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TOPOLOGICAL CHARGE AND TOPOLOGICAL
SUSCEPTIBILITY IN CONNECTION

WITH TRANSLATION AND GAUGE INVARIANCE
A. M. Kotzinian ', O. Yu. Shevchenko 2, A. N. Sissakian >

Joint Institute for Nuclear Research, Dubna

It is shown that the evaluation of the expectation value (EV) of topological charge density over
0 vacuum is reduced to investigation of the Chern—Simons term EV. An equation for this quantity
is established and solved. EV of the topological charge density at an arbitrary 6 occurs to be equal
to zero at least in the pure Yang-Mills (YM) and QCD in the chiral limit (QCD,) theories. As a
consequence, topological susceptibilities of both YM and (known result) QCD,, vacua defined in a
Wick sense are equal to zero, whereas, when defined in a Dyson sense, they can differ from zero by
the quantities proportional to the respective condensates of the chromomagnetic field. Thus, the usual
Witten—Veneziano formula for the n’-meson mass is modified.

ITok 3 HO, Y4TO BBHIYMCIICHUE BETUYUHBI OXHI HHUS TOIMOJOTHYECKOTrO 3 psi 1O O-B KyyMy CBOIUTCS
K HCCJIEI0B HUIO OXHA HUS [0 O-B KyyMy YepH-C HMOHOBCKOTO WieH . Yp BHEHUE M 3TON BeTHMIUHbI
nojydeHo u pereHo. OXuI HUe 1Mo 6-B KyyMy IUIOTHOCTH TOIOJIOTHYECKOTO 3 psii IpPU HPOH3BOJIb-
HOM 3H YeHHH I p MeTp 6 OK 3bIB €TCsl P BHBIM HYJIIO, 10 Kp HHEH Mepe, B YHCTO K JIMOPOBOYHOIL
teopun Aur -Mwuic u KX]I B kup spHOM 1ipesene. BeneacTsie aToro Tonojgorudeckue BOCIpUUMYHK-
BOCTU K K B KyyM Teopuu SIHra-Mwusica, T K U B KyyM (u3BecTHblii pe3yasT T) KX B Kup JbHOM
rpeziesie OK 3bIB I0TCS p BHBIMU HYJIIO, €CJIM OHHU OIpeesieHbl B «BUKOBCKOM» CMBICIIE, B TO BpeMs K K
COOTBETCTBYIOIIIE BOCHPHUIMYUBOCTHU, OTPENETICHHBIE B «JI HCOHOBCKOM» CMBICIIE, MOTYT OTJIMY ThCS OT
HYJS BKJI J MU, IPOIOPIMOH JIbHBIMH COOTBETCTBYIOLIUM KOHIEHC T M XPOMOM THUTHOTIO mnoisd. T Kum
00p 30M, 00buH 4 opMyn Burren —BeHeuu HO I M CChI 7)'-M€30H  MOAM(ULIPYETCH.

The effects connected with the nontrivial topological configurations of the gauge fields
attract a great attention in modern physics. In this respect the QCD topological susceptibility
xaqcp = [ d*z(Tq(z)q(0)) is the quantity of a special importance because it enters as a key
object in a lot of physical tasks, in particular, in such important puzzles as a famous U (1)
problem [1-5] (see [6] for a recent review) and the «spin crisis» [7]. In the equation for
X, q(z) is the topological charge density ¢(z) = (g2/327r2)Fﬁu(x)F#”(x) related with the
Chern—Simons current, K,,(x) by ¢(z) = 9" K, (), where K, = (g*/32m)e"r? AL(F ¢, —
(6/3) fare ABAS).

It is well known that topological susceptibility xqcp is equal to zero in all orders of
perturbation theory and, also, that this quantity is just zero in the presence of even one
massless quark (Crewther theorem [2]).
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In this paper the consideration based on the fundamental translation and gauge symmetries
will be performed which will allow us to draw some unexpected conclusions about the
topological charge and susceptibility.

Let us prove the following statement.

EV of the topological charge density (6]¢(0)|6) = (1/VT)(0|Q|0) over § vacuum with an
arbitrary 6 is equal to zero if EV of operator K, (0) over 6 vacuum exists, i. e., | (0] K,(0)]9)] <
oo, where symbol |#) denotes the #-vacuum state normalized to unity:

(0]0) = 1. (1)

This statement directly follows from translation invariance of # vacuum:

(619(0)/6) = (610" ,,(0)]6) =
= —i(6][P", K, (0))|6) = ~i(P} — P{)(6]K,(0)6) = 0. ()

The key point here is the condition |(0|K,(0)]f)| < oo which, as we will see below, in
Ao = 0 gauge is equivalent to the condition

|(01Wes (0)]0)] < oo, ©)

where Wes(t) = [ d*zKo(z) is the Chern-Simons operator (see [8] for review). However, as
we will see, within the conventional formulation of #-vacuum theory a rather amazing situation
arises. On the one hand, the condition (3) is not satisfied due to the gauge noninvariance of
the operator Wcg with respect to the «large», topologically nontrivial gauge transformations.
Nevertheless, despite EV (0'|Wcs(0)|0) is more singular function than §(¢' — 6) at 0’ — 6
(namely, it behaves as ¢’(’ — 6) in this limit), the EV of the topological charge density over
f vacuum is just zero again.

Since we deal with the gauge-invariant quantity (EV of the topological charge), let us
choose the Weyl gauge Ay = 0, which allows us to essentially simplify a consideration.
Choosing the periodic boundary conditions in the space directions (topology of a hypercylinder
oriented along the time axis), one has

/d% O'Ky(t,x) =0, )

and the expression for the topological charge Q = [ d*zq(z) = Ik d*z0" K, becomes (see,
fOr example: [8’ 9]) Q = WCS (t - OO) - WCS (t = —OO)

EV (0|0|0) of an arbitrary operator O over 6 vacuum is defined as (see, for example,
(8,91

(01018) = (61016)/(616), ©)

where |0) is, simultaneously, the eigenfunction of the full QCD Hamiltonian H and of the
unitary operator T, of the large gauge transformations with a winding number v:

H|0) = Ey|0), (6)
T,|0) = e *|6); (7
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i.e., the state |6) is, up to a phase multiplier, gauge-invariant against the large gauge trans-
formations. Notice also that on the contrary to (1) the states |f) are normalized as

(6'10) = 56(6" - 6), ®)
so that the prescription (5) reads
(0'1010) = (91010)5(6" — 0); ©
i e.,A(9|OA|t9) is just the limit at #” — @ of the multiplier at ¢ function in the expression for
(¢"|016).
Since we are interested in the quantity

(019(0)16) = (VT)~'(0]Q16), (10)

we will keep the normalization factor (VT)~!. Using (4) and the Heisenberg equations, one
easily gets

(VI)01Qle) = (VT) ! [ areBe B [ dag(0.3006) =
=2m(VT) '6(Ey — Eg) {0/ [Wes(0)]0') =
=21(VT) '6(Ey — Eg)(0'| — i[Wcs(0), H]|0) =
= 2mi(VT) " '6(Ep — Ep)(Egr — E)(0'[Wes(0)[6), (1)
and, thus, the task now is to evaluate EV (0'|Wcs(0)]6).
The remarkable property of the Chern—-Simons term is its transformation law under
topologically nontrivial (often called «large» [8]) gauge transformations A; — A? =
QA0+ 0.09,9,1 (i = 1,2,3; Q = Q(x)), with topological index (winding num-

ber) v. Namely, the quantity Wcg[A] is not gauge-invariant under such transformations but
transforms as

Wcs[A] — Wcs[AQ”] = Wcs[A] +v; (12)

i.e., it only shifts by the winding number v of the respective gauge transformation.
The compatibility of the quantum

Wes[A%] = T, Wes AT = Wes(A) + [Ty, Wes (A)]T571 (13)

and classical (12) gauge transformation laws of the Chern—Simons term gives rise to the
commutation law !

[Ty, Wes(t)] = [Ty, Wes(0)] = vT. (14)

Now one already can evaluate (¢'|Wcg(0)|6). Indeed, due to the unitarity of the operator
T, and Eq. (7), one has

(O[T, Wes (0)]16) = (= = =) (6/|Wos (0)10)- (15)

'Here one uses [T, H] = 0.
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On the other hand, the commutation law (14) together with Egs. (7), (8) give
(0'|[T,, Wes(0))10) = ve ™50 — ¢'). (16)
Comparing (15) and (16), one gets the basic for what follows equation

1 ( o= i(6'=0) _ 1) (' |[Wes(0)]6) = 56" — 0). 17)

v

So, one has to solve the equation

1 .
> ( e " — 1) f(z,0) = 02,(2), (18)
where z = 60" — 0; f(z,0) = (0'|Wcs(0)]0), and d2,(2) = 6(6' — 0) is 2m-periodic § function.
Expanding f(z,6) and d2,(z) in the Fourier series:

I <« ; , 1 A
fE0) =5 D Fa®) €™, () =5- D €™ (19)

one easily obtains instead of (18) the difference equation for Fourier image f

Frtw(0) = fu(0) =v (20)
with the solution
fa(0) =n+C(0), 1)

where C'(6) is some arbitrary function of 6.
Thus, the general solution' of Eq.(17) reads?

(O'[Wes(0)]8) = —id' (6 — 0) + C(0)8(¢' — ), (22)
where ' (0' — ) = (i/27) S n (¥ =0),
Since
(2
Jim, <%5 (Eg — E9)> (Eg — Eg) = (Eg — Eg) =0, (23)

the term C(0)§(0’ — ) in the solution (22) does not contribute to the coefficient at §(6" — 6)
in the r.h.s. of (11) and, thus,

(VT)"H0'1Q|0) = 2m(VT)~16"(0' — 0) [(Egr — Ep) (Eg — Ep)]. (24)

!t is of importance that (22) is the solution of (17) only if the winding number v is an arbitrary integer number
(the existence of the fractional winding numbers was advocated in [2]). Otherwise, one cannot perform the necessary
change n — v — n in the sum 3 n e (n—2)%,

2Notice that for any gauge-invariant operator [T}, Og,im,] = 0 and, therefore, Eq.(17) is replaced by
[exp (—iv0") — exp (—iv0)](0'|Og.inv|0) = O with the general solution (0’|Og.inv|0) = C(6)5(0" — 0).
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Considering ¢’ as a variable whereas 0 is kept fixed, one gets

(VT)"HO'1Q|0) = —2x(VT)16(60" — 9)812—3‘?/) X

X [5/(E9/ — EQ)(EQI — Eg) +4 (Ee/ — Ee)], (25)

At first sight, the expression in the square brackets is equal to zero, since usually xd'(z) =
—d(z). However, this is not correct conclusion and one has to properly work with the genera-
lized function (Eg — Ey)d’(Eg — Eg) when one takes the limit ' — 0, i.e., (Epr — Eg) — 0.
Indeed, let us consider the generalized function

A(z) = 26 (). (26)

Then

A(0) = / dw3(2)A(z) / des(2)[28 (z)] = — / dos(2)[5(x) + 28’ (2)] =

- / dwd(2)A(z) — / dw5(2)5(z) = —A(0) — 6(0),

and, thus !,
1
A(0) = [z8 ()] 70: —55(0). 27
In particular,
. 1 17T
01,1210[(E9/ - Eg)él(Egl - Eg)] = —55(E = 0) = —5% (28)

In accordance with the general prescription (9) and Egs. (10), (25), (28), one obtains

_ OB 2 [ 1T T]_ _10¢(6)
(014(0)16) = =55 VT{ 2 2m 27r] T390 29)
where

e0)=Ey)V (30)

is the energy density of € vacuum.
On the other hand, it is well known that the energy density €(f) is defined via the
functional integral as (see, for example, [5,9])

€(0) =i(VT) " n W, (31)

IThe quantity A(z) is equal to —&(x) as a generalized function only in the convolution with a function F(z),
satisfying the condition F’(z)|z—=0 = 0. However, this is just not the case for the choice F'(z) = §(x).
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where
W(o) = [ DADIG, v]expi[Sacn +6G). (32)

In this picture, one has

@410 = (V) 0110) = —i(v) L L= = -

0e(9)
20

(33)

whereas the second derivative of €(#) with respect to 8 just produces the topological suscep-
tibility — the connected part of the two-point correlator of the topological charge densities at
Zero momentum:

10?2 Wy 9%€(0)

X0 = /d4$(9|Tq(l‘)Q(0)|9)conn = _(VT)_ 062 =1 062 ’ (34)

and xqcp = Xo-
It is easy to see now that the only way to reconcile Eqs. (29) and (33) is to put

20

(0la(0)16) =~

=0. (35)
Then one can see that the topological susceptibility defined by (34) is also equal to zero:

X6 = Xo = 0. (36)

Let us now attempt to realize the obtained result. At first glance, Eq. (36) is in a severe
contradiction with a standard point of view [2—6] that the quantity x must differ from zero
because it is directly connected with the solution of U(1) problem and mass of 1’ meson is
explicitly expressed via topological susceptibility. However, the situation perhaps is not so
bad because of two important circumstances.

First point is that there exists the principal difference between purely gauge YM and
QCD with quarks theories. At first sight, nothing changes in the derivation of Eq.(35) if
one considers the full QCD case. However, one must be careful here because only in YM
theory the topological charge density ¢ is renormalization group (RG) invariant: gg = qr = q
[10]. On the contrary [10] (see also [4] and references therein), the topological charge density
operator in QCD with quarks is not RG-invariant and mixes under renormalizations with the
divergence of the flavor singlet anomalous current J,5. So, one cannot at once conclude that
Eq. (35) holds in QCD with massive quarks, and one can with confidence use here only the
information given by the unrenormalizable anomalous Ward identities. In particular, these
identities predict the well-known result that ' the topological charge density EV over # vacuum
is just zero in massless QCD. So, one arrives at the important conclusion. Eq.(35) and, as
an immediate consequence, Eq. (36) are not necessarily valid in the full QCD case but are
valid at least in the pure gauge YM theory (where topological charge is RG-invariant operator

I'The simplest way to see this is to notice that, if even one quark mass is equal to zero, then the all #-dependence
in the functional integral representation of all Green functions can be just removed by the simple chiral transformation
of the fermionic variables.



Topological Charge and Topological Susceptibility 35

and there are no chiral Ward identities), and, also, in the chiral limit QCD (QCDX), where
all #-dependence is trivial and just removed, performing the respective chiral transformations,

1 B _
so that <9|q(0)|6‘>‘QCDX = <0|Q(0)|0>‘QCDX =0

The second point is that there exist two different topological susceptibilities in accordance
with the different sense of the time-ordering operation in the respective correlators.

Let us remind that the functional integral representation (31)—(34) for a correlator means
that the respective T' product in this correlator must be realized as the Wick (Ty) time-
ordering operation, in which all the derivatives are applied after the calculation of the field
convolutions (see [5] for the excellent review on this question). On the contrary, the Dyson
T-ordering of two arbitrary operators A(x) and B(y) (no matter composite or not) simply
looks as

Tp[A(z)B(y)] = 0(x0 — yo) A(z) B(y) + 0(yo — w0) B(y) A(x). (37)

So, actually Eq. (36) has to be read as >

w w
- -0, 38
Xo ‘YM,QCDX Xo YM,QCDX ( )

where

82
W= [ dtelOlTw a(e)a0)1f)com = 155 (39)

but it does not mean at all that the Dyson topological susceptibilities in these theories

b = / d*2](8Tpq(x)q(0)16) — (Blg(0)16)?) = / 201 Tpq(x)q(0)]Oconn  (40)

are also equal to zero.
Indeed, the connection between Wick and Dyson susceptibilities was found in [5], using
the stationary perturbation theory in powers of 6, with a result

w P e D g ?
Xo =izp3|,_ = Xo +i(0] (WBg,) 0); (41)
i.e., these susceptibilities differ by the condensate of the chromomagnetic field B,. Thus,
even despite that, in accordance with (38), the quantities ! are equal to zero, the Dyson
topological susceptibilities x4’ can differ from zero by the nonzero values of the chromomag-
netic condensates:

2 2
D . g

— i (ZLB,) 0 ‘ . 42

Xo ‘YM,QCDX (0] (87r2 a) | )YM,QCDX (42)

IThe fact that VEV of ¢(0) over nonperturbative but topologically trivial, C' P-invariant vacuum |0) is just zero
is obvious, since g(x) is a pseudoscalar.

2The result XXV = 0 is well known and has been intensely exploited (see, for example, [2-7]).

‘QCDX
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On the other hand, it is well known that Dyson 7' product of two arbitrary operators can
be represented as the sum over intermediate states with a result

[t e Q1T (A BO)0)com = Y010 10) (1) BO)0) 15— +

n n

+ two particle contributions (k% = k3 —k?). (43)

As was shown by Witten [3] (see [10], Sec. 5.1, for review), only the one particle contributions
survive in the sum over intermediate states in the large N, limit. So,

Placo = [ ' O1Toa()a(0)0)conn] oo, =

i | S (0Ot Y OO P | -

n=mesons l=glueballs

=l t X 10O )P @)

n=mesons n

and, in the leading order of xy PT where [6]

(0lg(0)In") = (I—a“ﬁl = fym2, (45)

one gets instead of Witten—Veneziano [3, 4] formula !

4]\72
f2 ‘YM Xo ‘QCD ) =

It is of importance and seems to be a serious argument in support of our model-independent
consideration (based on the general principles of translational and gauge invariance) that very
similar results concerning 7'-meson mass were obtained within the different QCD-inspired
models. These are Cheshire cat principle model [12] and, also, squeezed gluon vacuum
[13] and monopole vacuum [14] models (compare2 Eq. (46) with Eq. (14) of Ref. [12] and,
especially, with Egs. (22) and (26) of Refs. [13] and [14], respectively).

Thus, we get a rather unexpected result: topological susceptibilities of both YM and
(known result) QCD, vacua defined in a Wick sense are equal to zero, whereas the Dyson
topological susceptibilities are just proportional to the respective chromomagnetic condensates.
The last circumstance allows one to get the mass formula (46) for the ' meson which directly

10ne can show (it will be published elsewhere) that the second term in Eq. (46) is just equal to zero and only
QCD, chromomagnetic condensate survives in the mass formula.
2Comparing these formulas, one has to use that as = g2 /47 and fn/ = /2Ny fx.
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expresses its mass via the difference of the respective chromomagnetic condensates with and
without quark inclusion.
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