
, ξT = (ξ0, ξ1), Λ ∈ IR2, ΛTJΛ = J (1.46)

with

J =
(

1 0
0 −1

)
. (1.47)

The matrix A of (1.44) is subject to the transformation (1.26) and in this case we
have

A′ = gTAg =
(

a aξT + βTΛ
ξa + ΛTβ ΛTCΛ + ΛTβξT + ξβT Λ + aξξT

)
. (1.48)
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Table 1. Orthogonal coordinate systems on two-dimensional Euclidean plane E2

Coordiante systems Integrals of motion Solution of
Helmholtz equation

I. Cartesian x, y Exponential functions
−∞ < x, y < ∞ QC = P 2

1 − P 2
2

II. Polar Product of
x = r cos ϕ, y = r sin ϕ QR = L2 Bessel function
0 ≤ r < ∞, 0 ≤ ϕ ≤ 2π and exponential

III. Parabolic Product of two
x = (u2 − v2)/2, y = uv QP = LP2 + P2L parabolic cylinder
0 ≤ u < ∞,−∞ < v < ∞ functions

IV. Elliptic Product of periodic
x = D cosh ξ cos η, QE = L2 − D2P 2

2 and nonperiodic Mathieu
y = D sinh ξ sin η functions

0 ≤ ξ < ∞, 0 ≤ η < 2π

One of the invariants of this transformation is the constant a which can be chosen
to be a = 1, or is already a = 0.

Let us ˇrst consider a 
= 0. Choosing ξ = −βTΛ and putting a = 1, we
obtain

A′ =
(

1 0
0 C′

)
, C′ = JΛ−1J(C − ββT )Λ. (1.49)

Notice that C′ and C are symmetric matrices, but we have

X ≡ J(C − ββT ), JXT = XJ, (1.50)

that is, X is an element of the Jordan algebra jo(1, 1). Since Λ is an element of the
Lie group O(1, 1), we are faced with a well-known problem: the classiˇcation of
elements of a Jordan algebra with respect to conjugation under the corresponding
Lie group. The results are known for all classical Lie and Jordan algebras [35],
and for jo(1, 1) they are quite simple. The matrix X can be transformed into one
of the following

X1 =
(

p 0
0 q

)
, X2 =

(
p q
−q p

)
,

X3 =
(

p + ε ε
−ε p− ε

)
, q > 0, ε = ±1,

(1.51)

with p ∈ IR, q ∈ IR.
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For a = 0, (b0, b1) 
= (0, 0) transformation (1.26) leads to Eq. (1.48) in which
we set a = 0. We choose the matrix Λ contained in O(1, 1) to transform ΛTβ
to standard form and then choose ξ to simplify the matrix C. For |b0| > |b1|,
|b0| < |b1| and |b0| = |b1| we can transform A into

A1 =


 0 ε

√
b20 − b21 0

ε
√

b20 − b21 0 0
0 0 0


 , ε = ±1, (1.52)

A2 =


 0 0 ε

√
b21 − b20

0 0 0
ε
√

b21 − b20 0 0


 , ε = ±1, (1.53)

A3 =


 0 1 1

1 γ −γ
1 −γ γ


 , γ = 0, 1, (1.54)

respectively.
Finally, for a = b0 = b1 = 0, C 
= 0 we can use Λ to transform C into one

of its standard forms JXi, i = 1, 2, 3 with Xi as in (1.51).
Thus, we have obtained a classiˇcation of matrices A that determine the

operator Q̂. Let us now list the corresponding operators. We ˇrst notice that
a = b1 = b0 = 0. The corresponding operator Q̂ is in the enveloping algebra of
a maximal Abelian subalgebra of e(1, 1), namely (P0, P1). Similarly, for a = 1
and X = X1 in Eq. (1.51) with p = q we ˇnd that Q = K2 is in the enveloping
algebra of a different maximal Abelian subalgebra of e(1, 1), namely o(1, 1)
(generated by K). These two cases correspond to subgroup type coordinates, the
other ones, to nonsubgroup type.

The list of operators must be further simpliˇeld by linear combinations with
the Casimir operator

C = P 2
0 − P 2

1 . (1.55)

Finally, we obtain a representative list of 11 second-order operators in the en-
veloping algebra of the Lie algebra e(1, 1).

Q1(a, b) = a(P 2
0 + P 2

1 ) + 2bP0P1,

(a, b) = (1, 0), (1, 1), or (0, 1),
Q2 = K2,

Q3 = KP1 + P1K,

Q4 = KP0 + P0K,
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Q5 = K(P0 + P1) + (P0 + P1)K,

Q6 = K(P0 + P1) + (P0 + P1)K + (P0 − P1)2, (1.56)

Q7 = K2 − l2P0P1, l > 0,
Q8 = K2 −D2P 2

1 , D > 0,
Q9 = K2 − d2P 2

1 , d > 0,
Q10 = K2 + (P0 + P1)2,
Q11 = K2 − (P0 + P1)2.

To obtain separable coordinates we proceed as in Sec. 1.1.
1. The operator Q1(a, b) for any a and b, corresponds to Cartesian coordi-

nates (t, x), since the operators that are really diagonalized are P0 and P1 (they
correspond to a maximal Abelian subalgebra {P0, P1} ∈ e(1, 1)).

2. The operator Q2 = K2 also corresponds to subgroup type coordinates,
namely pseudopolar coordinates

t = r coshα, x = r sinhα,

0 ≤ r < ∞, ∞ < α < ∞.
(1.57)

These coordinates only cover part of the pseudo-Euclidean plane, since we
have t2 − x2 = r2 ≥ 0. By interchanging t and x in (1.57) we can parametrize
the part with t2 − x2 = −r2.

The operators Q3, . . . Q11 can lead to separable coordinates via the algorithm
of Eq. (1.17). Two problems can and do occur. The ˇrst is that the roots of
Eq. (1.17) may coincide: ρ1 = ρ2. Then we do not obtain separable coordiantes.
This happens in precisely one case, namely that of the operator Q5.

To other problem that may occur is that the eigenvalues ρ(t, x) may be
complex at least in a part of the (x, t) plane. This part of the plane will then not
be covered by the corresponding coordinates (ρ1, ρ2).

The results of this analysis are presented in Table 2 and essentially agree
with those of Kalnins [36].

1.4. The Systems of Coordinates on S2. The Lie algebra of isometry group
O(3) is given by

Li = −εikjuk
∂

∂uj
, [Li, Lk] = εikjLj, i, k, j = 1, 2, 3, (1.58)

where ui are the Cartesian coordinates in the ambient Euclidean space E3. On
the sphere S2 we have u2

1 + u2
2 + u2

3 = R2. The Casimir operator is

C = R2∆LB = L2
1 + L2

2 + L2
3 (1.59)
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Table 2. Orthogonal coordinate systems on the two-dimensional pseudo-Euclidean
plane E1,1

Coordinate system Integrals of motion Solution of
Helmholtz equation

I. Cartesian QC = P0P1 Product of exponentials
t, x

II. Pseudo-polar Product of Bessel function
t = r cosh τ2, x = r sinh τ2 QS = K2 and exponential
r ≥ 0, −∞ < τ2 < ∞
III. Parabolic of type I Product of parabolic
t = 1/2(u2 + v2), x = uv QI

P = {P1,K} cylinder function
v ≥ 0, −∞ < u < ∞ for t2 − x2 > 0
IV. Parabolic of type II Product of parabolic
t = uv, x = 1/2(u2 + v2) QII

P = {P0,K} cylinder function
v ≥ 0, −∞ < u < ∞ for x2 − t2 > 0
V. Parabolic of type III Products of two linear

combinations of Airy
functions for x + t > 0

t = 1/2(η − ζ)2 − (η + ζ), QIII
P = {P0,K} + {P1,K}

x = 1/2(η − ζ)2 + (η + ζ) +(P0 − P1)2

−∞ < η, ζ < ∞
VI. Hyperbolic of type I

Product of Mathieu equation
solutions with argument
displaced by iπ/2

t = 1/2

(
cosh

η − ζ

2
+ sinh

η + ζ

2

)
, QI

H = K2 − l2P0P1

x = 1/2

(
cosh

η − ζ

2
− sinh

η + ζ

2

)

−∞ < η, ζ < ∞
VII. Hyperbolic of type II

Product of two solutions of
Bessel's equation, one with
real and one with imaginary
arguments

t =
(
sinh (η − ζ) + eη+ζ

)
, QII

H = K2 + (P1 + P2)2

x =
(
sinh (η − ζ) − eη+ζ

)
−∞ < η, ζ < ∞

VIII. Hyperbolic of type III Product of two solutions
t =
(
cosh (η − ζ) + eη+ζ

)
, QIII

H = K2 − (P1 + P2)2 of Bessel's equation
x =

(
cosh (η − ζ) − eη+ζ

)
−∞ < η, ζ < ∞
IX. Elliptic of type I

Product of two solutions of
the nonperiodic Mathieu
equation

t = D sinh η cosh ζ, QI
E = K2 + D2P 2

1
x = D cosh η sinh ζ
−∞ < η, ζ < ∞
X. Elliptic of type II Product of two solutions
(i) t = d cosh η cosh ζ, QII

E = K2 − d2P 2
1 (i) of the nonperiodic

x = d sinh η sinh ζ Mathieu equation
−∞ < η < ∞, ζ ≥ 0 (ii) of the periodic
(ii) t = d cos η cos ζ, Mathieu equation
x = d sin η sin ζ
0 < η < 2π, 0 ≤ ζ < π
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and the LaplaceÄBeltrami Eq. (1.10) for S2 has the form

∆LBΨ = − :(: + 1)
R2

Ψ, Ψlk(α, β) = Ξlk(α)Φlk(β), (1.60)

where : = 0, 1, 2, ... The second-order operator Q̂ of Eq. (1.21) is given by

Q̂ = AikLiLk, Aik = Aki. (1.61)

The transformation matrix for O(3) can be represented as

g =

=

(
cos α cos β cos γ − sin α sin γ − cos α cos β sin γ − sin α cos γ cos α sin β
sin α cos β cos γ + cos α sin γ − sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ sin β sin γ cos β

)
,

(1.62)

where (α, β, γ) are the Euler angles.
The matrix Aik can be diagonalized to give

Q̂(a1, a2, a3) ≡ Q = a1L
2
1 + a2L

2
2 + a3L

2
3. (1.63)

For a1 = a2 = a3 we have Q ∼ 0. If two eigenvalues of Aik are equal, e. g.,
a1 = a2 
= a3, or a1 
= a2 = a3, or a1 = a3 
= a2, we can transform the operator
Q into the operators: Q(0, 0, 1) = L2

3, Q(1, 0, 0) = L2
1 or Q(0, 1, 0) = L2

2,
respectively. The corresponding separable coordinates on S2 are the three types
of spherical ones

u1 = R sin θ cosϕ = R cos θ′ = R sin θ′′ sinϕ′′,

u2 = R sin θ sinϕ = R sin θ′ cosϕ′ = R cos θ′′,
u3 = R cos θ = R sin θ′ sinϕ′ = R sin θ′′ cosϕ′′,

(1.64)

where ϕ ∈ [0, 2π), θ ∈ [0, π]. They correspond to the group reduction O(3) ⊃
O(2) and X = L2

i is invariant under O(2) and under re^ections in all coordinate
planes.

The O(3) unitary irreducible representation matrix elements of (1.62) result
in the well-known transformation formula for spherical functions Ylm(θ, ϕ) [8,37]

Yl,m′(θ′, ϕ′) =
l∑

m=−l

Dl
mm′(α, βγ)Yl,m(θ, ϕ), (1.65)

where Dl
m1,m2

(α, β, γ) are the Wigner D-functions

D�
m,m′(α, β, γ) = e−imα d�m,m′(β) e−im′γ , (1.66)
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d�m,m′(β) =
(−1)m−m′

(m−m′)!

√
(: + m)! (:−m′)!
(:−m)! (: + m′)!

(
cos

1
2
β

)2�−m+m′

×

×
(

sin
1
2
β

)m−m′

F

[
m− :, −m′ − :

m−m′ + 1
;− tan2 1

2
β

]
(1.67)

and the spherical angles (θ, ϕ) and (θ′, ϕ′) are related by

cos θ′ = cos θ cosβ + sin θ sinβ cos (ϕ− α),

cot (ϕ′ + γ) = cot (ϕ− α) cos β − cot θ sinβ

sin (ϕ− α)
.

(1.68)

In particular, Ylm(θ, ϕ) corresponding to the solution of LaplaceÄBeltrami equa-
tion in the systems of coordinates (1.64) are related by the formulas

Yl,m′(θ′, ϕ′) =
l∑

m=−l

Dl
mm′

(
0,

π

2
,
π

2

)
Yl,m(θ, ϕ), (1.69)

Yl,m′′(θ′′, ϕ′′) =
l∑

m=−l

Dl
mm′′

(π

2
,
π

2
, 0
)
Yl,m(θ, ϕ), (1.70)

Yl,m′′(θ′′, ϕ′′) =
l∑

m′=−l

Dl
m′m′′

(
0,

π

2
,
π

2

)
Yl,m′(θ′, ϕ′). (1.71)

When all three eigenvalues ai are different, then the separable coordinates in
Eq. (1.60) are elliptic ones [38Ä40]. These can be written in algebraic form, as

u2
1 = R2 (ρ1 − a1)(ρ2 − a1)

(a2 − a1)(a3 − a1)
, u2

2 = R2 (ρ1 − a2)(ρ2 − a2)
(a3 − a2)(a1 − a2)

,

u2
3 = R2 (ρ1 − a3)(ρ2 − a3)

(a1 − a3)(a2 − a3)

(1.72)

with a1 ≤ ρ1 ≤ a2 ≤ ρ2 ≤ a3.
In trigonometric form we put

ρ1 = a1 + (a2 − a1) cos2 φ, ρ2 = a3 − (a3 − a2) cos2 θ, (1.73)

and obtain

u1 = R
√

1 − k′2 cos2 θ cosφ, u2 = R sin θ sinφ,

u3 = R
√

1 − k2 cos2 φ cos θ, 0 ≤ φ < 2π, 0 ≤ θ ≤ π,
(1.74)
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Table 3. Orthogonal coordinate systems on two-dimensional sphere S2

Coordinate systems Integrals of motion Solution of Limiting
Helmholtz equation systems on E2

I. Spherical Product of associated Polar
u1 = R sin θ cosϕ, QS = L2

3 Legendre polynomials Cartesian
u2 = R sin θ sinϕ, and exponential
u3 = R cos θ
ϕ ∈ [0, 2π), θ ∈ [0, π]

II. Elliptic Product of two Elliptic
u1 = R sn (α, k) dn (β, k′), QE = k′2L2

3 − k2L2
1 Lamee polynomials Polar

u2 = R cn (α, k) cn (β, k′), Cartesian
u3 = R dn (α, k) sn (β, k′) Parabolic∗

α ∈ [−K,K],
β ∈ [−2K ′, 2K ′]

ÅÅÅÅÅ
∗After rotation.

where

k2 =
a2 − a1

a3 − a1
= sin2 f, k

′2 =
a3 − a2

a3 − a1
= cos2 f, k2 + k

′2 = 1. (1.75)

The Jacobi elliptic version of elliptic coordinates is obtained by putting

ρ1 = a1 + (a2 − a1) sn2(α, k), ρ2 = a2 + (a3 − a2) cn2(β, k′). (1.76)

We obtain

u1 = R sn (α, k) dn (β, k′), u2 = R cn (α, k) cn (β, k′),

u3 =R dn (α, k) sn (β, k′), −K ≤ α ≤ K, −2K ′ ≤ β ≤ 2K ′,
(1.77)

where sn (α, k), cn (α, k′) and dn (β, k) are the Jacobi elliptic functions with
modulus k and k′, and K and K ′ are the complete elliptic integrals [41].

The interfocal distance for the ellipses on the upper hemisphere is equal to
2fR. The results are given in Table 3.

1.5. Systems of Coordinates on H2. The isometry group for the hyperboloid
H2: u2

0 − u2
1 − u2

2 = R2, where ui (i = 0, 1, 2) are the Cartesian coordinates in
the ambient space E2,1, is O(2,1). We choose a standard basis K1,K2, L3 for
the Lie algebra o(2,1):

K1 = − (u0∂u2 + u2∂u0), K2 = − (u0∂u1 + u1∂u0), L3 = − (u1∂u2 − u2∂u1)

with commutation relations

[K1,K2] = −L3, [L3,K1] = K2, [K2, L3] = K1. (1.78)
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The Casimir operator is

C = R2 ∆LB = K2
1 + K2

2 − L2
3 (1.79)

and the LaplaceÄBeltrami equation (1.10) is given by

∆LBΨ =
l(l + 1)

R2
Ψ, Ψlλ(ζ1, ζ2) = Ξlλ(ζ1)Φlλ(ζ2), (1.80)

where : for principal series of the unitary irreducible representations has the form

: = −1
2

+ iρ, 0 < ρ < ∞. (1.81)

The second-order operator Q̂ of Eq. (1.21):

Q = aK2
1 + b(K1K2 + K2K1) + cK2

2 + d(K1L3 + L3K1) +

+ e(K2L3 + L3K2) + fL2
3 (1.82)

can be used to classify all coordinate systems on H2. The classiˇcation of the
operators Q can be reduced to a classiˇcation of the normal forms of the elements
of the Jordan algebra jo(2,1) [35]. There are 9 inequivalent forms, in one-to-one
correspondence with the 9 existing separable coordinate systems [15,42,43]. All
the coordinate systems are orthogonal ones.

The normal forms of the operator Q and the corresponding coordinates are
given in Table 4. Cases I, II, and III correspond to subgroup type coordinates.
The corresponding subgroups are O(2), O(1, 1) and E(1), respectively. The
O(1, 1) subgroup in the equidistant coordinates acts in the 01 plane. We could
also have chosen the 02 plane (i. e., permuted u1 and u2).

The elliptic and hyperbolic coordinates of cases IV and V are given in
algebraic form. Equivalently, they can be expressed, e. g., in terms of Jacobi
elliptic functions. This makes it possible to express the coordinates in the ambient
space directly, rather than their squares. Indeed, if we put

B1 = a1 − (a1 − a3) dn2(α, k), B2 = a1 − (a1 − a2) sn2(β, k′) (1.83)

and

k2 =
a2 − a3

a1 − a3
, k′2 =

a1 − a2

a1 − a3
, k2 + k′2 = 1 (1.84)

into the expressions

u2
0 = R2 (B1 − a3)(B2 − a3)

(a1 − a3)(a2 − a3)
, u2

1 = R2 (B1 − a2)(B2 − a2)
(a2 − a3)(a1 − a2)

,

u2
2 = R2 (B1 − a1)(a1 − B2)

(a1 − a2)(a1 − a3)
,

(1.85)
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Table 4. Orthogonal systems of coordinate on two-dimensional hyperboloid H2

Coordinate systems Coordinate Limiting Limiting
and integrals of motion systems on E2 systems on E1,1

I. Pseudo-spherical u0 = R cosh τ Polar Cartesian
τ > 0, ϕ ∈ [0, 2π) u1 = R sinh τ cosϕ
QS = L2

3 u2 = R sinh τ sinϕ

II. Equidistant u0 = R cosh τ1 cosh τ2 Cartesian Polar
τ1,2 ∈ IR u1 = R cosh τ1 sinh τ2
QEQ = K2

1 u2 = R sinh τ1

III. Horocyclic u0 = R(x̃2 + ỹ2 + 1)/2ỹ Cartesian Rectangular
ỹ > 0, x̃ ∈ IR u1 = R(x̃2 + ỹ2 − 1)/2ỹ Cartesian coordi-
QHO = (K1 + L3)2 u2 = Rx̃/ỹ nates rotated by π/4

(nonorthogonal)

IV. Elliptic u2
0 = R2 (ρ1 − a3)(ρ2 − a3)

(a1 − a3)(a2 − a3)
Elliptic Elliptic I, II, III

a3 < a2 < ρ2 < a1 < ρ1 u2
1 = R2 (ρ1 − a2)(ρ2 − a2)

(a1 − a2)(a2 − a3)
Parabolic Cartesian

QE = L2
3 + sinh2 fK2

2 u2
2 = R2 (ρ1 − a1)(a1 − ρ2)

(a1 − a2)(a1 − a3)
Cartesian

V. Hyperbolic u2
0 = R2 (ρ1 − a2)(a2 − ρ2)

(a1 − a2)(a2 − a3)
Cartesian Elliptic II

ρ2 < a3 < a2 < a1 < ρ1 u2
1 = R2 (ρ1 − a3)(a3 − ρ2)

(a1 − a3)(a2 − a3)
Parabolic I

QH = K2
2 − sin2 αL2

3 u2
2 = R2 (ρ1 − a1)(a1 − ρ2)

(a1 − a2)(a1 − a3)

VI. Semihyperbolic
u2
0 + u2

1

R2
= (1 + µ2

1)(1 + µ2
2) Parabolic Cartesian

µ1,2 > 0
u2
0 − u2

1

R2
= (1 + µ1µ2) Cartesian

QSH = −{K1, L3} u2 = R
√
µ1µ2

VII. Elliptic-parabolic u0 = R
cosh2 a + cos2 ϑ

2 cosh a cosϑ
Parabolic Hyperbolic II

a ∈ IR, ϑ ∈ (−π/2, π/2) u1 = R
sinh2 a− sin2 ϑ

2 cosh a cosϑ
QEP = (K1 + L3)2 +K2

2 u2 = R tanϑ tanh a

VIII. Hyperbolic-parabolic u0 = R
cosh2 b + cos2 ϑ

2 sinh b sinϑ
Cartesian Hyperbolic III

b > 0, ϑ ∈ (0, π) u1 = R
sinh2 b− sin2 ϑ

2 sinh b sinϑ
QHP = (K1 + L3)2 −K2

2 u2 = R cot ϑ coth b
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End of Table 4

Coordinate systems Coordinate Limiting Limiting
and integrals of motion systems on E2 systems on E1,1

IX. Semicircular-parabolic

ξ, η > 0

QSCP = {K1, K2}+{K2, L3}

u0 = R
(ξ2 + η2)2 + 4

8ξη
Cartesian Does not

correspond to a
separable
coordinate systemu1 = R

(ξ2 + η2)2 − 4

8ξη

u2 = R
η2 − ξ2

2ξη

we obtain the elliptic coordinates in Jacobi form

u0 = R sn (α, k) dn (β, k′), u1 = i R cn (α, k) cn (β, k′),
u2 =i R dn (α, k) sn (β, k′), α ∈ (iK ′, iK ′′ + 2K), β ∈ [0, 4K ′).

(1.86)

2. CONTRACTIONS OF THE LIE ALGEBRA
AND CASIMIR OPERATOR

2.1. Contractions from o(3) to e(2). We shall use R−1 as the contraction
parameter. To realize the contraction explicitly, let us introduce homogeneous or
Beltrami coordinates on the sphere, putting

xµ = R
uµ
u3

=
uµ√

1 − (u2
1 + u2

2)/R2
, µ = 1, 2. (2.1)

Geometrically (x1, x2) correspond to a projection from the centre of the sphere
to a tangent plane at the North pole. In this parametrization the metric tensor has
the following form

gµν =
1

1 + r2/R2

[
δµν +

xµxν
r2

1
1 + r2/R2

]
, r2 = xµxµ. (2.2)

The LaplaceÄBeltrami operator corresponds to

∆LB =
(

1 +
r2

R2

)[
∂2

∂x2
µ

+
xµ
R2

∂

∂xµ
+

1
R2

(
xµ

∂

∂xµ

)2
]

=

=
(
π2

1 + π2
2 +

L2
3

R2

)
, (2.3)
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where

πµ =
(

∂

∂xµ
+

xµxν
R2

∂

∂xν

)
, L3 =

(
x1

∂

∂x2
− x2

∂

∂x1

)
. (2.4)

Using the connection between operators πµ and the generators of the O(3) group

−L1

R
= π2,

L2

R
= π1, L3 = −(x1π2 − x2π1),

we obtain the following commutation relations

[L3, π1] = π2, [L3, π2] = −π1, [π1, π2] =
L3

R2
, (2.5)

so that for R → ∞ the o(3) algebra contracts to the e(2) one. Moreover the
momenta πµ contract to Pµ = ∂/∂xµ, (µ = 1, 2) and the o(3) LaplaceÄBeltrami
operator (2.3) contracts to the e(2) one:

∆LB = π2
1 + π2

2 +
L2

3

R2
→ ∆ = (P 2

1 + P 2
2 ). (2.6)

2.2. Contractions from o(2, 1) to e(2). As in Sec. 2.1, let us introduce the
Beltrami coordinates on the hyperboloid H2 putting

xµ = R
uµ
u0

= R
uµ√

R2 + u2
1 + u2

2

, µ = 1, 2. (2.7)

The O(2, 1) generators can be expressed as:

−K1

R
≡ π̃2 =

∂

∂x2
− x2

R2

(
x1

∂

∂x1
+ x2

∂

∂x2

)
,

−K2

R
≡ π̃1 = p1 −

x1

R2

(
x1

∂

∂x1
+ x2

∂

∂x2

)
,

L3 = x1π2 − x2π1.

The commutation relations of the o(2,1) algebra (1.78) in terms of the new
operators take the form

[π̃1, π̃2] = −L3

R2
, [L3, π̃1] = π̃2, [π̃2, L3] = π̃1, (2.8)

so, that for R → ∞ the o(2,1) algebra contracts to e(2) and the momenta π̃µ to
Pµ = ∂/∂xµ. The o(2,1) LaplaceÄBeltrami operator (1.2) contracts to the e(2)
one:

∆LB = π̃2
1 + π̃2

2 − L2
3

R2
→ ∆ = (P 2

1 + P 2
2 ). (2.9)
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2.3. Contractions from o(2, 1) to e(1, 1). Let us introduce Beltrami coordi-
nates on hyperboloid H2

y0 = R
u0

u2
= R

u0√
u2

0 + u2
1 −R2

, y1 = R
u1

u2
= R

u1√
u2

0 + u2
1 −R2

. (2.10)

The O(2, 1) generators can be expressed as

−K1

R
≡ ˜̃π1 =

∂

∂y0
− y0

R2

(
y0

∂

∂y0
+ y1

∂

∂y1

)
,

−L3

R
≡ ˜̃π2 =

∂

∂y1
+

y1

R2

(
y0

∂

∂y0
+ y1

∂

∂y1

)
, (2.11)

−K2 ≡ K = y0
˜̃π2 + y1

˜̃π1.

The commutators of the o(2, 1) algebra (1.78) in the new operators (˜̃π1, ˜̃π2,K)
take the form

[˜̃π1, ˜̃π2

]
=

K

R2
,
[
K, ˜̃π1

]
= −˜̃π2,

[˜̃π2,K
]

= ˜̃π1, (2.12)

so, that for R → ∞ the o(2, 1) algebra contracts to the e(1, 1) one. The o(2, 1)
LaplaceÄBeltrami operator contracts to the e(1, 1) one:

∆LB = ˜̃π
2

1 − ˜̃π
2

2 +
K2

R2
→ ∂2

∂y2
0

− ∂2

∂y2
1

, (2.13)

and Eq. (1.80) transforms for large : ∼ pR to the one-dimensional KleinÄGordan
equation.

∂2ψ

∂y2
0

− ∂2ψ

∂y2
1

+ p2ψ = 0. (2.14)

3. CONTRACTION FOR SYSTEMS OF COORDINATES

3.1. Contractions and Coordinate Systems on S2

1. Spherical coordinates on S2 to polar on E2. We consider the spherical
coordinate (1.64) with the parametr a1 = a2 and put

tan θ =
r

R
.

In the contraction limit R → ∞, θ → 0 we have

x1 = R
u1

u3
→ x = r cosϕ, x2 = R

u2

u3
→ y = r sinϕ
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and

QS = L2
3 → L2.

2. Spherical coordinate on S2 to Cartesian on E2. We choose the spherical
coordinate (1.64) with a2 = a3. Putting

cos θ′ ∼ x

R
∼ 0, cosϕ′ ∼ y

R
∼ 0

and taking the limit R → ∞ and θ′ → π

2
, ϕ′ → π

2
, we obtain

1
R2

QS =
L2

1

R2
= π2

1 → P 2
1 ∼ QC

and

x1 = R
cot θ′

sinϕ′ → x, x2 = R cotϕ′ → y.

It is easy to see that for the case a1 = a3 the corresponding spherical system of
coordinates (1.64) contracts to Cartesian coordinates on E2 for R → ∞.

3. Elliptic coordinates on S2 to elliptic coordinates on E2. We take Q in its
general form, equivalent to

QE = L2
3 −

(
a2 − a1

a3 − a2

)
L2

1. (3.1)

We put

R2

a3 − a1
=

D2

a2 − a1
, (3.2)

and in the limit R2 ∼ a3 → ∞ obtain

QE = L2
3 −

(
a3 − a1

a3 − a2

)
D2

R2
L2

1 → L2
3 −D2P 2

2 ∼ IE . (3.3)

For the coordinates we put

ρ1 = a1 + (a2 − a1) cos2 η, ρ2 = a1 + (a2 − a1) cosh2 ξ, (3.4)

and for R2 ∼ a3 → ∞, using Eq. (3.2), we obtain Eq. (3.41), i. e., elliptic
coordinates on the plane E2.
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4. Elliptic coordinates on S2 to Cartesian coordinates on E2. We start
from the coordinates (1.72) but change the ordering of the parameters ai, which
corresponds the interchange of coordinates u3 ↔ u2, i. e., put

a1 ≤ ρ1 ≤ a3 ≤ ρ2 ≤ a2 (3.5)

and choose a3 − a1 = a2 − a3 ≡ a. Then we have

QE = a(L2
2 − L2

1). (3.6)

Introducing the new coordinates by

a3 − ρ1

a
= ξ1,

ρ2 − a3

a
= ξ2, (3.7)

we can rewrite the (1.72) in the form

u2
1 =

R2

2
(1 − ξ1)(1 + ξ2), u2

2 =
R2

2
(1 + ξ1)(1 − ξ2), u2

2 = R2ξ1ξ2. (3.8)

Using Eq. (2.1) we have for Beltrami coordinates

x2
1 = R2 (1 − ξ1)(1 + ξ2)

2ξ1ξ2
, x2

2 = R2 (1 + ξ1)(1 − ξ2)
2ξ1ξ2

. (3.9)

From equation (3.9) we obtain

ξ2,1 =
R2

R2 + x2
1 + x2

2

{[
1 +

x2
1 + x2

2

R2
+

(x2
1 − x2

2)2

4R4

]1/2

∓ x2
1 − x2

2

2R2

}
. (3.10)

Taking now the limit R → ∞ we have

ξ1 → 1 − x2

R2
, ξ2 → 1 − y2

R2
, (3.11)

and hence x1 and x2 of Eq. (3.9) go into Cartesian coordinates:

x1 → x, x2 → y. (3.12)

For the integral of motion in the limit R2 ∼ a → ∞ we have

1
aR2

QE = (π2
1 − π2

2) → P 2
1 − P 2

2 = QC . (3.13)

5. Elliptic coordinates on S2 to parabolic coordinates on E2. We take
the operator (1.72) with a1 ≤ ρ1 ≤ a2 ≤ ρ2 ≤ a3 and choose the parameter
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a3 − a2 = a2 − a1 ≡ a. We must ˇrst ®undo¯ the diagonalization (1.26) by a
rotation through π/4. The operator (1.63) transforms into

1
aR

QE = − 1
R

(L1L3 + L3L1) = (L3π2 + π2L3), (3.14)

with the correct limit (1.39) for R → ∞. The coordinates (1.77) on S2 are rotated
into

u1 =
R√
2

(snα dn β + dnα sn β), u2 = R cnα cnβ,

u3 =
R√
2

(dnα snβ − snα dn β),
(3.15)

with modulus k = k′ = 1/
√

2 for all Jacobi elliptic functions.
From Eq. (3.15) we obtain

snα =
1√
2

[(
1 +

u1

R

)1/2 (
1 − u3

R

)1/2

−
(

1 − u1

R

)1/2 (
1 +

u3

R

)1/2
]
,

√
2 dnβ =

1√
2

[(
1 +

u1

R

)1/2 (
1 − u3

R

)1/2

+
(

1 − u1

R

)1/2 (
1 +

u3

R

)1/2
]
.

(3.16)

Equations (3.16) suggest the limiting procedure. Indeed we put

snα = −1 +
u2

2R
,

√
2 dnβ = 1 +

v2

2R
. (3.17)

In the limit R → ∞ we obtain

x1 → x =
u2 − v2

2
, x2 → y = uv, (3.18)

i. e., the parabolic coordinates (1.39).
3.2. Contractions of Coordinate Systems from H2 to E2

1. Pseudo-spherical coordinates on H2 to polar coordinates on E2. In the
limit R → ∞, τ → 0 putting tanh τ ∼ r/R we have:

QS = L2
3 → L2

3,

and for Beltrami coordinates (2.7) we obtain:

x1 = R
u1

u0
→ x = r cosϕ, x2 = R

u2

u0
→ y = r sinϕ.
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2. Equidistant coordinates on H2 to Cartesian on E2. For Beltrami coordi-
nates (2.7) we have:

x1 = R tanh τ2, x2 = R tanh τ1/ cosh τ2. (3.19)

Taking the limit R → ∞, τ1, τ2 → 0 and putting sinh τ1 ∼ y/R, sinh τ2 ∼ x/R
in (3.19) we obtain x1 → x, x2 → y and

QEQ

R2
= π2

1 → P 2
1 ∼ QC .

3. Horocyclic coordinates on H2 to Cartesian on E2. For variables x̃, ỹ we
obtain:

x̃ =
u2

u0 − u1
, ỹ =

R

u0 − u1
.

In the limit R → ∞ we get: x̃ → y/R, ỹ → 1 + x/R and Beltrami coordinates
go into Cartesian ones

x1 = R
x̃2 + ỹ2 − 1
x̃2 + ỹ2 + 1

→ x, x2 =
2x̃R

x̃2 + ỹ2 + 1
→ y.

For integral of motion we have:

QHO

R2
= π2

2 +
L2

3

R2
− 1

R
{π2, L3} → P 2

2 ∼ QC .

4. Elliptic coordinates on H2 to elliptic coordinates on E2. We put

R2

a2 − a3
=

D2

a1 − a2
(3.20)

and in the limit R2 ∼ (−a3) → ∞ obtain:

QE = L2
3 +

D2

R2
K2

2 → L2 + D2p2
1 ∼ QE ,

where 2D is the focal distance. Writing the coordinates as

ρ1 = a1 + (a1 − a2) sinh2 ξ, ρ2 = a2 + (a1 − a2) cos2 η

and using Eq. (3.20) in the limit R2 ∼ (−a3) → ∞ we get the ordinary elliptic
coordinates on E2 plane [10,15].

5. Elliptic coordinates on H2 to Cartesian on E2. We make a special choice
of the parameters ai: a1 − a2 = a2 − a3 and determine new variables ξ1,2 by the
formula

ξ1,2 =
B1,2 − a2

a1 − a2
=

u2
0 + u2

2

2R2
±

√(
u2

0 + u2
2

2R2

)2

− u2
1

R2
. (3.21)
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Considering the limit R → ∞ we obtain: ξ1 ∼ 1 + 2y2/R2, ξ2 ∼ x2/R2 and the
Beltrami coordinate (2.7) takes the Cartesian form

x1 = R
u1

u0
= R

√
2ξ1ξ2

(ξ1 + 1)(ξ2 + 1)
→ x,

x2 = R
u2

u0
= R

√
(ξ1 − 1)(1 − ξ2)
(ξ1 + 1)(ξ2 + 1)

→ y.

The operator QE goes to Cartesian one

QE

R2
=

L2
3

R2
+ π2

1 → P 2
1 ∼ QC .

6. Elliptic coordinates on H2 to parabolic on E2. We start from the rotated
elliptic coordinates

 u′
0

u′
1

u′
2


 =


 cosh f sinh f 0

sinh f cosh f 0
0 0 1




 u0

u1

u2


 =

=


 u0 cosh f + u1 sinh f

u0 sinh f + u1 cosh f
u2


 , (3.22)

where sinh2 f = (a1 − a2)/(a2 − a3). We choose a2 − a3 = a1 − a2 ≡ a. Then
for rotated elliptic coordiantes (3.22) we get

u0 =
R√
2

(snα dnβ + i
√

2 cnα cnβ),

u1 =
R√
2

(i cnα cnβ +
√

2 snα dnβ), u2 = iR dnα snβ,
(3.23)

with modulus k = k′ = 1/
√

2 for all Jacobi elliptic function. The integral of
motion transforms into

QE′ = 3L2
3 −

√
2 (K1L3 + L3K1), (3.24)

with the correct limit to (1.36). From Eq. (3.23) we obtain

cnα = − i

2

√(
1 +

u′
1

R
√

2
− u′

0

R

)2

+
u′2

2

2R2
+

i

2

√(
1 − u′

1

R
√

2
+

u′
0

R

)2

+
u′2

2

2R2
,

cnβ =
1
2

√(
1 +

u′
1

R
√

2
− u′

0

R

)2

+
u′2

2

2R2
+

1
2

√(
1 − u′

1

R
√

2
+

u′
0

R

)2

+
u′2

2

2R2
,
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and therefore for large R we have

−i cnα � 1 − 1
2
√

2
u2

R
, cnβ � 1 +

1
2
√

2
v2

R
.

In the limit R → ∞ we obtain

x1 → x =
u2 − v2

2
, x2 → y = uv,

i. e., the parabolic coordinates (1.39).
3.3. Contractions of Coordinate Systems from H2 to E1,1

1. Equidistant coordinates on H2 to pseudo-spherical ones on E1,1 plane.
For Beltrami coordinates (2.10) we have:

y0 = R coth τ1 cosh τ2, y1 = R coth τ1 sinh τ2. (3.25)

Taking the limit R → ∞, τ1 → i
π

2
+

r

R
and putting

coth τ1 = tanh
r

R
∼ r

R
, (3.26)

we obtain

y0 → t = r cosh τ2, y1 → x = r sinh τ2, (3.27)

where 0 ≤ r < ∞, −∞ < τ2 < ∞. For the integral of motion we get

QEQ = K2
2 → QS = L2

3. (3.28)

2. Pseudo-spherical coordinates on H2 to Cartesian coordinates on E1,1.
For coordinates (2.10) we have

y0 = R
coth τ

cosϕ
, y1 = R cotϕ. (3.29)

Taking the limit R → ∞, τ → iπ/2, ϕ → π

2
and putting

coth τ ∼ t

R
, cotϕ ∼ x

R
, (3.30)

we see that Beltrami coordinates go into Cartesian ones

y0 → t, y1 → x. (3.31)

For the integral of motion we obtain

QS

R2
=

L2
3

R2
→ P 2

2 ∼ QC . (3.32)



262 POGOSYAN G., SISSAKIAN A., WINTERNITZ P.

4. CONTRACTION OF BASIS FUNCTIONS ON S2 AND H2

4.1. Contraction of Spherical Basis and Interbasis Expansions
1. Spherical basis on S2 to polar on E2. We start from the standard spherical

functions Ylm(θ, φ) as basis functions of irreducible representations of the group
O(3) (see, e. g., Ref. 37)

Ylm(θ, φ) = (−1)(m+|m|)/2
[

2l + 1
2

(l + |m|)!
(l − |m|)!

]1/2 (sin θ)|m|

2|m||m|! ×

×2 F1

(
−l + |m|, l + |m| + 1; |m| + 1; sin2 θ

2

)
eimφ

√
2π

. (4.1)

In the contraction limit R → ∞ we put

tan θ ∼ θ ∼ r

R
, l ∼ kR. (4.2)

Using the asymptotic formulas

lim
R→∞ 2F1

(
−kR, kR; |m| + 1;

r2

4R2

)
= 0F1

(
|m| + 1;−k2r2

4

)
(4.3)

lim
z→∞

Γ(z + α)
Γ(z + β)

= zα−β (4.4)

and formula

Jν(z) =
(z

2

)ν 1
Γ(ν + 1)0F1

(
ν + 1;−z2

4

)
, (4.5)

we obtain

lim
R→∞
θ→0

1√
R

Ylm(θ, φ) = (−1)(m+|m|)/2√kJ|m|(kr)
eimφ

√
2π

. (4.6)

The result (4.6) is not new [37]. The point is that this asymptotic formula
is obtained very naturally in the context of group contractions applied to the
separation of variables.

2. Spherical basis on S2 to Cartesian on E2. We start from the coordinates
(θ′, φ′) in Eq. (1.64), but drop the primes, and write the corresponding spherical
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functions as

Ylm(θ, φ) =
√

2l + 1
2π

eimφ(sin θ)|m| ×

×




(−1)
l+m

2

[
Γ( l+m+1

2 )Γ( l−m+1
2 )

Γ(( l+m+2
2 )Γ( l−m+2

2 )

]1/2
2F1

(
− l−m

2 , l+m+1
2 ; 1

2 ; cos2 θ
)

(−1)
l+m−1

2

[
Γ( l+m+2

2 )Γ( l−m+2
2 )

Γ(( l+m+1
2 )Γ( l−m+1

2 )

]1/2

2 cos θ 2F1

(
− l−m−1

2 , l+m+2
2 ; 3

2 ; cos2 θ
)

(4.7)

for l + m even and odd, respectively, we now put

l ∼ kR, m ∼ k2R, θ ∼ π

2
, φ ∼ π

2
, (4.8)

and

sin θ → 1, cos θ → x

R
, cosφ → y

R
. (4.9)

The 2F1 hypergeometric functions simplify to 0F1 ones, the Γ functions also
simplify and the ˇnal result is that under the contraction we have

lim
R→∞

(−1)−((l+m)/2)Ylm(θ, φ) =
√

k

k1

eik2y

π




0F1

(
1
2

;
−k2

1x
2

4

)

−i(k1x)0F1

(
3
2

;
−k1

2x2

4

)

=
√

k

k1

eik2y

√
π

{
cos k1x

−i sink1x
(4.10)

with k1
2 + k2

2 = k2 and for l + m even and odd, respectively. The parity
properties of Ylm under the exchange θ → π − θ have led to the appearance
of cos k1x and sin k1x in Eq. (4.10), instead of the usual Cartesian coordinate
solution exp i(k1x + k2y).

Finally note that the factor
√

k/k1 in formula (4.10) is connected with the
contraction of Kronecker symbols to delta function

δll′ →
1
R

δ(k − k′) =
1
R

k

k′ δ(k1 − k′
1).

3. Contraction in interbasis expansions. Let us now consider the contraction
R → ∞ for the interbasis expansion (1.69). The contraction of basis functions
was presented in the formulas (4.6) and (4.10). In order to obtain the correspond-
ing limit we need the asymptotic behavior of the ®little¯ Wigner d function for a
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large R. It is easy to see that the expression of d function for the angle π/2 in
terms of hypergeometric functions 2F1 (see for example [37]) is not applicable
for the contraction limit when : → ∞ and m → ∞ simultaneously. To make this
contraction we use an integral representation for the function dlm2,m1

(β) [37]

dlm2,m1
(β) =

im2−m1

2π

[
(l + m2)!(l −m2)!
(l + m1)!(l −m1)!

]1/2

×

×
∫ 2π

0

(
ei

ϕ
2 cos

β

2
+ i e−i(ϕ/2) sin

β

2

)�−m1

×

×
(

e−i(ϕ/2) cos
β

2
+ i ei(ϕ/2) sin

β

2

)�+m1

eim2ϕdϕ, (4.11)

which for the particular case of β = π/2 can be presented in the following form

dlm2,m1

(π

2

)
= (−1)(l−m1)/2

2l

π

[
(l + m2)!(l −m2)!
(l + m1)!(l −m1)!

]1/2

×

×
∫ π

0

(sinα)l−m1(cosα)l+m1e2im2αdα. (4.12)

Using now the formulas [44]

cos (2nα) = Tn(cos 2α), sin (2nα) = sin 2αUn−1(cos 2α),

where Tl(x) and Ul(x) are Tchebyshev polynomials of the ˇrst and second kind.
After integrating over α, we obtain a representation of the Wigner d function for
angles π/2 in terms of the hypergeometrical function 3F2(1)

dlm2,m1

(π

2

)
=

(−1)
l−m1

2

√
πl!

√
(l + m2)!(l −m2)! ×

×




{
Γ( l+m1+1

2 )Γ( l−m1+1
2 )

Γ( l+m1
2 +1)Γ( l−m1

2 +1)

}1/2

3F2

(
−m2,m2,

l+m1+1
2

1
2 , l + 1

∣∣∣1) , (l+m1)−even,

2il
(l+1)

{
Γ( l+m1

2 +1)Γ( l−m1
2 +1)

Γ( l+m1+1
2 )Γ( l−m1+1

2 )

}1/2

3F2

(
−m2+1,m2+1,

l+m1
2 +1

3
2 , l+2

∣∣∣1) , (l+m1)−odd.

(4.13)

For large R we put

l ∼ kR, m1 ∼ k1R, θ1 ∼ r

R
, θ′1 ∼ y

R
, θ′2 ∼ x

R
, (4.14)
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where k2 = k2
1 +k2

2 . Using the asimptotic formulas for 3F2(1) function (4.3) and
Γ function (4.4), we get

lim
R→∞

(−1)−
l−|m1|

2
√
Rdlm2,m1

(π

2

)
=

√
2
πk

×

×




(
k2

k2

)1/4

2F1

(
−m2,m2;

1
2

;
k + k1

2k

)
,

−im2

(
k2

k2

)1/4

2F1

(
−m2 + 1,m2 + 1;

3
2

;
k + k1

2k

)
,

= (−1)(3m2)/2

√
2

πk2

{
cosm2ϕ,
i sinm2ϕ,

(4.15)

with cosϕ = k1/k and for (: + m1) even or odd, respectively.

Multiplying now the interbasis expansion (1.69) by the factor (−1)−
l−|m1|

2 ,
and taking the contraction limit R → ∞ we obtain (θ ≡ θ2, m ≡ m2)

eik1x

{
cos k2y
sin k2y

}
=

∞∑
m=−∞

(i)|m|
{

cosmϕ
− sinmϕ

}
J|m|(kr) eimθ , (4.16)

or in exponential form

eikr cos (θ−ϕ) =
∞∑

m=−∞
(i)m Jm(kr) eim(θ−ϕ). (4.17)

The inverse expansion is

Jm(kr) eimθ =
(−i)m

2π

∫ 2π

0

eimϕ−ikr cos (θ−ϕ)dϕ. (4.18)

For θ = 0 the two last formulas are equivalent to the well-known formulas in the
theory of Bessel functions [44], namely expansions of plane waves in terms of
cylindrical ones and vice versa.

4.2. Solutions of the Lam2e Equation. Let us consider Eq. (1.60) on the
sphere S2 and separate variables in the elliptic coordinates (1.72). We obtain two
ordinary differential equation of the form

d2ψ

dρ2
+

1
2

{
1

ρ− a1
+

1
ρ− a2

+
1

ρ− a3

}
dψ

dρ
+

+
1
4

{
λ− l(l + 1)ρ

(ρ− a1)(ρ− a2)(ρ− a3)

}
ψ = 0, (4.19)
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or equivalently

4
√

P (ρ)
d

dρ

√
P (ρ)

dψ

dρ
− {l(l + 1)ρ− λ}ψ = 0, (4.20)

where

P (ρ) = (ρ− a1)(ρ− a2)(ρ− a3).

Equation (4.19) is the Lamee equation in algebraic form. It is a Fuchsian type
equation with 4 regular singularities (at a1, a2, a3, and ∞) [38Ä40,45Ä47].

Its general solution can be represented by a series expansion about any one
of the singular points ak as

ψ(ρ) = (ρ− a1)α1/2(ρ− a2)α2/2(ρ− a3)α3/2
∞∑
t=0

b
(k)
t (ρ− ak)t, (4.21)

where we have

αj(αj − 1) = 0, j = 1, 2, 3

and can choose k equal to 1, 2, or 3.
Substituting (4.21) into the Lamee equation (4.19) we obtain a three-term

recursion relation for bkt

β
(k)
t b

(k)
t+1 + [γ(k)

t + λ− l(l + 1)ak]b(k)
t +

+ (2t + α− l − 2)(2t + α + l − 1)b(k)
t−1 = 0 (4.22)

with

α = α1 + α2 + α3, αik = αi − αk, b−1 = 0,

β
(k)
t = 4(ai − ak)(aj − ak)(t + 1)(t + αk + 1/2) (i, j, k cyclic), (4.23)

γ
(k)
t = −(ai − ak)(2t + αk + αj)2 − (aj − ak)(2t + αk + αi)2.

The expansion (4.21) represents a Lamee function. Since we are interested in
representations of O(3), the sum in ψ(ρ) must be a polynomial of order N , i. e.,
we must have

bN 
= 0, bN+1 = bN+2 = . . . = 0 (4.24)

for some N . The condition for this is that we have

l = 2N + α, (4.25)
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and we obtain a secular equation for the eigenvalues λ, i. e., the separation constant
in elliptic coordinates, by requiring that the determinant of the homogeneous linear
system (3.14) for {b0, b1, . . . , bN} should vanish. Since N and l must be integers,
Eq. (4.25) implies that α and l must have the same parity.

Numerous further properties of the Lamee polynomials, in the context of
representations of the group O(3), in the O(3) ⊃ D2 basis, were established,
e. g., in Refs. 38Ä40.

Here let us just represent the basis functions as

Ψpq
lλ(ρ1, ρ2) = Apq

lλψ
pq
lλ (ρ1)ψpq

lλ (ρ2), (4.26)

where Apq
lλ is some normalization constant. The labels p, q take values ±1 and

identify representations of D2. For each value of l the values of p, q, and λ label
(2l + 1) different states. Since the given representations (p, q) of D2 can ˇgure
more than once in the reduction of a representation of O(3) corresponding to the
given l, we are faced with a ®missing label problem¯, resolved by the quantum
number λ, i. e., the operator Q of Eq. (1.63).

The expansions that we shall use for the Lamee polynomials in (4.26) are as
in Eq. (4.21), but the summation over t is from t = 0 to t = N .

4.3. Elliptic Basis on S2 to Cartesian Basis on E2. We choose elliptic
coordinates on S2 as in Eq. (1.72), but with a1 < a3 < a2, as in Eq. (3.5). We
write the basis functions as in Eq. (4.26) with

ψlλ(ρ1) = (ρ1 − a1)α1/2(ρ1 − a2)α2/2(ρ1 − a3)α3/2
N∑
t=0

b
(1)
t (ρ1 − a1)t,

ψlλ(ρ2) = (ρ2 − a1)α1/2(ρ2 − a2)α2/2(ρ2 − a3)α3/2
N∑
t=0

b
(2)
t (ρ2 − a2)t

(4.27)

as in Eq. (4.21). The coefˇcients b
(j)
t (j = 1, 2) satisfy the recursion relation

(4.22) and we have N = (l−α)/2. We use the coordinates ξ1 and ξ2 introduced
in Eq. (3.7) (for a ≡ a3 − a1 = a2 − a3). Equation (4.27) reduces to

ψlλ(ξ1) = (−1)(α2+α3)/2aα/2(1−ξ1)α1/2(1+ξ1)α2/2ξ
α3/2
1

N∑
t=0

C1
t (1−ξ1)t,

(4.28)

ψlλ(ξ2) = (−1)α2/2aα/2(1 − ξ2)α2/2(1 + ξ2)α1/2ξ
α3/2
2

N∑
t=0

C2
t (1 − ξ2)t
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with C
(1)
t = atbt, C

(2)
t = (−a)tbt. The recursion relations (4.22) now imply

8(t + 1)
(
t + α1 +

1
2

)
C

(1)
t+1 + {µ(1) − 2(2t + α1 + α3)2 −

−(2t + α1 + α2)2}C(1)
t + (2t + α− l − 2)(2t + α + l − 1)C(1)

t−1 = 0, (4.29)

−8(t + 1)
(
t + α2 +

1
2

)
C

(2)
t+1 + {µ(2) + +2(2t + α2 + α3)2 +

+(2t + α1 + α2)2}C(2)
t − (2t + α− l − 2)(2t + α + l − 1)C(2)

t−1 = 0,

where

µ(j) =
1
a

[λ− aj l(l + 1)], j = 1, 2. (4.30)

The contraction limit is taken using Eq. (3.7) to relate ξ1,2 to the Cartesian
coordinates on E2. Taking l ∼ kR we ˇnd

µ(1) → 2R2k2
1 , µ(2) → −2R2k2

2 , k =
√

k2
1 + k2

2 . (4.31)

For R → ∞ the recursion relations (4.29) simplify to two-term ones that can be
solved to obtain

C
(j)
t =

R2t

(αj + 1/2)t

(
−k2

j

4

)t
1
t!

(4.32)

with (
αj +

1
2

)
t

=
(
αj +

1
2

)(
αj +

3
2

)
. . .

(
αj −

3
2

+ t

)
,

t ≥ 1,
(
αj +

1
2

)
0

= 1.

Substituting (4.3) into (4.28) we obtain

ψlλ(ξ1) = (−1)(α2+α3)/2
aα/2

Rα1
xα1

0F1

(
α1 +

1
2

;−k2
1x

2

4

)
,

ψlλ(ξ2) = (−1)α2/2
aα/2

Rα2
yα2

0F1

(
α2 +

1
2

;−k2
2y

2

4

)
.

(4.33)
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Using now the formula (4.10) we ˇnd the contraction limit:

Apq
lλ (R)ψlλ(ξ1, ξ2) → Apq

lλ (R)ψk1 (x)ψk2 (y) = Apq
lλ (−1)α3/2aα/2 ×

×




cos k1x cos k2y, α1 = 0, α2 = 0

− 1
k2R

cos k1x sin k2y, α1 = 0, α2 = 1

− 1
k1R

sin k1x cos k2y, α1 = 1, α2 = 0

− 1
k1k2R2

sin k1x sin k2y, α1 = 1, α2 = 1.

(4.34)

4.4. Elliptic Basis on S2 to Elliptic Basis on E2. Let us start from the
elliptic coordinates (1.72) with a1 ≤ ρ1 ≤ a2 ≤ ρ2 ≤ a3. We take the limit
R → ∞, a3 → ∞ with

√
a3/R, a1 and a2 ˇnite. We introduce a constant D as

in Eq. (3.2). Elliptic coordinates on the plane E2 are introduced via Eq. (3.4),
so that the Cartesian coordinates (x, y) are expressed in terms of the elliptic ones
(ξ, η) as in Eq. (1.41). Let us ˇrst take the limit in the separated equations (4.19).
Going over to the variables (ξ, η) from (ρ1, ρ2) we obtain for R → ∞:

d2ψ1

dη2
+
{
µ− k2D2

2

(
a2 + a1

a2 − a1

)
− k2D2

2
cos 2η

}
ψ1 = 0, (4.35)

d2ψ2

dξ2
+
{
µ− k2D2

2

(
a2 + a1

a2 − a1

)
− k2D2

2
cosh 2ξ

}
ψ2 = 0 (4.36)

with

µ =
λ

a3
, l ∼ kR.

In (4.35) we recognize the standard form of the Mathieu equation, whereas
Eq. (4.36) is a modiˇed Mathieu equation [41]. Thus, in the contraction limit,
Lamee functions will go over into Mathieu ones. Moreover, periodic solutions of
the Lamee equation go over into periodic solutions of Eq. (4.35).

The contraction limit can also be taken directly in the Lamee polynomials,
using the expansion (4.21) (cut off at t = N ). The result that we obtain is

lim
R→∞

Ψlλ(ρ1)
Rα3

= (a2 − a1)α/2
(−1)(α2+α3)/2

Dα3
×

× (cos η)α1(sin η)α2

∞∑
t=0

Ct(cos η)2t, (4.37)
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lim
R→∞

Ψlλ(ρ2)
Rα3

= (a2 − a1)α/2
(−1)α3/2

Dα3
×

× (cosh ξ)α1(sinh ξ)α2

∞∑
t=0

Ct(cosh ξ)2t, (4.38)

where the expansion coefˇcients Ct satisfy recursion relations obtained from
Eq. (4.22), namely

4(t + 1)(t + 1/2 + α1)Ct + {µ− (2t + α1 + α2)2}Ct − k2D2Ct = 0. (4.39)

4.5. Elliptic Basis on S2 to Parabolic Basis on E2. Let us consider the
contraction limit for the Lamee equations (4.19). To do this we use equations
(1.76) with a3−a2 = a2−a1 = a, i. e., k = k′ = 1/

√
2, together with Eq. (3.17),

to obtain

ρ1 ∼ a1 + a

(
−1 +

u2

2R

)
, ρ2 ∼ a1 + a

(
1 +

v2

R

)
. (4.40)

The equation (4.19) for ρ = ρ1 and ρ = ρ2 in the limit R → ∞, with l2 ∼ k2R2

and λ− a2l(l + 1) = µRa, yields the two equations

d2ψ1

du2
+ (k2u2 + µ)ψ1 = 0,

d2ψ2

dv2
+ (k2v2 − µ)ψ2 = 0, (4.41)

respectively.
Thus the Lamee equations in the contraction limit go over into the equations

(4.41) for parabolic cylinder functions [44]. The same is of course true for
solutions. The expansion (4.21) is not suitable for the contraction limit. In
view of Eq. (3.17) we need expansions in terms of the variables (1 + snα) and
(1 −

√
2 dnβ). This is not hard to do, following for instance methods used

in Ref. 48 to relate the wave functions of a two-dimensional hydrogen atom,
calculated in different coordinate systems. The formulas are cumbersome, so we
shall not present them here.

4.6. Contractions of Basis Functions from H2 to E2 and E1,1

1. Pseudo-spherical basis on H2 to polar basis on E2. The pseudo-spherical
eigenfunctions Ψρm(τ, ϕ) normalized to the Dirac delta-function, have the form:

Ψρm(τ, ϕ) =

√
ρ sinhπρ

2π2R

∣∣∣∣Γ
(

1
2

+ iρ + |m|
)∣∣∣∣×

× P
|m|
iρ−1/2(cosh τ) exp (imϕ), (4.42)
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where m = 0,±1,±2, . . . In the contraction limit R → ∞ we put: tanh τ ∼
τ ∼ r/R, ρ ∼ kR. Rewriting the Legendre function in terms of hypergeometric
function as [49]

P
|m|
iρ−1/2(cosh τ) =

Γ(1/2 + iρ + |m|)
Γ(1/2 + iρ− |m|)

1
|m|!2|m| 2F1 ×

×
(

1
2

+ |m| + iρ,
1
2

+ |m| − iρ; 1 + |m|;− sinh2 τ

2

)
.

Then using the asymptotic formula for hypergeometrical function 2F1 and Γ
function

lim
|y|→∞

| Γ(x + iy) | exp
(π

2
|y|
)
|y|1/2−x =

√
2π, (4.43)

we obtain in the contraction limit R → ∞:

lim
R→∞

Ψρm(τ, ϕ) =
√
kJ|m|(kr)

eimϕ

√
2π

.

2. Pseudo-spherical basis on H2 to Cartesian basis on E1,1. Taking the
Legendre function in Eq. (4.42) in terms of two hypergeometric functions [49]

Pm
iρ−1/2(cosh τ) =

√
π2m(sinh τ)−m

Γ
(

3
4
− m + iρ

2

)
Γ
(

3
4
− m− iρ

2

) ×

×


2 cosh τ

Γ
(

3
4
− m + iρ

2

)
Γ
(

3
4
− m− iρ

2

)

Γ
(

1
4
− m + iρ

2

)
Γ
(

1
4
− m− iρ

2

) ×

× 2F1

(
3
4
− m + iρ

2
,

3
4
− m− iρ

2
;

3
2

; cosh2 τ

)
+

+2F1

(
1
4
− m + iρ

2
,

1
4
− m− iρ

2
;

1
2

; cosh2 τ

)
.

Putting for large R

ρ ∼ kR, m ∼ k1R, coth τ ∼ t

R
, cotϕ ∼ x

R
, k2 + k2

1 = k2
0 .
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Using two asymptotic formulas

lim
R→∞

2F1

(
1
4
− m + iρ

2
,

1
4
− m− iρ

2
;

1
2

; cosh2 τ

)
=

= 0F1

(
1
2

;−k2
0t

2

4

)
= cos (k0t),

lim
R→∞

2F1

(
3
4
− m + iρ

2
,

3
4
− m− iρ

2
;

3
2

; cosh2 τ

)
=

= 0F1

(
3
2

;−k2
0t

2

4

)
=

sin (k0t)
k0t

and formula (4.4) we ˇnally obtain

lim
R→∞

√
R|Γ(iρ)|Ψρm(τ, ϕ) =

√
2
k0

eik0t−ik1x. (4.44)

4.7. Contractions for Equidistant Basis on H2

1. Equidistant basis on H2 to Cartesian basis on E2. In the equidistant
system the normalized eigenfunctions Ψρλ(τ1, τ2) have the form:

Ψρλ(τ1, τ2) =

√
ρ sinhπρ

cosh2 πλ + sinh2 πρ
(cosh τ1)−1/2P iρ

iλ−1/2(− tanh τ1) eiλτ2 .

To perform the contraction we write the Legendre function in terms of hyperge-
ometric function [49]

P iρ
iλ−1/2(− tanh τ1) =

√
π2iρ(cosh τ1)−iρ

Γ
(

3
4
− a

)
Γ
(

3
4
− b

) ×

×


2F1

(
1
4

+ a,
1
4

+ b;
1
2

; tanh2 τ1

)
+ 2 tanh τ1

Γ
(

3
4
− a

)
Γ
(

3
4
− b

)

Γ
(

1
4
− a

)
Γ
(

1
4
− b

)×

× 2F1

(
3
4
− a,

3
4
− b;

3
2

; tanh2 τ1

)
 ,

where a = i(ρ− λ)/2; b = i(ρ + λ)/2. For large R we put ρ ∼ kR, λ ∼ k1R;
τ2 ∼ x/R, τ1 ∼ y/R, where x, y are the Cartesian coordinates. Then using the
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asymptotic formulas:

lim
R→∞

2F1

(
1
4

+ a,
1
4

+ b;
1
2

; tanh2 τ1

)
= 0F1

(
1
2

;−y2k2
2

4

)
= cos k2y,

lim
R→∞

2F1

(
3
4
− a,

3
4
− b;

3
2

; tanh2 τ1

)
= 0F1

(
3
2

;−y2k2
2

4

)
=

1
k2y

sink2y,

where k2
1 + k2

2 = k2, we ˇnally get

lim
R→∞

Ψρλ(τ1, τ2) =
√

k

πk2
exp (ik1x + ik2y).

2. Contraction from equidistant basis on H2 to polar on E1,1. Writting the
Legendre function in terms of hypergeometric functions [49]

P iρ
iλ−1/2(tanh τ1) =

1√
2π

(sinh τ1)iρ
{
2−iλ(coth τ1)iλ+1/2 Γ(−iλ)

Γ(1/2 − i(ρ + λ))
×

× 2F1

(
1
4
− i(ρ− λ)

2
,

3
4
− i(ρ− λ)

2
; 1 + iλ; coth2 τ1

)
+ 2iλ(coth τ1)−iλ+1/2 ×

× Γ(iλ)
Γ(1/2 − i(ρ− λ) 2F1

(
1
4
− i(ρ + λ)

2
,

3
4
− i(ρ + λ)

2
; 1 − iλ; coth2 τ1

)}
.

Putting for large R: ρ ∼ kR and cosh τ1 ∼ r/R, and using the asymptotic
formulas for hypergeometric functions

lim
R→∞

2F1

(
1
4
− i(ρ− λ)

2
,

3
4
− i(ρ− λ)

2
; 1 + iλ; coth2 τ1

)
=

= Γ(1 + iλ)
(
kr

2

)−iλ

Jiλ(kr),

lim
R→∞

2F1

(
1
4
− i(ρ + λ)

2
,

3
4
− i(ρ + λ)

2
; 1 − iλ; coth2 τ2

)
=

= Γ(1 − iλ)
(
kr

2

)+iλ

J−iλ(kr),

we obtain

lim
R→∞

1√
R

Ψρλ(α, τ2) =

√
k

2
H

(1)
iλ (kr)eiλ(τ2+i(π/2)),

where H
(1)
ν (z) is the ˇrst kind of Hankel function.
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