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ON THE MASS SURFACE AND THE PROPERTIES OF NUCLIDES
CLOSE TO HYPOTHETIC DOUBLY MAGIC LEAD-164

V.I.Isakov1, K.I.Erokhina2, B.Fogelberg3, Yu.N.Novikov1, H.Mach3,
K.A.Mezilev1

The work presents calculations of the mass values and the decay energies for a set
of nuclei close to the extreemely remote from the stability line 164Pb. Different decay
modes of the mentioned nuclide, as well as the properties of excited states of isobars
with A = 164 and close to 164Pb, are carefully examined.

The investigation has been performed at the St.Petersburg Nuclear Physics Institute,
RAS, Physicotechnical Institute, RAS, and Department of Radiation Sciences, Uppsala

University.
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1. INTRODUCTION

In our work [1] we investigated mass surface and some properties of nuclei close to
neutron-rich nuclide 78Ni offering the astrophysical interest. The mentioned work used two
different approaches. The ˇrst one consisted in applying the multiparticle shell model that used
the mean ˇeld and residual interaction with parameters deˇned from description of nuclear
structure in the regions of less neutron excess or in stable nuclei. The second approach was
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based on resemblance of the shell structure of 78Ni and that of 132Sn. The latter doubly
magic nuclide is actively investigated at the present time [2,3]. Such resemblance was ˇrst
observed by Blomqvist [4], but conformably to the pair of nuclei Å 132Sn and 208Pb. It was
noted by us in [1] that the known so far as well as not yet well investigated (or even not
yet discovered) regions of magicity, in the sence of resemblance of nuclear structure, may
be considered as lying in the (Z, N ) coordinates on two axes, one leading to neutron excess,
while another one Å to neutron deˇcient nuclei. Among the least, one may mention the
nuclides in the vicinity of 100Sn, also hardly studied so far (see for example [5Ä10] and the
references therein) as well as nuclei close to Z = N = 82, about which any experimental
information is absent by now.

The investigation of both mass regions (A ≈ 100 and A ≈ 164) is of great importance be-
cause it can shed light on the problem of ®universality¯ of nucleon magic numbers throughout
the Chart of nuclides. The question whether this universality is fulˇlled in the mass regions
very far off the β-stability line has a principal meaning. Especially, it is interesting to learn
whether the magic properties of the 164Pb nuclide, which is situated beyond and far from the
proton drip-line, can provide the existence of the island of quasi-stability in the sea of full
nucleon instability of nuclides.

The problem of universality which was formulated long time ago [11] is still under
discussion [12, 13]. Meanwhile the interest to the hypothetic magic nuclides should be
increased nowadays in connection with the advent of Radioactive Ion Beam facilities which
main goals are just concentrated on the production and investigation of exotic nuclides. To
prepare some guide for the future experiments we have carried out the evaluation of the
expected properties of the mentioned nuclides.

Thus the aim of the present paper is to obtain some theoretical estimates on the prop-
erties of nuclides utmost remote from the β-stability line, which are evidently unstable to
the proton decay. The calculations for the magic region of light lead were held in the
framework of two microscopical and partially overlapping approaches, one of which is
based on the multiparticle shell model [14], whereas the other Å on the self consistent
procedure of HartreeÄFock, accounting for pairing correlations (HF+BCS; see, for example,
[15Ä18]).

2. CALCULATIONS OF THE MASS SURFACE OF NUCLEI CLOSE TO 164Pb USING
THE MULTIPARTICLE SHELL MODEL

The shell-model calculations presented in this work are based on the concepts of nuclear
mean ˇeld and residual interaction. The parameters of the mean ˇeld potential of the Woods-
Saxon type were ˇtted by us from the comparison with the experimental data on single-particle
energies for nuclei close to 208Pb and 132Sn. The ˇnite range effective interaction used by
us here was applied earlier for the description of ®two-quasiparticle¯ nuclei around the magic
cores [19Ä23].

Another basic idea consists in using the ground state of 164Pb as a vacuum relatively to
which all near-magic nuclei can be considered as few quasiparticle ones. This consideration
in practice includes all the nuclei having proton and neutron numbers in the interval 80 ≤
Z, N ≤ 84 (totally 25 cases studied by us here).
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Let us consider the Hamiltonian in the HartreeÄFock representation which in this case
has the form:

H = E0 +
∑

α

εαN(a+
α aα) +

1
4

∑
α,β,γ,δ

a〈αβ|ϑ|γδ〉a N(a+
α a+

β aδaγ), (1)

where the single-particle orbitals |α〉 are formally determined from the self-consistent proce-
dure of the HartreeÄFock type for the core nucleus. In Eq.à(1) E0 is a vacuum energy (binding
energy of a 164Pb core with the opposite sign) which is not essential in the case of decay
energy determinations, ϑ is the residual interaction and N(· · ·) means a normal (relatively to
the assumed vacuum) product of operators.

In reality, for generating single particle orbitals we used WoodsÄSaxon potential (instead
of HartreeÄFock) of the form

U(r, σ̂) =
V

1 + exp [(r − R)/a]
+ V�sr

2
0

1
r

d

dr

[
1

1 + exp [(r − R)/a]

]
�̂ · ŝ, (2)

where V = −V0(1 − β N−Z
A tz), R = r0A

1/3, tz = −1/2 for p and tz = +1/2 for n (for
protons the potential of the uniformly charged sphere with radius Rc = rocA

1/3 was added).
We performed calculations using three different sets of parameters entering Eq. (2). Poten-

tial Stnd was borrowed from the works [19Ä23] and had the following values of parameters:
V0 = 51.5 MeV, r0 = 1.27 fm, β = 1.39, V�s = −0.43 V , roc = 1.25 fm. The effective
diffuseness parameters a for protons and neutrons were chosen to be: ap = 0.67 fm and
an = 0.55 fm, where index ®p¯ refers to protons, while ®n¯ Å to neutrons. Potential Set3
was deˇned by us in [24] and gives the best description of single-particle spectra in the
region of 100Sn. At the same time, the BEn potential gives an adequate description of the
single particle separation energies in the chain of isotopes from 132Sn to 100Sn. Our effective
interaction has the form:

ϑ = (V +Vσσ1σ2 +VT S12 + Vττ 1τ 2 +Vστ σ1σ2 · τ 1τ 2 + VτT S12τ 1τ 2) exp
(
− r2

r2
00

)
(3)

with V = −9.95, Vσ = 2.88, VT = −1.47, Vτ = 5.90, Vστ = 4.91, VτT = 1.51 MeV and
r00 = 1.8 fm.

Single-particle energies generated by the potential (2) were used to deˇne the binding
energies for four odd-mass nuclei adjacent to 164Pb as well as to generate the whole single-
particle spectrum which is necessary for calculations of binding energies for nuclides having
more than one quasiparticle (where the residual interaction between the nucleons as well as
conˇguration mixing are essential).

Let us consider separately different cases arising for nuclides with more than one valence
quasiparticle:

2.1. The Nuclides of the Type ®164Pb Core Plus Two Quasiparticles¯. Ground state
binding energies were obtained from the RPA-calculations, with the eigenfrequencies and
amplitudes of states fαβ =

(
X
Y

)
deˇned by systems of equations that have the following form

in a matrix notation: ∥∥∥∥ A M
M C

∥∥∥∥(X

Y

)
= ωk

(
X

−Y

)
(4)
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with the normalization condition∣∣∣∣∣∣
∑
α,β

Xαβ(ωk)Xαβ(ωk′ ) −
∑
α,β

Yαβ(ωk)Yαβ(ωk′ )

∣∣∣∣∣∣ = δ(kk′), (5)

where fαβ =
(

Xab

Ya′b′

)
for particleÄparticle (nuclides of the type ®core ±2p,±2n, ±p±n¯) and

fαβ =
(
Xab′
Ya′b

)
for particle-hole (nuclides of the type ®core ±p ∓ n¯) channels. Latin indices

with and without primes refer to states below and above the Fermi levels, respectively.
The expressions in equation (4) stand for the following:

Aαβ;µν = Eαβδαµδβν + MJ
αβ;µν (6)

Cαβ;µν = −Eαβδαµδβν + MJ
αβ;µν. (7)

For the particle-particle channel Eαβ = εα + εβ ; α = a, β = b (or α = a′, β = b′) and
MJ

αβ;µν is a properly antisymmetrized particle-particle matrix element between the states
|αβ; J > and |µν; J > with a given value of angular momenta. For the particle-hole channel
Eαβ = εα − εβ; α = a, β = b′ (or α = a′, β = b) and MJ

αβ;µν is a particle-hole matrix

element. The formulae for particle-particle and particle-hole matrix elements MJ
αβ;µν one

may see in [19, 20]. The ®upper¯ solutions having ωn � εa + εb for the particle-particle
channel correspond to the (A + 2), while the ®lower¯ ones, with ωm � ε′a + ε′b correspond to
the (A−2) nuclides. In this case the solutions ω of the system (4) are related to the excitation
energies by equations:

En(A + 2) = ωn + B(A + 2) − B(A), (8)

Em(A − 2) = −ωm + B(A − 2) − B(A), (9)

where B(A) and B(A+ 2) present the ground state binding energies and A refers to the core
(B(A) ≡ −E0(A)). For the charged particle-hole channel ωn � εa − ε′b corresponds to the
®core +p − n¯, while ωm � ε′a − εb Ä to the ®core −p + n¯ nuclides. Here we have:

En(Z + 1, N − 1) = ωn + B(Z + 1, N − 1) − B(Z, N), (10)

Em(Z − 1, N + 1) = −ωm + B(Z − 1, N + 1) − B(Z, N), (11)

where Z, N refer to the core. The differences of binding energies B(A ± 2) − B(A) and
B(Z±1, N ∓1)−B(A) between the two quasiparticle states and the core nuclei were deˇned
by variation of the B(A ± 2) and B(Z ± 1, N ∓ 1) values until the excitation energies En

and Em of the lowest states as deˇned by (8)Ä(11) become equal to zero.
2.2. The Nuclides of the Type ®164Pb Core Plus Three Quasiparticles¯. The nuclei

considered by us here have a structure of the types ®core±2p ± n, ±2p ∓ n, ±2n ± p, and
±2n ∓ p¯. In all these cases the calculations have been performed in the framework of the
three quasiparticle shell model and the wave function was expressed as follows:

ΨIM =
∑

α,β,µ,J

XI
αµ(J)β |

[
ξ+
jα

ξ+
jµ

]J
, ξ+

jβ
; IM |0〉 (12)
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with

[ξ+
jα

ξ+
jµ

]JM =
1√

1 + δjαjµ

∑
mα,mµ

CJM
jαmαjµmµ

ξ+
jαmα

ξ+
jµmµ

(13)

and

ξ+
jama

= a+
jama

; ξ+
ja′ma′ = (−1)�a′+ja′−ma′aja′−ma′ . (14)

In (12) α, µ ∈ p, β ∈ n or α, µ ∈ n, β ∈ p (α, µ simultaneously belong to particles or holes),
|0〉 is a ground state wave function of 164Pb. The eigenvectors (X) and the eigenstates were
obtained by solving the secular equation:

‖D‖ · (X) = ωk(X) (15)

with

D
J2J1(I)
α2µ2β2,α1µ1β1

= (ε̄α1 + ε̄µ1 + ε̄β1)δα2α1δµ2µ1δβ2β1δJ2J1

+ 〈α2µ2(J2)β2; I|Hint|α1µ1(J1)β1; I〉, (16)

where ε̄a = εa, ε̄a′ = −εa′ , etc., and the excitation energies Ek are connected with ωk in
Eq. (15) by the relation:

Ek = ωk + B(A + 3qp) − B(A). (17)

The three quasiparticle interaction matrix element in (16) can be expressed via MJ -values:

〈α2µ2(J2)β2; I|Hint|α1µ1(J1)β1; I〉 = δβ2β1δJ2J1M
J1
α2µ2;α1µ1

+

+
[

(2J2 + 1)(2J1 + 1)
(1 + δα2µ2)(1 + δα1µ1)

]1/2
{

δµ2µ1

∑
L

(2L + 1)W [jβ2LJ2jµ2 ; jα2I]W [jβ1LJ1jµ2 ; jα1I]

× ML
α2β2;α1β1

+(−1)jα1+jµ1+J1+1δµ2α1

∑
L

(2L+1)W [jβ2LJ2jµ2 ; jα2I]W [jβ1LJ1jµ2 ; jµ1I]

× ML
α2β2;µ1β1

+(−1)jα2+jµ2+J2+1δα2µ1

∑
L

(2L+1)W [jβ2LJ2jα2 ; jµ2I]W [jβ1LJ1jα2 ; jα1I]

× ML
µ2β2;α1β1

+ (+1)jα2+jµ2+J2+jα1+jµ1+J1δα2α1×

×
∑
L

(2L + 1)W [jβ2LJ2jα2 ; jµ2I]W [jβ1LJ1jα2 ; jµ1I]ML
µ2β2;µ1β1

}
. (18)

In Eq. (18) and below MJ
ab;cd and MJ

a′b′;c′d′ refer to particle-particle, while MJ
ab′;cd′ and

MJ
a′b;c′d refer to particle-hole channels.

The values of B(A + 3qp) are determined by the condition that the energy Ek of the
lowest level is equal to zero.
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Table 1. Mass surface in the neighborhood of 164Pb

Z 164Po; 0+ 165Po; 1/2+ 166Po; 0+ 167Po; 9/2− 168Po; 0+

84 a) −48.99(1.15) −31.88(1.09) −13.34(0.84) 0.26(0.94) 14.27(1.05)
b) −49.84 −32.62 −14.70 −2.14 11.95

163Bi; 9/2− 164Bi; 4− 165Bi; 9/2− 166Bi; 1+(0+) 167Bi; 9/2−

83 a) −42.04(0.87) −25.09(0.63) −7.24(0.44) 7.08(0.46) 20.52(0.90)

b) −42.00 −25.48 −7.66 5.50; 9+(1+, 0+) 18.20

162Pb; 0+ 163Pb; 1/2+ 164Pb; 0+ 165Pb; 9/2− 166Pb; 0+

82 a) −33.89(0.67) −17.64(0.34) 12.87(0.43) 27.06(0.83)
b) −33.63 −17.34 11.85 24.85

161Tl; 1/2+ 162Tl;1+ 163Tl; 1/2+ 164Tl; 4− 165Tl; 1/2+

81 a) −28.92(0.45) −12.90(0.11) 3.15(0.24) 15.89(0.65) 29.36(1.10)
b) −30.54 −13.09 2.74 14.12 27.22

160Hg; 0+ 161Hg; 1/2+ 162Hg; 0+ 163Hg; 9/2− 164Hg; 0+

80 a) −23.26(0.20) −8.41(0.12) 7.16(0.46) 19.43(0.87) 32.70(1.30)
b) −27.01 −10.82 5.83 17.02 29.62

80 81 82 83 84 N

The values of B(Z, N) − B(164Pb) in the multiparticle shell-model, with averaging over the mean ˇeld
potential, are presented in lines ®a¯; numbers in brackets are the dispersions of the averaging procedure, σ. The
results of the HF+BCS calculations are presented in lines ®b¯. The differences of energies are calculated with
mn �= mp. In this case B(164Pb) = 1200.3 MeV. If one takes mn = mp ≡ mn then B(164Pb) is equal to
1202.3 MeV, while the B(Z, N)−B(164Pb) values change very small, by the numbers not more than ∼ 0.05 MeV.

Table 2. Averaged decay energies in the vicinity of 164Pb, calculated in the multiparticle shell-model

Nucleus Qβ+ Qp Q2p Qα

168
84 Po84 Å 6.25(1.38) 12.79(1.34) 14.03(1.05)
167
84 Po83 18.45(1.30) 6.82(1.05) 12.61(1.03) 10.40(1.00)
166
84 Po82 18.61(0.92) 6.10(0.95) 13.34(0.84) 7.75(1.07)
165
84 Po81 23.19(1.17) 6.79(1.26) 14.24(1.14) Ä
164
84 Po80 22.09(1.31) 6.95(1.44) 15.10(1.33) Ä

167
83 Bi84 Å 6.54(1.22) 8.84(1.42) 10.93(0.93)
166
83 Bi83 18.17(0.95) 5.79(0.63) 8.81(0.80) 8.32(0.47)
165
83 Bi82 18.31(0.61) 7.24(0.44) 10.39(0.50) 6.62(0.63)
164
83 Bi81 23.28(0.63) 7.45(0.72) 12.19(0.64) Ä
163
83 Bi80 22.59(0.93) 8.15(1.10) 13.12(0.98) Ä

166
82 Pb84 Å 2.30(1.38) 5.64(1.54) 8.40(0.95)
165
82 Pb83 14.68(1.18) 3.02(0.78) 6.56(0.97) 7.02(0.45)
164
82 Pb82 14.08(0.65) 3.15(0.24) 7.16(0.46) 5.04(0.20)
163
82 Pb81 18.98(0.42) 4.76(0.36) 9.23(0.36) Ä
162
82 Pb80 19.18(0.68) 4.97(0.81) 10.63(0.70) Ä

165
81 Tl84 Ä 3.34(1.70) Ä Ä
164
81 Tl83 15.00(1.45) 3.54(1.09) Ä Ä
163
81 Tl82 14.47(0.90) 4.01(0.52) Ä Ä
162
81 Tl81 18.25(0.47) 4.49(0.16) Ä Ä
161
81 Tl80 18.70(0.47) 5.66(0.49) Ä Ä

Root mean square errors of the Q values correspond to the ®errors¯ σ of binding energies of the initial and ˇnal
states, that are pointed in Table 1.
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Table 3. Decay energies of nuclei close to 164Pb, calculated in the framework of the HF+BCS method

Nucleus Qβ+ Qp Q2p Qα

168Po Å 6.25 12.90 16.35
167Po 18.53 7.64 13.99 13.10
166Po 18.39 7.04 14.70 9.37
165Po 23.15 7.14 15.28 Ä
164Po 22.55 7.84 16.21 Ä

167Bi Å 6.65 9.02 12.84
166Bi 17.54 6.35 8.62 9.71
165Bi 17.70 7.66 10.40 5.42
164Bi 23.67 8.14 12.39 Ä
163Bi 22.85 8.37 11.46 Ä

166Pb Å 2.37 4.77 9.28
165Pb 13.56 2.27 5.17 5.63
164Pb 12.31 2.74 5.83 1.29
163Pb 18.27 4.25 6.52 Ä
162Pb 18.73 3.09 6.62 Ä

165Tl Å 2.40 Å Å
164Tl 13.69 2.90 Å Å
163Tl 12.47 3.09 Å Å
162Tl 17.11 2.27 Å Å
161Tl 17.91 3.53 Å Å

In composing this Table the Skyrme III interaction and Gp = 23/A MeV, Gn = 21/A MeV values of the
pairing constants are used.

2.3. The Nuclides of the Type ®164Pb Plus Four Quasiparticles¯. These nuclides have
a structure ®core±2p± 2n and ±2p∓ 2n¯. The wave function can be written in this case as
follows:

ΨIM =
∑

α,µ,β,η,J1,J2

XI
αµ(J1)βη(J2)

|[ξ+
jαξ+

jµ]J1 , [ξ+
jβξ+

jη ]J2 ; IM |0〉 (19)

with α, µ ∈ p, β, η ∈ n or α, µ ∈ n, β, η ∈ p and αµ or βη simultaneously belong to
particles or holes. In practical calculations we used in the basis only the functions with
J1 = J2 = 0 giving the greatest matrix elements of interaction within the I = 0 basis states.
In this case α = µ, β = η and the corresponding secular equation formally also has the form
(15) with

Dα2β2,α1β1 = (2ε̄α2 + 2ε̄β2)δα2α1δβ2β1 + δβ2β1M
0
α2α2,α1α1

+ δα2α1M
0
β2β2,β1β1

+ δα2α1δβ2β1

4
(2jα1 + 1)(2jβ1 + 1)

∑
L

(2L + 1)ML
α1β1,α1β1

. (20)

The single-particle basis that includes all single-particle states of corresponding valence
shells was used for all two-, three- and four-quasiparticle nuclides.

Table 1 (lines ®a¯) presents the calculated differences of binding energies, B(A) −
−B(164Pb). The predicted values of the ground state spins are also presented in this Table.
The values of one- and two-proton separation energies, as well as β- and α-decay energies
are presented in Table 2. One should mention that the procedure for deˇnition of B(A) −
B(164Pb) values, based on the shell-model approach that uses the same vacuum for all the
nuclei studied by us, does not take into account the rearrangement effects (see the discussion
below).
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3. CALCULATIONS USING THE SELF CONSISTENT APPROACH

As the nuclei considered by us here are extremely neutron-deˇcient, long extrapolations
of the phenomenological parameters deˇning the mean ˇeld and residual interaction may be
rather speculative. Below we consider the problem of the mass surface in the vicinity of
164Pb in the framework of another method, namely the HF+BCS approximation using the
Skyrme III interaction and the constant pairing theory to account the pairing correlations. In
this case the total energy E has the form (see also [15Ä18]):

E = 4π

∫ ∞

0

H(r)r2dr −
∆2

p

Gp
− ∆2

n

Gn
, (21)

where

H(r) =
A − 1

A

[
h̄2

2mp
τp +

h̄2

2mn
τn

]
+

t0
2

[(
1 +

x0

2

)
ρ2 −

(
x0 +

1
2

)(
ρ2

p + ρ2
n

)]
+

+
1
4
(t1 + t2)ρτ +

1
8
(t2 − t1)(ρnτn + ρpτp) +

1
4

t3ρρnρp +

+
1
32

(3t1 + t2)
[
ρn

(
d2ρn

dr2
+

2
r

dρn

dr

)
+ ρp

(
d2ρp

dr2
+

2
r

dρp

dr

)]
+

+
1
16

(t2 − 3t1)ρ
(

d2ρ

dr2
+

2
r

dρ

dr

)
+

1
16

(t1 − t2)
(
J2

n + J2
p

)
−

− 1
2
W0

[
ρ

(
dJ

dr
+

2
r

J

)
+ ρn

(
dJn

dr
+

2
r

Jn

)
+ ρp

(
dJp

dr
+

2
r

Jp

)]
+

+ 2πe2ρp

1
r

r∫
0

ρp(x)x2dx +

∞∫
r

ρp(x)xdx

 − 3
4

(
3
π

)1/3

e2ρ4/3
p . (22)

In formula (22) we subtracted (in the single particle approximation) the center of mass
motion and took into account the exchange Coulomb energy in the Slater approach. The
quantities t0, t1, t2, t3, x0 and W0 entering (22) are the Skyrme III parameters [17], while the
expressions for the density of matter as well as for kinetic energy and spin densities have the
form:

ρq(r) =
1

4πr2

∑
α

v2
q,α(2jq,α + 1) R2

q,α ; (23)

τq(r) =
1

4πr2

∑
α

v2
q,α(2jq,α + 1)

[(
dRq,α

dr

)2

+
�(� + 1) + 1

r2
R2

q,α − 2
r
Rq,α · dRq,α

dr

]
; (24)

Jq(r) =
1

4πr3

∑
α

v2
q,α(2jq,α + 1)

[
jq,α(jq,α + 1) − �q,α(�q,α + 1) − 3

4

]
R2

q,α, (25)

where q = p, or n; ρ = ρp + ρn, τ = τp + τn, J = Jp + Jn.
Radial wave functions Rqα(r) entering the densities are normalized by the condition∫∞

0 R2dr = 1 and are deˇned by the system of equations

R′′
q,α(r) =

2m∗
q

h̄2

{
−
[
1
4
(t1 + t2)

dρ

dr
+

1
8
(t2 − t1)

dρq

dr

]
R′

q,α + (Fq,α − εq,α)Rq,α

}
, (26)
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where

Fq,α = t0

[(
1 +

x0

2

)
ρ −
(
x0 +

1
2

)
ρq

]
+

1
4
t3(ρ2 − ρ2

q) −

− 1
8
(3t1 − t2)

[d2ρ

dr2
+

2
r

dρ

dr

]
+

1
16

(3t1 + t2)
[d2ρq

dr2
+

2
r

dρq

dr

]
+

+
1
r

[1
4
(t1 + t2)

dρ

dr
+

1
8
(t1 − t2)

dρq

dr

]
+

1
4
(t1 + t2)τ +

1
8
(t2 − t1)τq −

− 1
2
W0

[d(J + Jq)
dr

+
2
r
(J + Jq)

]
+

h̄2

2m∗
q

�(� + 1)
r2

+

+
1
r

[1
2
W0

d(ρ + ρq)
dr

+
1
8
(t1 − t2)Jq

][
j(j + 1) − �(� + 1) − 3

4

]
+

+
[
4πe2

(1
r

r∫
0

ρp(x)x2dx +

∞∫
r

ρp(x)xdx
)
−
( 3

π

)1/3

e2ρ1/3
p

]
· δpq . (27)

In formulas (26), (27)(mq

m∗
q

)
=

A − 1
A

+
[1
4
(t1 + t2)ρ +

1
8
(t2 − t1)ρq

]
· 2mq

h̄2 . (28)

The v2
q,α quantities entering equations (23)Ä(25) present the occupancies of the (q, α) orbitals

and are deˇned from the self consistent, together with equations (26), procedure that uses in
the pairing channel the constant pairing approximation:

v2
q,α =

1
2

(
1 − εq,α − λq√

(εq,α − λq)2 + ∆2
q

)
, u2

q,α = 1 − v2
q,α ,

1 =
Gq

4

∑
α

(2jq,α + 1)√
(εq,α − λq)2 + ∆2

q

, Nq =
∑
α

(2jq,α + 1)v2
q,α ; (29)

Np = Z, Nn = N , where εq,α are deˇned by the system (26).
For joint solution of systems (26), (29) the iteration procedure was employed. As starting

ones, the eigenfunctions R, single particle energies ε and occupancies v2 for the appropriate
WoodsÄSaxon potential were used. They were employed for the calculation of the rightÄhand
parts of equations (26) that deˇne new values of R, ε, and then, using (29), Ä the v2 quantities.
Then the procedure was reiterated to achieve the necessary precision.

The method employed for deˇnition of eigenvalues ε allowed us to ˇnd eigenvalues both
for bound (with ε < 0) and unbound (ε > 0), but sub-barrier (quasi-stationary) states. In
the last case the shell-model function of a quasi-stationary state is deˇned and normalized to
unity in the interval from r = 0 up to the value r>, corresponding to the external turning
point, which position in case of protons is deˇned as:

r>(fm) ≈ 0.72
Z

ε
δpq +

√
0.518

(Z

ε

)2

δpq + 20.7
A− 1

A
· �(� + 1)

ε
, (30)

where the energy ε is in MeV.
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The consideration of the quasi-stationary states equally with the levels having ε < 0,
presented by us above, is valid in the case if single particle decay widths of such states are
essentially less than the typical nuclear energies. As we shall see further, this condition is
fulˇlled practically for all the proton quasi-stationary states in nuclei close to 164Pb, except,
maybe, the most upper ones.

Table 4. Single-particle energies in 164Pb, calculated in the framework of self-consistent procedure
with the Skyrme III interaction

Protons Neutrons

n � j εn�j , MeV n � j εn�j , MeV

3p1/2 12.17 3p1/2 −6.46
3p3/2 11.42 3p3/2 −7.41
2f5/2 11.23 2f5/2 −7.84
1i13/2 9.91 1i3/2 −9.21
2f7/2 8.88 2f7/2 −10.66
1h9/2 7.96 1h9/2 −11.42
3s1/2 3.09 3s1/2 −17.08
2d3/2 2.30 2d3/2 −17.75
1h11/2 1.39 1h11/2 −18.10
2d5/2 0.31 2d5/2 −19.90
1g7/2 −2.18 1g7/2 −21.97
1g9/2 −6.84 1g9/2 −26.65
2p1/2 −7.27 2p1/2 −27.82
2p3/2 −8.42 2p3/2 −29.04
1f5/2 −11.74 1f5/2 −31.86
1f7/2 −14.65 1f7/2 −34.76
2s1/2 −17.09 2s1/2 −38.01
1d3/2 −20.31 1d3/2 −40.75
1d5/2 −21.84 1d5/2 −42.27
1p1/2 −27.54 1p1/2 −48.31
1p3/2 −28.15 1p3/2 −48.91
1s1/2 −33.17 1s1/2 −54.32

Results of self consistent calculations of the binding energies are also presented in Table
1 (lines ®b¯). The BCS procedure used single-particle basis including one shell above and
the other Ä below the proton and neutron Fermi energies. The more deep single-particle
states were supposed as completely ˇlled; v2=1. In the cases of oddÄodd 166Bi and 162Tl
nuclei the corresponding diagonal particleÄparticle matrix elements (see [20]) and in the
cases of 164Bi and 164Tl Å diagonal particle-hole matrix elements [20], calculated with
the interaction (3), were added to the expression (21) for energy. The calculated self con-
sistent single-particle energies in 164Pb are presented in Table 4. As one can easily see,
the mentioned nuclide has distinct characteristics of a magic nucleus. The magnitudes of
proton (4.87 MeV) and neutron (5.66 MeV) gaps guarantee the absence of pairing in this
nuclide. For comparison Table 5 presents the similar theoretical spectrum, but for the sta-
ble isotope 208Pb. Proton and neutron densities in 164Pb are given in Fig. 1. One can
see that in the surface region the proton density is some more than that of neutrons and
that the mean square radius of proton distribution is also some more than that of neu-
trons. At the same time, there is no decrease of the proton density in the center of a
164Pb nucleus. The similar picture, but for 208Pb is presented for comparison in Fig. 2.
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Table 5. Some of single-particle energies in 208Pb, calculated in self-consistent approach with the
Skyrme III interaction

Protons Neutrons

n � j εn�j , MeV n � j εn�j , MeV

3p1/2 2.88 3d3/2 0.42
3p3/2 2.03 2g7/2 0.14
2f5/2 0.74 3d5/2 −0.38
1i13/2 −1.53 4s1/2 −0.64
2f7/2 −1.66 1j15/2 −1.93
1h9/2 −4.24 1i11/2 −2.77
3s1/2 −7.33 2g9/2 −2.97
2d3/2 −8.51 3p1/2 −7.13
1h11/2 −9.65 3p3/2 −8.15
2d5/2 −10.28 2f5/2 −8.44
1g7/2 −13.59 1i13/2 −10.21
1g9/2 −17.36 2f7/2 −11.24
2p1/2 −17.64 1h9/2 −12.67
2p3/2 −18.63 3s1/2 −17.04
1f5/2 −22.21 2d3/2 −17.63

1h11/2 −18.24
2d5/2 −19.61
1g7/2 −22.12

Fig. 1. Proton and neutron densities in 164Pb Fig. 2. Proton and neutron densities in 208Pb

The comparison of values of four single-particle nucleon energies closest to proton and
neutron gaps and presented among the others in Table 4 with the magnitudes of differences
B(A)−B(core) for the 165Pb, 165Bi, 163Bi and 163Tl nuclei (see lines (®b¯) in Table 1) shows
that the rearrangement effect arising from the variation of single-particle wave functions with
changing the number of nucleons by one unit is not more than 0.4 MeV. This is usually less
than the dispersion of the B(A)−B(core) values obtained by us in the shell-model approach
and less than the distinction in the mentioned values obtained by two different (shell-model
and self-consistent) approaches. This fact presents a justiˇcation for using in our shell-model
approach of a unique vacuum for all the nuclei considered by us.
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4. ON THE STRUCTURE OF 164Pb AND IT'S DECAY PROPERTIES

Here we shall consider the stability of lead-164 relatively to different decay modes.
4.1. Evaluation of Half-Life Relatively to alpha-Decay. For evaluation of the partial half-

life T1/2 of the 164Pb to α-decay remember the relation T1/2 = 0.693 h̄/Γ, where Γ = P ·Γ0,
with Γ0 Å the reduced width, and P Å the barrier penetrability deˇned by the formula

P = exp

− 2
h̄

r>∫
r<

√
2mα

[
Uα

opt(r) +
2(Z − 2)e2

r
+

h̄2�(� + 1)
2mαr2

− ε

]
dr

 , (31)

where ε, mα and � are the kinetic energy, mass and the angular momentum of the α- particle,
r< and r> are the turning points while Uα

opt(r) is the real part of the α- particle optical
potential relating to the daughter nucleus. The main difˇculty in deˇning the absolute value
of T α

1/2 is associated with calculation of the reduced width Γ0, which is strongly dependent
on nuclear structure. Even in the most advanced calculations [25] that considered α- decay
of nuclei near the doubly closed shells, which took into account conˇguration mixing in the
RPA scheme and used the integral approach [26, 27] for description of widths, the obtained
theoretical widths were found to be two orders of magnitude less than the experimental ones.
The reason of this is that up to now one is unable to take properly into account the continuum
states in the particle-particle channel. Therefore here for deˇnition of the T α

1/2 for 164Pb

we use the indirect method based on the similarity of the α- decay of interest (0+ → 0+

transition between the doubly magic nucleus and the nucleus ®doubly magic −2p− 2n¯) and
the 0+ → 0+ decay of 212Po(0+) →208Pb(0+) + α (transition of the type ®doubly magic
nuclei +2p + 2n → ®doubly magic nuclide¯) with Qα ≈ 8.8 MeV and T α

1/2 = 3.04 · 10−7 s.
Supposing the identity of reduced widths Γ0 in both cases we thus have the relation

T α
1/2(

164Pb) = T α
1/2(

212Po) · P (212Po, Qα = 8.8 MeV)
P (164Pb, Qα ≈ 5 MeV)

. (32)

In numerical calculations we used α- particle optical potentials from the works [28,29], po-
tential ®2BL¯ from [30], and also rectangularÄform nuclear potentials with radii 1.17 A1/3 fm
and 1.25(A1/3 + 41/3) fm. The obtained values of T α

1/2(
164Pb) in the case of Qα ≈ 5 MeV

(the most value of this quantity, presented in Table 2) was found to lie in the interval from 3
to 10 years, with T α

1/2 = 5.2 years for the potential [28] and 7.3 years for the potential [30].
Due to uncertainty of the Qα value (compare Tables 2 and 3) our estimate presents rather the
lower limit of the half-life.

4.2. Beta-Decay and Some Properties of the A = 164 Isobars. To determine the
probability of the β+- decay of 164Pb we must know the structure of isobars with A = 164.
Here we present some results concerning 164Pb (the magic nuclide) and 164Tl (magic nuclide
−p+n). The calculations were performed in the framework of the RPA method. One can ˇnd
the corresponding formulas for the magic nuclei in our work [23], while the calculations for
164Tl correspond to the procedure described by us in [20]; see also formulas (4)Ä(11) of the
present work. In our calculations we used the effective interaction (3) while the single-particle
basis included all the proton and neutron single-particle states belonging to the 50 ÷ 82 and
82 ÷ 126 shells with the energies calculated in the self consistent approach (see Table 4).
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Some of the 164Pb and 164Tl levels offering the interest to us are presented in Fig. 3.
The lowest levels of 164Tl, in accordance with the structure of the main amplitudes of states,
present the components of the particleÄhole multiplets, two of which are partially represented
in the ˇgure. All the low-lying levels of this nucleus have the values of (T, TZ) = (1, 1). One
can see another picture in 164Pb. Here the ground state and the lowest levels are characterized
by the values of (T, TZ) = (0, 0) with insigniˇcant admixtures having (T, TZ) = (1, 0).
Among the higher lying levels there stand out the ones for which the fraction of components
(sum of the squared amplitudes) with T = 1 is close to 100%. These levels are the isobaric
analogs of the 164Tl states and are characterized approximately by the same, as for 164Tl,
energy splitting.

Fermi transitions between the 0+ ground state of 164Pb and the possible 0+- excitations of
164Tl are strongly conˇgurationally forbidden. The most like β+-transition of the 164Pb from
it's ground state is of the GamowÄTeller type and proceeds to the 1+- state of 164Tl with the
energy of 3.30 MeV. Our calculation, performed in the framework of the RPA approach with
the exact implementation of the ®difference sum rule¯, gives for this transition the magnitude
of B(GT ; 0+ → 1+) = 18.84. This is slightly less than the diagonal shell model value equal
to 240/11 ≈ 21.82, corresponding to the spin-�ip ph11/2 → nh9/2 (0+ → 1+) GamowÄ
Teller transition.The mentioned difference is due to conˇguration mixing and the ground state
correlations considered by us.

To evaluate the T β+

1/2 value remember the formula for GamowÄTeller transitions [31]:

T1/2(GT ) =
6163

(gA/gV )2f0(Qβ , Z)B(GT )
. (33)

Here f0 is an integral Fermi function for allowed beta-transition

f0(Qβ, Z) = F0(Eβ ≡ Qβ/mec
2 + 1) · S(Qβ, Z) , (34)

where

F0(Eβ) =
1
60

(E2
β − 1)1/2(2E4

β − 9E2
β − 8) +

1
4

Eβ ln
(
Eβ +

√
E2

β − 1
)

(35)

Ä is a Fermi function for zero charge, while S(Qβ , Z) is a screening function.
Taking for the purpose of evaluation the magnitude of |gA/gV | in nuclear media equal

to 1 and S(Qβ+ = 9.02 MeV, Z = 82) ≈ 0.32 [32], we obtain T1/2(β+) = 13 ms.
As one can see from Fig. 3 the difference of binding energies of related isobaric states

in 164Pb and 164Tl (for example, 10+ states), presenting the difference of Coulomb energies
of the mentioned nuclei, occurs to be about 19 MeV. In the model of uniformly charged
sphere having the radius Rc = roc · A1/3 the Coulomb energy of the (A, Z) nucleus and the
difference of Coulomb energies of the (A, Z) and (A, Z−1) nuclei are correspondingly equal
to

ECoulomb =
3
5

e2

roc

Z(Z − 1)
A1/3

, ∆ECoulomb = 0.864
(2Z − 2)

roc(fm) · A1/3
MeV , (36)

from which we obtain roc = 1.34 fm. This number is about 8−10% more than the analogous
value usually obtained from the electron scattering and used by us in phenomenological po-
tential (2). The difference is due to exchange Coulomb interaction that decreases the Coulomb
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Fig. 3. Properties of isobaric nuclei with A = 164

energy. Such interaction was included in our self consistent calculation, but ignored by the
formulas (36). We note here that if we use the single-particle spectrum of phenomenological
potential (variant Stnd of Tables 6 and 7), the difference of Coulomb energies corresponds
to roc = 1.23 fm, which practically coincides with the value of this parameter in the initial
potential.

Turning again to the excitation spectra of 164Pb we note that the lowest excited states
here are the collective isoscalar 3− and 5− levels.The collectivity of 3− state (30 W.u.) is
slightly less than in 208Pb (experimental value 34 W.u.) and exceed that in 132Sn (the indirect
estimate ∼ 15 W.u. from the experimental [33] value of octupole effective charge in 134Te
and > 10 W.u. from the experimental limit on the half-life of the 3−1 level in 132Sn [2]).
At the same time, the lowest isoscalar 2+ and 4+ states lie much higher. The collectivity of
4+ is rather strong (∼ 14 W.u.), while that for the 2+-state is small (∼ 2 − 3 W.u.) being
also strongly dependent on the relative position of the proton 1h9/2 and 2f7/2 states. The last
quantity should be compared with the B(E2; 2+

1 → gr. st.) value in 208Pb (∼ 8 W.u.) and
with the indirect estimate [34] of this characteristic in 132Sn, obtained from the value of an
effective quadrupole charge in nuclei close to 132Sn and equal to 8 − 10 W.u. We note here
that as the diagrams that deˇne the structure of phonon are similar to those contributing the
magnitude of the effective charge, the B(Eλ) values presented above were obtained by using
the ®bare¯ (ep = 1 and en = 0) values of effective charges. However the basis used in our
RPA calculations (one shell above and the other one, with the opposite parity, Ä below the
Fermi level for each sort of nucleons) may be not enough for saturating the values of effective
charges of the positive parity E2 transitions. This leads to the necessity of introducing the
ep and en values corresponding to nuclear media. In case of γ-decay of the isoscalar 2+

1
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Table 6. Single-particle proton energies of the 164Pb nuclide, corresponding to different phenom-
enological potentials

n�j Set3 Stnd BEn

3p1/2 11.39(670) 10.68(570) 10.37(446)
3p3/2 10.22(302) 9.75(284) 9.33(190)
2f5/2 10.71(74) 10.43(88) 10.17(66)
1i13/2 7.58(7.08 E-3) 9.30(1.99 E-1) 8.42(4.86 E-2)
2f7/2 7.59(1.92) 7.80(4.02) 7.21(1.42)
1h9/2 6.72(3.22 E-3) 7.89(5.74 E-2) 7.65(3.44 E-2)
3s1/2 3.27(1.28 E-5) 3.37(3.62 E-5) 2.87(1.02 E-6)
2d3/2 2.76(4.04 E-8) 3.06(6.76 E-7) 2.65(2.22 E-8)
1h11/2 0.81(1.20 E-28) 2.49(1.39 E-11) 1.66(1.57 E-16)
2d5/2 0.68(2.18 E-29) 1.22(2.14 E-18) 0.59(2.22 E-32)
1g7/2 −1.40 −0.08 −0.44

The values of energies are given in MeV, while the widths of unbound states (in brackets) Ä in keV. Potential Set3
uses the parameters, deˇned by us in [24] for 100Sn, potential Stnd is borrowed from our works [19], [20], [23],
while the BEn set reproduces the separation energies of protons and neutrons in isotopes from 132Sn to 100Sn.

Table 7. Single-particle neutron energies of 164Pb, corresponding to phenomenological Woods-Saxon
potentials

n�j Set3 Stnd BEn

3p1/2 −8.34 −8.49 −7.70
3p3/2 −9.58 −9.62 −8.92
2f5/2 −9.28 −9.55 −8.63
1i13/2 −10.94 −10.79 −10.29
2f7/2 −12.40 −12.39 −11.72
1h9/2 −12.93 −13.37 −12.31
3s1/2 −17.81 −17.95 −17.11
2d3/2 −18.17 −18.41 −17.48
1h11/2 −18.27 −18.21 −17.59
2d5/2 −20.13 −20.20 −19.42
1g7/2 −21.55 −21.91 −20.88

Potential Set3 uses the parameters, deˇned in [24] for nuclide 100Sn, potential Stnd corresponds to works [19],
[20], [23], while the BEn variant gives the best description of the proton and neutron separation energies in the
chain of isotopes from 132Sn to 100Sn.

state in 164Pb, having the symmetric spin-coordinate function, this leads to increase of the
B(E2) value presented above in (ep + en)2 ≈ 2.52 times, where we used the experimental
magnitudes of quadrupole effective charges for nuclei close to 208Pb. The resulting value of
about 17 W.u. presents the maximal estimate of the E2 transition probability of the lowest
2+ state in 164Pb, corresponding to coherent contribution of proton and neutron non-spin-�ip
1h11/2 → 2f7/2 single-particle E2 transition matrix elements.

4.3. Proton Radioactivity. As the 164Pb nucleus is an extremely neutron deˇcient one
and evidently lies outside the border of proton stability (see Tables 2 and 3), it's most
probable decay mode is expected to be the emission of a proton. Therefore we examine in
this section the problem of the widths of proton unbound states in this nuclide. These widths
were calculated by us in the framework of the integral method, elaborated in [26, 27].

If the mean ˇeld potential that forms the ®pocket¯ responsible for appearing of the quasi-
stationary state is composed of two items, namely the attraction (for example, the nuclear
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part of the mean ˇeld potential (2)) and the repulsion (Coulomb and the centrifugal parts of
potential), then the formula for the width of a quasi-stationary state looks as:

Γn�j = 2π

∣∣∣∣∣∣
∼r>∫
0

Rn�j(r)Unucl(r)φε
�(r)dr

∣∣∣∣∣∣
2

· Sn�j . (37)

Here Rn�j is a radial eigenfunction of a quasi-stationary level, normalized to unity in the
interval from zero up to the external turning point r>, and corresponding to the sum of
nuclear Unucl, Coulomb Uc and centrifugal U�� potentials (shell model radial function). Those
are the functions deˇned by us earlier by the ˇnding of the real parts of the (positive)
mean ˇeld eigenvalues, εn�j , and used in particular in our shell model and self consistent
calculations. The function φε

�(r), entering formula (37), presents the regular Coulomb function
of continuum, corresponding to the energy ε and orbital moment �, deˇned with the account
of the ˇnite size of a nucleus and normalized to δ- function in energy. By r → ∞ it has the
asymptotics

φε
�(r → ∞) −→ 1

h̄

√
2m

πk
sin
(

kr − �π

2
− η ln (2kr) + σ� + δ�

)
, (38)

where k = (
√

2mε)/h̄, η = (mZe2)/(h̄2k), σ� = argΓ(iη + � + 1) is a Coulomb phase,
while δ� is an additional small phase shift considering the ˇnite size of a charge distribution
in nucleus. The functions φ were found by numerical integration from r = 0 with the
corresponding boundary condition. The normalization of these functions as well as the phase
shift δ� (small for sub-barrier energies) were deˇned by matching the numerical solution at
r > Rc with the sum of properly normalized (see for example (38)) regular F� and irregular
G� Coulomb functions for the point-like distribution of nuclear charge.

The quantity Sn�j in (37) presents the spectroscopical factor of single-particle state,
corresponding to it's spread over the states of more complicated nature. As we consider here
nuclei close to the doubly magic one, the values of Sn�j are supposed to be equal to unity,
which corresponds to the well-known experimental situation, for example for 208Pb, where
S ∼ 0.7 − 0.9.

The results of calculation of proton widths Γp obtained by using the formula (37) are
presented in Table 6. Qualitatively close values of Γp were obtained by using the formula anal-
ogous to (31) for protons, if one takes the values Γ0 ∼ h̄ωosc/2π with h̄ωosc = 41/A1/3 MeV
and the functions Up

opt(r), that coincide with the corresponding nuclear potentials for protons.
Turning to the evaluation of T p

1/2 for the proton decay of 164Pb we note that, as it follows
from the single-particle schemes presented in Tables 4 and 6, it is deˇned by the width of
the decay to the 3s1/2 state of 163Tl. The energy of this decay, as one can see from our
calculations (see Table 1) is weakly dependent on the variant of the mean ˇeld and offers a
value of about 3 MeV. The width of the mentioned level, that has no centrifugal barrier, is
deˇned only by the Coulomb ˇeld and presents the value of about 0.001÷0.04 electronÄvolts,
which corresponds to the lifetime of about 1 ÷ 0.025 ps. It is just the decay that deˇnes the
degree of (un)stability of 164Pb, because the two- proton decay, which is also possible here,
is substantially weaker than the one-proton transition.
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4.4. Spontaneous Fission. The receiving of a reliable evaluation for the half-life of
164Pb relatively to the spontaneous ˇssion presents a complicated problem that includes the
determination of the form and the height of ˇssion barrier, calculation of the reduced width
and ˇnding of corresponding dynamical mass parameters that in�uence the process of ˇssion.
Here we simpliˇcate the problem limiting by some available and rather simple ideas.

We mention ˇrst that the values of the ˇssility parameter ®x¯ (see [35]),

x =
Z2/A

51.77 · [1 − 1.79 (N−Z
A )2]

(39)

for nuclei 208Pb, 238U, and 164Pb are equal to 0.678, 0.757, and 0.792 correspondingly. Thus
we see that as compared to 238U the ˇssility of 164Pb increases not too much which is mainly
due to the absence of the symmetry term in the surface energy of this nucleus. Note that T f

1/2

for the 238U is a value of the order of 1016 y., this value being much more for 208Pb (the decay
is not seen in the experiment). In [36] in the framework of the macroscopicÄmicroscopic
model accounting for shell corrections [35] different global characteristics of nuclei, including
the ˇssion barriers, were deˇned. The minimal value of N at Z = 82, for which the barrier
was calculated in [36] is N = 84. Short extrapolation of the results [37] to Z = N = 82
gives the value of Bf ≈ 11.2 MeV. Using the results of [37] we have the following formulas
for deˇnition of the spontaneous decay width, obtained in the approach that potential between
fragments has the form of two matched, ®convex-up¯ and ®convex-down¯, parabolas:

Γf =
h̄ωgs

2π
exp
[
−

2π(Bf − 1
2 h̄ωgs)

|h̄ω2|

]
, (40)

where

h̄ωgs = h̄

[
8
3
(1 − x)

]1/2

·
[

E0
s

M0R2
0

]1/2

(41)

with

h̄

[
E0

s

M0R2
0

]1/2

= 23.12 ·
[1 − 1.79 (N−Z

A )2]1/2

A1/2
MeV. (42)

For 164Pb, as follows from Fig. 8 of [37], we obtain

|h̄ω2| ≈ 0.48 ·
[

E0
s

M0R2
0

]1/2

h̄. (43)

As a result, we have for the asymmetric ˇssion of 164Pb the value of T f
1/2 ∼ 105 years.

One may offer another estimate based on the relation of the type (32) but for ˇssion,
with normalization to the spontaneous ˇssion of 238U (for certainty we considered the decay
238U → 132Sn + 106Mo with Qf ≈ 200 MeV). Considering the decay 164Pb → 100Sn +
64Ge with Qf ∼ 170 MeV, assuming the equality of the reduced widths in both cases (which
is much less evident than for the α decay studied by us before) and assuming also that the
corresponding nuclear potentials between the fragments have the rectangle-well shape with

R12 = 1.25(A1/3
1 + A

1/3
2 ) fm, we obtain the value T f

1/2 ∼ 1012 y. We note here that the
difference between the two estimates in seven orders of magnitude, as can be seen from
formulas (40) and (43), corresponds to the increase of the Bf magnitude used by us by the
value of one MeV, what is not too excessive.
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5. DISCUSSION AND CONCLUSION

As was already mentioned, the calculations undertaken in this work within the framework
of the shell model approach are valid if the Z = N = 82 nucleon numbers are assumed as
magic ones. However this prerequisite can be considered rather as possible than obligatory.
The ®universality¯ of magic numbers is still an open question. Indeed, recently [13] the
analysis of behavior of the two- proton separation energies S2p showed the washing out of
gap in the S2p-values towards the proton drip-line (when the neutron numbers become less
than ≈ 114). As it was noted in [13] this behavior is a particular property of the Z = 82
region and re�ects the changes in the nuclear structure for single-magic neutron-deˇcient
nuclides in the lead region. Nevertheless we can expect that due to the effect of ®mutual
support of magicities¯ [38], which works in doubly magic nuclides, the closed shell structure
can be restored for the Z = N = 82 nuclide. In this case the results of the shell model
calculations performed in this work can be considered as quite trustworthy. In addition, it is
worthy to emphasize here that the same magic spectroscopic characteristics for 164Pb have
been obtained as well by different, self-consistent approach (see Section 3), though one can
see numerical difference for some Q-values calculated in the framework of two methods.

As can be seen from the results of previous section and Tables 2 and 3, the most probable
decay in the close vicinity to 164Pb is a proton disintegration of nuclide. The partial proton-
decay half-life is expected not to be exceedingly small for the lead-164 nuclide and can, in
principle, be measured directly. The new generation Radioactive Ion Beam facilities could be
used for production of the lead isotopes in the region though very small half-lives and cross-
sections in spallation-fragmentation or fusion-evaporation reactions will lead to difˇculty in
their observation.

At the same time one should mention that our estimate of the half-life of 164Pb relatively
to the proton decay is strongly based on the structure of the proton single-particle spectrum
near the Fermi surface of this nuclide. One should hope that the Nature may be more kind
to us and so the problem of discovering this nuclide may really become more realistic. This
is especially true if one shall try to identify this nuclide by detecting all the cascade of
decays that lead to the ˇnal daughter nucleus which is more stable and which can be reliably
identiˇed.

This work was supported by the Russian Foundation for Basic Research (grant No.
96-15-96764 in support of the Leading Science Schools). The authors are grateful to
Prof. J. Blomqvist for valuable discussion.
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