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A nonperturbative approach to 2D covariant gauge QCD is presented in the context of the
SchwingerÄDyson equations for quark and ghost propagators and the corresponding SlavnovÄTaylor
identities. The distribution theory, complemented by the dimensional regularization method, is used
in order to correctly treat the severe infrared singularities which inevitably appear in the theory. By
working out the multiplicative renormalization program, we remove them from the theory on a general
ground and in a self-consistent way, proving thus the infrared multiplicative renormalizability of 2D
QCD within our approach. This makes it possible to sum up the inˇnite series of the corresponding
planar skeleton diagrams in order to derive a closed set of equations for the infrared renormalized
quark propagator. We have shown that complications due to ghost degrees of freedom can be
considerable within our approach. It is shown exactly that 2D covariant gauge QCD implies quark
conˇnement (the quark propagator has no poles, indeed) as well as dynamical breakdown of chiral
symmetry (a chiral symmetry preserving solution is forbidden). We also show explicitly how to
formulate the bound-state problem and the SchwingerÄDyson equations for the gluon propagator and
the triple gauge proper vertex, all free of the severe IR singularities.

‚ · ³± Ì Ê· ¢´¥´¨° ˜¢¨´£¥· Ä„ °¸µ´  ¨ ¸µµÉ¢¥É¸É¢ÊÕÐ¨Ì Éµ¦¤¥¸É¢ ‘² ¢´µ¢ Ä’Ô°²µ· 
¶·¥¤²µ¦¥´ ´¥¶¥·ÉÊ·¡ É¨¢´Ò° ¶µ¤Ìµ¤ ± ¤¢Ê³¥·´µ° Š•„ ¢ ±µ¢ ·¨ ´É´µ° ± ²¨¡·µ¢±¥. ’¥µ·¨Ö
µ¡µ¡Ð¥´´ÒÌ ËÊ´±Í¨°, ¤µ¶µ²´¥´´ Ö ³¥Éµ¤µ³ · §³¥·´µ° ·¥£Ê²Ö·¨§ Í¨¨, ¨¸¶µ²Ó§Ê¥É¸Ö ¤²Ö Éµ£µ,
ÎÉµ¡Ò ¶· ¢¨²Ó´µ É· ±Éµ¢ ÉÓ ¸¨²Ó´Ò¥ ¨´Ë· ±· ¸´Ò¥ ¸¨´£Ê²Ö·´µ¸É¨, ±µÉµ·Ò¥ ´¥¨§¡¥¦´µ ¶µÖ¢²Ö-
ÕÉ¸Ö ¢ É¥µ·¨¨. � §· ¡µÉ ´  ³Ê²ÓÉ¨¶²¨± É¨¢´ Ö ·¥´µ·³ ²¨§ Í¨µ´´ Ö ¶·µ£· ³³  ¤²Ö Éµ£µ, ÎÉµ¡Ò
Ê¤ ²¨ÉÓ ¢ÒÏ¥Ê¶µ³Ö´ÊÉÒ¥ ¨´Ë· ±· ¸´Ò¥ · ¸Ìµ¤¨³µ¸É¨ ¨§ ¢¸¥Ì ¸¥±Éµ·µ¢ Š•„ ¸ ³µ¸µ£² ¸µ¢ ´-
´Ò³ µ¡· §µ³. ’µÎ´Ò³ µ¡· §µ³ ¶µ± § ´µ, ÎÉµ ¤¢Ê³¥·´ Ö Š•„ ¢ ±µ¢ ·¨ ´É´µ° ± ²¨¡·µ¢±¥ É·¥¡Ê¥É
±¢ ·±µ¢µ£µ ±µ´Ë °´³¥´É  (±¢ ·±µ¢Ò° ¶·µ¶ £ Éµ· ¤¥°¸É¢¨É¥²Ó´µ ´¥ ¨³¥¥É ¶µ²Õ¸µ¢),   É ±¦¥ ¤¨-
´ ³¨Î¥¸±µ£µ ´ ·ÊÏ¥´¨Ö ±¨· ²Ó´µ° ¸¨³³¥É·¨¨ (·¥Ï¥´¨¥, ¸µÌ· ´ÖÕÐ¥¥ ±¨· ²Ó´ÊÕ ¸¨³³¥É·¨Õ,
§ ¶·¥Ð¥´µ). ’ ±¦¥ ¶µ± § ´µ ¢ Ö¢´µ³ ¢¨¤¥, ± ± ´Ê¦´µ ¸Ëµ·³Ê²¨·µ¢ ÉÓ ¶·µ¡²¥³Ê ¸¢Ö§ ´´ÒÌ ¸µ-
¸ÉµÖ´¨°, ¸¢µ¡µ¤´ÊÕ µÉ ¢¸¥Ì ¨´Ë· ±· ¸´ÒÌ · ¸Ìµ¤¨³µ¸É¥°.

INTRODUCTION

In his paper [1], 't Hooft investigated two-dimensional (2D) QCD in the
light-cone gauge which is free from ghost complications. He used also large Nc

(the number of colors) limit technique in order to make the perturbation (PT)
expansion with respect to 1/Nc reasonable. In this case the planar diagrams
are reduced to quark self-energy and ladder diagrams which can be summed.
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The bound-state problem within the BetheÄSalpeter (BS) formalism was ˇnally
obtained free from the infrared (IR) singularities. The existence of a discrete
spectrum only (no continuum in the spectrum) was demonstrated. Since this
pioneering paper, 2D QCD continues to attract attention (see, for example, review
[2] and recent papers [3Ä5] and references therein). Despite its simple vacuum
structure it remains a rather good laboratory for the modern theory of strong
interaction which is four-dimensional (4D) QCD [6].

The most important yet unsolved problems in QCD are, of course, quark
conˇnement and the dynamical (spontaneous) breakdown of chiral symmetry (or
equivalently dynamical chiral symmetry breaking (DCSB)) closely related to it.
In this work a new, nonperturbative (NP) solution (using neither large Nc limit
technique explicitly nor a weak coupling regime, i. e., ladder approximation) to
2D QCD in the covariant gauge is obtained. This makes it possible to construct
a 2D covariant gauge model for the above-mentioned important phenomena. It is
well known, however, that covariant gauges, in general, are complicated by the
ghost contributions. Nevertheless, we will show that ghost degrees of freedom
can be considerable within our approach. The ghost-quark sector contains a
very important piece of information on quark degrees of freedom themselves
through the corresponding quark SlavnovÄTaylor (ST) identity. This is just the
information which should be self-consistently taken into account. Some results
of the present investigation have been already presented in Ref. 7.

The paper is organized as follows. In section 1, we derive the IR renormalized
SchwingerÄDyson (SD) equation for the quark propagator. In section 2, the SD
equation for the IR renormalized ghost self-energy is also derived. In section 3,
the quark-ghost sector represented by the quark ST identity is analyzed and the
IR renormalized quark ST identity is obtained. In section 4, we show that the
obtained complete set of equations for the IR renormalized quark propagator can
be reduced to a system of coupled, nonlinear differential equations of the ˇrst
order. By solving the above-mentioned system of equations, it is explicitly shown
that the quark propagator has no poles, indeed (section 5), and that the dynamical
(spontaneous) breakdown of chiral symmetry is required (section 6). In section 7,
the IR properties of the theory in the quark-ghost and YangÄMills (YM) sectors
(by using the corresponding ST identities for the three- and four-gluon vertices)
have been discussed. Within the BS formalism we formulate the bound-state
problem free from the IR singularities. In sections 8 and 9, the IR properties
of the SD equations for the gluon propagator and three-gluon proper vertex are
investigated, respectively. This makes it possible to formulate a general system in
order to remove all the severe IR divergences from the theory in a self-consistent
way, and thus to prove the IR multiplicative renormalizability of our approach to
2D QCD. In section 10, we compare our approach with the 't Hooft model [1]
with respect to the approximations made. In section 11, we discuss our results
and present our conclusions. Some perspectives for 4D QCD are also discussed
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there. We have investigated a nonzero quark masses case in Appendix A. We
have shown explicitly that our solution for the quark propagator possesses a heavy
quark �avor symmetry. In Appendix B, we show schematically how the bound-
state problem can be reduced to an algebraic problem within our approach in the
framework of the BS formalism.

1. IR RENORMALIZED QUARK PROPAGATOR

Let us consider the SD equation for the quark propagator (PT unrenormalized
(as well as other quantities) for simplicity in order not to complicate notations
here and everywhere below) in momentum space with Euclidean signature (see
Fig. 1)

Fig. 1. The quark SD equation. Here and in all ˇgures below D → D0 is understood

S−1(p) = S−1
0 (p) − g2CF i

∫
dnq

(2π)n
Γµ(p, q)S(p − q)γνD0

µν(q), (1.1)

where CF is the eigenvalue of the quadratic Casimir operator in the fundamental
representation (for SU(Nc), in general, CF = (N2

c − 1)/2Nc = 4/3) and

S−1
0 (p) = i(p̂ + m0) (1.2)

with m0 being the current (®bare¯) mass of a single quark. Γµ(p, q) is the
corresponding quark-gluon proper vertex function. Instead of the simpliˇcations
due to the limit Nc → ∞ at ˇxed g2Nc and light-cone gauge [1, 8] (see section 10
below), we are going to use throughout the present investigation the free gluon
propagator in the covariant gauge from the very beginning. This makes it possible
to maintain the direct interaction of massless gluons, which is the main dynamical
effect in QCD of any dimensions. In the covariant gauge it is

D0
µν(q) = i

(
gµν + (ξ − 1)

qµqν

q2

) 1
q2

, (1.3)

where ξ is the gauge ˇxing parameter. Let us emphasize the fact that by using the
gluon propagator in the whole momentum range, we are investigating the quark
propagator in the whole momentum range as well.
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The important observation now is that, for the free gluon propagator, the
exact singularity 1/q2 at q2 → 0 in 2D QCD is severe and therefore it should
be correctly treated within the distribution theory (DT) [9, 10] (in Ref. 10 some
fundamental results of pure mathematical tractate on the DT [9] necessary for
further purpose are presented in a suitable form). In order to actually deˇne
the system of the SD equations (see below) in the IR region, it is convenient
to apply the gauge-invariant dimensional regularization (DR) method of 't Hooft
and Veltman [11] in the limit D = 2 + 2ε, ε → 0+. Here and below, ε is the
IR regularization parameter which is to be set to zero at the end of computations.
Let us use in the sense of the DT (i. e., under integrals, taking into account the
smoothness properties of the corresponding test functions) the relation [9, 10]

q−2 =
π

ε
δ2(q) + ˇnite terms, ε → 0+. (1.4)

We point out that after introducing this expansion here and everywhere below, one
can ˇx the number of dimensions, i. e., put D = n = 2 without any further prob-
lems since there will be no other severe IR singularities with respect to ε as ε →
0+ in the corresponding SD equations but those explicitly shown in this expansion.

It is worth emphasizing that the IR singularity (1.4) is, on the one hand, the
unique, simplest IR singularity possible in 2D QCD; on the other hand, it is a NP
(severe) singularity at the same time [9, 10]. In this connection, let us remind
that in 4D QCD the free gluon's IR singularity is not severe, i. e., the Laurent
expansion (1.4) does not exist in this case, so it is a PT singularity there. In
other words, the free gluon propagator is the NP itself from the very beginning,
and thus may serve as a rather good approximation to the full gluon propagator,
at least in the deep IR region, since it exactly reproduces a possible severe IR
singularity of the full gluon propagator. This is important since precisely the
IR properties of the theory are closely related to its NP dynamics, and therefore
they are responsible for such NP effects as quark conˇnement and dynamical
(spontaneous) breakdown of chiral symmetry. That the free gluon propagator IR
singularity exactly reproduces a possible simplest NP IR singularity of the full
gluon propagator, is a particular feature of 2D QCD. This underlines a special
status of this theory. In this case all other Green's functions (in particular, the
quark-gluon and ghost-gluon vertices) should be considered as regular functions
of the momentum transfer (otherwise, obviously, the IR singularity becomes ef-
fectively stronger than (1.4)). In the quark-ghost sector, however, the momentum
transfer goes through the momentum of the ghost self-energy (see section 3).
In its turn, this means that the quark-gluon vertex is regular with respect to the
ghost self-energy momentum. At the same time, we will show that the ghost
self-energy can be regular at the origin as well. Apparently, in nD QCD all the
severe IR singularities are to be mainly accumulated in the full gluon propagator
and effectively correctly described by its structure in the IR domain.



92 GOGOKHIA V., KLUGE GY.

In the presence of such a severe singularity (1.4) all Green's functions become
generally dependent on the IR regularization parameter ε, i. e., they become IR
regularized. For simplicity, this dependence is not shown explicitly. Let us
introduce the IR renormalized quark-gluon vertex function, coupling constant and
the quark propagator as follows:

Γµ(p, q) = Z−1
1 (ε)Γ̄µ(p, q), g2 = X(ε)ḡ2, ε → 0+,

S(p) = Z2(ε)S̄(p). (1.5)

Here and below Z1(ε), Z2(ε), and X(ε) are the corresponding IR multiplica-
tive renormalization (IRMR) constants. The ε-parameter dependence is indicated
explicitly to distinguish them from the usual ultraviolet (UV) renormalization
constants. In all relations containing the IRMR constants, the ε → 0+ limit is
always assumed at the ˇnal stage. Γ̄µ(p, q) and S̄(p) are the IR renormalized
Green's functions and therefore they do not depend on ε in the ε → 0+ limit, i. e.,
they exist as ε → 0+, as does the IR renormalized coupling constant ḡ2 (charge
IR renormalization). There are no restrictions on the ε → 0+ limit behavior of the
IRMR constants apart from the smooth ε dependence of the quark wave function
IRMR constant Z2(ε) (see Eq. (1.7) below).

Substituting all these relations into the quark SD equation (1.1), and taking
into account the expansion (1.4), we see that a cancellation of the IR divergences
takes place if and only if (iff)

X(ε)Z2
2 (ε)Z−1

1 (ε) = εYq, ε → 0+, (1.6)

holds. Here Yq is an arbitrary but ˇnite constant. Thus the relation (1.6) is the
quark SD equation IR convergence condition in the most general form. It is
evident that this very condition and the similar ones below govern the concrete
ε-dependence of the IRMR constants which, in general, remain arbitrary. The
quark SD equation for the IR renormalized quantities becomes

S̄−1(p) = Z2(ε)S−1
0 (p) + ḡ2YqΓ̄µ(p, 0)S̄(p)γµ. (1.7)

Let us note that the IR renormalized coupling constant in 2D QCD has the
dimensions of mass. All other ˇnite numerical factors (apart from Yq) have been
included into it. Also here and below all other ˇnite terms become terms of order
ε and therefore they vanish in the ε → 0+ limit after the completion of the IRMR
program (in order to remove all the severe IR singularities from the theory on a
general ground).

A few remarks are in order. Here and everywhere below in the derivation
of the equations for the IR renormalized quantities we use the relation qµqν =
(1/2)gµνq2 in the sense of the symmetric integration in 2D Euclidean space, since
it is multiplied by the δ function (i. e., q → 0). As was mentioned above, the ˇnite
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numerical factor (ξ + 1)/2 has been included into the IR renormalized coupling
constant (in principle, in the presence of an arbitrary mass scale parameter one
can forget about arbitrary, ˇnite constants). In its turn, this means that there is
no explicit dependence on the gauge ˇxing parameter in the quark SD equation
(1.7). The same will be true for the quark ST identity (see below).

Let us also show brie�y that the gauge ˇxing parameter is the IR ˇnite from
the very beginning, indeed. Similar to relations (1.5), let us introduce the IRMR
constant of the gauge ˇxing parameter as follows: ξ = X1(ε)ξ̄, where again ξ̄
exists as ε goes to zero, by deˇnition. Then in addition to the quark SD equation
IR convergence condition (1.6) one has one more condition including the gauge
ˇxing parameter IRMR constant, namely

X1(ε)X(ε)Z2
2 (ε)Z−1

1 (ε) = εY1, ε → 0+. (1.8)

However, combining these two conditions, one immediately obtains X1(ε) =
X1 = Y1Y

−1
q . So this ˇnite but arbitrary number can be put to unity not losing

generality since nothing depends explicitly on the gauge ˇxing parameter.
The information about the quark-gluon vertex function at zero momentum

transfer can be provided by the quark ST identity [6, 12, 13] which contains
unknown ghost contributions in the covariant gauge. For this reason let us
consider in the next section the SD equation for the ghost self-energy.

2. IR RENORMALIZED GHOST SELF-ENERGY

The ghost self-energy b(k2) also obeys a simple SD equation in Euclidean
space [6, 14] (see Fig. 2)

Fig. 2. The ghost self-energy SD equation with deˇnition b1(k
2) = ik2b(k2)

ik2b(k2) = g2CAi

∫
dnq

(2π)n
Gµ(k, q)G(k − q)(k − q)νD0

µν(q), (2.1)

where CA is the eigenvalue of the quadratic Casimir operator in the adjoint
representation (for SU(Nc), in general, CA = Nc). The ghost propagator is

G(k) = − i

k2[1 + b(k2)]
, (2.2)
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and

Gµ(k, q) = kλGλµ(k, q) (2.3)

is the ghost-gluon vertex function (Gλµ = gλµ in perturbation theory).
Similar to the previous relations, let us introduce the IR renormalized ghost

self-energy

b(k2) = Z̃(ε)b̄(k2), ε → 0+ (2.4)

and the IR renormalized ghost-gluon vertex function

Gµ(k, q) = Z̃1(ε)Ḡµ(k, q), ε → 0+, (2.5)

where b̄(k2) and Ḡµ(k, q) are IR renormalized, by deˇnition. Thus they do not
depend on the parameter ε in the ε → 0+ limit which is always assumed in this
kind of relations. Z̃(ε) and Z̃1(ε) are the corresponding IRMR constants. The IR
renormalized ghost propagator is deˇned as

G(k) = Z̃2(ε)Ḡ(k), ε → 0+, (2.6)

where Z̃2(ε) is also the corresponding IRMR constant and Ḡ(k) exists as ε → 0+.
From these deˇnitions it follows that the ghost propagator IRMR constant Z̃2(ε)
is completely determined by the ghost self-energy IRMR constant Z̃(ε) and vice
versa, i. e.,

Z̃2(ε) = Z̃−1(ε). (2.7)

As in the previous case, the dependence of these IRMR constants on ε in general
is arbitrary apart from the ghost self-energy IRMR constant Z̃(ε). The expression
for the IR renormalized ghost propagator is

Ḡ(k) = − i

k2
[
Z̃−1(ε) + b̄(k2)

] , ε → 0+. (2.8)

From this expression it obviously follows that the regular dependence of Z̃(ε)
on ε in the ε → 0+ limit should be excluded from the very beginning. The
problem is that if Z̃(ε) vanishes as ε → 0+, i. e., Z̃−1(ε) is singular, then the
full ghost propagator simply reduces to the free one, and there is no nontrivial
renormalization at all. In other words, in this case the IR renormalized ghost
propagator is vanishing in the ε → 0+ limit. This means in its turn that all the
necessary information about quark degrees of freedom which is contained in the
quark-ghost sector will be ˇnally totally lost (see next section). Thus the only
nontrivial cases remaining are:
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1) When the ghost self-energy is IR renormalized from the very beginning
(i. e., Z̃(ε) ≡ Z̃ = const, so that it is IR ˇnite), then the ghost propagator is also
IR ˇnite.

2) The IRMR constant Z̃(ε) is singular as ε goes to zero, so its inverse is
regular in the same limit.

Substituting all these relations as well as relation (1.4) into the initial SD
equation for the ghost self-energy (2.1), we see that a cancellation of the severe
IR divergences takes place iff

X(ε)Z̃1(ε)Z̃2(ε)Z̃−1(ε) = εYg, ε → 0+, (2.9)

holds. Here Yg is an arbitrary but ˇnite constant (different from Yq , of course).
This is the ghost self-energy SD equation IR convergence condition in the most
general form. The ghost SD equation for the IR renormalized quantities becomes
(in the Euclidean space)

ik2b̄(k2) = −ḡ2
1YgḠµ(k, 0)Ḡ(k)kµ, (2.10)

where all known ˇnite numerical factors are included into the IR renormalized
coupling constant ḡ2

1 , apart from Yg (see section 3).
2.1. Ghost-Gluon Vertex. In order to show that the IR renormalized ghost

self-energy may exist and be ˇnite at origin, one has to extract k2 from the right-
hand side of Eq. (2.10), and then pass to the limit k2 = 0. For this aim, let us
consider the IR renormalized counterpart of the ghost-gluon vertex (2.3) which is
shown in Eq. (2.5)

Ḡµ(k, q) = kλḠλµ(k, q). (2.11)

Its general decomposition is

Ḡλµ(k, q) = gλµG1 + kλkµG2 + qλqµG3 + kλqµG4 + qλkµG5, (2.12)

and (l = k − q)

Gi ≡ Gi(k2, q2, l2), i = 1, 2, 3, 4, 5. (2.13)

Substituting this into the previous vertex (2.11), one obtains

Ḡµ(k, q) = kµḠ1(k, q) + qµḠ2(k, q), (2.14)

where

Ḡ1(k, q) = G1 + k2G2 + (kq)G5 = G1 + k2(G2 + G5) − (kl)G5,

Ḡ2(k, q) = k2G4 + (kq)G3 = k2(G3 + G4) − (kl)G3. (2.15)



96 GOGOKHIA V., KLUGE GY.

Thus at zero momentum transfer (q = 0), one has

Ḡµ(k, 0) = kµḠ1(k, 0) = kµḠ1(k2), (2.16)

where

Ḡ1(k2) = G1(k2) + k2G2(k2). (2.17)

Let us remind that the form factors (2.13) exist when any of their momenta goes
to zero∗. Taking now into account the relation (2.16) and the deˇnition (2.8),
it is easy to see that the corresponding equation (2.10) for determining b̄(k2) is
nothing else but an algebraic equation of second order, namely

b̄2(k2) + Z̃−1b̄(k2) =
1
k2

ḡ2
1YgḠ1(k2). (2.18)

Its solutions are

b̄1,2(k2) = −1
2
Z̃−1 ±

√
1
4
Z̃−2 +

1
k2

ḡ2
1YgḠ1(k2). (2.19)

Let us remind that in this equation Z̃−1 ≡ Z̃−1(ε) is either constant or vanishes
as ε → 0+, so it always exists in this limit. If now (see also Ref. 14)

Ḡ1(k2) = k2R1(k2), k2 → 0, (2.20)

and R1(k2) exists and is ˇnite at zero point, then the ghost-self energy exists and
is ˇnite at the origin as well∗∗. Because of the relation (2.17) this can be achieved
in general by setting G1(k2) = k2R(k2) and then R1(k2) = R(k2) + G2(k2).
Let us emphasize in advance that our ˇnal results will not explicitly depend on
the auxiliary technical assumption (2.20).

Obviously, Eq. (2.10) can be rewritten in the equivalent form as follows:

−ḡ2
1YgḠµ(k, 0)Ḡ(k) = ikµb̄(k2), (2.21)

∗The signiˇcance of the unphysical kinematical singularities in the Euclidean space, where
k2 = 0 implies ki = 0, becomes hypothetical. In Minkowski space they always can be removed in
advance by the Ball and Chiu procedure [15] as well as from the quark-gluon vertex.

∗∗In principle, singular dependence of the ghost self-energy on its momentum should not be
excluded a priori. However, the ST identity (see next section) is to be treated in a completely
different way in this case and therefore it is left for consideration elsewhere. Also the smoothness
properties of the corresponding test functions are compromised in this case and the use of the relation
(1.4) becomes problematic, at least in the standard DT sense.
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then it follows that the right-hand side of this relation is of order k (∼ O(k))
always as k → 0. Thus the ghost-self energy exists and is ˇnite at zero point but
remains arbitrary within our approach.

Concluding, let us note that, in principle, the information about the ghost-
gluon vertex (2.11) could be obtained from the corresponding identity derived
in Ref. 16. We found (in complete agreement with Pagels [14]) that even at
zero momentum transfer no useful information can be obtained, indeed. It has
a too complicated mathematical structure and involves the matrix elements of
composite operators of ghost and gluon ˇelds. However, let us emphasize that
our approach makes it possible to avoid this difˇculty (see below).

3. IR RENORMALIZED QUARK ST IDENTITY

Let us consider the ST identity for the quark-gluon vertex function Γµ(p, k):

− ikµΓa
µ(p, k)

[
1 + b(k2)

]
=

= [T a − Ba(p, k)] S−1(p + k) − S−1(p) [T a − Ba(p, k)] , (3.1)

where b(k2) is the ghost self-energy and Ba(p, k) is the ghost-quark scattering
kernel [6, 14, 17, 18]; T a's are color group generators. From it one recovers
the standard WardÄTakahashi (WT) identity in the formal b = B = 0 limit. The
ghost-quark scattering kernel Ba(p, k) is determined by its skeleton expansion

Ba(p, k) =
∞∑

n=1

Ba
n(p, k) (3.2)

which is diagrammatically shown in Fig. 3 (see also Refs. 14, 18).

Fig. 3. The skeleton expansion for the ghost-quark scattering kernel
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In addition to the previous IR renormalized quantities, it is convenient to in-
troduce independently the ®IRMR constant¯ for the ghost-quark scattering kernel
Ba(p, k) itself as follows:

Ba(p, k) = Z̃B(ε)B̄a(p, k), ε → 0+. (3.3)

Then the IR renormalized version of the quark ST identity (3.1) becomes (here
and below we have already escaped the dependence on the color group generators
T a's)

− ikµΓ̄µ(p, k)
[
Z̃−1(ε) + b̄(k2)

]
=

[
Z̃−1

B (ε) − B̄(p, k)
]
S̄−1(p + k) −

− S̄−1(p)
[
Z̃−1

B (ε) − B̄(p, k)
]
, (3.4)

iff the corresponding quark ST identity IR convergence relation

Z−1
1 (ε)Z̃(ε) = Z−1

2 (ε)Z̃B(ε), ε → 0+, (3.5)

holds. Our ˇnal results will not depend on the quark-ghost scattering kernel
®IRMR constant¯. It plays only auxiliary role. It is almost obvious that this
®IRMR constant¯ does not depend on ε at all, i. e., Z̃B(ε) = Z̃B = const, re-
maining an arbitrary ˇnite constant. Otherwise, from the ST identity (3.4) it
would simply follow that either the information about quark degrees of freedom
(which is contained in B̄(p, k)) would be lost (regular dependence) or the cor-
respondence with the WT identity would be lost (singular dependence). That is
why in what follows we will omit its dependence on ε. Let us note that the IRMR
program can be formulated without explicitly introducing it (see the second paper
in Ref. 18).

Let us start with the investigation of the ˇrst term B1(p, k) in the B(p, k)
skeleton expansion (3.2). After the evaluation of the color group factors it
becomes (Euclidean space)

B1(p, k) = −1
2
g2CAi

∫
dnq

(2π)n
S(p − q)Γν(p − q, q)Gµ(k, q)G(k + q)D0

µν(q),

(3.6)

where CA is the quadratic Casimir operator in the adjoint representation. Pro-
ceeding to the IR renormalized functions, we obtain

B̄1(p, k) =
1
2
ḡ2
1Y S̄(p)Γ̄µ(p, 0)Ḡµ(k, 0)Ḡ(k), (3.7)

iff a cancellation of the severe IR divergences takes place, i. e.,

Z̃−1
B X(ε)Z2(ε)Z−1

1 (ε)Z̃1(ε)Z̃2(ε) = εY, ε → 0+, (3.8)
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where Y is an arbitrary but ˇnite constant. From the IR convergence condition
(3.8) and the general ST identity IR convergence relation (3.5) and Eq. (2.9), it
follows

Y = Yg. (3.9)

Substituting now the ghost SD equation (2.21) into the Eq. (3.7), on account of
the relation (3.9), one obtains

B̄1(p, k) = −1
2
iS̄(p)Γ̄µ(p, 0)b̄(k2)kµ. (3.10)

Let us note that this ˇnal expression does not depend explicitly on the coupling
constant as it should be. It clearly shows that the ˇrst term of the B̄(p, k) skeleton
expansion is of order k (∼ O(k)) as k goes to zero since b̄(0) exists and is ˇnite
in this limit.

The analytical expression of the second skeleton diagram for the ghost-quark
scattering kernel B(p, k) is

B2(p, k) = Ag4

∫
idnq

(2π)n

∫
idnl

(2π)n
S(p − q + l)Γβ(p − q + l, l)S(p− q) ×

× Γν(p − q, q)Gµ(k,−l)G(k − l)Gα(k − l, q)G(k − l + q)D0
αν(q)D0

µβ(l),
(3.11)

where the constant A is a result of the summation over color group indices (its
explicit expression is not important here, see below). As in the previous case, by
passing to the IR renormalized quantities and using twice the corresponding IR
convergent condition (3.8), we get

B̄2(p, k) = A1ḡ
4Y 2Z̃BS̄(p)Γ̄µ(p, 0)S̄(p)Γ̄ν(p, 0)Ḡµ(k, 0)Ḡ(k)Ḡν(k, 0)Ḡ(k).

(3.12)

Using further Eq. (2.21) again twice, we ˇnally obtain

B̄2(p, k) = A2Z̃BS̄(p)Γ̄µ(p, 0)S̄(p)Γ̄ν(p, 0)b̄2(k2)kµkν , (3.13)

which clearly shows that the second term is of order k2 as k goes to zero.
In the same way it is possible to show that the third term B̄3(p, k) of the

skeleton expansion for the ghost-quark scattering kernel B̄(p, k) is of order k3

(∼ O(k3)) as k goes to zero. These arguments are valid term by term in the
skeleton expansion for the ghost-quark scattering kernel. Thus we have the
estimate

B̄n(p, k) = O(kn), k → 0, (3.14)



100 GOGOKHIA V., KLUGE GY.

which means that we can restrict ourselves to the ˇrst term in the skeleton
expansion of the B̄(p, k) kernel at small k, i. e., put

B̄(p, k) = B̄1(p, k) + O(k2), k → 0. (3.15)

Differentiating now the IR ˇnite quark ST identity (3.4) with respect to kµ

and passing to the limit k = 0, we obtain

−iΓ̄µ(p, 0)
[
Z̃−1(ε) + b̄(0)

]
= Z̃−1

B dµS̄−1(p) − Ψ̄µ(p)S̄−1(p) + S̄−1(p)Ψ̄µ(p),

(3.16)

where

Ψ̄µ(p) =
[

∂

∂kµ
B̄(p, k)

]
k=0

= −1
2
ib̄(0)S̄(p)Γ̄µ(p, 0). (3.17)

Substituting the relation (3.17) back into the previous ST identity (3.16), its IR
renormalized version becomes[

Z̃−1(ε) +
1
2

b̄ (0)
]

Γ̄µ(p, 0) = iZ̃−1
B dµS̄−1(p) − 1

2
b̄ (0)S̄(p)Γ̄µ(p, 0)S̄−1(p).

(3.18)

3.1. Rescaling Procedure. At the ˇrst sight we have obtained a very unde-
sirable result since the IR renormalized ST identity (3.18) heavily depends on the
arbitrary IRMR constants which have no physical sense. It depends also on the
arbitrary ghost self-energy at zero point. However, let us formulate now a general
method how to escape in the IR renormalized ST identity (3.18) the explicit de-
pendence on the arbitrary ghost self-energy at zero point and the above-mentioned
arbitrary IRMR constants. For this purpose, let us rescale the vertex in the ST
identity (3.18) in accordance with

Z̃B

[
Z̃−1(ε) +

1
2
b̄(0)

]
Γ̄µ(p, 0) =⇒ Γ̄µ(p, 0). (3.19)

Then the ST identity (3.18) becomes

Γ̄µ(p, 0) = idµS̄−1(p) − (1 + ∆)−1S̄(p)Γ̄µ(p, 0)S̄−1(p), (3.20)

where

∆ =
2Z̃−1(ε)

b̄(0)
. (3.21)
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Let us note that the dependence on the auxiliary ®IRMR constant¯ Z̃B disappears
as expected. The only problem now is the behavior of the ghost self-energy
IRMR constant Z̃(ε) in the ε → 0+ limit. As was underlined in the preceding
section, only two independent cases should be considered.

1) The ghost self-energy IRMR constant Z̃(ε) does not depend on ε at all,
i. e., it is ˇnite but arbitrary, Z̃(ε) = Z̃ = const. In this case, redeˇning the ghost
self-energy at zero point in the IR renormalized ST identity (3.20), one obtains

Γ̄µ(p, 0) = idµS̄−1(p) − b1(0)S̄(p)Γ̄µ(p, 0)S̄−1(p) (3.22)

and

b1(0) = (1 + ∆(0))−1 = (1 + [2Z̃−1/b̄(0)])−1. (3.23)

It is just the analogue of this identity in 4D QCD which was ˇrst obtained
by Pagels in his pioneering paper on NP QCD [14]. Let us formally consider
∆(0) = [2Z̃−1/b̄(0)] as small. Then expanding in powers of ∆, one gets

(1 + ∆(0))−1 = 1 − δ = 1 −
∞∑

n=2

(−1)n∆n−1. (3.24)

Substituting this back into the previous ST identity, one ˇnally obtains

Γ̄µ(p, 0) = idµS̄−1(p) − S̄(p)Γ̄µ(p, 0)S̄−1(p) + δS̄(p)Γ̄µ(p, 0)S̄−1(p), (3.25)

which makes it possible to take into account the arbitrary coefˇcient b1 step by
step in powers of ∆, starting from δ = 0. For the sake of simplicity, in this
approximation (to leading order, δ = 0) this ST identity will be used in what
follows.

2) The second available possibility is when the ghost self-energy IRMR
constant Z̃(ε) is singular as ε goes to zero, so its inverse vanishes in this limit.
In this case ∆ = 0 identically (see Eq. (3.21)), and the quark ST identity (3.20)
ˇnally becomes

Γ̄µ(p, 0) = idµS̄−1(p) − S̄(p)Γ̄µ(p, 0)S̄−1(p). (3.26)

It is just the analogue of this identity in 4D QCD which was obtained in our
investigation of NP QCD [18] (see also Ref. 10 and references therein). It is
automatically free from ghost complications (δ = 0 from the very beginning). At
the same time, it contains nontrivial information on quarks degrees of freedom
themselves provided by the quark-ghost sector (the second term in Eqs. (3.25)
and (3.26), while the ˇrst term is, obviously, the standard WT-type contribution).
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4. COMPLETE SET OF EQUATIONS FOR THE IR RENORMALIZED
QUARK PROPAGATOR

The ˇnal system of equations obtained for the IR renormalized quantities in
the quark sector is presented by the quark SD equation (1.7) and the quark ST
identity (3.26), i. e.,

S−1(p) = Z2(ε)S−1
0 (p) + ḡ2Γµ(p, 0)S(p)γµ,

Γµ(p, 0) = idµS−1(p) − S(p)Γµ(p, 0)S−1(p).
(4.1)

For simplicity here we removed ®bars¯ from the deˇnitions of the IR renormalized
Green's functions, retaining them only for the coupling constant (which has the
dimensions of mass) in order to distinguish it from initial (®bare¯) coupling
constant. It contains all known ˇnite numerical factors as well as the rescaling
factor from the previous section. The arbitrary but ˇnite constant Yq is put to
unity without losing generality in advance (see section 7).

The Euclidean version of our parametrization of the quark propagator is as
follows:

iS(p) = p̂A(p2) − B(p2), (4.2)

so its inverse is

iS−1(p) = p̂A(p2) + B(p2) (4.3)

with

A(p2) =A(p2)E−1(p2), B(p2) = B(p2)E−1(p2),

E(p2) = p2A2(p2) + B2(p2).
(4.4)

In order to solve the ST identity (the second of equations in the system (4.1)), the
simplest way is to represent the quark-gluon vertex function at zero momentum
transfer as its decomposition in terms of four independent form factors, namely

Γµ(p, 0) = γµF1(p2) + pµF2(p2) − p̂pµF3(p2) − p̂γµF4(p2). (4.5)

Substituting this representation into the second of Eqs. (4.1) and doing some
tedious algebra of the γ matrices in 2D Euclidean space, one obtains

F1(p2) = −1
2
A(p2),

F2(p2) = −B
′
(p2) − F4(p2),

F3(p2) = A
′
(p2),

F4(p2) =
1
2
A(p2)A(p2)B−1(p2),

(4.6)
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where the prime denotes the derivative with respect to the Euclidean momentum
variable p2.

It is convenient to introduce the dimensionless variables and functions as

A(p2) = ḡ−2A(x), B(p2) = ḡ−1B(x), x = p2/ḡ2. (4.7)

Taking into account the previous relations and deˇnitions, and performing further
the algebra of the γ matrices in 2D Euclidean space, the system (4.1) can be ex-
plicitly reduced to a system of a coupled, nonlinear ordinary differential equations
of the ˇrst order for the A(x) and B(x) quark propagator form factors.

4.1. IR Finite Quark Propagator. For the quark propagator which is IR
ˇnite (IRF) from the very beginning, i. e., when Z2(ε) = Z2 = 1 as ε goes to
zero (see section 7 below), the system of equations (4.1) becomes

S−1(p) = S−1
0 (p) + ḡ2Γµ(p, 0)S(p)γµ,

Γµ(p, 0) = idµS−1(p) − S(p)Γµ(p, 0)S−1(p).
(4.8)

Doing some of the above-mentioned tedious algebra, the quark SD equation (4.8)
is ˇnally reduced to

xA′ = −(1 + x)A − 1 − m0B,

2BB′ = −A2 + 2(m0A − B)B,
(4.9)

where A ≡ A(x), B ≡ B(x), and now the prime denotes the derivative with re-
spect to the Euclidean dimensionless momentum variable x. For the dimensionless
current quark mass, we retain, obviously, the same notation, i. e., m0/ḡ → m0.

The exact solution of the system (4.9) for the dynamically generated quark
mass function is

B2(c, m0; x) = exp (−2x)
∫ c

x

exp (2x′)ν̃(x′) dx′, (4.10)

where c is the constant of integration and

ν̃(x) = A2(x) + 2A(x)ν(x) (4.11)

with

ν(x) = −m0B(x) = xA′(x) + (1 + x)A(x) + 1. (4.12)

Then the equation determining the A(x) function becomes

dν2(x)
dx

+ 2ν2(x) = −A2(x)m2
0 − 2A(x)ν(x)m2

0. (4.13)
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In the chiral limit (m0 = 0) the system (4.9) can be solved exactly. The
solution for the A(x) function is

A0(x) = −x−1 {1 − exp (−x)} . (4.14)

It has thus the correct asymptotic properties (is regular at small x and asymptot-
ically approaches the free propagator at inˇnity). For the dynamically generated
quark mass function B(x) the exact solution is

B2
0(c0, x) = exp (−2x)

∫ c0

x

exp (2x′)A2(x′) dx′, (4.15)

where c0 = p2
0/ḡ2 is an arbitrary constant of integration. It is regular at zero.

In addition, it also has algebraic branch points at x = c0 and at inˇnity (at ˇxed
c0). As in the general (nonchiral) case, these unphysical singularities are caused
by the inevitable ghost contributions in the covariant gauges.

As was mentioned above, A0(x) automatically has a correct behavior at
inˇnity (it does not depend on the constant of integration since it was speciˇed in
order to get regular at zero solution). In order to reproduce the correct behavior
at inˇnity (x → ∞) of the dynamically generated quark mass function, it is
necessary to pass simultaneously to the limit c0 → ∞ in Eq. (4.15). So it
identically vanishes in this limit in accordance with the vanishing current light
quark mass in the chiral limit. Obviously, we have to keep the constant of
integration c0 in Eq. (4.15) arbitrary but ˇnite in order to obtain a regular at zero
point solution. The problem is that if c0 = ∞, then the solution (4.15) does not
exist at all at any ˇnite x, in particular at x = 0.

Concluding, let us note that an exact solution which is singular at zero also
exists. It is easy to check that A0(x) = −(1/x) automatically satisˇes the
system (4.9) in the chiral limit. The corresponding exact singular solution for the
dynamically generated quark mass function can be obtained by substituting this
expression into Eq. (4.15).

4.2. IR Vanishing Quark Propagator. For the IR vanishing (IRV) type of
the quark propagator, when Z2(ε) vanishes as ε goes to zero, the ˇnal system of
equations (4.1) becomes

S̄−1(p) = im̄0 + ḡ2Γ̄µ(p, 0)S̄(p)γµ,

Γµ(p, 0) = idµS−1(p) − S(p)Γµ(p, 0)S−1(p),
(4.16)

where, obviously, m̄0 = Z2(ε)m0(ε) exists as ε goes to zero. Just this type of the
quark propagator in the light-cone gauge has been ˇrst investigated by 't Hooft
[1]. In terms of the dimensionless variables (4.7), similar to the previous case,
the system (4.16) can be reduced to

xA′ = −A − 1 − m̄0B,

2BB′ = −A2 + 2m̄0AB,
(4.17)
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where again A ≡ A(x), B ≡ B(x), and the prime denotes the derivative with
respect to the Euclidean dimensionless momentum variable x. For simplicity, we
use the same notation for the dimensionless current quark mass, i. e., m̄0/ḡ → m̄0.

The exact solution of this system for the dynamically generated quark mass
function is

B2(c, m̄0; x) =
∫ c

x

ν̃(x′) dx′, (4.18)

where c is the corresponding constant of integration and

ν̃(x) = A2(x) + 2A(x)ν(x) (4.19)

with

ν(x) = −m̄0B(x) = xA′(x) + A(x) + 1. (4.20)

Then the equation determining the A(x) function becomes

dν2(x)
dx

= −A2(x)m̄2
0 − 2A(x)ν(x)m̄2

0 . (4.21)

In the chiral limit (m̄0 = 0) exact solutions are

A0(x) = −1 +
c′0
x

, (4.22)

and

B2
0(c0, x) =

∫ c0

x

A2(x′) dx′, (4.23)

where c′0 and c0 are the corresponding constats of integration, respectively. Reg-
ularity at zero implies c′0 = 0, so that one ˇnally obtains

A0(x) = −1, B2
0(c0, x) = (c0 − x), (4.24)

where we retain the same deˇnition and notation as previously for the constant
of integration c0. Again as in the previous case, it should be kept ˇnite (but it
remains arbitrary) as well as a simultaneous limit x, c0 → ∞ for the dynamically
generated quark mass function B2

0(c0, x) (4.23) is required.
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5. QUARK CONFINEMENT

In principle, it is possible to develop the calculation schemes in different
modiˇcations which give the solution of both systems (4.9) and (4.17) step by
step in powers of the light current quark masses as well as in the inverse powers
of the heavy quark masses.

The important observation, however, is that the formal exact solutions (4.10)
and (4.18) exhibit the algebraic branch point at x = c which completely excludes
the pole-type singularity at any ˇnite point on the real axis in the x-complex plane
whatever the solution for the A(x) function might be. Thus the solution cannot
be presented in either case as the expression having ˇnally a pole-type singularity
at any ˇnite point p2 = −m2 (Euclidean signature), i. e.,

S(p) �= const
p̂ + m

, (5.1)

certainly satisfying thereby the ˇrst necessary condition of quark conˇnement
formulated at the fundamental quark level as the absence of a pole-type singularity
in the quark propagator [19].

In order to conˇrm this, let us assume the opposite to Eq. (5.1), i. e., that
the quark propagator within our approach may have a pole-type singularity like
the electron propagator has in quantum electrodynamics (QED) (see Eq. (5.4)
below). In terms of the dimensionless quark form factors, deˇned in Eq. (4.7),
this means that in the neighborhood of the assumed pole at x = −m2 (Euclidean
signature), they can be presented as follows:

A(x) =
1

(x + m2)α
Ã(x), B(x) =

1
(x + m2)β

B̃(x), (5.2)

where Ã(x) and B̃(x) are regular at a pole, while α and β are in general arbitrary
with Re α, β ≥ 0. However, substituting these expansions into the systems (4.9)
and (4.17) and analyzing them in the neighborhood of the assumed pole, one can
immediately conclude in that the self-consistent systems for the quantities with
tilde exist iff

α = β = 0, (5.3)

i. e., our systems (4.9) and (4.17) do not admit the pole-type singularities in the
quark propagator in complete agreement with the above-mentioned.

This point deserves a more detailed discussion, indeed. The IR asymptotics
of the electron propagator in QED is [20] (Minkowski signature)

S(p) ∼ 1
(p2 − m2)1+β

, (5.4)
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where β = α(ξ − 3)/2π and here α is the renormalized charge. Thus instead of
a simple pole, it has a cut whose strength can be varied by changing the gauge
ˇxing parameter ξ. However, there is, in general, the pole-type singularity at
the electron mass m, indeed, i. e., in QED there is no possibility, in general, to
escape a pole-type singularity in the electron Green's function. Contrast to QED,
our general solutions (4.10) and (4.18) have no pole-type singularities, only the
branch points at x = c. Not losing generality, one can put c = p2

c/ḡ2 (different p2
c

for different solutions, of course), then it follows that at the branch point p2
c = p2

and this does not explicitly depend on ξ. At the same time, it is obvious that the
existence of a branch point itself does not depend explicitly on a gauge choice as
well. Thus the absence of the pole-type singularities in QCD in the same way is
gauge-invariant as the existence of the pole-type singularity at the electron mass
in QED. This may be used indeed to differentiate QCD from QED and vice versa.
The gauge invariance of the above-mentioned ˇrst necessary condition of quark
conˇnement should be precisely understood in this sense.

Let us emphasize that the absence of the pole-type singularities in the quark
propagator as the criterion of conˇnement at the fundamental quark level makes
sense only for the IR renormalized quark propagator, i. e., for entities having
sense in the ε → 0+ limit. To speak about quark conˇnement in the sense that
the pole of the propagator is shifted towards inˇnity as ε → 0+, and therefore
there is no physical single quark state, is though possible, but confusing in our
opinion (see Ref. 21 as well). The problem is that the quark propagator which
is only IR regularized is not physical, and so cannot be used to analyse such
physical phenomena as quark conˇnement, DCSB, etc.

The second sufˇcient condition formulated at the hadronic level as the ex-
istence of a discrete spectrum only (no continuum in the spectrum) [1] in the
bound-state problems within the corresponding BS formalism is obviously be-
yond the scope of the present investigation. Let us only note here, that at nonzero
temperature the bound-states will be dissolved (dehadronization), but the ˇrst
necessary condition of the quark conˇnement criterion will remain valid, nev-
ertheless. In other words, quarks at nonzero temperature (for example, in the
quark-gluon plasma (QGP) [22]) will remain off-shell objects, i. e., even in this
case they cannot be detected as physical particles (like electrons) in the asymptotic
states. That is why it is better to speak about dehadronization phase transition in
QGP rather than about deconˇnement phase transition.

In both cases the region c ≥ x can be considered as NP whereas the region
c ≤ x can be considered as the PT one. Approximating the full gluon propagator
by its free counterpart in the whole range [0,∞), nevertheless, we obtain a
solution for the dynamically generated quark mass function B(x) which manifests
the existence of the boundary value momentum (dimensionless) c (in the chiral
limit c0) separating the PT region from the NP one, where the NP effects such as
conˇnement and DCSB become dominant. The arbitrary constant of integration c
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(c0) is related to the characteristic mass which in 2D QCD is nothing else but the
coupling constant. So in 2D QCD (unlike 4D QCD) there is no need to introduce
explicitly into the quantum YM theory the characteristic mass scale parameter,
the so-called JaffeÄWitten (JW) mass gap [23, 24].

As was mentioned above, our solutions to the IR renormalized quark prop-
agator are valid in the whole momentum range [0,∞). However, in order to
calculate any physical observable from ˇrst principles (represented by the cor-
responding correlation function which can be expressed in terms of the quark
propagator integrated out), it is necessary to restrict ourselves to the integration
over the NP region x ≤ c (x ≤ c0) only. This guarantees us that the above-
mentioned unphysical singularity (branch-point at x = c (x = c0)) will not affect
the numerical values of the physical quantities. Evidently, this is equivalent to
the subtraction of the contribution in the integration over the PT region x ≥ c
(x ≥ x0). Let us underline that at the hadronic level this is the only subtraction
which should be done ®by hand¯ (see discussion below in section 11, however)
since our solutions to the IR renormalized quark SD equations are automatically
NP. Thus there is no need for additional subtraction of all types of the PT contri-
butions at the fundamental quark-gluon level in order to deal with the only true
NP quantities. In this connection, let us remind the reader that many important
quantities in QCD such as gluon and quark condensates, topological susceptibil-
ity, etc., are deˇned beyond the PT theory only [25, 26]. This means that they
are determined by such S-matrix elements (correlation functions) from which all
types of the PT contributions should be subtracted, by deˇnition, indeed (see next
section).

6. DYNAMICAL BREAKDOWN OF CHIRAL SYMMETRY (DBCS)

From a coupled systems of the differential equations (4.9) and (4.17) it is
easy to see that these systems (for the system (4.17) the replacement m0 → m̄0

is assumed) allow a chiral symmetry breaking solution only,

m0 = 0, A(x) �= 0, B(x) �= 0 (6.1)

and forbid a chiral symmetry preserving solution,

m0 = B(x) = 0, A(x) �= 0. (6.2)

Thus any nontrivial solutions automatically break the γ5 invariance of the quark
propagator

{γ5, S
−1(p)} = −iγ52B(p2) �= 0, (6.3)
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and they therefore certainly lead to the spontaneous chiral symmetry breakdown
at the fundamental quark level (m0 = 0, B(x) �= 0, dynamical quark mass
generation). In all previous investigations a chiral symmetry preserving solution
(6.2) always exists. For simplicity, we do not distinguish between B(x) and B(x)
calling both dynamically generated quark mass functions.

A few preliminary remarks are in order. A nonzero, dynamically generated
quark mass function deˇned by conditions (6.1) and (6.3) is the order parameter
of DBCS at the fundamental quark level. At the phenomenological level, the
order parameter of DBCS is the nonzero quark condensate deˇned as the integral
of the trace of the quark propagator, i. e., (Euclidean signature, see Eq. (4.2))

〈q̄q〉 = 〈0|q̄q|0〉 ∼ i

∫
d2p Tr S(p), (6.4)

up to unimportant (here and below in this section for our discussion) numerical
factors. In terms of the dimensionless variables (4.5) it becomes

〈q̄q〉0 ∼ −ḡ

∫
dx B0(x), (6.5)

where for light quarks in the chiral limit 〈q̄q〉0 = 〈ūu〉0 = 〈d̄d〉0 = 〈s̄s〉0, by
deˇnition, and integration over x is assumed from zero to inˇnity.

It is worth to emphasize now that the phenomenological order parameter of
DBCS Å the quark condensate Å deˇned as the dynamically generated quark
mass function B(x) integrated out might be in principle zero even when the mass
function is deˇnitely nonzero. Thus the nonzero, dynamically generated quark
mass is a much more appropriate condition of DBCS than the quark condensate.
One can say that this is the ˇrst necessary condition of DBCS, while the nonzero
quark condensate is only the second sufˇcient one.

However, this is not the whole story yet. The problem is that the quark
condensate deˇned in Eq. (6.5) still contains the contribution in the integration
over the PT region, say, [y0,∞). In order to deˇne correctly the quark condensate
this contribution should be subtracted, i. e.,

〈q̄q〉0 =⇒ 〈q̄q〉0 + ḡ

∫ ∞

y0

dx B0(x) = −ḡ

∫ y0

0

dx B0(x). (6.6)

If now the mass function B(x) is really the NP solution of the corresponding
quark SD equation, then this deˇnition gives the quark condensate beyond the PT
theory. In our case this is so, indeed. Moreover, it is easy to understand that in
order to guarantee that the algebraic branch point at x = c0 will not affect the
numerical value of the quark condensate, the soft cutoff y0 should be identiˇed
with the constant of integration c0. Thus in our case it becomes

〈q̄q〉0 ∼ −ḡ

∫ c0

0

dx B0(c0, x), (6.7)
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i. e., the truly NP dynamically generated quark mass function is integrated out
over the NP region as well. So there is not even a bit of the PT information in
this deˇnition (all types of the PT contributions have been already subtracted in
Eq. (6.7)). Moreover, it depends on the fundamental mass scale parameter of 2D
QCD which is the IR renormalized coupling constant ḡ and not on the arbitrary
mass scales 1, 2 GeV, etc. In the PT limit ḡ → 0 the quark condensate goes to zero
as it should be, by deˇnition (B0(c0, x) tends to zero in the PT limit c0, x → ∞ as
well). Thus in our approach the quark condensate itself has a physical meaning,
while in other approaches, for example, in lattice QCD or in QCD sum rules,
neither the quark condensate nor the current quark mass has physical meaning
by itself. Only the multiplication product gains a physical sense becoming thus
renormgroup invariant. In the same way the quark condensate should be deˇned
in 4D QCD though there is a problem with the JW mass gap as was mentioned
above.

7. IR MULTIPLICATIVE RENORMALIZABILITY OF 2D QCD

It is well known that 2D QCD is an UV, i. e., PT super-renormalizable ˇeld
theory [2, 6]. However, the DT clearly shows that this theory is IR divergent
since its free gluon propagator IR singularity is a NP (i. e., severe) one. For that
very reason, it becomes inevitable ˇrstly to regularize it (which has been already
done), and then to prove its IR renormalizability, i. e., to prove that all the NP
IR singularities can be removed from the theory on a general ground and in a
self-consistent way. In order to formulate the IRMR program in 2D QCD, it is
necessary to start from the quark-ghost sector.

7.1. IRMR Program in the Quark-Ghost Sector. The IRMR program in
the quark-ghost sector is based on the corresponding IR convergence conditions:
the quark SD condition (1.6), the ghost self-energy condition (2.9), the quark
ST identity condition (3.8) and quark ST identity IR convergence relation (3.5).
However, taking into account the relation (3.9), only three of them are independent
since by combining the ghost self-energy condition (2.9) with the general ST
identity relation (3.5), one obtains the IR convergence condition (3.8). Reminding
the relation (2.7) Z̃2(ε) = Z̃−1(ε) and that the ®IRMR constant¯ Z̃B does not
depend on ε, i. e., Z̃B(ε) = Z̃B , the independent system of the IR convergence
conditions can be written as follows:

X(ε)Z2
2 (ε)Z−1

1 (ε) = εYq, X(ε)Z̃1(ε)Z̃−2(ε) = εYg, ε → 0+,

Z−1
1 (ε)Z̃(ε) = Z−1

2 (ε)Z̃B.
(7.1)

Thus, in general, we have ˇve independent IRMR constants: X(ε), Z2(ε), Z1(ε),
Z̃1(ε), and Z̃(ε). We have also three arbitrary but ˇnite constants Yq, Yg , and
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Z̃B . We know that the quark wave-function IRMR constant Z2(ε) cannot be
singular, while the ghost self-energy IRMR constant Z̃(ε) is either singular or
constant as ε → 0+, otherwise all the IRMR constants remain arbitrary in this
limit.

Let us show now that the above-mentioned ˇnite constants Yq, Yg , and Z̃B

can be put to unity without losing generality. For this purpose, let us redeˇne all
the IRMR constants as follows:

X(ε) =YqZ̃
−2
B X ′(ε), Z2(ε) = Z̃BZ ′

2(ε), Z1(ε) = Z ′
1(ε),

Z̃1(ε) = YgY
−1
q Z̃2

BZ̃ ′
1(ε), Z̃(ε) = Z̃ ′(ε).

(7.2)

Then it is easy to see that a new system for the IRMR constants with primes
looks like the previous system (7.1) if one puts there

Z̃B = Yq = Yg = 1. (7.3)

Thus in fact our system (7.1) is

X(ε)Z2
2 (ε)Z−1

1 (ε) = ε, X(ε)Z̃1(ε)Z̃−2(ε) = ε, ε → 0+,

Z−1
1 (ε)Z̃(ε) = Z−1

2 (ε),
(7.4)

so we have three conditions for the above-mentioned ˇve independent IRMR con-
stants. Obviously, this system has always a nontrivial solution determining three
of the constants in terms of two arbitrary chosen independent IRMR constants.
It is convenient to choose Z̃(ε) and Z2(ε) as two independent IRMR constants
since we know their possible behavior with respect to ε as it goes to zero. Then
the general solution of the system (7.4) can be written as follows:

X(ε) = εZ−1
2 (ε)Z̃(ε), Z1(ε) = Z̃1(ε) = Z2(ε)Z̃(ε). (7.5)

Thus in the quark-ghost sector the self-consistent IRMR program really exists.
Moreover, it has room for additional speciˇcations. The most interesting case is
the quark propagator which is IR ˇnite from the very beginning, i. e., when the
quark wave function IRMR constant Z2(ε) = Z2 = const. In this case the system
(7.4) becomes

X(ε)Z−1
1 (ε) = εZ−2

2 , X(ε)Z̃1(ε)Z̃−2(ε) = ε, ε → 0+,

Z−1
1 (ε)Z̃(ε) = Z−1

2 .
(7.6)

Again, let us redeˇne all the IRMR constants as follows:

X(ε) = Z−1
2 X ′(ε), Z1(ε) = Z2Z

′
1(ε), Z̃1(ε) = Z2Z̃

′
1(ε), Z̃(ε) = Z̃ ′(ε). (7.7)
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Then the system for quantities with primes will be the same as the previous one,
putting there Z2 = 1. This means that in fact our system (7.6) in this case is

X(ε)Z−1
1 (ε) =ε, X(ε)Z̃1(ε)Z̃−2(ε) = ε, ε → 0+,

Z−1
1 (ε)Z̃(ε) = 1,

(7.8)

which determines now four independent IRMR constants: X(ε), Z1(ε), Z̃1(ε),
Z̃(ε). Its solution is

X(ε) = εZ̃(ε), Z̃(ε) = Z̃1(ε) = Z1(ε), (7.9)

in complete agreement with the general solution (7.5).
It is worth to investigate in detail the case when Z̃(ε) = KZ−1

2 (ε), where K
is an arbitrary but ˇnite constant (see subsection 7.3 below). Then the general
system (7.4) becomes

X(ε)Z2
2(ε) =εK, X(ε)Z̃1(ε)Z2

2 (ε) = εK2, ε → 0+,

Z−1
1 (ε) = K−1.

(7.10)

Let us, as before, redeˇne all the IRMR constants in this system as follows:

X(ε) = K−1X ′(ε), Z1(ε) = KZ ′
1(ε), Z̃1(ε) = KZ̃ ′

1(ε), Z2(ε) = KZ ′
2(ε).

(7.11)

Then the system for quantities with primes will be the same as the previous one,
putting there K = 1. This means that in fact our system (7.10) is

X(ε)Z2
2(ε) = ε, X(ε)Z̃1(ε)Z2

2 (ε) = ε, ε → 0+, Z−1
1 (ε) = 1. (7.12)

Its solution is

X(ε) = εZ−2
2 (ε), Z̃(ε) = Z−1

2 (ε) = Z̃−1
2 (ε), Z̃1(ε) = Z−1

1 (ε) = 1, (7.13)

again in complete agreement with the general solution (7.5). Evidently, the system
(7.12) is equivalent to the general system (7.4) if one puts there the quark-gluon
vertex IRMR constant to unity from the very beginning, i. e., Z−1

1 (ε) = Z−1
1 = 1.

The fact that all the arbitrary but ˇnite constants can be put equal to unity is
a general feature of our IRMR program in the quark-ghost sector which enables
us to remove all the severe IR divergences from the theory in a self-consistent
way. This is important, since otherwise these arbitrary but different, ˇnite con-
stants having no physical meaning would ®contaminate¯ the equations of motion
(see, for example, the quark SD equation (1.7)). Concluding this subsection, let
us emphasize once more that in the quark-ghost sector the IRMR program is
deˇnitely self-consistent.
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7.2. IR Finite ST Identities for Pure Gluon Vertices. In order to determine
the IR ˇnite bound-state problem within the BS formalism, it is necessary to
know the IRMR constants of the three- and four-gluon proper vertex functions
which satisfy the corresponding ST identities [6, 27Ä31]. This information is also
necessary to investigate the IR properties of all other SD equations in 2D QCD.
It is convenient to start from the ST identity for the three-gluon vertex [27, 28]

[1 + b(k2)]kλTλµν(k, q, r) = d−1(q2)Gλν(q, k)(gλµq2 − qλqµ) +

+ d−1(r2)Gλµ(r, k)(gλνr2 − rλrν), (7.14)

where k + q + r = 0 is assumed and d−1 is the inverse of the exact gluon form
factor, while G's are the corresponding ghost-gluon vertices (2.3). Let us now
introduce the IR renormalized triple gauge ˇeld proper vertex as follows:

Tλµν(k, q, r) = Z3(ε)T̄λµν(k, q, r), ε → 0+, (7.15)

where T̄λµν(k, q, r) exists as ε goes to zero, by deˇnition. Passing to the IR
renormalized quantities, one obtains

[Z̃−1(ε) + b̄(k2)]kλT̄λµν(k, q, r) = Ḡλν(q, k)d−1(q2)(gλµq2 − qλqµ) +

+ Ḡλµ(r, k)d−1(r2)(gλνr2 − rλrν), (7.16)

so that the following IR convergence relation holds

Z3(ε) = Z̃−1(ε)Z̃1(ε), ε → 0+. (7.17)

Let us make a few remarks. Here and below we are considering the inverse
of the free gluon propagator as IR ˇnite from the very beginning, i. e., d−1 ≡
d̄−1 = 1. This is not a singularity at all and therefore it should not be treated as
a distribution [9] (there is no integration over its momentum).

The corresponding ST identity for the quartic gauge ˇeld vertex is [27, 28]

[1 + b(p2)]pλTλµνδ(p, q, r, s) = d−1(q2)(gλµq2 − qλqµ)Bg
λνδ(q, p; r, s) +

+d−1(r2)(gλνr2−rλrν)Bg
λµδ(r, p; q, s)+d−1(s2)(gλδs

2−sλsδ)B
g
λµν(s, p; q, r)−

− Tµλδ(q, s,−q,−s)Gλν(q + s, p, r) − Tµνλ(q, r,−q,−r)Gλδ(q + r, p, s) −
− Tνδλ(r, s,−r,−s)Gλµ(r + s, p, q), (7.18)

where p+q+r+s = 0 is assumed. Here T's and G's are the corresponding three-
and ghost-gluon vertices, respectively. The quantity Bg with three Dirac indices
is the corresponding ghost-gluon scattering kernel which is shown in Fig. 4 (see
also Refs. 6, 29).
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Fig. 4. The ghost-gluon scattering kernel

Let us introduce now its IR renormalized counterpart as follows:

Bg
λνδ(q, p; r, s) = Z̃g(ε)B̄

g
λνδ(q, p; r, s), ε → 0+, (7.19)

where B̄g
λνδ(q, p; r, s) exists as ε goes to zero. From the decomposition of the

ghost-gluon proper vertex shown in Fig. 5, it follows that

Fig. 5. The decomposition of the ghost-gluon proper vertex

Z̃1(ε) =
1
ε
X(ε)Z̃2(ε)Z̃g(ε), ε → 0+, (7.20)

so that

Z̃g(ε) = εX−1(ε)Z̃(ε)Z̃1(ε), ε → 0+. (7.21)

It is worth reminding that to each ghost-gluon vertex a factor
√

X(ε) should
be additionally assigned, while to the scattering kernel Bg with two external gluon
legs a factor X(ε) should be additionally assigned.

Let us now introduce the IR renormalized four-gluon gauge ˇeld vertex as
follows:

Tλµνδ(p, q, r, s) = Z4(ε)T̄λµνδ(p, q, r, s), ε → 0+, (7.22)
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where T̄λµνδ(p, q, r, s) exists as ε goes to zero, by deˇnition. Passing again to
the IR renormalized quantities, one obtains

[Z̃−1(ε)+ b̄(p2)]pλT̄λµνδ(p, q, r, s) = d−1(q2)(gλµq2 − qλqµ)B̄g
λνδ(q, p; r, s)+

+d−1(r2)(gλνr2−rλrν)B̄g
λµδ(r, p; q, s)+d−1(s2)(gλδs

2−sλsδ)B̄
g
λµν(s, p; q, r)−

− T̄µλδ(q, s,−q,−s)Ḡλν(q + s, p, r) − T̄µνλ(q, r,−q,−r)Ḡλδ(q + r, p, s) −
− T̄νδλ(r, s,−r,−s)Ḡλµ(r + s, p, q), (7.23)

iff

Z4(ε) = Z2
3 (ε) = Z̃−2(ε)Z̃2

1 (ε), ε → 0+. (7.24)

Evidently, in the derivation of this expression the general solution (7.5) has been
used as well as Eqs. (7.17) and (7.21). Thus we have determined the IRMR
constants of the triple and quartic gauge ˇeld vertices in Eqs. (7.17) and (7.24),
respectively.

7.3. IR Finite Bound-State Problem. Apart from quark conˇnement and
DBCS, the bound-state problem is one of the most important NP problems in
QCD. The general formalism for considering it in quantum ˇeld theory is the BS
equation ([32, 33] and references therein). For the color-singlet, �avor-nonsinglet
bound-state amplitudes for mesons it is shown in Figs. 6 and 7.

Fig. 6. The BS equation for the �avored mesons

Flavor-singlet mesons require a special treatment since pairs, etc., of gluons
in color-singlet states can contribute to the direct-channel processes. The exact BS
equation for the bound-state meson amplitude B(p, p′) can be written analytically
as follows (Euclidean signature):

S−1
q (p)B(p, p′)S−1

q̄ (p′) = i

∫
dnlK(p, p′; l)B(p, p′; l) (7.25)

(for simplicity all numerical factors are suppressed), where S−1
q (p) and S−1

q̄ (p′)
are inverse quark and antiquark propagators, respectively, and K(p, p′; l) is the
two-particle irreducible (2PI) BS scattering kernel (its skeleton expansion is shown
in Fig. 7) which deˇnes the BS equation itself. The BS equation is a homogeneous
linear integral equation for the B(p, p′) amplitude. For this reason the meson
bound-state amplitude should be always considered as IR ˇnite from the very
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Fig. 7. The skeleton expansion for the 2PI BS scattering kernel

beginning, i. e., B(p, p′) ≡ B̄(p, p′). Passing to the IR renormalized quantities in
this equation, one obtains

S̄−1
q (p)B(p, p′)S̄−1

q̄ (p′) = i

∫
dnlK̄(p, p′; l)B(p, p′; l), (7.26)

iff

Z−2
2 (ε) = ZK(ε), ε → 0+, (7.27)

where we introduce the IRMR constant ZK(ε) of the BS scattering kernel. This
is the exact BS equation IR convergence condition.

In general, the nth skeleton diagram of the BS equation skeleton expansion
contains n independent loop integrations over the gluon momentum which (as
we already know) generates a factor 1/ε each, n1 quark-gluon vertex functions
and n2 quark propagators. Also it contains n3 and n4 three and four-gluon
vertices, respectively. It is worth reminding that to each quark-gluon vertex
and three-gluon vertex a factor

√
X(ε) should be additionally assigned, while to

the four-gluon vertex a factor X(ε) should be additionally assigned. Thus the
corresponding IRMR constant is equal to

Z
(n)
K (ε) = ε−n

[
Z−1

1 (ε)
]n1

[
Z2(ε)

]n2
[
Z3(ε)

]n3
[
Z4(ε)

]n4
[
X(ε)

]n4+(n3+n1)/2

.

(7.28)
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On the other hand, it is easy to see that for each skeleton diagram the following
relations hold

n2 = n1 − 2, 2n = n1 + n3 + 2n4. (7.29)

Substituting these relations into the previous expression and using the general
solution (7.5), as well as taking into account the results of the previous subsection,
one ˇnally obtains

Z
(n)
K (ε) = Z−2

2 (ε)
[
Z2(ε)Z̃(ε)

]n−n1

, (7.30)

so that from Eq. (7.27) it follows that

[
Z2(ε)Z̃(ε)

]n−n1

= A(n), (7.31)

where A(n) is an arbitrary but ˇnite constant different, in principle, for each
skeleton diagram. Evidently, its solution is

Z̃(ε) =
[
A(n)

]−1/(n1−n)

Z−1
2 (ε). (7.32)

Let us emphasize now that the relation between these (and all other) IRMR
constants cannot depend on the fact which skeleton diagram is considered. This
means that the above-mentioned arbitrary but ˇnite constant must be a common

factor for all skeleton diagrams, i. e.,
[
A(n)

]−1/(n1−n)

= K , where K is again

arbitrary but ˇnite, and the solution becomes

Z̃(ε) = KZ−1
2 (ε). (7.33)

However, we have already shown that all arbitrary but ˇnite IRMR constants, in
particular this one (see relations (7.10)Ä(7.12)), should be put to unity not losing
generality.

Thus in order to determine the bound-state problem free from the IR sin-
gularities within the corresponding BS equation, the general solution (7.13) is
relevant. This means that we can forget about the ghost self-energy IRMR con-
stant and have to analyse everything in terms of the quark wave function IRMR
constant just because of the relation (7.33) with K = 1. When it goes to zero
as ε → 0+, then the ghost self-energy IRMR constant is singular, while when
Z2(ε) = Z2 = const, then Z̃(ε) is also constant and, as we already know, both
constants can be put to one without losing generality.
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7.4. The General System of the IR Convergence Conditions. The general
system of the IR convergence conditions (7.13) for removing at this stage all the
severe IR singularities on a general ground and in self-consistent way from the
theory becomes

X(ε) =εZ−2
2 (ε), Z̃−1(ε) = Z̃2(ε) = Z3(ε) = Z̃g(ε) = Z2(ε),

Z̃1(ε) = Z−1
1 (ε) = 1, Z4(ε) = Z2

3 (ε) = Z2
2 (ε),

(7.34)

and the limit ε → 0+ is always assumed. This system provides the cancellation of
all the severe IR singularities in 2D QCD at this stage, and what is most important
this system provides the IR ˇnite bound-state problem within our approach. All
the IRMR constants are expressed in terms of the quark wave function IRMR
constant Z2(ε) except the quark-gluon and ghost-gluon proper vertices IRMR
constants. They have been ˇxed to be unity though we were unable to investigate
the corresponding ST identity for the latter vertex (as was mentioned in section 2).

8. IR FINITE SD EQUATION FOR THE GLUON PROPAGATOR

Let us now investigate the IR properties of the SD equation for the gluon
propagator which is shown diagrammatically in Fig. 8 (see also Refs. 34, 35,
and references therein). Analytically it can be written as follows:

D−1(q) = D−1
0 (q) − 1

2
Tt(q) −

1
2
T1(q) −

1
2
T2(q) −

1
6
T ′

2(q) + Tg(q) + Tq(q),

(8.1)

where numerical factors are due to combinatorics and, for simplicity, the Dirac
indices determining the tensor structure are omitted. Tt (the so-called tadpole
term) and T1 describe one-loop contributions, while T2 and T ′

2 describe two-
loop contributions containing three- and four-gluon proper vertices, respectively.
Evidently, Tg, Tq describe ghost- and quark-loop contributions.

Equating D = D0 now and passing as usual to the IR renormalized quantities,
one obtains

1
ε
X(ε)

1
2
T̄t(q) +

1
ε
X(ε)Z3(ε)

1
2
T̄1(q) +

1
ε2

X2(ε)Z2
3 (ε)

1
2
T̄2(q) +

+
1
ε2

X2(ε)Z4(ε)
1
6
T̄ ′

2(q)−
1
ε
X(ε)Z̃2

2 Z̃1(ε)T̄g(q)−X(ε)Z2
2 (ε)Z−1

1 (ε)T̄q(q) = 0,

(8.2)

where quantities with bar are, by deˇnition, IR renormalized, i. e., they exist as
ε → 0+. Let us also remind that each independent loop integration over the gluon
and ghost momenta generates the factor 1/ε, while it is easy to show that there
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Fig. 8. The SD equation for the gluon propagator

are no additional IR singularities with respect to ε in the quark loop (since we
have found regular at zero solutions for the quark propagator). Using now the
general solution (7.34), one further obtains

1
2
T̄t(q) + Z2(ε)

1
2
T̄1(q) +

1
2
T̄2(q) +

1
6
T̄ ′

2(q) − Z2
2 (ε)T̄g(q) − εZ2

2 (ε)T̄q(q) = 0.

(8.3)

Since the quark wave function IRMR constant Z2(ε) can be only either unity
or vanishing as ε goes to zero, the contribution from the quark loop is always
suppressed in the ε → 0+ limit, and we are left with the pure YM SD equation
for the gluon propagator. For the quark propagator which is IR renormalized
from the very beginning (i. e., Z2(ε) = Z2 = 1, so that it is IR ˇnite), the SD
equation (8.3) becomes

1
2
T̄t(q) +

1
2
T̄1(q) +

1
2
T̄2(q) +

1
6
T̄ ′

2(q) = T̄g(q), (8.4)

while for the IR vanishing type of the quark propagator (Z2(ε) → 0 as ε → 0+),
the SD equation (8.3) becomes

T̄t(q) + T̄2(q) +
1
3
T̄ ′

2(q) = 0. (8.5)
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Concluding, let us note that it is not surprising that the IR properties of the
YM sector have been analyzed in terms of the quark wave function IRMR constant
Z2(ε). Equivalently, it can be analyzed in terms of the ghost self-energy or ghost
propagator IRMR constants (because of the general solution (7.34)) which are
closely related to pure gluonic degrees of freedom via the corresponding ST
identities (see subsection 7.2 above). At the same time, the YM SD equations
for the gluon propagator (8.4) and (8.5) remain the same, of course. The tensor
structure of the YM SD equations for the gluon propagator is not important here.
However, it may substantially simplify the corresponding IR renormalized YM
SD Eqs. (8.4) and (8.5). Explicitly this should be done elsewhere∗. What matters
here is that the self-consistent equations for the gluon propagator free from the
severe IR singularities exist in the YM sector within our approach. In other
words, the general solution (7.34) eliminates all the severe IR singularities from
Eq. (8.1), indeed.

9. IR FINITE SD EQUATION FOR THE THREE-GLUON PROPER
VERTEX

It is instructive to investigate the IR properties of the SD equation for the
triple gauge ˇeld proper vertex since it provides a golden opportunity to ˇx Z2(ε).
This equation is shown in Fig. 9.

The skeleton expansions of the corresponding kernels are shown in Fig. 10.
Let us note that the ghost-gluon scattering kernel Bg (for which we have already
established its IRMR constant from the decomposition of the ghost-gluon proper
vertex shown in Fig. 5, in subsection 7.2, see also the general solution (7.34)) is
denoted as G′ in Ref. 6. Obviously, there is no need to investigate separately the
IR properties of the SD equations for the quark-gluon vertex and for pure gluon
vertices since the information about their IRMR constants has been uniquely
extracted from the corresponding ST identities. Moreover, the IRMR constants
of different types of the scattering kernels which enter the above-mentioned SD
equations (see, for example Figs. 8, 9, and 10) are to be determined precisely
by the general system (7.34). In principle, each skeleton diagram of the above-
mentioned expansions should be investigated in the same way as was investigated
the BS scattering kernel in subsection 7.3.

∗Let us remind that formally the D = D0 solution always exists in the system of the SD
equations due to its construction by expansion around the free ˇeld vacuum [6]. It is either trivial
(coupling is zero) or nontrivial, then some additional condition (constraint), including other Green's
functions, is to be derived. Eqs. (8.4) and (8.5) are precisely these exact constraints. The only question
to be asked is whether this solution is justiˇed to use in order to explain some physical phenomena,
for example, quark conˇnement, DBCS, etc., or not (for our conclusions see ˇnal section 11).
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Fig. 9. The SD equation for the triple gauge ˇeld vertex

Since we know already the IRMR constant of the triple gauge ˇeld proper
vertex Z3(ε) = Z2(ε), this makes it possible to establish the IRMR constant of
each scattering kernel in general, i. e., not using its skeleton expansion. For this
purpose, let us apply the same method which has been used in order to determine
the IRMR constant of the above-mentioned ghost-gluon scattering kernel. From
the last term in Fig. 9, it follows that

Z3(ε) =
1
ε
X(ε)Z̃2

2 (ε)Z̃g(ε) = Z̃g(ε) = Z2(ε), (9.1)

where in the second and third equalities the general solution (7.34) has been used.
Let us remind only that a factor X(ε) should be additionally assigned to kernels
with two gluon external legs, while to the kernels with three gluon external
legs a factor X3/2(ε) should be additionally assigned. Thus we conˇrmed the
result obtained earlier in subsection 7.2 for the IRMR constant of the ghost-gluon
scattering kernel Z̃g(ε). Let us emphasize that the left-hand side of the relation
(9.1) should be equal to Z3(ε) = Z2(ε) since this skeleton diagram is nothing
but the corresponding independent decomposition of the triple gauge ˇeld vertex
itself.

However, the golden opportunity is provided by the third and fourth terms
of this SD equation. The interesting feature of these terms is that they do not
contain unknown scattering kernels, so their IR properties can be investigated
directly by using only the known IRMR constants. On the other hand, these
terms are nothing but the corresponding decompositions of the triple gauge ˇeld
proper vertex with the IRMR constant equal to Z3(ε) = Z2(ε). Thus one has



122 GOGOKHIA V., KLUGE GY.

Fig. 10. The skeleton expansions of different scattering kernels in Fig. 9

Z2(ε) =
1
ε
X(ε)Z2(ε) = Z−1

2 (ε) = 1, (9.2)

which, obviously, has only a unique solution given by the last equality. Thus, we
have ˇnally ˇxed the quark wave function IRMR constant to be unity.

Adopting the same method, it is easy to show that all other IRMR constants
for the corresponding scattering kernels are

Z̃g(ε) = ZM ′(ε) = ZM̄ ′(ε) = 1. (9.3)

We are now ready to investigate the IR properties of the SD equation for the
triple gauge ˇeld proper vertex shown in Fig. 9 without referring to the skeleton
expansions of the corresponding scattering kernels (it is easy to check that the
IRMR constants of these kernels are consistent with their skeleton expansions
taking term by term). Using the previous results, the IR renormalized version of
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this equation is

T̄3 = T
(0)
3 +

1
2
T̄1 +

1
2
T̄ ′

1 +
1
2
T̄

′′

1 +
1
6
T̄2 − T̄g, (9.4)

where, for simplicity, we omit the dependence on momenta and suppress the
Dirac indices (i. e., tensor structure) in all terms in this SD equation. As usual
the quantities with bar are IR renormalized, i. e., they exist as ε → 0+.

Fig. 11. The SD equation for the quark-gluon proper vertex. The K's are the corresponding
scattering kernels

The SD equations for all other Green's functions can be investigated in the
same way, in particular for the quark-gluon proper vertex shown in Fig. 11.
The general solution (7.34), taking into account the fundamental relation (9.2),
provides their IR convergence, i. e., they exist in the ε → 0+ limit and, hence,
similar to the SD equations, explicitly considered here, they are free of the IR
divergences with respect to ε. Let us note that Eq. (8.5) should be ruled out as
a possible SD equation for the gluon propagator and the SD equation (8.4) is the
only possible one.

10. COMPARISON WITH THE 'T HOOFT MODEL

Having completed the proof of the IR renormalizability of our approach to
2D QCD, it is instructive to compare it with the 't Hooft model [1]. Of course,
there is no direct comparison because of the different gauges used. Nevertheless,
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one can still compare the approximations made. It is well known that in the
large Nc limit and ˇxed g2Nc the quark loops are suppressed to the leading order
[1, 8, 36]. So the last term in the SD equation for the gluon propagator (8.1),
shown in Fig. 8, vanishes. Due to light-cone gauge there are neither ghosts
nor self-interaction of massless gluons, and, therefore, the full gluon propagator
becomes equal to its free PT counterpart in this model (see Eq. (8.1)), indeed.
Thus from the whole of QCD only two sectors survive, namely the quark and
BS ones in the ladder approximation to the quark-gluon proper vertex. Let us
emphasize, nevertheless, that in this model D = D0 only to the leading order in
the large Nc limit, and nobody knows to what extent the next-to-leading order
corrections may distort the behavior of the gluon propagator.

In order to reproduce the same approximation scheme within our approach, it
is necessary to neglect ghosts and the self-interaction of gluon ˇelds ®by hand¯,
while the quark loop contribution is automatically suppressed as ε as ε → 0+

(see Eq. (8.3)). As a result, we are left with only the quark and BS sectors
which is absolutely similar to the 't Hooft model (though in the covariant gauge).
For simplicity, here we are going to discuss in some detail the quark sector only
(however, see general remarks in Appendix B).

It is easy to show that the SD equation for the quark propagator (1.1) in the
ladder approximation (the point-like quark-gluon proper vertex) and within our
treatment of the free gluon propagator IR severe singularity, becomes

S−1(p) = S−1
0 (p) +

1
ε
g2NcγµS(p)γµ, ε → 0+, (10.1)

where we include all known numerical factors into the coupling constant (having
the dimensions of mass) except of Nc. Let us remind that in the 't Hooft model
[1] the IR regularization parameter was denoted as λ, and in fact it was introduced
by ®hand¯ (though correctly). At the same time, in this model it was assumed
implicitly that the ˇxed combination g2Nc is IR ˇnite from the very beginning
(i. e., it does not depend on ε when it goes to zero) though both parameters g2

and Nc (since it is the free one in the large Nc approach) should, in general,
depend on ε in the presence of such a strong IR singularity in the theory. There
is also a possible problem of the commutation of the two different limits: the IR
limit, ε → 0+ and the large Nc limit, Nc → ∞. Anyway, in this model only
the quark propagator becomes ε-dependent, so the corresponding IR convergence
condition (1.8) in the quark sector is simply Z2

2(ε) = ε with the obvious solution
S̄(p) =

√
εS(p). In this way one obtains for the IR renormalized quark propagator

S̄−1(p) = im̄0 + g2NcγµS̄(p)γµ, (10.2)

where m̄0 =
√

εm0(ε) exists as ε → 0+, by deˇnition, i. e., it is the IR renor-
malized current quark mass. Using further our parametrization of the quark
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propagator (4.2), (4.3) and doing a rather simple algebra of the γ matrices in 2D
Euclidean space, we ˇnally obtain

B−1 + m̄0 = 2g2NcB, Ā = A = 0, (10.3)

i. e., the quark propagator has no γ matrix structure, similar to the 't Hooft model
[1, 2]. Moreover, the quark propagator is simply constant in this approximation,
namely

S̄(p) = iB(p2) =
im̄0

4g2Nc

[
1 ±

√
1 +

8g2Nc

m̄2
0

]
. (10.4)

This means that in fact the current quark mass is replaced by the ®effective mass¯
M as follows:

m̄0 −→ M =
4g2Nc

m̄0

[
1 ±

√
1 + 8g2Nc/m̄2

0

] , (10.5)

which in the chiral limit m̄0 → 0 becomes

M2
0 = 2g2Nc. (10.6)

Using our formalism for the bound-state problem (subsection 7.3), it is easy to
show that the same quark SD equation IR convergence condition Z2

2 (ε) = ε makes
the BS sector IR ˇnite as well, i. e., free from the severe IR divergences. Thus
the 't Hooft model in the covariant gauge is almost trivially IR renormalizable
(as well as in the initial light-cone gauge). Though the model quark propagator
(10.4) is too simple, nevertheless, its BS sector may be rather nontrivial, similar
to the BS sector of the initial 't Hooft model [1] (see Appendix B).

11. SUMMARY

11.1. Discussion. In summary, the main observation is that 2D QCD is an
inevitably IR divergent theory. We have explicitly shown how the NP IRMR
program should be done in order to remove all the severe IR singularities from
the theory on a general ground and in a self-consistent way. The general system
of the IR convergence conditions (7.34), taking into account the fundamental
relation (9.2), simply becomes

X(ε) = ε, ε → 0+, (11.1)

while all other independent quantities (Green's functions) are IR ˇnite from the
very beginning, i. e., their IRMR constants are simply unity. Evidently, only the
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nontrivial IR renormalization of the coupling constant is needed to render the
theory IR ˇnite, i. e., to make it free from all the severe IR divergences. Only
the condition (11.1) provides the cancellation of all the severe IR singularities in
2D covariant gauge QCD. This completes the proof of the IR renormalizability
of 2D QCD within our approach. It is worth emphasizing once more that it
makes sense to discuss quark conˇnement, DBCS, the bound-state problems, the
tensor structure of the various SD equations, etc., only after the completion of
the NP IRMR program, i. e., within entities having sense as the IR regularization
parameter goes ˇnally to zero (but not before).

Our proof implies that quark propagator should be IR ˇnite from the very
beginning, i. e., Z2(ε) = 1 which means S(p) = S̄(p). In the 't Hooft model
[1], the quark propagator is IR vanishing, i. e., Z2(ε) goes to zero as ε → 0+.
However, there is no contradiction with the above-mentioned since in this model
neither g2 nor Nc depend on ε (see section 10). From our general solution
(7.34) then it follows that Z2(ε) =

√
ε, indeed, since in this case one has to put

X(ε) = 1.
One can conclude that in some sense it is easier to prove the IR renormal-

izability of 2D QCD than to prove its UV renormalizability. The reason is, of
course, that we know the mathematical theory which has to be used Å the theory
of distributions [9]. This is due to its fundamental result [9, 10] which requires
that any NP (severe) singularity with respect to momentum in the deep IR domain
in terms of ε should always be 1/ε, and this does not depend on how the IR reg-
ularization parameter ε has been introduced in the way compatible with the DT
itself. On the other hand, the above-mentioned fundamental result relates the IR
regularization to the number of space-time dimensions [9, 10, 23] (compactiˇca-
tion). It is easy to imagine that otherwise none of the IRMR programs would be
possible. In other words, the DT provides the basis for the adequate mathemat-
ical investigation of a global character of the severe (NP) IR divergences (each
skeleton independent loop diagram diverges as 1/ε), while the UV divergences
have a local character, and thus should be investigated term by term in powers
of the coupling constant.

In this connection a few remarks are in order. The full dynamical content of
2D (4D) QCD is contained in its system of the SD equations of motion. To solve
2D (4D) QCD means to solve this system and vice versa. In particular, to prove
the IR renormalizability of 2D (4D) QCD means to formulate the IRMR program
in order to remove all the NP IR singularities from this system on a general ground
and in a self-consistent way. As was mentioned above, the fortunate feature which
makes this possible is a global character of the IR singularities in 2D QCD. Each
skeleton diagram is a sum of inˇnite series of terms, however, the DT shows how
their IR singularities can be summed up. Moreover, it shows how the IR singular-
ities of different scattering kernels (which by themselves are inˇnite series of the
skeleton diagrams) can be summed up as well (see, for example, sections 7, 8, 9).
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The next important step is to impose a number of independent conditions in
order to cancel all the NP IR singularities which inevitably appear in the theory
after the above-mentioned summations have been done with the help of an entire
chain of strongly coupled SD equations. They should also be complemented
by the corresponding ST identities which are consequences of the exact gauge
invariance, and therefore are exact constrains on any solution to QCD [6]. The
only problem now is to ˇnd self-consistent solutions to the system of the IR
convergence conditions. If such solutions exist, so everything is O. K. If not,
the theory is not renormalizable. It is worth reemphasizing that we have found a
self-consistent solution to this system (Eq. (11.1)).

Let us make a few remarks concerning the regularization and gauge invariance
of our approach. In principle, no regularization scheme (how to introduce the
IR regularization parameter in order to parameterize the IR divergences) should
be introduced ®by hand¯. First of all it should be well deˇned. Secondly, it
should be compatible with the DT [9]. The DR scheme [11] is precisely well
deˇned, and in Ref. 10 we have shown how it should be introduced into the
DT (complemented by the number of subtractions, if necessary). The so-called
®±iε regularization¯ is equivalent to the regularization used in our paper (see
again Ref. 9). Other regularization schemes are also available, for example, such
as analytical regularization used in Ref. 14 or the so-called Speer's regularization
[37]. However, they should be compatible with the DT as was emphasized above.
Anyway, not the regularization is important but the DT itself.

Whether the theory is IR multiplicative renormalizable or not depends on
neither the regularization nor the gauge. Due to the chosen regularization scheme
or the gauge only the details of the corresponding IRMR program can be simpli-
ˇed. For example, in the light-cone gauge at any chosen regularization scheme
(the 't Hooft model with different prescriptions how to deal with the severe IR
singularities [2] (and references therein)) to prove the IR multiplicative renormal-
izability of 2D QCD is almost trivial. This is mainly due to the fact that in this
case only two sectors survive in QCD, namely quark and BS sectors. In other
words, if theory is proven to be IR or UV renormalizable in one gauge, it is
IR or UV renormalizable in any other gauge. This is true for the regularization
schemes as well. As it follows from the present investigation, to prove the IR
multiplicative renormalizability of 2D QCD in the covariant gauge was not so
simple. However, it was necessary to get ˇrstly the IR ˇnite bound-state problem
(which is important for physical applications), and secondly to generalize our
approach on 4D QCD which is real theory of strong interactions. 2D QCD in the
light-cone gauge is not appropriate theory for this purpose since its conˇnement
mechanism looks more like that of the Schwinger model [1] of 2D QED, than it
may happen in real QCD, where we believe it is much more complicated.

The structure of the severe IR singularities in Euclidean space is much simpler
than in Minkowski space, where kinematical (unphysical) singularities due to light
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cone also exist. In this case it is rather difˇcult to correctly untangle them from
the dynamical singularities, only ones which are important for the calculation of
any physical observable. Also the consideration is much more complicated in
conˇguration space [4]. That is why we always prefer to work in momentum
space (where propagators do not depend explicitly on the number of dimensions)
with Euclidean signature. We also prefer to work in the covariant gauges in
order to avoid peculiarities of the noncovariant gauges [38], for example how
to untangle the gauge pole from the dynamical one. The IR structure of 2D
QCD in the light-cone gauge by evaluating different physical quantities has been
investigated in more detail in Refs. 2, 21, 39Ä41 (and references therein).

Of course, the quark propagator cannot be gauge-invariant because the quark
ˇelds are not, by deˇnition. This implicit gauge dependence of the quark propaga-
tor (as well as all other Green's functions) always exists and cannot, in principle,
be eliminated. This is a general feature of all gauge theories such as QCD
and QED. Unfortunately, in gauge theories the main problem is not the above-
mentioned unavoidable implicit gauge dependence, but the explicit dependence of
the Green's functions on the gauge ˇxing parameter ξ (on its numerical value).
In the quark SD equation it comes from the full gluon propagator and the corre-
sponding quark-gluon proper vertex. In both cases we have shown that after the
completion of our IRMR program (by correctly using the DT) to remove all the
NP IR divergences in a general way, the explicit gauge dependence disappeared
from the obtained system of equations (4.1). This means that analytical proper-
ties of the solutions to this system (the absence of the pole-type singularities and
the presence of the branch-points only) do not depend explicitly on the gauge
ˇxing parameter, indeed. Just in this sense the ˇrst necessary condition of the
quark conˇnement criterion discussed above is gauge-invariant. Evidently, the
second sufˇcient condition of quark conˇnement formulated as the existence of a
discrete spectrum (no continuum in the spectrum) in the hadron spectroscopy is,
by deˇnition, gauge-invariant.

Also, it makes sense to bring the reader's attention to the following point.
The simplest approximation to the quark-gluon vertex (compatible with the correct
treatment of the IR singularities by the DT in 2D QCD) is the vertex at zero
momentum transfer (see Eqs. (4.1)) and not its point-like counterpart. This
means that even in 2D QCD it is better to analyse conˇnement at the fundamental
quark level in terms of the analytical properties of the quark propagator which
re�ect the IR structure of the 2D QCD true ground state. At the macroscopic,
hadronic level the linear rising potential interpretation of conˇnement becomes
relevant for bound states between heavy quarks only. In this case, apparently,
the full vertex can be approximated by its point-like counterpart, so the analysis
in terms of the potential becomes relevant. As was mentioned above, that is
why in the 't Hooft model [1] (where the vertex is the point-like from the very
beginning, see section 10) conˇnement looks more like that of the Schwinger
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model [6] of 2D QED. In real QCD it is believed to be much more complicated.
This complication is also due to non-Abelian degrees of freedom, while in the
't Hooft model they are eliminated by the choice of the gauge.

11.2. Conclusions. We have shown that 2D covariant gauge QCD reveals
several desirable and promising features, so our main conclusions are:

1) We have proven the IR multiplicative renormalizability of 2D QCD in the
covariant gauge. It is based on the compelling mathematical ground provided by
the DT itself.

2) The nontrivial renormalization of the coupling constant only makes theory
free from all the severe IR singularities which inevitably appear in 2D QCD.

3) The quark propagator has no poles, indeed (quark conˇnement).
4) The bound-state problem becomes tractable within our approach. To any

order in the skeleton expansion of the BS scattering amplitude shown in Fig. 7, the
corresponding BS equation (7.26) can be reduced ˇnally to an algebraic problem
(Appendix B).

5) We ˇxed ˇnally the type of the quark propagator. The NP IRMR program
implies it to be IR ˇnite from the very beginning (i. e., Z2(ε) = 1), as well as all
other Green's functions.

6) It also implies DCSB, i. e., the chiral symmetry is certainly dynamically
(spontaneously) broken in 2D QCD.

7) The chiral limit physics (i. e., the Goldstone sector) can be exactly evalu-
ated since we have found exact solution for the quark propagator in this case.

8) The nonzero quark masses can be also easily included in our scheme. We
develop an analytical formalism which allows one to ˇnd solution for the quark
propagator in powers of the light quark masses as well as in the inverse powers
of the heavy quark masses. We have theoretically justiˇed the use of the free
quark propagator for heavy quarks. So our solution in this case automatically
possesses the heavy quark �avor symmetry (Appendix A).

9) It was widely believed that the severe IR singularities could not be put
under control. However, we show explicitly that the above-mentioned common
belief is not justiˇed. They can be controlled in all sectors of QCD of any
dimensions by using correctly the DT [9, 10]. This can be considered also as one
of our main results from a mathematical point of view.

10) We have proven that in order to accumulate the severe IR singularities
in 2D QCD, the YM SD equation for the gluon propagator (8.4) is completely
sufˇcient for this purpose.

11) Our approach makes it possible to calculate physical observables from
ˇrst principles. All results will depend only on the IR renormalized coupling con-
stant and the corresponding constant of integration. A physically well-motivated
scale-setting scheme is only needed to ˇx them.

The only dynamical mechanism responsible for quark conˇnement, DBCS,
the bound-states, etc., which can be thought of in 2D QCD is the direct interaction
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of massless gluons. It becomes strongly singular in the IR domain and can be
effectively correctly absorbed into the gluon propagator. It is well known that it
is this interaction which brings to birth asymptotic freedom (AF) [6] in QCD in
the deep UV limit. Thus the free gluon propagator due to its severe IR structure
is justiˇed to use in order to explain all the above-mentioned NP phenomena
within our approach without explicitly involving some extra degrees of freedom.

A few points are worth reemphasizing as well.

The ˇrst important point is that the IR singularity of the free gluon prop-
agator, being strong at the same time, should be correctly treated by the DT,
complemented by the DR method. It enables us to extract the required class
of test functions in the IR renormalized quark SD equation. The test func-
tions do consist of the quark propagator and the corresponding quark-gluon
vertex function. By performing the IRMR program, we have found the regu-
lar solutions for the quark propagator. For that very reason the relation (1.4)
is justiˇed since it is multiplied by the appropriate smooth test functions [9].
Moreover, we establish the space in which our generalized functions are con-
tinuous linear functionals. It is a linear topological space denoted as K(c) (for
the solutions in the chiral limit denoted as K(c0)), consisting of inˇnitely dif-
ferentiable functions having compact support in x ≤ c (x ≤ c0), i. e., such
functions which vanish outside the interval x ≤ c (x ≤ c0) [9]. Thus the
above-mentioned subtraction of all kinds of the PT contributions becomes not
only physically well justiˇed but well conˇrmed by the DT (i. e., mathematically)
as well.

The second point is that our theory (as mentioned above) is deˇned by
subtraction of all kinds of the PT contributions at the fundamental quark level
and at the hadronic level as well. The only point of subtractions is the branch
point. Thus we have exact criterion how to separate the NP region (soft momenta)
from the PT region (hard momenta).

The third point is that the system of SD equations for the IR ˇnite quantities
(4.1) becomes automatically free of the UV divergences though it is valid in the
whole momentum range [0,∞). At the same time, its solutions, in general, and in
the chiral limit, in particular, preserve AF up to renormgroup log improvements,
of course.

The fourth point is that the system of equations (4.1) for the IR renormalized
quark propagator is exact. Moreover, it does not explicitly depend on the gauge
ˇxing parameter. It was obtained in accordance with the rigorous rules of the
DT, so there is no place for theoretical uncertainties.

The ˇfth point is that the DT with its requirements to the corresponding
properties of the test functions removes all the ambiguities from the theory.
Because of this, all types of the singular solutions should be excluded from the
consideration, at least in the standard DT sense.
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11.3. Some Perspectives for 4D QCD. We are not going here to evaluate the
hadronic spectrum within our approach. Anyway, it requires a separate treatment
since, unlike the 't Hooft model [1], our model is not simple (it cannot be reduced
to the ladder approximation in the BS sector). At the same time, the bound-state
problem becomes tractable within our approach (see Appendix B).

Our main concern is how to generalize this approach on 4D QCD which
is a realistic theory of strong interactions not only at the fundamental quark-
gluon level but at the hadronic level as well. 2D covariant gauge QCD is a
much more appropriate theory to be generalized on 4D QCD than its 't Hooft
counterpart. Firstly, it maintains the direct interaction of massless gluons (non-
Abelian degrees of freedom). Secondly, its dynamical structure is much richer
(full vertices, etc.). It is not accidental that 2D light-cone gauge conˇnement
mechanism at the fundamental quark-gluon level turned out to be almost useless
to understand conˇnement mechanism in 4D QCD.

However, there are some principal distinctions between 2D and 4D QCD. The
most important one is that the former has initially the JW mass gap which is the
coupling constant itself. In the latter case the coupling is dimensionless, so it is
necessary to introduce the JW mass gap from the very beginning into the quantum
4D YM theory. In close connection with this problem is the clear understanding
that the free gluon propagator is a bad approximation to the full gluon propagator
in the IR domain. Its IR singularity is the PT one (i. e., not severe) in 4D QCD.
So necessarily the IR singularities of the full gluon propagator in 4D QCD should
be stronger than 1/q2 as q2 goes to zero. We have already attempted to discuss
both problems in more detail in Ref. 24.

There still remains to resolve a set of some important problems. Firstly, how
to obtain the system of equations of motion in 4D QCD free from possible strong
IR singularities. We think that in this case the general IRMR program should not
be drastically different from that of 2D QCD formulated in this work. Secondly,
how to formulate the above-mentioned system of equations of motion free from
the explicit ghost degrees dependence and in a manifestly gauge invariant way,
at least in the deep IR domain since there is no hope for an exact solution(s).
This is important for 4D QCD. Also there should exist nontrivial PT dynamics
in 4D QCD, while in 2D QCD it is simple (we approximate the full gluon
propagator by its free PT counterpart in the whole momentum range). In this
approximation the 2D YM vacuum is also trivial (to all orders of the vacuum-
loops expansion [42]), while in 4D YM theory it can by no means be trivial to
any order. Anyway, the NP vacuum of 4D QCD is expecting to be much more
complicated. A generalization of our approach to 2D and 4D QCD on nonzero
temperature would be also interesting.
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Appendix A

NONZERO CURRENT QUARK MASSES

To investigate solutions for the IR ˇnite from the very beginning quark
propagator in the general (nonchiral) case, it is much more convenient to start
from the ground system itself, Eqs. (4.9), rather than to investigate the general
solutions (4.10)Ä(4.13). The ground system is

xA′ + (1 + x)A + 1 = −m0B,

2BB′ + A2 + 2B2 = 2m0AB,
(A1)

where, let us remind, A ≡ A(x), B ≡ B(x), and here the prime denotes the
derivative with respect to the Euclidean dimensionless momentum variable x,
and the same notation for the dimensionless current quark mass is retained (i. e.,
m0/ḡ → m0). As was mentioned above, we are interested in the solutions which
are regular at zero and asymptotically approach free quark case. Because of our
parametrization of the quark propagator (4.2) its asymptotic behavior has to be
determined as follows (Euclidean metrics):

A(x) ∼x→∞ − 1
x + m2

0

, B(x) ∼x→∞ − m0

x + m2
0

, (A2)

up to renormgroup improvements by perturbative logarithms. The ground system
(A1) is very suitable for numerical calculations.

Light Quarks. Let us now develop an analytical formalism which makes it
possible to ˇnd solution of the ground system step by step in powers of the light
current quark masses, the so-called chiral perturbation theory at the fundamental
quark level. For this purpose let us present the quark propagator form factors A
and B as follows:

A(x) =
∞∑

n=0

mn
0An(x), B(x) =

∞∑
n=0

mn
0Bn(x), (A3)

where

m
(u,d,s)
0 � 1. (A4)

Substituting these expansions into the ground system (A1) and omitting some
tedious algebra, one ˇnally obtains

xA′
0(x) + (1 + x)A0(x) + 1 = 0,

2B0(x)B′
0(x) + A2

0(x) + 2B2
0(x) = 0,

(A5)
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and for n = 1, 2, 3, ..., one has

xA′
n(x) + (1 + x)An(x) = −Bn−1(x),

2Pn(x) + Mn(x) + 2Qn(x) = 2Nn−1(x),
(A6)

where

Pn(x) =
n∑

m=0

Bn−m(x)B′
m(x),

Mn(x) =
n∑

m=0

An−m(x)Am(x),

Qn(x) =
n∑

m=0

Bn−m(x)Bm(x),

Nn(x) =
n∑

m=0

An−m(x)Bm(x).

(A7)

Is is obvious that the system (A5) describes the ground system (A1) in the chiral
limit (m0 = 0). As we already know it can be solved exactly (see below as
well). The ˇrst nontrivial correction in powers of a small m0 is determined by
the following system which follows from Eqs. (A6) and it is

xA′
1 + (1 + x)A1 = −B0,

(B1B
′
0+B0B

′
1) + A0A1 + 2B0B1 = A0B0,

(A8)

where we omit the dependence on the argument x for simplicity. In the similar
way can be found the system of equations to determine terms of order m2

0 in the
solution for the quark propagator and so on.

Let us present a general solution to the ˇrst of Eqs. (A6) which is

An(x) = −x−1e−x

∫ x

0

dx′ ex′
Bn−1(x′). (A9)

It is always regular at zero since all Bn(x) are regular as well. The advantage
of the developed chiral perturbation theory at the fundamental quark level is that
each correction in the powers of small current quark masses is determind by the
corresponding system of equations which can be formally solved exactly.

The differential equation (A8) which determines ˇrst correction for the dy-
namically generated quark mass function is

B′
1 +

[
1 − 1

2
A2

0B
−2
0

]
B1 = A0 − A0A1B

−1
0 , (A10)
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where we used the second of Eqs. (A5). It is easy to check that its solution
which is regular at zero is

B1(x) = µ−1(x)
∫ x

c1

dz A0(z)[1 − A1(z)B−1
0 (z)]µ(z), (A11)

where

µ(x) = exp
[
x − 1

2
a(x)

]
, (A12)

and

a(x) =
∫ x

0

dx′ A2
0(x

′)B−2
0 (x′). (A13)

Let us write down the system of solutions approximating the light quark
propagator up to the ˇrst corrections, i. e.,

A(x) = A0(x) + m0A1(x) + ...,

B(x) = B0(x) + m0B1(x) + ... (A14)

This system is

A0(x) = −x−1(1 − e−x), A0(0) = −1, (A15)

B2
0(x) = e−2x

∫ c0

x

dx′ e2x′
A2

0(x
′). (A16)

And

A1(x) = −x−1e−x

∫ x

0

dx′ ex′
B0(x′), (A17)

B1(x) = e−2xB−1
0 (x)

∫ x

c1

dz e2zA0(z)[B0(z) − A1(z)], (A18)

where again we use the second of Eq. (A5) in order to integrate out the µ(x)
function. In physical applications we also need B2(x), so we have

B2(x) = B2
0(x) + 2m0B0(x)B1(x) + ... =

= B2
0(x) + 2m0 e−2x

∫ x

c1

dz e2zA0(z)[B0(z) − A1(z)] + ..., (A19)

and the relation between constants of integration c0 and c1 remains, in general,
arbitrary. However, there exists a general restriction, namely B2(x) ≥ 0, and it
should be real which may lead to some bounds for the constants of integration,
while x ≤ c0 always remains.
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Heavy Quarks.For heavy quarks it makes sense to replace m0 → mQ. In
this case it is convenient to ˇnd solution for heavy quark form factors A and B
as follows:

m2
QA(x) =

∞∑
n=0

m−n
Q An(x),

mQB(x) =
∞∑

n=0

m−n
Q Bn(x),

(A20)

and for heavy quark masses we have

m
(c,b,t)
Q  1, (A21)

i. e., the inverse powers are small. Substituting these expansions into the ˇrst
equation of the ground system (A1) and omitting some tedious algebra, one
ˇnally obtains

B0(x) = −1, B1(x) = 0, (A22)

and

xA′
n(x) + (1 + x)An(x) = −Bn+2(x), n = 0, 1, 2, 3, ... (A23)

In the same way, by equating terms at equal powers in the inverse of heavy quark
masses, from second of the equations of the ground system, one ˇnally obtains

P0(x) + Q0(x) − N0(x) = 0, P1(x) + Q1(x) − N1(x) = 0 (A24)

and

Pn+2(x) + Qn+2(x) − Nn+2(x) = −1
2
Mn(x), n = 0, 1, 2, 3, ..., (A25)

where Pn(z), Mn(z), Qn(z), Nn(z) are again given by Eqs. (A7). Solving
these equations, one obtains

A0(x) =B0(x) = −1,

A1(x) =B1(x) = 0,
(A26)

and

xA′
n(x) + (1 + x)An(x) = − Bn+2(x),

Pn+2(x) + Qn+2(x) − Nn+2(x) = − 1
2
Mn(x), n = 0, 1, 2, 3, ...

(A27)
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It is possible to show that all odd terms are simply zero, i. e.,

A2n+1(x) = B2n+1(x) = 0, n = 0, 1, 2, 3, ... (A28)

The explicit solutions for a few ˇrst nonzero terms are

A0(x) = B0(x) = −1, (A29)

A2(x) = x +
3
2
, B2(x) = x + 1, (A30)

A4(x) = −x2 − 3
2
x − 15

2
, B4(x) = −x2 − 7

2
x − 3

2
. (A31)

Thus our solutions for the heavy quark form factors look like

A(x) =
1

m2
Q

∞∑
n=0

m−n
Q An(x) = − 1

m2
Q

+
x

m4
Q

− x2

m6
Q

+ ... + DA(x), (A32)

where

DA(x) =
3

2m4
Q

− 3x + 15
2m6

Q

+ ... (A33)

And

B(x) =
1

mQ

∞∑
n=0

m−n
Q Bn(x) = − 1

mQ
+

x

m3
Q

− x2

m5
Q

+ ... + DB(x), (A34)

where

DB(x) =
1

m3
Q

− 7x + 3
2m5

Q

+ ... (A35)

Summing up, one obtains

A(x) = − 1
x + m2

Q

+ DA(x), B(x) = − mQ

x + m2
Q

+ DB(x). (A36)

In terms of the Euclidean dimensionless variables (4.7), the heavy quark
propagator (4.2) is

iS(x) = x̂A(x) − B(x). (A37)
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Using our solutions, obtained above, it can be written down as follows:

iS(x) = x̂
(
− 1

x + m2
Q

+ DA(x)
)

+
mQ

x + m2
Q

− DB(x). (A38)

In other words, it becomes

iS(x) = iS0(x) + x̂DA(x) − DB(x), (A39)

where iS0(x) is nothing else but the free quark propagator with the substitution
m0 → mQ, i. e.,

iS0(x) = − x̂ − mQ

x + m2
Q

. (A40)

Since x̂DA(x) and DB(x) both are of the same order in the inverse powers of
mQ, namely they are of order m−3

Q , then Eq. (A39), becomes

iS(x) = iS0(x) + 0(m−3
Q ). (A41)

This means that our solution for the heavy quark propagator is reduced to the
free quark propagator up to terms of order 1/m3

Q.
Heavy Quarks Flavor Symmetry.Let us explicitly show here that our solu-

tions (A36) possess the heavy quark �avor symmetry [43]. We will show that
the quark propagator to leading order in the inverse powers of the heavy quark
mass will not depend on it, i. e., it is manifestly �avor independent to the leading
order of this expansion. For this purpose, we must take into account that argu-
ment x which is the dimensionless momentum of the heavy quark contains itself
the heavy quark mass mQ. In other words, a standard heavy quark momentum
decomposition should be used, namely

pµ = mQυµ + kµ, (A42)

as well as

x̂ = γµxµ = γµ(mQυµ + yµ), (A43)

where υ is the four-velocity with υ2 = −1 (Euclidean signature). It should be
identiˇed with the four-velocity of the hadron. The ®residual¯ momentum k
is of dynamical origin. In these terms the Euclidean dimensionless dynamical
momentum variable x = p2/ḡ2 then becomes

x = −m2
Q − 2mQt − z, (A44)
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where we denote t = (υ · y) with yµ = kµ/ḡ and z = k2/ḡ2.
Substituting expressions (A43) and (A44) and taking into account only lead-

ing order terms in the inverse powers of mQ, one ˇnally obtains

iSh(υ, y) = iS0(υ, y) + O

(
1

mQ

)
, (A45)

where

iS0(υ, y) =
1

υ · y
υ̂ − 1

2
, (A46)

which is exactly the heavy quark propagator [43]. Thus our propagator does not
depend on mQ to leading order in the heavy quark mass limit, mQ → ∞, i. e.,
in this limit it possesses the heavy quark �avor symmetry, indeed.

Concluding, let us note that the general system (A1) does not demonstrate
the principal difference in the analytical structure of its solutions for light and
heavy quarks. Also at the fundamental quark level the heavy quark mass limit is
not Lorentz covariant. That is why in the case of heavy quarks we will use rather
Eq. (A39) than Eq. (A45).

Appendix B

BOUND-STATE PROBLEM

Here let us only schematically show that the BS equation within our approach
can be reduced to an algebraic problem, indeed. The BS equation (7.25) for the
bound-state meson amplitude B(p, p′) to leading order (ˇrst skeleton diagram in
Fig. 7) in the skeleton expansion of the 2PI BS scattering kernel can be written
analytically as follows (Euclidean signature):

S−1
q (p)B(p, p′)S−1

q̄ (p′) = −ig2

∫
d2lΓµ(p′, l)B(p, p′; l)Γν(p, l)D0

µν(l) (B1)

(for simplicity all numerical factors are suppressed), where as usual S−1
q (p) and

S−1
q̄ (p′) are inverse quark and antiquark propagators, respectively. Proceeding

absolutely in the same way as in section 1, on account of the Laurent expansion
(1.4), one ˇnally gets

S−1
q (p)B(p, p′)S−1

q̄ (p′) =
1
ε
g2Γµ(p′, 0)B(p, p′)Γµ(p, 0), (B2)

where all numerical factors again were included into the coupling constant. It is
already known that the renormalization of the coupling constant only is needed
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to get theory IR ˇnite, i. e., g2 = X(ε)ḡ2. Taking now into account the relation
(11.1), the IR renormalized bound-state problem becomes

S−1
q (p)B(p, p′)S−1

q̄ (p′) = ḡ2Γµ(p′, 0)B(p, p′)Γµ(p, 0). (B3)

Thus we came to an algebraic problem to solve, indeed. It is necessary to remind
that the explicit solution for the quark-gluon vertex at zero momentum transfer is
given in Eqs. (4.5) and (4.6). The bound-state amplitude B(p, p′), for example,
for the pseudoscalar meson-quark-antiquark vertex function is

Gi
5(p

′ + q, p′) =
(λi

2

)
γ5[G1 + q̂G2 + p̂′G3 + p̂′q̂G4], (B4)

where right-hand side is nothing else but the decomposition of the pseudoscalar
bound-state amplitude into the independent matrix structures. Gj = Gj(p2, p′2, q2)
with j = 1, 2, 3, 4, and i is the �avor index. Absolutely in the same way there
can be evaluated the BS equation on account of the second skeleton diagram in
Fig. 7 and so on.

In the covariant 't Hooft model considered in section 10 one has to replace
the full vertices by their point-like counterparts, i. e., Eq. (B3) becomes

S−1
q (p)B(p, p′)S−1

q̄ (p′) = ḡ2γµB(p, p′)γµ. (B5)

The only problem in the evaluation of the corresponding BS equations (B3) and
(B5) for the pseudo-scalar mesons is the appropriate deˇnition of the γ5 matrix
in 2D. However, for vector mesons there is no such a problem. The actual
evaluation of the BS equations for different bound-state amplitudes deserves a
separate investigation as well as the investigation of the Goldstone sector in
QCD.
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