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MULTIPARTICLE PRODUCTION∗

1. INTRODUCTION

1.1. Some Empirical Regularities in the Processes of
High-Energy Multiparticle Production of Hadrons

The problem of multiparticle production is one of the central problems
in elementary particle physics. For a long time its study was possible only
in cosmic rays. In spite of great experimental difficulties, connected with
considerable errors, cosmic ray physics laid down the foundations of our
notions about multiparticle production.

Modern accelerators have made possible the intensive and detailed
investigations of multiparticle production in a large energy interval (10–
103 GeV). But no reasons so far exist to consider that we have a complete
and clear description of phenomena.

At the same time a number of fundamental regularities and specific
properties have been established for such processes.

1. We should note that the prediction by Wataghin (1934) concerning
the increase of the relative number of inelastic channels at high energies
is confirmed. The data from ISR are as follows:

(E ∼ 103 GeV) :
σel

σtot
∼ 0.175.

It means that under the hadron–hadron collision additional particles
fail to be produced in only 17 cases out of a hundred. Thus the hadron–
hadron collisions are mainly inelastic. The elastic ones obviously show
themselves as a shadow of inelastic channels. This fact received an obvious
interpretation in the Logunov–Tavkhelidze quasi-potential approach.

It is interesting to note that the hypothesis of Wataghin anticipated
the prediction of π meson by Yukawa (1935).

∗Delivered as a series of lectures at the International JINR–CERN School
on Physics held in Alushta on 14–28 May 1975.
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It was proved later that most of the secondaries are pions (at ISR-
energies):

〈nπ〉
〈nsec〉 ∼ 0.8.

Their relative number in inelastic processes somewhat decreases with
energy. For example, with E ∼ 20 GeV

〈nπ〉
〈nsec〉 ∼ 0.9.

2. Another important property of inelastic collisions at high energies
is the smallness of the momentum transfer or the transverse momentum

Fig. 1.1.

of secondaries (see Fig. 1.1).
At the available energies the aver-

age value of the transverse momentum
of secondaries does not depend on the
interval

〈pi⊥〉 ∼ 0.2 ÷ 0.4 GeV/c.

This empirical fact is closely related to
the existence of the leading particle ef-
fect. This energy depends on s rather

weakly. It is limited by the notion that appeared and was effectively used
in cosmic rays. By a leading particle we conditionally mean one of the
colliding hadrons which loses a negligible part of its momentum under
the interaction. Thus, the particles produced in the collisions have mainly
small momentum, compared with that of the incoming hadron.

3. The total cross sections have been actively investigated since the
accelerators in Serpukhov, Batavia and CERN were put into operation.
Measurement of this quantity is the simplest multiparticle experiment,
since it is extremely critical to the theoretical models.

First unexpected results concerning the dependence of the total cross
sections on energy were obtained in 1971 at the Serpukhov accelerator
in the energy interval from 30 to 70 GeV. The decrease in cross sections,
determined at lower energies, became slower and approached a constant
value in most of the hadron–hadron processes. In the case ofK+p collisions
an increase in the total cross sections was found. This phenomenon,
comprising the change of cross section with increasing energy, was called
the Serpukhov effect. Later the total cross sections were also studied at
ISR (1973) for the proton–proton collisions in the 300 to 2000 GeV range
and at the accelerator in Batavia (1974) for all the hadron reactions at
energies up to 200 GeV.

The new data confirmed the Serpukhov effect and also showed that it
may start a new phenomenon in high energy physics: rapid and, perhaps,
unlimited increase of this quantity. It is so far difficult to determine an
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analytical function which would describe the increase of σtot. We can
make use of all the increasing functions up to the upper bound of possible
increase of the total cross sections, determined by Froissart (1961) from
the general principles of quantum field theory

(σtot � A ln2 s).

4. Another rather general feature of inelastic processes is the average
multiplicity. Most of the theoretical models predict its increase with
energy. The models of a statistical type give us the power dependence

〈n〉 = asb.

Multiperipheral, parton and a number of other models predict the loga-
rithmic increase:

〈n〉 = a ln ns+ b.

It should be noticed that the maximum number of particles (pions),
permitted by the energy-momentum conservation law, is written in the
form

nmax =
√
s− 2mp

mπ
.

Fig. 1.2. Increase in multiplicity with
ECMS (2-meter propane chamber collab-
oration JINR–IHEP, U-70, Protvino)

The observed multiplicity in-
creases more slowly than predict-
ed by the former equation; i.e.,
it is extremely small in compar-
ison with what is kinematically
allowed (see Fig. 1.2).

Unfortunately, the compari-
son of the models with the ex-
periment does not allow one to
give preference to the logarithmic
or power dependence of the aver-
age multiplicity on energies. One
may only state the increase to be
moderate.

5. Another important feature
of the processes of high-energy
multiparticle production is deviation of the multiplicity distributions (or
the topological cross sections) from the simple one.

Poisson law is determined at energies higher than 25 GeV (see Fig. 1.3).
The topological cross section is that with the given number of charged

particles and arbitrary number of neutral particles in the final state. If
the production of particles in the given collision is considered to be of a
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Fig. 1.3. Deviation of σn from the
simple Poisson law

random nature, the distribution nat-
urally assumes the Poisson form:

σn = σinel e−ν ν
n

n!
.

This distribution has the following
properties:

〈n〉 ≡
∞∑

n=0

nPn(ν) = ν,

〈
n2
〉 ≡ ∞∑

n=0

n2Pn(ν) = ν2 + ν.

Thus, for the Poisson distribution the
correlation function f2 is equal to
zero:

f2 ≡ 〈n(n− 1)〉 − 〈n〉2 , fPoisson
2 = 0.

However, the experimental data obtained at the accelerators in Serpukhov
and Batavia show that the multiplicity distributions are broader than the
Poisson distributions. And the quantity differs considerably from zero:

f2 = 7.44 ± 0.72 (at PLAB ∼ 200 GeV/c).

This fact shows that the production of secondaries at high energies cannot
be considered as statistically independent process. Satisfactory distribu-
tions are obtained by the approaches based on consideration of production
of whole hadron associations (or clusters). The models based on the ac-
counting for two (or more) mechanisms of the hadron production, leading
to the multicomponent description of distributions, are more successful
in the description of experimental data. The possibility of extracting the
contributions of various mechanisms (the ranges of the n-particle phase-
space volume) to the cross sections of multiparticle processes was first
pointed out by Logunov and collaborators.

6. The idea of two production mechanisms gives wide possibilities for
the theoretical description of the correlation phenomena.

Already for the simplest distribution which is the topological cross
section (depending on nch), one could see that the secondaries are not
independent but correlate with each other. Then the question arises about
the sensitivity of neutral particles to the charged hadron production (i.e.,
charge-neutral correlations); i.e., whether the particles «feel» that the
momentum has a produced «near» or a «distant» (in the momentum
scale) neighbour (short-range and long-range momentum correlations).

As we shall have the opportunity to touch upon this question later,
we should only note that the latest experiments at high energies gave a
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number of qualitatively new results. We have reference to the detection of
linear dependence of an average number of neutral particles on a number of

Fig. 1.4. Charge-neutral correlations

prongs (see Fig. 1.4). Such a cor-
relation has not been observed
at energies up to 20 GeV.

7. A large number of empiri-
cal facts on the dynamics of mul-
tiparticle processes make it pos-
sible to interpret experimental-
ly observed scaling regularities
of strong interaction character-
istics. These regularities are the
display of a rather general prin-
ciple of automodelity character-
istics of a number of physical
problems. Here we mean, rough-
ly speaking, the decrease in the
number of independent variables
of the studied physical quantity connected with definite similarity proper-
ties and symmetry of the problem (in the space of the given indepen-
dent variables). The principle of automodelity was first suggested for
the lepton–hadron and hadron–hadron processes by Matveev, Muradyan
and Tavkhelidze. They point out the analogy of these processes with an
explosion in gas dynamics.

Among the scaling regularities, studied in strong interactions, the
hypothesis by Feynman on the decrease of the number of variables of
the invariant differential cross sections when s→ ∞ is widely used:

E
dσ

dp
= f(s, pz, p⊥) −−−−−−−−−−→

s→∞, x— fixed
f
(
x ≡ 2pz√

s
, p⊥
)
.

Scaling regularities suggested by Koba, Nielsen, Olesen are of great use in
the multiplicity distributions:

〈n〉 σn

σinel
= ψ

(
n

〈n〉
)
,

where σn is the topological cross section, σinel is the total inelastic cross
section, 〈n〉 the average multiplicity.

These and a whole number of scaling laws approximately satisfied
at the available energies make it possible to assume that the strong
interactions have some definite symmetry (perhaps not only one).

The facts known at present about the hadron–hadron processes are not
limited to the above-listed properties. However, these properties reflect
the basic characteristics of multiple production in strong interactions.
These properties are constantly exploited by theoreticians, no matter
which way they go. Those advocating phenomenological schemes and
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empirical formulae seek to use these properties in constructing the models.
Others who keep to field-theoretical approaches verify consistency of these
properties with the basic axioms of quantum field theory and develop
approximations adequate for the general properties found.

It may be hoped that these two approaches, studying the same phe-
nomena from different viewpoints, after being united, will provide a closer
description of high-energy multiparticle production.

1.2. Basic Definitions

The analysis of multiparticle production processes is very difficult
both from the technical aspect and from the viewpoint of kinematical
description. Therefore, it is especially important to obtain information in
the language of inclusive reactions. We mean here the processes where only
some of the secondaries are detected. The consideration of such reactions
was first proposed by Logunov et al. in 1967.

It is customary to write the inclusive n-particle reaction in the form

a+ b→ p1 + p2 + · · · + pn +X, (1.1)

where X stands for «anything», i.e., all possible particles which are not
subjected to observation in a given experiment. Unlike the inclusive case,
the reaction

a+ b→ p1 + p2 + . . .+ pn′ (1.2)

when all the particles in a final state are detected, is characterized by the
differential (exclusive) production cross section*

dσn′

dp1 . . . dpn′
= |T (ab→ p1 . . . pn′ |2 δ(P −

∑
pn′), (1.3)

where T (ab→ p1 . . . pn′) is the amplitude of transition of two particles a,
b into n′ particles with momenta p1, . . . , pn′ .

The transition from (1.3) to the inclusive distribution of the process,
where only n of n′ particles are identified, is achieved by integrating over

*Later we shall use for different forms of the phase volume

dp =
d3p

E
=

2πd2p⊥dp‖
E

≈ 2πd2p⊥
dx

x
= 2πd2p⊥dy = sdtdM2,

where the variables are

p = (p‖,p⊥), E =
√

p2 + m2, x =
2p‖√

s
, y =

1

2
ln

E + p‖
E − p‖

.
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momenta of the undetected particles:

dσn′

dp1 . . . dpn
= c

∫
|T (ab→ p1 . . . pn′ |2 δ(P −

∑
pn′)dpn+1 . . . dpn′ . (1.4)

If we sum over all the channels with n particles of reaction (1.1), we
arrive at the so-called n-particle inclusive distribution:

dσ

dp1 . . . dpn
= c
∑
n′

dσn′

dp1 . . . dpn
=
∑
n′

∫
dpn+1 . . . dpn′

dσn′

dp1 . . . dpn′
.

(1.5)
If differential cross sections were known for all the exclusive channels,

we could construct, by means of this formula, all the inclusive distribu-
tions.

And, conversely, knowing all the inclusive distributions, one could
reproduce the cross sections of the channels. Thus, in principle, both
the descriptions contain complete information on the two-hadron collision
process.

As long as we dealt with a small number of secondaries it was more
convenient to employ the exclusive description. At higher energies, when
ten and more particles are produced, it is better to keep the inclusive
consideration.

1.2.1. The One-Particle Distribution. Consider an example of
the inclusive reaction with only one detected particle

a+ b→ p1 +
X︷ ︸︸ ︷

p2 + . . .+ pn′ . (1.6)

The one-particle cross section with a fixed multiplicity is defined as
follows:

dσn′

dp1
=

1
(n− 1)!

∫
dσn′

dp1 . . . dpn′

n′∏
i=2

dpi. (1.7)

Knowing this cross section, one can easily go over to the topological
cross section of particle production

σni =
1
n′

∫
dσn′

dp1
dp1. (1.8)

Here
∑
n′
σn′ = σinel is the total inelastic cross section.

As is seen from the previous definitions, summing (1.7) over n′, we get
the one-particle inclusive distribution

dσ

dp1
=
∑
n′

dσn′

dp1
(1.9)
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with the normalization
∫
dσ

dp1
dp1 =

∑
n′
n′σn′ ≡ 〈n′〉σinel. (1.10)

From the sum rule ∫
dσ

dp
pµdp = σ 〈pµ〉

it is easy to get definitions of average momenta 〈p⊥〉 at µ = 1, 2 and 〈p‖〉
at µ = 3.

Notice that relation (1.10) is the definition of mean multiplicity 〈n〉 of
secondaries.

1.2.2. The Two-Particle Distribution. Analogously, one can con-
sider the inclusive reaction with identification of two particles

a+ b→ p1 + p2 +
X︷ ︸︸ ︷

p3 + . . .+ pn′ . (1.11)

The two-particle inclusive distributions arising here define a series of
widely used average quantities:

∫ d2σ

dp1dp2
dp1 = 〈n(p1)〉 dσ

dp1
,

∫ d2σ

dp1dp2
dp1dp2 =

∑
n(n− 1)σn = 〈n(n− 1)〉 σinel.

(1.12)

The quantity 〈n(p1)〉, in particular, is called the associated multiplicity.
Making use of the two- and one-particle inclusive cross sections, one

can construct the two-particle correlation function

C2 =
1

σinel

d2σ

dp1dp2
− 1
σ2

inel

dσ

dp1

dσ

dp2
(1.13)

and the corresponding moment of distribution

f2(s) =
∫
C2(p1, p2)dp1dp2 = 〈n(n− 1)〉 − 〈n〉2 = D2 − 〈n〉 , (1.14)

where D ≡√〈n2〉 − 〈n〉2 is the dispersion.
Higher correlation functions and moments C3, f3, . . . , Cn, fn are de-

fined analogously. It is natural in the case of independent production of
particles for all the Cn and fn to be zero. This has been demonstrated
above when considering the Poisson law.
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2. MULTIPLICITY DISTRIBUTIONS

2.1. Multicomponent Descriptions of Multiparticle Production

The multiplicity distributions or the topological cross sections are
related to a number of the simplest characteristics of the processes of
multiparticle production. These are determined by the number of events
with a given number of secondaries. As a rule, the charged secondary
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particles are taken into consideration. In the high energy range up to
20 GeV the experimental topological cross sections have been very well
described by a series of theoretical models and phenomenological formulae.

Firstly, one may successfully use the usual Poisson formula

P (n±) =
〈n±〉n±

n±!
exp [−〈n±〉]

describing an independent production of particles. Two models applying
to the description of charged distributions were suggested by Wang.

The first one started from the assumption of uncorrelated production
of the hadron pairs π+π−. In this case the multiplicity distribution has a
simple quasi-Poisson formula:

P (n±) =

(
1
2
〈n± − α〉

)(1/2)(n±−α)

[
1
2
(n± − α)

]
!

exp
[
−1

2
(n± − α)

]
,

where α is the number of charged particles in the initial state.
The second one, suggested by Wang, led to the Poisson distribution

for the charged secondary particles subtracting the leading particles:

P (n±) =
(〈n± − α〉)n±−α

(n± − α)!
exp (−〈n± − α〉).

It was assumed in the Chow and Pignotti multiperipheral model
that the Poisson dependence describes the distribution over a number of
secondary pions excluding events of the purely neutral particle production

Fig. 2.1. Qualitative variation
of ln (nc!Pnc ) with nc

(0-prong events). Considerable deviations
of the topological cross sections from
the Poisson law are observed at energies
∼ 25 GeV (see Fig. 2.1). This testifies to
failure of the model based on the assump-
tion of uncorrelated production of single
particles. The experiments performed in
Serpukhov on the 2-meter propane cham-
ber, irradiated with π− mesons, when p =
= 40 GeV proved to be especially critical
to the multiplicity distributions.

If at an energy of ∼ 25 GeV the Wang
and Chow–Pignotti models were in sat-
isfactory agreement with the experiment,

then the data from the 2-meter propane chamber, in combination with
those from the recent experiments in Batavia and at ISR, give evidence
in favour of the multicomponent description of multiparticle production.
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Attempts to combine the two extreme approaches to multiparticle
production at high energies became a starting point for the origin of the
multicomponent description. One of them, the diffraction dissociation,
proceeds from the assumption that the secondaries are produced due to
the leading particle fragmentation (target particle and incoming particle).
We may say that the secondaries have information about the colliding
hadrons and they may be combined with one of the initial particles.
Figuratively speaking, they remember their «parents». The diffraction
dissociation approach leads to the topological cross sections of the type
σn ∼ n−2 which disagree with the recent experimental data as well as
with the Poisson distributions.

The other approach deals with the secondaries which do not «remem-
ber» their origin from one or another initial particle. In this category we
may refer to the models of independent emission, some of which have been
discussed above. It is convenient to classify these approaches according
to the correlations of the produced particles. The difference between the
correlations depends on whether the secondaries are in the same (short-
range) or different (long-range) ranges of the phase space volume of n
particles. If

y1, y2

(
y =

1
2

ln
E + p‖
E − p‖

)
are the rapidities of the secondaries, then

1) short-range (SR) correlations exist between the particles produced
with approximately equal rapidities and with increasing |y1 − y2| tend to
zero, as

C2(y1, y2) ∼ e−γ|y1−y2|

when |y1 − y2| � 1/γ, γ 	= 0;
2) long-range correlations (LR) exist between particles produced in

distant ranges of y space, i.e., for

|y1 − y2| � 1
γ
,

and the two-particle function of the distribution increases rapidly when
both particles come from one «cluster».

In other words, when observing the particle with y1 the information
about the possible presence of another secondary with any admissible
rapidity is the LR effect. And conversely information about the probability
of the presence of another particle with similar rapidity is the SR effect.

In the diffraction dissociation approach there are strong LR correla-
tions. Concrete realizations of the second approach, i.e., the models of
independent emission, are characterized by either absence of correlations
(Poisson, C2 = 0) or presence of small SR correlations.
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We should note that the possibility of extraction of contributions of
various mechanisms (ranges of phase volume of n particles) to multiple
cross sections was first pointed out by Logunov and collaborators.

In this connection, in recent years there have bean changes in the
philosophy of approach to the mechanism of high-energy multiparticle
production. Wilson and Feynman proposed the two-component model.
The simplest version of this model is based on the multiplicity distribution,
written in the form of the sum:

σn = αn−2 + βP (n)

with the chosen contributions of each component; in particular, the pa-
rameters may be so chosen that there is left only a term corresponding to
one of the approaches.

If both components are present at all the energies, the first moments
〈nn〉 of the distribution are of the form

〈n〉 = a+ (α1 + β1) ln s,〈
n2
〉

= b+ α2
√
s+ β2(ln2 s+ 2 ln s− 4),〈

n3
〉

= c+ α3s+ β(ln3 s+ . . .),

where the contributions with the coefficient αi are consistent with the
first component, and those with the coefficient βi are consistent with the

Fig. 2.2. Description of topological cross
section with the help of two-component

model: σn = αn−1 + βPn(n̄)

second one. It follows that the
first component (the compo-
nent of the diffraction dissocia-
tion) dominates beginning from
the second-order moment at
high energies.

It should be noted that in
the given approach the «play»
of these two components leads
to the existence of a weak dip
in the multiplicity distribution.
The dip becomes more notice-
able with increasing energy (see
Fig. 2.2).

In spite of a number of
virtues (for example, the in-
crease of the second correla-
tion parameter f2 is in excel-
lent agreement with the exper-

iment), the two-component model results in discrepancies between the
higher correlation moments and the experimental data. Note that such
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discrepancies cannot be eliminated in models with a large (n > 2) number
of components.

2.2. Model of «Two Mechanisms»

Let us consider the multicomponent description of multiparticle pro-
duction, resulting from the phenomenological model of «two mechanisms»,
suggested by the Dubna group (Matveev, Kuleshov, Sissakian, Grishin,
Jancso) in 1972.

The IMP model appeared as a concrete phenomenological scheme on
the basis of the study of the processes of multiparticle production in the
framework of the straight-line path approximation (SLPA) in quantum
field theory. The physical essence of SLPA is the following: At high
energies the main contribution to the process amplitude in the form of
the Bogolubov–Feynman functional integral over the particle paths gives
trajectories which are nearly straight lines having the same direction as the
momentum vectors of the leading particles before and after the correlation.
In the field-theoretical language, SLPA rests on the assumption of a
leading particle. For the most important results of SLPA we should refer
to the generalized Poisson law for the topological cross sections, the
automodel or point-like behaviour of the cross sections and prediction
about the dependence of average multiplicities on a transverse momentum
of an extracted particle. We shall refer to some of these results when
considering the picture of multiparticle production.

The main point of the TMP model is the hypothesis of the existence
of two mechanisms for production of secondaries:

1) There exist the leading particles, dissociating with the local conser-
vation of isospin.

2) In the process of interaction in a statistically independent way, there
likewise appear the hadron associations of clusters which then decay into
mesons.

It is natural to suppose that the average numbers of these associations
at high energies are independent of the types of the colliding particles.

According to these assumptions, one can see that in the TMP model
the probability of production of clusters at the given dissociation channels
of the leading particles (i, j) takes the form

W i,j
n1,n2,... = αiβjPn1(〈n1〉)Pn2 (〈n2〉) . . . , (2.1)

where αi, βj are the probabilities of the dissociation channels; n1, n2 . . .
are the numbers of clusters produced according to the Poisson law. Thus,
the distribution over the number of secondaries in a given model has the
form of superposition of the Poisson factors. Multicomponent character
appears as a result of summation over a number of channels of the leading
particle dissociation. Now consider a concrete example of description by
the TMP model of the charged distribution in π−p and π−n interactions.
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In this case it is sufficient to consider only the simplest channels of
dissociation of the colliding particles and hadron clusters with isospin I =
= 0. Thus, we consider dissociation of the leading nucleon in the following
scheme:

1. N → N with the probability of channel α1;
2. N → Nπ0 with the probability of channel α2;
3. N → N ′π± with the probability of channel α3,

where
3∑

i=1

αi = 1 and α3 = 2α2 by the assumption on local isospin

conservation. As another source for secondary particle production we
introduce the σ and ω associations, produced by the Poisson law, with
isospin I = 0 and parity G = ±1.

We confine ourselves to the main schemes for the decay of the σ and
ω associations:

1. σ → π+π−, π0π0,
2. ω → π+π−π0.
In accordance with the assumptions of the TMP model, one can easily

see from Eq. (2.1) that the production probability for the pion pairs (n±,
n0) and the triplets of pions n3 at the given channel of the nucleon
dissociation is defined by the expression

W i
n±,n0,n3

= αiPn±(α±)Pn0 (α0)Pn3(b), (2.2)

where Pn(〈n〉) is the Poisson factor; α±, α0, α3 are the average numbers
of pion pairs and of pion triplets, correspondingly.

From the condition that the pairs are produced with the isospin I = 0,
it follows that

α± = 2α0 ≡ α.

It is evident that the number of charged particles nc and neutral pions
nπ0 can be written as follows:

ni
c = 2n± + 2n3 + 
ic,

ni
π0 = 2n0 + n3 + 
iπ0 ,

(2.3)

where 
ic, 
iπ0 are, respectively, the numbers of charged particles and π0

mesons among the dissociation products of the leading particles in the ith
dissociation channel (see Table 2.1).

From Eqs. (2.2) and (2.3) for distributions over the number of charged
particles, it follows:

for the π−p interaction

Wnc = P(nc−2)/2(a′); (2.4)

for the π−n interaction

Wnc = (1 − 2α2)P(nc−1)/2(a′) + 2α2P(nc−3)/2(a′), (2.5)
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Table 2.1

i = 1 i = 2 i = 3

π−p π−n π−p π−n π−p π−n

�c 2 1 2 1 2 3
�π0 0 0 1 1 0 0

where a′ = a + b has the essence of the average number of pairs π+π−

including the contribution from similar combinations among the pion
triplets π+π−π0.

Note that in this simple case of distribution over the number of charged
particles only two components are important, each of which corresponds
to the pair independent emission. However, it appears to be sufficient to
describe the broadening of the distributions, which is characteristic of high
energies.

Note also that, unlike the Wang-I model, the case of distributions of
the type — superposition of the Poisson factors with the same number of
parameters gives a good joint description for the π−p and π−n collisions
(see Table 2.2) with the same average value of the π+π− combinations.
It is consistent with a natural physical hypothesis of independence of
particle production in the nondiffraction region of the type of colliding
hadrons. Multicomponent structure of distributions arises also in this case
if, under the same assumptions, heavy strange particles are taken into
consideration.

Table 2.2

Type of
interaction

Number
of events 〈n〉 √

D
χ2 fit by χ2 fit by Degrees of

freedomWang-I suggested
model model

π−p 4400 5.62± 0.4 2.75 8 8 8
π−n 1860 5.32± 0.7 2.82 13 8.5 7

The following additional channels of dissociation of nucleons are pos-
sible:

p→ Λ0K+, n→ Λ0K0,

p→ Σ0K+, n→ Σ0K0,

p→ Σ+K0, n→ Σ−K+.
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Under the given assumption, the pion dissociates with the most prob-
ability, according to the schemes

π− → π−,
π− → 2π−π+,
π− → 2π0π−,

It is necessary to include independent production of heavy Λ-
associations besides the pion pairs and pion triplets:

Λ → K+ + K̄−, K0K̄0.

The scheme leads to the following distribution over the charged parti-
cles:

Wπ−p
nc

= µP(nc−2)/2(α′′) + νP(nc−4)/2(α′′),

Wπ−n
nc

= f1P(nc−1)/2(α′′) + f2P(nc−3)/2(α′′) + f3P(nc−5)/2(α′′), (2.6)

where the parameters µ, ν, fi are connected with probabilities of the
channels of dissociation, and α′′ is the average number of combinations,
including charged pairs.

It is seen from the above consideration that the idea of joining two
opposite viewpoints on the mechanism at secondary particle production,
namely:

i) independent emission;
ii) dissociation (or fragmentation) of leading particles,

may turn out to be rather fruitful.
The simplicity of such a synthetic approach is very attractive. The

assumption of uncorrelated production of associations (or clusters) makes
it possible to combine the advantages of the models of independent
emission with the possibility (it will be shown in the following section) of
studying the correlation dependences. Apart from the suggested approach
discussed above, still more models are available based on the idea of
joining two mechanisms. Note that the old schemes are reconstructed in
accordance with the new ideology. To explain, in the multi-Regge scheme,
experimental data on charged distributions and correlation dependences,
the assumption is made of the necessity of consideration of diagrams with
a large number of showers (or clusters) at high energies. The latter is also
equivalent to the multicomponent structure of multiplicity distributions.

2.3. Scaling Properties of Topological Cross Sections

As previously mentioned, one of the characteristic features of topolog-
ical cross sections is «broadening» of distribution with increasing energy.
Consideration of normalized topological cross sections

P (n, s) =
σn∑

n
σn

(2.7)
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as a function of the number of particles and energy s shows that curves
strongly change their form with increasing s (see Fig. 2.3).

Fig. 2.3. Normalized topological cross
section as a function of n and s

Fig. 2.4. Universal KNO curve

If one plots the function 〈n〉(σn/σ) in the scale n/〈n〉, it appears that
at high energies the family of distributions over multiplicity for various
energies s will be on the same universal curve (see Fig. 2.4).

In fact, it means that the function 〈n〉(σn/σ) depends only on the ratio
n/〈n〉:

〈n〉 σn∑
n
σn

−−−→
s→∞ Ψ

(
n

〈n〉
)
. (2.8)

The existence of such a regularity was first pointed out by Koba, Nielsen
and Olesen. Thus, it is called KNO scaling. The KNO scaling was obtained
under the assumption of Feynman scaling, i.e., of scale properties with
respect to x = 2p‖/

√
s. At present, this universal property is thoroughly

confirmed by experiments for various types of particle interactions at the
accelerators in Serpukhov and Batavia. This favours the statement that
at high energies hadron–hadron collisions tend to be similar.

Note that at asymptotically high energies

∑
n

nq σn(s)
σ

∼
∫
dnnq σn(s)

σ
≈s→∞

∫
dnnq 1

〈n〉ψ
(
n

〈n〉
)

=

= 〈n〉q
∫
dzzqψ(z), q � 〈n〉;

i.e., dependence (2.8) may be given in the form

〈nq〉 −−−→
s→∞ Cq〈n〉q.

Thus, universality of Eq. (2.8) is equivalent to the statement that the ratio
of moments Cq = 〈nq〉/〈n〉q, q = 1, 2, . . . does not depend on energy. Such
a dependence, as was mentioned above, yields in models of independent
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emission (i.e., at SR correlations), where

〈n〉 ∼ ln s, 〈n2〉 ∼ ln2 s . . .

However, the KNO scaling describes such processes in which one cannot
fail to take into consideration the LR correlations. Most probably, a
mechanism leading to the KNO behaviour of distributions unites many
components, which leads to a nontrivial disappearance of the dependence
Cq = 〈nq〉/〈n〉q at sufficiently high energies. Various modifications of the
KNO scaling, derivation of this regularity from different approaches, and
fit by empirical functions are intensively discussed at present in many
theoretical and experimental works. We shall return to some of these
questions when considering inclusive or semi-inclusive reactions.

Note that the KNO scaling is one of the most interesting examples of
a general principle of automodelity in hadron–hadron interactions at high
energies. Further investigation of this regularity and of divergence from it
makes it possible to understand the dynamics of multiparticle processes
more profoundly.
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3. CORRELATION DEPENDENCES

3.1. The Problem of Correlations

Correlation dependences in multiparticle production processes can
be conditionally separated into two groups. The first group consists of
correlations between the different parameters of a single particle. For
instance, the dependence of p⊥ on p‖(x).

The second group of correlation effects arises in studying the two-
particle distributions in the inclusive experiments. To this group one can
relate the dependences between different particles; for instance, the corre-
lations between neutral and charged particles, found only at E � 25 GeV,
the problem of factorization in the distributions of different particle
contributions (it is usually connected with the problem of deviation from
independent emission) and a number of other effects. Two-particle, three-
particle, ... correlations are considered. There exist many reasons as to the
appearance of correlations. Among them, the production of associations,
clusters and other dynamics phenomena are important. There may exist
other less evident reasons.

In the present section we consider mainly the problem of two-particle
correlations, and especially the relationship between charged and neutral
particles, since these effects occur in the latest investigations of modern
accelerators. We shall try to interpret these phenomena from the view-
point of multicomponent description of multiparticle processes, since this
makes it possible to understand the nature of such correlations from the
viewpoint of an important hypothesis of clusterization in multiparticle
production.



28 Лекции по физике частиц

3.2. Two-Particle Correlations

If one considers an arbitrary multicomponent reaction

a+ b→ p1 + p2 + . . .+ pn, (3.1)

then the invariant n-particle cross section can be written in the form

fn(s,p1, . . . ,pn) =

(
n∏

i=1

Ei

)
d3nσn
n∏

i=1

d3pi

, (3.2)

where Ei, pi are the energy and three-dimensional momentum of ith
secondary particle, respectively, and s = (pa + pb)2 the familiar Mandel-
stam variable. The corresponding distribution density may be obtained
by separating fn into total inelastic cross sections σinel:

ρn(s,p1, . . . ,pn) =
1

σinel
fn(s,p1, . . . ,pn). (3.3)

In the present section we consider only two-particle distributions.
If all the particles are independent, then the ρ2 distribution is simply

connected with the one-particle distribution:

ρ2(p1,p2) = ρ1(p1)ρ1(p2). (3.4)

However, if here are correlations between particles 1 and 2, then simple
factorization is not present; i.e., it becomes necessary to introduce the
correlation term:

ρ2(p1,p2) = ρ1(p1)ρ1(p2) + C2(p1,p2), (3.5)

where C2 is the two-particle correlation function. The meaning of C2 is
that it is a measure of the influence of particle 1 (with momentum p1)
on the probability that another particle 2 has a momentum p2 for any
distribution over momenta of the remaining particles.

The correlation function determined in the rapidity space

C2(y1, y2) =
1
σ

dσ

dy1dy2
− 1
σ2

dσ

dy1

dσ

dy2
(3.6)

is widely used, where σ is the cross section for the given class of events.
Sometimes it is convenient to consider the given correlation function

R2(y1, y2) = C2(y1, y2)σ2

/
dσ

dy1

dσ

dy2
. (3.7)

The two-particle correlation function C2 is simply related to f2, i.e.,

f2 =
∫
C2
d3p1

E1

d3p2

E2
=

{
〈n(n− 1)〉 − 〈n〉2,
〈n1n2〉 − 〈n1〉〈n2〉, (3.8)
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where we have considered the distributions over multiplicity; i.e., f2 is the
completely integrable correlation function C2.

Note that the models of a multiperipheral type (i.e., the models with
the SR correlations) predict a logarithmic dependence of the function s
on f2:

f2 ∼ a ln s

and the diffraction dissociation approach (where the LR correlations are
taken into account) gives the power dependence

f2 ∼ As1/2.

In the multicomponent description, we separate the contributions of
different mechanisms into multiparticle cross sections. In this case the
behaviour of correlation functions is determined by superposition of the
correlators, corresponding to each of the mechanisms. Their concrete form
depends on the method of realization of the multicomponent approach. In
particular, one may consider decomposition of the type

σn =
∑

a

σ(a)
n , (3.9)

where ∑
n

σ(a)
n = Caσ, a = 1, 2, . . .

Contributions to the average multiplicity and higher distribution moments
are received for different mechanisms separately:

〈n〉a =
∑
nσ

(a)
n∑

σ
(a)
n

, f2 = 〈n(n− 1)〉a − 〈n〉2a,

where a = 1, 2, . . . , and the total (observed) quantities are correspondingly
equal to

〈n〉 =
∑
Ca〈n〉a,

f2 = C1f
(1)
2 + C2f

(2)
2 + . . .+ C1C2(〈n〉1 − 〈n〉2)2 + . . . ,

(3.10)

where
∑

a

Ca = 1.

The formula

C2 = adC
d
2 + aπC

π
2 +

ad

aπ

[
1
σ

dσ

dy1
− 1
σd

dσd

dy1

] [
1
σ

dσ

dy2
− 1
σd

dσ

dy2

]
(3.11)

is widely used for the two-particle correlation function (aπ + ad = 1).
This formula shows the character of the correlation function in the case

of the two-component description, i.e., when the inelastic collisions may be
described by the fraction ad of the diffraction dissociation processes and



30 Лекции по физике частиц

the fraction aπ of the pionization process (processes with SR correlations
are often so designated).

Note that in this case, as is seen from (3.11), the resulting two-particle
correlation function C2 is not an average quantity of Cπ

2 , C
d
2 calculated

for each of the components. It may be sufficiently large even if the two-
particle correlation functions are very small for each of the components
taken separately. It is sufficient to assume the one-particle distributions
to be different for both components in order that the last term in (3.11)
should be large.

Note that a large number of correlation functions and parameters
have been proposed for consideration. We shall determine only the widely
accepted ones.

We wish to point out some experimental data. The experimental values
for the function f2 obtained in the pp interaction are shown in Fig. 3.1.

Fig. 3.1. Experimental values of f2 as a
function of energy (for pp interaction)

This curve has a rather charac-
teristic trend showing that in-
dependent emission in pp col-
lisions (the Poisson distribu-
tion over multiplicity) occurs
only at E0 ∼ 50 GeV. Here
f2(s) = 0. The integrated cor-
relation function has small but
negative values, corresponding
to approximately independent
emission (for instance, the un-
correlated jet model) at E0 <
< 50 GeV. At energies larger
than 50 GeV, the two-particle

correlation parameter f2 increases rather rapidly. Note that multicom-
ponent description will be most useful in describing this energy region
(see, for instance, (3.11)). In 1972 Ganguli and Malhotra considered the
dependence of the two-particle structure function 〈n(n − 1)〉 on s. They
compared experimental data in a large energy interval with the predictions
of the limiting fragmentation model (Benecke, Chou, Yang, Yen) and
the multiperipheral model (Horn, 1972). The first model predicts the
dependence 〈n(n− 1)〉 ∼ √

s, the second one predicts ∼ ln s or ∼ ln2 s. If
one assumes 〈n〉 ∼ ln s, then in the asymptotic region the quantity 〈n〉/D
is expected to be proportional to ln s/s1/4 in the limiting fragmentation
model and to (ln s)−1 in the multiperipheral model. The authors conclud-
ed that the multiperipheral model fits better the dependence of 〈n(n−1)〉
and 〈n〉/D on s.

In the range of energies with data available from the bubble chamber
there is little difference between the two models, and the conclusion is
based on the data from cosmic ray research at E ∼ 2 · 104 GeV.
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However, this argument for the model with SR correlations is not
essential due to a weak sensitivity of the studied dependences of the
function 〈n(n − 1)〉 to experiment. The dependence of the dispersion D
on 〈n〉 is more critical in this relation.

Consider the following example.
If the SR correlations dominate and do not depend on energy, then f2

determined according to (3.8) by the integral

f2 =
∫
C2dy1dy2 (3.12)

receives its main contribution in the integration region from diagonal
y1 ≈ y2 and has an order f2 ∼ ln s due to the fact that the surface of
kinematic region in the y1, y2 plane broadens with energy proportional to
(ln s)2. As has already been mentioned, in the models with SR correlations
an average multiplicity increases with energy in proportion to ln s. Thus,
for the integrated two-particle function we have f2 ∼ 〈n〉.

Correlation (3.12) leads to the following dependence of D on 〈n〉:
D2 = f2 + 〈n〉 ∼ 〈n〉 (3.13)

However, this dependence is not confirmed experimentally. This may be
seen in Fig. 3.2.

Linear dependence between D and 〈n〉 holds for all currently available
pp data. It is confirmed, though with different slopes, in the data on
meson–proton collisions (see Fig. 3.3).

Fig. 3.2. Dependence of D on 〈n〉 for
pp interactions

Fig. 3.3. Dependence of D on 〈n〉 for
πp and Kp interactions
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Note, however, that the assumption of energy dependence of SR cor-
relations allowed Bialas (1973) to construct a model where linear depen-
dence between D and 〈n〉 holds approximately in some region, including

Fig. 3.4. Prediction of the hypothesis
on energy dependence of SR correla-

tion (by Bialas)

almost ISR energies (see Fig. 3.4).
When considering the SR correla-
tions it is convenient to use the con-
cept of clusters, which appeared in
the gas theory. If there is SR inter-
action between the particles, then
it is natural to consider grouping
of particles into clusters, i.e., into
the particle associations which are
sufficiently close to permit them to
interact. We can explain this by the
picture shown in Fig. 3.5.

Here, particles 1, 2, 3 make one
cluster, 4, 5, 6, 7 make another clus-
ter, and particle 8 alone makes a
cluster. If particle 8 is moved to
the position indicated by the ar-
row, it will interact with particles
1 and 4 and we shall have one

large cluster. As a matter of fact, we have introduced SR interac-
tions between clusters. Thus, if the clusters interact in the SR way,
they merge into one large cluster. Clusters in the above sense may

Fig. 3.5.

be introduced at the SR interactions. For el-
ementary particles there are SR interactions
in the rapidity space, thus consideration of
clusters is justified.

To do this in terms of associations of
clusters and concrete dependences in multi-
particle production, it is necessary to make
some additional assumptions concerning the
character of their production and their
quantum numbers. Concrete of the notion of hadron associations has been
considered above in the multicomponent model of two mechanisms.

3.3. Neutral-Charged Correlations

Consider the charged-neutral correlations between secondaries making
use of the model of two mechanisms.

Now we turn to the model of two mechanisms. For simplicity, we do
not take into account strange particles. As has already been mentioned,
the initial assumptions of the model are:
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i) Dissociation of the leading particles with local conservation of
isospin, and

ii) Independent production of associations (see Fig. 3.6) lead in the
given case to the distribution

W i
n±,n0,n3

= aiPn±(a±)Pn0(a0)Pn3 (b), a± = 2a0 ≡ a. (3.14)

Fig. 3.6.

Taking into account that a number of neutral pions may be presented in
the following way (see formula 2.6 and Table 2.1):

ni
π0 = 2n0 + n3 + 
iπ0 ,

one can easily obtain the average number of neutral pions

〈nπ0〉nc
=

2 〈n0〉nc
+ 〈n3〉nc

+ 〈
π0〉nc

Wnc

. (3.15)

Formulae (3.15) and (3.14) lead to a linear correlation between the average
number of neutral particles and the number of charged particles:

〈nπ0〉nc
= k1 + k2(nc − n̄c), (3.16)

where

k1 = a+ b+ a2, k2 =
b

2(a+ b)

and an average number of charged particles

n̄c =
{

2(a+ b) + 2 (for π−p collisions),
2(a+ b+ a2) + 1 (for π−n collisions).

The case of π−N interactions is particularly considered here, in order to
illustrate quantitative comparison of the model with experimental data,
obtained at Serpukhov with a two-meter propane chamber irradiated with
40 GeV π− mesons. The results are given in Fig. 3.7.

Good agreement with experiment (χ ∼= 0.5 on one degree of freedom)
confirms the prediction of the model about the linear form of correlation

〈nπ0〉nc
= A+Bnc. (3.17)

2 А. Н. Cисакян
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Fig. 3.7. Comparison of the TMP model with the experimental data at p =
= 40 GeV/c

One of the conclusions of the model is that the slope does not depend on
the type of colliding particles (Bπ−n = 0.16±0.02, Bπ−p = 0.15±0.02). It
is seen from (3.16) that the slope is expressed in terms of the parameters
of independently produced clusters. If one assumes that the probability of
production of multiparticle clusters increases with increasing energy, then
one obtains increase in the slope with energy.

Indeed, the slope (see formula (3.16)) is connected with the relation of
average numbers of the hadron associations (clusters):

B =
1
2

N̄(ω → π+π−π0)
N̄(σ → π+π−) + N̄(σ → π+π−π0)

. (3.18)

As extreme cases (in the given assumption), from (3.18) it follows:

1) at N̄(ω) � N̄(σ), s� sthreshold

B → 1
2
;

2) at N(ω) � N(σ), s� sthreshold

B → 0.

These conclusions are consistent with experimental data. The exper-
imental data at ISR in pp collisions (E ∼ 2000 GeV) also demonstrate
a dependence of the type (3.17) with the slope B ∼ 1/2. The absence
of such a correlation at low energies means that B ∼ 0. By using the
multicomponent distribution (2.6) the scheme presented above can easily
be extended to the case of multiparticle production involving strange
particles.

The model of two mechanisms in this case gives a distribution over the
number of charged particles in the form of the superposition of Poisson
functions, and predicts correlations between multiplicities K+ and K−

as well as between K0 and K0 mesons. The average number of K0, Λ0
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and Σ0 in the cases considered below (when the production of clusters
off three heavy strange particles is hardly probable) is independent of the
number of charged particles in π−p collisions and reaches its constant value
at sufficiently large number of charged particles in π−n collisions. The
processing of results from the two-meter propane chamber has produced
good agreement of the model with experiment (see Figs. 3.8 and 3.9).

Fig. 3.8. Correlation between
〈ns0〉 and nc for π−p interaction

at 40 GeV/c

Fig. 3.9. Correlation between
〈ns0〉 and nc for π−n interac-

tion at 40 GeV/c

The model of two mechanisms, realizing the idea of multicomponent
description, and its comparison with the results of experiments for the π−n
and π−p interactions show that at high energies many characteristics
of multiparticle processes for various collisions have a tendency to be
similar. Such a tendency is observed experimentally. In the spirit of the
TMP model this looks quite natural: dissociation gives relatively little
contribution multiplicity, at increasing energies multiple characteristics
are determined by increasing number of clusters (with the tendency to
increase weight), which are produced independently of each other and of
the leading particles.

Indeed, everything may be more complicated. Most probably, small
distinctions in the characteristics of different types of interactions (pp,
πp, Kp, πn, p̄p, . . .) will provide a better description of multiparticle
production. However, one may hope that the rough scheme being observed
at modern energies, as well as its simple and obvious realizations, will
provide a convenient framework for future theories.

Note in conclusion that now there are many new approaches to the
correlation problem.

In this connection I should like to mention that it was proposed at
the same School in 1970 by El.Mihul to use a new variable which is
available exclusively for multiparticle production. It is the determinant
of the matrix formed from the components of four 4-momenta. Consider
the process

a+ b→ a1 + a2 + a3 + a4

2*
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and
∆ = det

{
P k

i

}
, i = 1, 2, 3, 4; k = 0, 1, 2, 3

as only one variable built with the particles of final state. In the center-
of-mass system of colliding particles

∆ =
√
s(p1 × p2)p3 =

√
s(p1 × p3)p4 =

√
s(p2 × p3)p1,

where
√
s is c.m.s. energy. For a fixed s the variable we consider is the

measure of the volume of the parallelepiped of any three 3-vectors of four.
The experimental distributions on ∆ for p + p → p + p + π+ + π− have
been performed for ten values of energy between 4.0 and 24.8 GeV. A
strong shrinkage with respect to the energy is obtained when they are
compared with the phase space distributions. ∆ equal to zero defines the
singular domain of the physical region. So for increasing energy this region
becomes dominant.

In connection with this approach it is interesting to find from experi-
mental data the answer to the following questions:

a) Do ∆ distributions as functions of energy, i.e., depend on the
nature of colliding particles or final particles (neutrino production, photon
production, etc.)?

b) For four inclusive reactions (four prong events) one can divide the
interval of the energy of the four particles in their center-of-mass system
(p1 +p2 +p3 +p4)2 into intervals of the «fixed» energy. Will the shrinkage
be the same with respect to energy for the events corresponding to every
certain energy to get the ∆ histogram?

c) It is important to know from the reactions with more than four
particles in the final state for which a few independent determinants
exist if they are simultaneously going to zero for a given event. There are
n(n− 1)(n− 2)(n− 3)/24 determinants, but not all are independent since

∆i1,i2,i3,i4∆k1,k2,k3,k4 = det {PiPk}i=i1,i2,i3,i4;k=k1,k2,k3,k4
.

d) Finally, since ∆ is a pseudoscalar, it is interesting to investigate if
there exists any asymmetry in the ∆ distribution with respect to ∆ = 0.
It is possible to perform it for the channels where the four particles in
the final state are different; hence they can be uniquely labelled, and the
ordering of them permits one to introduce the orientation of the space.
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4. INCLUSIVE AND SEMI-INCLUSIVE PROCESSES

4.1. The Problems of Description of
Multiparticle Processes

The analysis of the processes of multiparticle production is important
for understanding the nature of hadron interactions at high energies. It
has considerable difficulties both from the technical point of view and
from the viewpoint of kinematical description.

It is necessary to find integral characteristics of inelastic processes
which give sufficiently complete information on the hadron interactions at
high energies and at the same time are rather simple both for theoretical
and for experimental analysis.

Characteristics of such a type were first introduced in 1967 (Logunov,
Mestvirishvili, Nguyen Van Hieu). Later a set of processes contributing to
these characteristics was called «the inclusive processes». Thus, the first
stage of the experiments is mainly concentrated on measurements of the
most direct quantities: the inclusive and topological characteristics of the
particle production spectra.

It was first experimentally determined at the Serpukhov accelerator
(Bushnin et al.) that the ratio of the production probabilities ofK mesons
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and antiprotons to the production probabilities of π mesons depends only
on the ratio of momenta P/Pmax. The experimental consideration of the
scaling invariance at high energies, as well as the difficulties of microscopic
description of multiparticle processes (first of all the absence of strict
mathematical apparatus), leads to the appearance of phenomenological
approaches and models (the parton model, «droplet» model) and, based
on them, to the appearance of the hypothesis of limiting fragmentation
and scaling (Feynman, Yang).

The latter determine a number of limiting relations and restrictions for
the cross sections of inclusive processes, correlations, and other character-
istics. The principle of automodelity (Matveev, Muradyan, Tavkhelidze)
on the basis of a generalized dimensional analysis makes it possible to
classify the scaling relations at high energies.

In the present lectures we shall not dwell on the problem of strong
interactions, but only would like to remind of the reviews by Jacob;
Logunov and Mestvirishvili, and Muradyan (see References).

4.2. Semi-inclusive Processes and
Their Characteristics

The one-particle inclusive reactions have a number of practical ad-
vantages: they are easily obtained experimentally, the study of average
values by the particles not fixed in the reaction clears up the collective
properties of the system of secondaries. On the other hand, they represent
a limited part of the dynamics, as the one-particle characteristics have
been integrated over particles and summed over all the inclusive channels.
In fact, in the inclusive approach various mechanisms of particle produc-
tion, responsible for the different phenomena, are missed altogether. There
arises the question of explaining the dependence of these effects on the
multiplicity. To solve such problems we can make use of the so-called semi-
inclusive processes of multiparticle production, i.e., of the characteristics
of reactions with fixed multiplicity (topology) without averaging of the
inclusive approach, and thus evidently take into account the contributions
of different multiplicities to the physical effects.

4.2.1. Basic Definitions. Consider the process of particle produc-
tion as a result of collision at high energies

a+ b→ p1 + p2 + . . .+ pn + . . .



Multiparticle Production 39

Denote the differential cross section of production of n charged particles
(with a different number of neutral ones) through

dσ

dp1dp2 . . . dpn
=

=
∑

k=n+1

1
(k − n)!

∫
dσ

dp1dp2 . . . dpn . . . dpk

k∏
j=n+1

dpj . (4.1)

Then the semi-inclusive cross section of particle C(p) production with a
given (n− 1) number of charged particles

a+ b→ c(p) + . . .︸︷︷︸
(n−1)ch.particles

+ . . .

will be of the form

dσc
n

dp
=

1
(n− 1)!

∫
dσ

dp . . . dpn

n∏
i=2

dpi (4.2)

with the normalizations (see Sec. 1)

1
n

∫
dσc

n

dp
dp = σc

n,
∑
n=2

dσc
n

dp
=
dσc

dp
,

∫
dσc

dp
dp = 〈n〉σ, 〈n〉σ ≡

∑
nσn,

(4.3)

where σn, σ are the partial (topological) and total (inelastic) cross sections
of interaction (ab → . . .), correspondingly; 〈n〉 is the average multiplicity
of final particles.

Define now the first moment of the semi-inclusive distribution (4.2)

〈n(p)〉 =


N(s)∑

n=2

(n− 1)
dσc

n

dp


/∑

n

dσc
n

dp
. (4.4)

Equation (4.4) defines the average multiplicity of charged particles, pro-
duced together (in association) with an extracted fixed particle «c» with
momentum p and is called the associated multiplicity of charged particles.
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Note the correlation character of the introduced value (4.4). In this
connection consider the reaction with two (inclusively) extracted particles

a+ b→ c1(p1) + c2(p2) + . . .︸︷︷︸
(n−2)ch.particles

+ . . .

and determine the corresponding two-particle spectra: the semi-inclusive
distributions with fixed multiplicity

dσc1,c2
n

dp1dp2
=

1
(n− 2)!

∫ n∏
i=3

dpi
dσ

dp1 . . . dpn
(4.5)

and the corresponding two-particle inclusive spectrum

dσc1,c2

dp1dp2
=
∑
n=3

dσc1,c2
n

dp1dp2
(4.6)

with the normalizations

1
(n− 1)n

∫
dσc1,c2

n

dp1dp2
dp1dp2 = σn,

1
n− 1

∫
dσc1,c2

n

dp1dp2
dp2 =

dσc1
n

dp1
,

∫
dσc1,c2

dp1dp2
dp1dp2 =

∑
n(n− 1)σn = 〈n(n− 1)〉σ.

(4.7)

Having partially integrated (4.5) over the phase volume of the particle
c2(p2) taking into account (4.7) and∑

n

∫
dσc1,c2

n

dp1dp2
dp2 =

∑ dσc1
n

dp1
(n− 1) =

∫
dσc1,c2

dp1dp2
dp2 = 〈n(p1)〉 dσ

c1

dp1
,

and using the definition of the two-particle correlation function C2(p1,p2),
we obtain the necessary relation

〈n(p1)〉 =

(
1

/
1
σ

dσ

dp1

) ∫
dp2C2(p1,p2) + 〈n〉, (4.8)

i.e., in the absence of correlations between the particles c1 and c2 the
associated average multiplicity does not depend on the momentum p2

and
〈n(p1)〉 = 〈n〉 − 1.
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Let us also simplify the formula determining the semi-inclusive two-
particle correlations, defining as

ρn(p) =
1
σn

dσn

dp
,

C(2)
n (p1,p2) =

1
σn

d2σn

dp1dp2
− ρn(p1)ρn(p2),

R(2)
n (p1,p2) =

C
(2)
n (p1,p2)

ρn(p1)ρn(p2)
=

σn · d2σn/dp1dp2

dσn/dp1 · dσn/dp2
− 1.

(4.9)

4.3. The Experimental Situation

Now we shall make use of the experimental data on semi-inclusive
distributions and give a brief classification of the basic facts.

4.3.1. The One-Particle Spectra with Fixed Multiplicity.
1. The linear growth of semi-inclusive one-particle densities ρn(p) for

the fixed y(p⊥)
(IHEP, FNAL, ISR)

ρn(y) =
1
σn

dσn

dy

∣∣∣∣∣∣ = A+Bn
y — central

: pp→ π +XN ; πp→ π +XN

see, e.g., Fig. 4.1 (IHEP)

Fig. 4.1. ((1/σn)(dσn/dp⊥))max is distribution over n (for π+π−) in π−p collision
at p⊥ = 40 GeV/c (2-meter propane chamber collaboration JINR–IHEP, U-70

accelerator)
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ρn(p⊥) =
1
σn

dσn

dp⊥
= a+ bn : πp→ π +XN .

2. The shrinkage of semi-inclusive spectra with increasing multiplicity
(FNAL, ISR)

ρn(y) =
1
σn

dσn

dy
=

n

sn

√
2π

e−y2/2s2
n : pp→ π− +XN ,

where s ∼ 2/n.
(BNL)

dN

dp‖
= B‖e−ap‖ , a = (0.39n− 0.23) GeV/c

dN

dp⊥
= B⊥p

3/2
⊥ e−bp⊥ , b = (0.31n+ 5.36) GeV/c


π−p→ π +XN

(BNL)

dN

dp‖
= N‖a‖e−a‖p‖ , a‖ ∼= 10 + 5n

Wcm

dN

dp⊥
= N⊥a

5/2
⊥ p

3/2
⊥ e−a⊥p⊥ , a ∼= (b+ 0.3n) +

6(1 + n)
Wcm


 pp→ π+XN

(IHEP)

ρn(y, p⊥) = Ne−anm⊥ch(y−y′) : π−p→ π± +XN .

4.3.2. The Semi-inclusive Correlations.
1. The central region
y1 ∼ y2 ∼ 0 (FNAL, ISR)

R(2)
n (0, 0) ∼ 1

n
pp→ ππ

C(2)
n (0, 0) ∼ n.

2. In the range of large ∆y = y1 − y2 the correlations are maximum
for small n. This effect increases with energy (long range) and

C(2)
n (y1, y2) ∼ −n,R(2)

n (y1, y2) ∼ −1
n
.

3. The associated multiplicities. The correlations between n and
(y, p⊥).

The associated multiplicity as a function of various variables has been
calculated in many experiments up to the ISR energies.

Consider the typical data.
a) There has not been found an essential dependence of 〈n(p⊥)〉 on

the transverse momentum of secondaries (p, π,K,Λ) for p⊥ � 1 GeV/c
when p⊥ = 19 GeV/c in the pp interaction (The Scandinavian group) as
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well as in the πp interaction at p⊥ = 40 GeV/c, though the same data
in the same-opposite selection show an essential dependence on p⊥. The
value 〈n(x)〉 (〈n(y)〉) is gradually decreasing with the growth of transverse
momenta x(y).

b) The BNL collaboration points out the increasing dependence of
〈n(p⊥)〉 on the transverse momentum of a leading proton in the range
p⊥ � 2 GeV/c and for different missing masses MM*. The data from
FNAL–ISR confirm this effect in a wide energy range and p⊥ (for a
detailed discussion of the range of large p⊥, see Sec. 5).

c) The associated multiplicity as a function of missing masses, pro-
duced with a leading particle, increases according to the same law as the
average multiplicity as a function of

√
s.

4.4. Theoretical Approaches

4.4.1. Cluster Models. Various experimental information on cor-
relations, e.g., data on f2(s), R(2)(y1 − y2) for approximate validity of
the KNO scaling for multiparticle distributions, etc., points out the fact
that multiparticle production (most of it in any case) proceeds through
multicluster intermediate states.

In particular, the assumption of the independent emission of isotropic
clusters makes it possible to understand the positive short-range character
of the completely inclusive two-particle correlation functions with respect
to rapidities in the central region.

The central idea of this approach is that the hadron associations (clus-
ters) are produced according to definite dynamics and that the secondaries
observed are products of the decay of these clusters.

At present it is not yet clear whether clusters have intrinsic dynamics
meaning or represent simply a phenomenological method, i.e., suitable
initiation of more complicated dynamics.

The cluster models have been extensively studied recently (see review
articles of Berger, Ranft) in connection with the experimental information
of FNAL–ISR on correlations with respect to rapidities at multiplicity
fixed (on semi-inclusive correlations).

We list here some model consequences:
1. It is convenient to split σn and dσn/dy into «diffractive» and

«nondiffractive» parts;
2. The correlation length 2δ(C(2)

n ∼ e−(y1−y2)
2/4δ2

) does not depend on
n and s.

3. In the model of independent clusters: (1/σn)(dσn/dy) ≈ n/y.

*Note that experimental observation of the linear relation between the aver-
age multiplicity and the transverse momentum of one of the final protons was
first presented in the paper by Anderson and Collins (1967).
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4. The behaviour of semi-inclusive correlations is consistent with ex-
perimental data of FNAL–ISR:

C
(2)
n (0, 0) ∼ n

log s
f(〈k〉),

R
(2)
n (0, 0) ∼ log s

n
f(〈k〉),

(4.10)

where 〈k〉 stands for the average number of hadrons in a cluster.
5. The n-dependence of the semi-inclusive correlation functions reflects

the structure of multiparticle distribution inside a cluster.
In the concrete cluster model with diffractive excitation the one-

particle distribution at a fixed multiplicity reduces to the following form:

dσn

dy
= An

∫
N(s)dMρ(M)δ

(
M − n

γ

)
e−λ2m2sh2(y−ϕ)

ch2(y − ϕ)
, (4.11)

where M and y are respectively the cluster mass and rapidity.
In present versions of the cluster diffractive models, agreement of the

slow decrease in topological cross sections σn and nondecreasing character
of spectra relative to rapidities in the central region is achieved if one gives
up the assumption of the isotropy of the cluster decay.

Note that if one takes as the cluster decay amplitude a modified
distribution of the Bose gas, it is possible to avoid the artificial intro-
duction of nonisotropy. In this case, in particular, observable properties of
«shrinkage» of distributions are obtained and, unlike the standard models
(DEM) resulting in a fall of the spectra in the central region, an increase
in maximal values of distributions is obtained:

ρn(y) ∼ e−an sh2(y/2), ρn(y = 0) ∼ C
√
n(1 + nm),

ρn(p⊥) ∼ a+ bp⊥
m

1/2
⊥

e−nb(m⊥−m), ρn(p⊥ = max) ∼ cn.
(4.12)

4.4.2. Scaling in Semi-inclusive Distributions.
a) Uncorrelated Production. KNO II. Keeping to the same ideas that

have resulted in the similarity law for multiparticle distributions (see
Sec. 2), Koba, Nielsen and Olesen have obtained the law of automodel
behaviour for semi-inclusive cross sections ρn(p). Assuming the noncorre-
lated particle production (or weak short-range correlations) and the Feyn-
man scaling for the one-particle spectral densities at a fixed multiplicity,
they have found the asymptotical formula

1
σn

dσn(p, s)
dp

−−−→
s→∞ h

(
n

〈n〉s , x, p⊥
)[

1 + 0
( 1
〈n〉
)]

(4.13)

for the reaction a+ b→ c(p)+ (n− 1) charged + anything neutral, where
x = 2p‖/

√
s, 〈n〉s is the mean multiplicity at energy s. Relation (4.13)
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predicts that if one compares two or more semi-inclusive experiments at
different (enough) energies taking the same values of n/(n)s, then the
distributions over momenta (in the variables x and p⊥) normalized to σn

will be almost equal to each other; i.e., the cross sections dσ/dxdp⊥ for
different s and different topologies but with the same ratio n/〈n〉 should
be the same.

Due to the nonrigorous character of the arguments resulting in (4.13),
it is interesting to check this relation with models. This has been done
in the two cases: (1) the Feynman gas model (Olesen) and (2) the
uncorrelated jet model.

In the first case, by using the method of generating functionals*, the
proper relations (4.13) are found for semi-inclusive cross sections and this
is shown in the example of the reaction K+ + p → K0 + nch + anything
neutral at p⊥ = 5.82, 16 GeV/c. The spectra are in qualitative agreement
with the Feynman gas model within a good accuracy (except for boundary
regions of phase space where effects of the energy-momentum conservation
laws are important).

Since n is the discrete variable, a convenient way to check the predic-
tion (4.13) is to obtain an analytical expression that then can be fitted to
experimental data. Such an expression:

1
σn

dσn

dp
= C

n

〈n〉 (1 − x)λ1
n

〈n〉+λ2

[
1 +O

( 1
〈n〉
)]

(4.14)

has been found in the uncorrelated jet model. Here λ1, λ2 are constants.
Formula (4.14) has been fitted to experimental data at p = 19 GeV/c in
the reaction pp→ π+ + (nπ − 1)c + anything neutral.

Applicability of the semi-inclusive scaling (4.13) (KNO II) to the one-
particle spectra has been verified experimentally for the corresponding
cross sections with pion production in pp collisions at 205 GeV/c (FNAL).
A comparison has been made at fixed n/〈n〉 with data at low energies
from 13 to 28.4 GeV/c. By relation (4.13), it follows that if one takes
two energies s1 and s2 and two multiplicities n1 and n2, then quantities
(1/σn)(dσn/dp) should be equal if n1/〈n1 (s1)〉 = n2/〈n2 (s2)〉 (up to
correction O(1/〈n〉)).

Though a qualitative agreement holds for such a behaviour (except for
the region x ≈ 0), essential deviations are observed in data on the semi-
inclusive scaling. These are considerably larger than for corresponding
inclusive cross sections. Analogous results have been obtained for semi-
inclusive distributions of pions in π−p collisions at p = 40 GeV/c (IHEP
collaboration).

*The method of generating functional was first introduced in statistical
physics by Bogolubov (1945).
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Since 〈n(s)〉 is a slowly varying function of energy and n/〈n〉 is roughly
constant for a constant multiplicity n from (4.13), the usual inclusive
scaling should be valid in a wide energy interval. This prediction was
compared with experiment (Chliapnikov et al.). In the K+p interaction
at p = 5.82, 16 GeV/c the quantity (1/σn)(dσn/dp) has been found to
be independent of energy for n = 2, 4, 6, though the corresponding 〈n〉
change considerably in this energy range.
b) Strongly Correlated Production. Experimental data on C

(2)
n , R(2)

n

and essential dependence of the associated momenta 〈n(p)〉 on p point
out considerable correlations in processes of the multiparticle production.
Studies of the correlation dependences of average characteristics of hadron
production processes can give evidence only of the existence of a certain
relation between secondaries. In studying the semi-inelastic characteristics
there arises the question: what restrictions on the shape and character
of dependence of the one-particle distributions on n and p do result
from correlations between the average multiplicity and magnitude of the
momentum or transfer momentum?

Consider a semi-inclusive reaction of the type a+ b→ particle of large
p⊥ + nch+ anything neutral, where one of the secondaries which receives
after interaction a large transverse momentum is produced inclusively.

When choosing a special form of the dependence of the average number
on the transverse momentum, one should allow for considerations of a
mechanism of multiparticle production.

Proceeding from the assumption of the coherent excitation of particles
colliding at high energies (Matveev, Tavkhelidze), one may find that the
average number of secondaries grows linearly with the squared transverse
momentum transferred:

〈n(p⊥)〉 = a+ bp2
⊥.

This result for the diffractive production of particles has been obtained
in the framework of the straight-line path method. Such behaviour is in
qualitative agreement with experimental data obtained in pp collisions at
the laboratory momentum of incident proton plab ≈ 30 GeV/c.

Furthermore, retaining ideas of the physical similarity seen in a number
of observed properties of particle interactions at high energies, we may
assume that the shape of the dependence 〈n(p⊥)〉 f(p⊥) will affect the
character of asymptotic behaviour of cross sections of the semi-inclusive
processes.

Let us assume, for instance, that the semi-inclusive cross sections obey
the similarity relations:

dσn

dp⊥
= A(p2

⊥)ψ(n/f(p⊥)). (4.15)
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Substituting this relation into formula (4.4) for the associated multiplicity
and changing the simulation by integration, we find

〈n(p⊥)〉 =

∑
nFn(p⊥, s)∑
Fn(p⊥, s)

=
∫N3 ndnψ(n/f(p⊥))
∫N3 dnψ(n/f(p⊥))

= f(p⊥)g(Ns/f(p⊥)),

(4.16)
where Ns ∼ √

s.
Thus, the function f(p) really represents the dependence of the as-

sociated multiplicity 〈n(p)〉 on momentum if g(Ns/f(p⊥)) → 1 for s →
→ ∞ and fixed p⊥. The deviation from this asymptotic limit may appear
only in the region where fp⊥/

√
s ≈ 1. If the function fp⊥ ≈ p⊥ has

the power asymptotic behaviour, this condition corresponds to relatively
small transverse momenta p⊥ ∼ s1/2, i.e., to values of the parameter x⊥ =
= 2p⊥/

√
s tending to zero with increasing s.

Note further that the function A(p2
⊥) defined by (4.15) can be related

to the inclusive cross section
dσ

dp⊥
=
∑

n

dσn

dp⊥
∼ A(p2

⊥)f(p⊥). (4.17)

Making use of formulae (4.15)–(4.17), one can easily establish the
validity of the following relation (Matveev, Sissakian, Slepchenko):

〈n(p⊥)〉 dσn

dp⊥

/
dσinel

dp⊥
= ψ (n/〈n(p⊥)〉) . (4.18)

We stress here that the similarity relation (4.18) analogous to the KNO
scaling is based only on general ideas of the physical similarity and not in
particular on the assumption of Feynman scaling.

As is known (see the review of experiment), to the decreasing character
of the associative multiplicity there corresponds a «shrinkage» of semi-
inclusive distributions; i.e. at small p⊥ the probabilities of production
of a large number of particles drop much faster than those for small
multiplicities. On the other hand, the growth of 〈n(p⊥)〉 ∼ p⊥ corresponds
to the transition to a new regime: at increasing p⊥ the cross sections with
large n became smoother than for small multiplicities — the so-called
«broadening» of distributions. Thus, the regions of small and large p⊥ are
clearly separated by essentially different regimes of behaviour both for the
inclusive and semi-inclusive cross sections and for the moments of these
distributions.

The relation between the semi-inclusive distributions and associated
multiplicities in definite combination (4.18) with an essentially different
behaviour at small and large transverse momenta indicates a certain
universality of the similarity law obtained (scaling law) for diffractive
semi-inclusive spectra (4.18).
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Thus, relation (4.18) can be considered as a particular manifestation of
automodelity specific for a wide class of phenomena in particle interactions
at high energies.
c) Models with Weak Correlations. We have already mentioned that

within the framework of KNO scaling the result (4.13) is valid under
the assumption of absence of correlations between the secondaries. The
question arises: What will happen if we introduce the correlations? We
have partly mentioned such examples when having considered the Feyn-
man gas models and the uncorrelated jet model. Let us consider in more
detail the Feynman gas model (Mueller, Olesen) in which only the two-
particle correlations are taken into account. Define the function τ1

n(p)
which determines the deviation from an uncorrelated case:

τ (1)
n (p) =

1
σn

dσn

dp
(ab→ c(p) + (n− 1)ch + anything neutral)−

− 1
σ

n

〈n〉
dσinel

dp
(ab→ c(p) + anything). (4.19)

It appears that the scaling law in the form (4.13) is valid for the considered
model in the case of the short-range correlations. Then, the function is
factorized with respect to the momentum and multiplicity:

τ (1)
n (p)  H(s, x, p⊥)ψ(n, s).

In agreement with the scaling (4.13) at high energies

lim
s→∞H(s, x, p⊥) = H(x, p⊥),

lim
s→∞ψ(n, s) = ψ

(
n

〈n〉
)
,

n

〈n〉 is fixed. (4.20)

This means the factorization of the semi-inclusive distribution. Note that
these results can be obtained when considering the sum rules for the
semi-inclusive cross sections and correlations. The factorization of semi-
inclusive spectra in a general case can be written in the form

1
σn

dσn

dp
= A(n)f(p) [1 + φ(n,p)] , (4.21)

where φ (n,p) is the deviation measure (analogous to (4.19)). It can be
written in the form

φ(n,p) =

(
1
σn

dσn

dp

/
n
dσinel

dp

)
− 1. (4.22)

Thus, the functions τn(p) and φ(n,p) may be considered analogous to the
correlation functions C(2)

n and R(2)
n , respectively (see (4.10)).
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Due to a weak decrease (constancy) in the associative multiplicity as
a function of the transverse momentum of π mesons, we can come to
a conclusion on the smallness of the transverse correlations of charged
particles. It concerns the form dσn/dp⊥ of distributions. In particular,
when analyzing the experimental data on the semi-inclusive distributions
of π+ mesons in the πp interaction when p = 40 GeV/c (IHEP accelerator;
2-meter propane chamber, JINR), it was found that these distributions as
multiplicity functions are similar in form at different fixed values p⊥; i.e.,
the parametrization (4.21) holds. It follows that except for the range of
small p⊥(p⊥ � 0.2) correlation φ (n, p⊥) is weak and holds, with good
accuracy, the factorization of the n and p⊥ variables

dσn

dp
 F (n)f(p⊥), F (n) = nσn, f(p⊥) =

dσinel

dp
. (4.23)

Note that for the semi-inclusive spectra with the noncorrelative n ↔ p
dependence (4.23) from the similarity law, there follows the relation of the
KNO scaling for the multiplicity distributions

〈n〉σn/σ = ψ(n/〈n〉).
The relation of the moments of multiplicity distribution with the multi-
particle inclusive spectra and the correlation functions made it possible
to investigate automodelity properties of distributions over multiplicity to
obtain in the case of weak (SR) correlations a number of rather interesting
results for the inclusive and semi-inclusive reactions. In particular, for the
process

a+ b→ c(p1) + c(p2) + . . .+ c(pk+1) + anything,

assuming the existence of scaling for inclusive multiparticle distributions
(Chliapnikov, Gerdyukov, Manyukov, Minakata), there was obtained the
asymptotic scaling behaviour of the associated moments like〈

nk(s,p)
〉

s→∞ = ak(x,p2
⊥) lnk(s) +O(lnk−1(s)). (4.24)

Thus, for example, the average multiplicity of charged particles 〈n(M2)〉
in the reaction a + b → c + xm associated with the quantity M2 of the
system xm is 〈

n(M2)
〉

= a
(
M2/s

)
ln s+ b

(
M2/s

)
, (4.25)

where a, b are the functions depending only on M2/s. The experimental
test of these relations is of interest.

The presence of weak correlations with the dependence of semi-
inclusive spectra, both on multiplicity and on the secondaries momentum,
made it possible to assume the existence (experimentally) of the so-called
«scaling in the mean» (Dao et al.). The authors confirm that the forms
of the p⊥ and p‖ spectra of produced particles are independent of the
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multiplicity or the colliding particle momentum. The data on pp for
different multiplicities between 13 and 300 GeV/c were analyzed. It was
found that this hypothesis does not qualitatively contradict the production
of π− mesons. Thus, the cross sections, expressed in terms of normalization
variables, must be of universal form:

〈ν〉n
σn

dσn

dV
∼ φ

(
V

〈ν〉n

)
, (4.26)

where V is the transverse or longitudinal variable, and φ (V/〈ν〉n) is the
universal function independent of s or the multiplicity. Though one has
no grounds to consider that this behaviour has a quantitative support, it
may serve as a useful approximate parametrization (see Figs. 4.2 and 4.3).

Fig. 4.2. «Scaling in the mean» for trans-
verse variable

Fig. 4.3. «Scaling in the mean» for
longitudinal variable

4.5. Connection between Elastic and Inelastic Processes

It is convenient to study elastic and inelastic processes at high energies
by making use of the approach based on the unitarity condition in quan-
tum field theory. The unitarity equation of the amplitude of scattering of
the 2-spinless particles has the form

ImT (s, t) =
∫
dwT (s, t′)T−1(s, t′′) + F (s, t), (4.27)
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where

t = −(p− k)2, t′ = −(p− q)2, t′′ = −(q − k)2,

s = 4(m2 + p2), |p| = |k| = |q|
and

dw =
1

8π2

dqdq′

2q02q′0
δ(p+ p′ − q − q′)

are connected with the two-particle phase-space volume. Condition (4.27)
is graphically represented in Fig. 4.4.

Fig. 4.4. The illustration of the s-channel unitarity condition

The value Fn(s, t) =
∑

n

Fn(s, t), which is called the Van Hove overlap

function, is the contribution of inelastic (multiparticle) states to (4.27).
According to this, the elastic amplitude at high energies is nothing else
than the shadow of numbers of inelastic channels. Under definite assump-
tions on the character of scattering amplitude at high energies, one can
obtain in the range s→ ∞ and t/s� 1 the known formula

ImT =
1

8π2s
T · T+ + F. (4.28)

Representing the impact parameter, we rewrite (4.28) in the form

Im f(b, s) =
1
2
|f(b, s)|2 + ρ(b, s), (4.29)

where b is the impact parameter, f(b, s) ≡ T (s, b).
Thus, an important result from the angular moment conservation law

is that the amplitude of elastic scattering with a given impact parameter
b is produced by absorption into inelastic channels with the same impact
parameter. According to the definition of the overlap function

ρ(s, b) ≡
∑

n

|Tn(s, b)|2 ≡ dσinel

db2
, (4.30)

where Tn(s, b) is the production amplitude of the inelastic state with the
n particles having impact parameter b. If the phase of elastic amplitude is
known, we can solve equation (4.29). In particular, for the parametrization

f(b, s) = i(1 − e2iδ(b,s))
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we obtain

ρ(b, s) =
1
2
(1 − e4 Im δ(b,s)). (4.31)

The value ρ(b, s) = 1/2 corresponds to the unitarity limit reached in the
case of a full absorption.

The approach to the diffraction scattering, considered as a shadow
of inelastic processes, possesses a number of interesting questions: How
close to the maximum absorption is ρ(s, b) when b = 0? What is its form
and average radius? How do individual n-particle amplitudes construct
ρ(s, b)? What processes (impact parameters) are responsible for growing
cross sections with energy? And so on.

In the papers of the Serpukhov group (Khrustalev, Savrin, Semenov,
Troshin, Tyurin) as well as of Bialas, Buras, Dias de Deus, Miettinen,
some interesting similarity properties for ρ(s, b) are found and discussed.
An analysis of the ISR experimental data on elastic pp scattering in the
diffraction region makes it possible to draw several important conclusions
about properties of inelastic channels.

In particular, the observed growth of the total inelastic cross section
occurs, as the authors think, due to peripheral inelastic interactions, and
in the energy region under consideration ρ(b, s) appears to depend only
on the ratio πb2/σinel. This relation is a manifestation of the geometrical
similarity in inelastic processes at high energies:

ρ(b, s)
ρ−−−→

s→∞

(
b2

R(s)

)
. (4.32)

All the approaches and models studying inelastic collisions in the lan-
guage of impact parameters and also connections with the character of the
behaviour of elastic collisions at high energies have been called geometrical
approaches. These models accentuate the geometrical nature of collisions,
an elementary act of collisions, productions being considered (in general
of weakly correlated particles) to occur at a fixed impact parameter b.
The total inelastic cross section is derived by integrating over all the
impact parameters. Accordingly, inclusive (semi-inclusive) characteristics
include mixtures of a large number of elementary components with given
b. Following Van Hove, one has

F (s, t) =
∫
d2b ei∆bσ(b), t = −∆2, (4.33)

where the total inelastic cross section with a given (4.30)

σ(b) =
∑

n

σn(b) =
dσinel

db2
(4.34)



Multiparticle Production 53

and the n-particle production (topological) cross section is written as a
superposition of n-particle cross sections at fixed impact parameters b:

σn =
∫
d2bσn(b) =

∫
d2b

dσn

db2
. (4.35)

To obtain the multiplicity distributions we need σ(b), σn(b). By using
relation (4.33) and its partial analog overlap (semi-inclusive) function
Fn(s, t)

Fn(s, t) =
∫
d2b ei∆bσn(b) (4.36)

and also the corresponding formula for transformation (the Fourier–Bessel
transformation), one may find relations between the functions ρ(s, b) and
multiplicity distributions σn(s). In particular, for the contribution of in-
elastic channels (4.36) obtained in the framework of a probability approach
to the description of the scattering processes at high energies (Logunov,
Khrustalev) it is shown, proceeding from the universality of function
ρ(b, s) (4.32), that ρ(s, b) is connected by the Laplace transformation,
with the function ψ(z, s) characterizing the multiplicity distribution in
proton–proton collisions at high energies:

ψ(z) = 〈n〉 σn

σ
, z =

n

〈n〉 . (4.37)

The three-component model for ψ(z) found and analyzed further
describes well both the multiplicity distribution and the first ten moments
of distribution (see discussion concerning difficulties of the two-component
description, Sec. 2). It would be of interest to study what follows in the
language of geometrical models, from separation of the mechanisms of
multiparticle production into a sum of contributions from different compo-
nents and in this connection to study the relation among such concepts as
range of correlation, diffraction, fragmentation and independent emission
of produced particles.

The existence of connection between elastic and inelastic processes
following from the unitarity condition (4.27), (4.29) is supported also by
the fact that the result of two-particle collision is defined by the internal
structure of hadrons. The structure of interacting particles, displayed in
the smoothness of an effective quasi-potential of interaction, defines also
the multiparticle production processes. It is therefore natural to attempt
to gain information on some simple characteristics of inelastic processes
by using the quantity characterizing the elastic scattering.

Consider now several aspects of this problem.
a) A connection of Parameters of the Elastic Scattering with Inclusive

and Semi-inclusive Distributions. In considering the model of independent
emission of soft pions as a result of collisions of two scalar nucleons,
the differential cross section of production of µ mesons (semi-inclusive
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distribution) can be written in the form (Khrustalev, Savrin, Semenov,
Tyurin)

dσn

dk
=

4π
(n− 1)!

∑
	

(2
+ 1)
∫ n∏

i=2

dki |f	(. . . ki, q)|2 . (4.38)

If one introduces the density of meson distribution ρ(. . . ki) and the
corresponding quantity in r space, then the assumption on independent
emission of mesons, together with partial unitarity, allows one to connect
the quantity ρ	(0) with the phase of elastic scattering of two nucleons:

ρ̄	(0) = 4 Imσ	, (4.39)

and the cross section for n-meson production takes the form

dσn

dk
=

π

(2π)3q2
∑

	

(2
+ 1) e−ρ̄�(0)
ρn−1

	 (0)
(n− 1)!

ρ	(k); (4.40)

i.e., the inclusive one-particle distribution is

dσ

dk
=

π

(2π)3q2
∑

	

(2
+ 1)ρ	(k).

In the impact parameter representation one has

dσ

dk
=

1
(2π)3

∫
d2bρ(k,b). (4.41)

In this way, we arrive at the explicit relation between the inclusive
distribution over transverse momentum and the imaginary part of the
phase of elastic scattering of two nucleons (simultaneously with the spatial
distribution of the hadron matter in the nucleon):

dσ

dk⊥
=

1
(2π)3

g2

(
1
2
k⊥, 0

)
,

g(ξ, 0) = 2
√

Im δ(2ξ).

(4.42)

b) Behaviour of the Associated Multiplicity as a Function of t =
= −∆2 and Elastic Rescattering on a Compound System. Consider now, in
the framework of eikonal approach and impact parameter representation,
the interaction of a fast particle with a compound system, the target
particle in the final state dissociating into n constituents. Consideration
of the interaction with a compound system allows one (Kvinikhidze,
Slepchenko) to obtain information on dependence of the one-particle
distribution functions on the number of particles in the final state (on
the number of constituents) and in this way to simulate the inclusive and
semi-inclusive characteristics of multiparticle processes.
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Consider the contribution of a multiple interaction to the one-particle
distribution function of final particles. For n = 2, by definition, one has

dσn=2

dxd∆−2
∼= F−1

∫ 3∏
1

d3pi

2poi
δn

(
Q−

3∑
1

pi

)
δ(∆ − (p3 − q3)2)×

× δ

(
X − p1z

p1z + p2z

)
|Mn=2 (x, p⊥,∆) |2 , (4.43)

where F = 2(2π)2λ1/2(s,M2
3 ,M

2) andMn defines contributions of double
interaction:

M2 ∼
∫
d2bd2bn eib∆⊥+ip2⊥b12x(b12, x)f1(b + xb12)f2(b − (1 − x)b12),

(4.44)
where b12 = b1 − b2, b = (1 − x)b1 + xb2 and b1, b2 are individual
impact parameters of interaction of the fast particle with constituents 1,
2. Substituting (4.44) into definition (4.43), we get

dσn=2

dxd∆2 = C

∫
d2bd2b′ei∆(b−b′)

∫
d2b12 |ψ(b12, x)|2 ×

× f∗
1 (b′ + xb12)f2(b′ − (1 − x)b12)f1(b + xb12)f2(b − (1 − x)b12),

(4.45)

where fi (b, x) are the two-particle elastic amplitudes and the wave
function ψ (x,b12) now plays the role of the probability amplitude of
dissociation (fragmentation) of a compound system into constituents.
From (4.45) one can easily see that the distribution over the squared
momentum transfer is defined essentially by rescatterings of an incident
particle with a compound system. On the other hand, the distribution
over the relative momentum of particles composing a system

dσn=2

dxdp2
⊥

= C′
∫
d2b12d

2b′12ψ
∗(b′12, x)ψ(b12, x) eip⊥(b12−b′

12)×

×
∫
d2bf∗

1 (b + xb′
12)f

∗
2 (b − (1 − x)b′

12)×
× f1(b + xb12)f2(b − (1 − x)b12) (4.46)

strongly depends on the character of the wave function (i.e., on properties
of fragmentation of a target into constituents).
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In the general case of an arbitrary number (n) of constituents one has

Mn(x1 . . . xn,∆⊥,pI⊥ . . .p(n−1)⊥; s) =

=
∫
d2b eib∆

n∏
i=1

[∫
d2bi eip⊥ibifi(b1 + xib)

]
×

× ψ(n) ({xi, bi}) δ
(

n∑
1

xibi

)
δ

(
n∑
i

xi − 1

)
. (4.47)

As has been mentioned above, the distribution dσn/dxd∆2 corresponding
to (4.47) is sensitive to the form of the two-particle amplitude of scattering
on constituents fi(bi, x).

Making different assumptions on the structure of the local two-particle
quasi-potentials, one may obtain detailed information concerning the
behaviour of a compound system.

In particular, let us assume that in the region of large ∆2 the incident
particle scatters on all n constituents of a target at least once. In this
case, if the scattering angle is the same for each individual amplitude,
then under rather general assumptions on the function ψ (b, x) for x fixed
one can show that

dσn

d∆2 = C(n, . . .)fn((∆/n)2), (4.48)

where
fi(∆) = f2(∆) = . . . = f(∆);

i.e., (4.48) results in the so-called «broadening» of the effective slope of
the ∆2 distribution as a function of R (becomes smoother in the region
of large ∆).

Composing the first moment (4.48), i.e., the corresponding associated
multiplicity, under the assumptions made above, leading to the automodel
behaviour of the dependence dσn/d∆2 → f(z) (see (4.18)), one may
obtain the growing behaviour

〈n(0)〉 ∼ C∆2. (4.49)

c) A Relation between the Slopes of the Elastic Scattering Amplitude
and Average Multiplicity of Secondaries. Let us consider some results
concerning multiparticle production in the framework of the straight-line
path approximation (SLPA) in quantum field theory. As is known, this
approximation has been suggested and developed by the Dubna group
(Tavkhelidze, Barbashov, Matveev, Kuleshov, Pervushin, Sissakian) for
high energies and fixed momentum transfers. This method leads to a
number of interesting results for high-energy multiparticle production
processes.
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One of them is that the total differential cross section obtained by
summing over the number of all emitted mesons is found to be independent
of t in a certain range of secondary particle momenta:∑

n

dσn

dt
=
(
dσ2

dt

)
0

= const. (4.50)

This is, in a certain sense, analogous to the point-like or automodel
behaviour of the cross sections for deep inelastic hadron–lepton processes.

The real content of the result (4.50) consists of the fact that the total
differential cross section can change noticeably only by changing ∆t ∼ teff ,
which greatly exceeds the sizes of the diffraction domain.

To estimate teff , we may make use of the unitarity condition which
yields

−teff � 8π
σtot

. (4.51)

This value of teff can be employed for estimating the average number of
secondary particles n̄diffr produced in the diffraction collisions of hadrons
at high energies:

n̄diffr(s) =
1
σtot

teff∫

0

dσtot

dt
A(s)tdt � constA(s)

σtot
.

Thus, the diffraction or peripheral part of the average multiplicity is
defined by the parameters of the elastic zero-angle scattering amplitude.
The conclusion about the behaviour of the total particle number n̄(s) can
be drawn only under definite assumptions about the contribution of small
distances to high-energy multiple production processes. In particular, if
the assumption about the disappearance of «pionization» effects at high
energies, i.e., the production of secondaries with limited momenta in the
c.m.s. of the colliding hadrons, is used, then relation (4.51) will define the
behaviour of the total average multiplicity

n̄(s) =
constA(s)

σtot
+ ν̃, (4.52)

where ν̃ is the number of «leading» particles.
From the viewpoint of attempts to connect the regularities observable

in multiple productions with the parameters of elastic scattering, this
result can be treated as a contribution to the magnitude of the slope of
the elastic scattering amplitude (this contribution is due to the diffraction
mechanism). It is known that within the uncorrelated jet model very
small values are obtained for the elastic slope, and a mechanism of the
multiperipheral type gives very large values to the slope with increasing
energy. In this respect it would be rather interesting to estimate the value
of A(s) within the models allowing for the two mechanisms.
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Using the well-known restriction on the asymptotic behaviour of the
diffraction peak width in quantum field theory (Logunov et al., Eden)
from Eq. (4.52), we get in the general case

n̄(s) � const
σtot

ln2 s. (4.53)

This relation is an interesting interpretation of the increase in the strong
interaction radius.

Indeed, A(s) is the «visible» hadron size, σtot defines the minimal
distance R0 for which the automodel behaviour holds. One can see from
Eq. (4.52) that

A(s) ∼ R2 = πR2
0.

Thus, the strong interaction radius increases under the condition of
the constant cross section, at the expense of the «swelling out» of hadrons
associated with the «clouds» of secondary particles.
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5. PHYSICS AT HIGH p⊥

5.1. New Regularities in High-Energy Production

In this section we present a review of both experimental and theoretical
results on large transverse momentum inclusive processes. An interest in
these processes is due to the present experimental possibilities of getting
large p⊥ or momentum transfers on new accelerators. On the other hand,
there are some theoretical arguments that lead us to expect that the
interaction mechanism at large transverse momentum differs essentially
from that prevailing in the region of small transverse momentum.

Recent experiments on production of particles with large transverse
momentum in hadron–hadron collisions at high energies have revealed
definite changes in cross section behaviour compared with that in the
small transverse momentum region. Some specific features of the processes
in question are as follows: a steep decrease in the cross sections with
growing p⊥ at fixed s, the increase in cross sections with energy at large
fixed transverse momenta p⊥, the appearance of appreciable correlations
between particles with large p⊥ and other secondaries, etc. A general view
of the behaviour of these processes as a result of analysis of experimental
data is given in Table 5.1.

Table 5.1

Small p⊥ Large p⊥

s fixed Rapid decrease of the Less rapid (less steep) decrease
p⊥ increases cross sections with of the cross section with

increasing p⊥ ∼ exp (−ap⊥) increasing p⊥∼ pn
⊥

p⊥ fixed Weak dependence of the Growing cross section with
s increases cross sections on s increasing s

Particle Among secondaries the pions Heavy particles are produced
ratios dominate (k/π) ∼ 10% relatively more copiously

π+π− ∼ 1 pp (collisions) π+π− > 1

Associated Weak dependence of the Growth of the associated
multi- associated multiplicity on p⊥ multiplicity with increasing p⊥
plicity 〈n(p⊥)〉 ∼ const 〈n(p⊥)〉 ∼ pα

⊥
Correlations Small Large positive correlations

between two large p⊥ particles
C2(p⊥1, p⊥2)

The first indication of surprisingly high cross sections at large p⊥ came
from CERN ISR, where the cross section was found to be several orders
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of magnitude higher than the extrapolation of an exponential fit to the
invariant inclusive cross section found for p⊥ < 1 GeV/c.

The data are consistent with a p⊥-dependence given by

E
d3σ

dp3
= p−N

⊥ f(x⊥) mb/GeV2
, (5.1)

where x⊥ = 2p⊥/
√
s and N ≈ 8, f(x⊥) ∼ e−13x⊥ for pp → π0(90◦) + . . .

The parametrization E(d3σ/dp3) = p−N
⊥ f(x⊥) with f(x⊥) ∼ e−ax⊥ gives

Fig. 5.1. Variation of exponent n in the
parametrization E(dσ/d3p)=p2n

⊥ func-
tion of x⊥

a fair description of pion data at
large p⊥(x⊥). However, with dif-
ferent values of the parameters
N and depending on the region
of p⊥ and s over which the fits
are made, one can expect N ∼ 8
at the ISR for x⊥ � 0.5 andN =
= 11 at the larger values of x⊥
at FNAL. Figure 5.1 shows the
variation of N as a function of
x⊥ required to bring the charged
pion data at different energies of
the FNAL together.

Most of the experiments of
production of particles with high
transverse momenta are pure-
ly inclusive. They give only the
p⊥-distribution of secondaries of
a given type without telling us

what kind of collisions leads to the emission of high transverse momentum
particles. A study of particle correlations in high-energy collisions leading
to high transverse momentum of secondaries can provide further insight in-
to the dynamics of these processes. Knowledge of the correlations between
the high-p⊥ particle and the other secondaries in an interaction is thus
essential for a complete understanding of the production process at large
transverse momentum. The experimental information presently available
on such correlations at very high energy comes from ISR measurements
involving photons and π+ mesons with large transverse momentum.

To make this problem clearer, the distributions of the charged particles
emitted in proton–proton collisions in association with a photon of high
transverse momentum were studied at the CERN ISR. The normalized
total multiplicity, associated with the photon, is plotted in Fig. 5.2 as a
function of p⊥ and for different c.m. energies. The multiplicity increases
moderately with p⊥, the growth being more pronounced at higher energies;
above p⊥ ≈ 3 GeV/c the distribution is flattening. In order to understand
such behaviour, the p⊥-dependence was studied for the multiplicities
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Fig. 5.2. Average total multiplicity of charged particles at
√

s = 23, 31, 45, 53
and 62 GeV as a function of p⊥ of the photons detected at Θcm = 90◦

observed in the two hemispheres: towards the observed photon and away
from it (or in the same and opposite directions). Figures 5.3, a and 5.3, b
show the normalized hemisphere multiplicities as a function of p⊥ and
for the same c.m. energies as in Fig. 5.2. The multiplicity away from
the photon increases linearly with p⊥ and displays little s-dependence.

Fig. 5.3. Normalized partial multiplicities as a function of photon transverse
momentum in the hemispheres: a) towards and b) away from the detected photon
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Fig. 5.4. Average total multiplicities of charged particles as a function of p⊥ of
the detected photon for Θcm = 90◦ and 17.5◦. (See Del Prete, 1974)

The dependence on energy seems to be entirely concentrated in the
hemisphere towards the photon. Here the multiplicity decreases with p⊥
at the lowest c.m. energies, while only a slight increase is observed at the
highest energy.

The following analysis has been repeated for photons emitted at Θ =
= 17.5◦ (y ≈ 2) and for c.m. energy

√
s = 53 GeV. The data are compared

with the corresponding 90◦ data at the same p⊥ value. The normalized
total multiplicity, shown in Fig. 5.4, displays a rise with p⊥ which is more
rapid than that observed at 90◦ and which begins at larger p⊥.

One can summarize the relevant features of these data as follows:
1. The charged particle multiplicity increases with p⊥ in a wide cone

opposite to the detected photon. The growth of multiplicity is roughly
linear with p⊥ and energy-independent.

2. The mean multiplicity of charged particles, emitted in the same
direction as the photon, generally decreases with increasing p⊥; only at
the highest ISR energy a tiny rise is observed.

3. At small angles towards the beam directions the multiplicity de-
creases at all energies.

4. The forward photon data show also some observable increase in
multiplicity in the «towards» hemisphere.

A similar effect has been obtained in a somewhat different type of
high-p⊥ correlation experiment which has been performed at BNL at a
relatively low beam momentum of 28.5 GeV/c. In this experiment in the
reaction as pp→ p(π)+MM the charged multiplicity of the fixed missing
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Fig. 5.5. Variation of average charged
particle multiplicity, n̄c, with |t| = p2

⊥
for four intervals of MM

mass (MM) is measured as a func-
tion of the transverse momentum of
the fast «towards» proton (pion).
As is seen in Fig. 5.5, the multi-
plicity is roughly independent of p⊥
below 1 GeV/c but rises moderately
as p⊥ increases from 1 to 2 GeV/c.

At the CERN ISR the measure-
ments were also performed of π0

correlation as a function of trans-
verse momentum when two neutral
pions are detected at large angles on
opposite sides of the ISR intersec-
tion. One finds that when a large-
p⊥ pion is detected on one side,
the probability of having another
π0 with large p⊥ on the opposite
side is several orders of magnitude
larger than would be expected from
uncorrelated pion production.

Here by correlation function we mean

R(x1⊥, x2⊥) = σin
d6σ

dp3
1dp

3
2

/
d3σ

dp3
1

d3σ

dp3
2

, (5.2)

where x⊥ = 2p⊥/
√
s.

The correlation is seen to increase with increasing x⊥ of either π0, and
R is as high as ∼ 104 for x1⊥ = x2⊥ = 0.2. This behaviour might be rather
a consequence of momentum conservation; however, the function R for the
same-side π0’s is also positive and large (R ∼ O(10) at x1⊥ = x2⊥ = 0.1),
an effect of which cannot be explained by kinematics.

5.2. Hadron Structure and High Transverse Momentum

A common view is that the collisions with small t = p2
⊥ are determined

by a global structure of hadrons, for example, by the effective range of
interactions of order 1 fermi which is related to the slope parameter of the
cross section.

It is natural to expect that in collisions with extremely large transverse
momentum (or momentum transfers) p⊥ ∼ p‖ ∼ E, E → ∞, an inner
local structure of hadrons, which is presently assumed to have «hard»
or «point-like» character, becomes more important. In inclusive reactions
at large p⊥ the «hard» point-like structure of hadrons can be revealed.
From the automodelity viewpoint, processes with large p⊥ are somewhat
analogous to the phenomenon of point-like explosion and, therefore, they

3 А. Н. Cисакян
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must be described by the usual dimensional analysis. For large s by simple
dimensional considerations, it follows that instead of the general form
dσ/dp = f(s, p‖, p⊥) we may have the following asymptotic formula:

dσ

dp
= p−N

⊥ f(x, x⊥).

In the framework of the quark model using the principle of automodeli-
ty it was shown (by Matveev, Muradyan and Tavkhelidze) that the above-
mentioned power law at large angles depends essentially on the number
of hadron constituents, i. e., on «a degree of complexity» of particles.

Attempts to derive the power character of the asymptotic behaviour of
cross sections at large angles (p⊥) have been made in a number of recent
works under the various model assumptions.

Recently various composite models, such as the quark model, parton
model and others, have extensively been used in elementary particle theo-
ry. In this connection the problem of a self-consistent-relativistic descrip-
tion of interactions of composite particles is of much importance. An effec-
tive method of describing the properties of relativistic composite systems
is the Logunov–Tavkhelidze quasi-potential approach in quantum field
theory. This approach has turned out to be more suitable in explanation
of general regularities of elastic and inelastic (inclusive) processes at high
energy and transverse momentum. Quasi-potential formulation in terms
of the light-front variables gives us in particular, within rather general
assumptions about the behaviour of wave-functions of composite system,
the intrinsic power dependence of measured quantities, e.g., dσ/dp⊥ ∼
∼ s−Nf(x⊥), where f is a scaled function, in region of high p⊥ ∼ √

s,
s→ ∞. Such behaviour is obtained in the framework of various models in
which a hadron is assumed to be a composite object with many point-like
constituents. When these constituents are called partons (quarks), there
are two possible mechanisms of the interaction of two colliding hadrons:
parton–parton scattering and parton interchange. According to that, there
exist, in fact, two parton models of the high-p⊥ particle production. In
the mechanisms of the parton–parton scattering discussed by Berman,
Bjorken and Kogut, two colliding hadrons are considered as two colliding
beams of partons. The interaction of hadrons occurs when a pair of partons
interacts via a gluon exchange, scattered one against another. According
to the parton model, the cross section for production of a high-p⊥ particle
is given by E(dσ/dp3) ∼ (1/p4

⊥)f(p⊥, s), where factor p−4
⊥ comes from the

vector gluon exchange in scattering of two partons. The function f(p⊥, s)
is determined by the probability that a parton has the momentum x and
then one can obtain the particle with the transverse momentum p⊥.

The second possible mechanism of the interaction of two hadrons was
discussed by Blankenbeckler, Brodsky and Gunion. They assumed that in
a collision of two composite objects their constituents can be interchanged.
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The probability of finding a parton with a large transverse momentum
can be evaluated from the form factor of a hadron and gives the same
power law for high-p⊥ production E(dσ/dp) ∼ p−N

⊥ G (p⊥/
√
s), where

exponent N can be calculated when we know the form factor of a pion.
The last group of models to be discussed are the cluster and multipe-

ripheral approaches. Berger and Branson suggested that high-p⊥ particles
observed in high-energy collisions are the decay products of two clusters
which decay anisotropically and their decay products are collimated along
the line of flight of clusters. The cluster models predict that high transverse
momentum particles are often accompanied by other particles with high
transverse momenta, all of them being the decay products of the same
cluster.

The production of high transverse momentum particles is strongly
damped by the multiperipheral mechanism of particle production. In
some recent versions of this model, attempts were made to describe high-
p⊥ data. A serious criticism of the model is the observed increase in
the multiplicity associated with high-p⊥ particles. The model requires
that masses of many-particle systems should be small and, therefore,
multiplicities of these systems to be low. Instead, the multiperipheral
model describes correctly the increase in the heavier particle component
at high p⊥.

5.3. Associated Multiplicities

As was mentioned in this section, a dependence of the growth of
average multiplicities on the transverse momentum was considered (by
Matveev, Sissakian and Slepchenko) under the assumption of the auto-
model character of the behaviour of semi-inclusive spectra. To demon-
strate more clearly the correlation character of the associated multiplicity
〈n(p⊥)〉, one can also introduce the equivalent to definition

〈n(p)〉 =

(
1

/
1
σ

dσ

dp1

) ∫
C2(p1,p2)dp2 + 〈n〉, (5.3)

where C2(p1, p2) is defined in Sec. 1. From (5.3) it is seen, in particular,
that if there are no correlations between particles with momenta p and q,
the associated multiplicity for the inclusive production of a particle with
momentum q does not depend on p:

〈n(p)〉 = 〈n〉tot − 1.

Note that, in accordance with the total momentum conservation, the large
transverse momentum p⊥ of the detected particle is balanced by the total
transverse momentum of the group of other particles that causes a strong
correlation between them.

3*
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When choosing a concrete form of dependence of the average number of
particles on the transverse momentum, one should consider multiparticle
production mechanisms. Proceeding from the assumption on coherent
excitation of the particles colliding at high energies, one can obtain that
the average number of secondaries increases linearly with the squared
transfer momentum:

〈n(p⊥)〉 = a+ bp2
⊥. (5.4)

Within the framework of the straight-line path method, this result has
been derived for the diffractive production of secondaries. Such behaviour
is in qualitative agreement with the experimental data on pp collisions at
the laboratory momentum of the incident proton plab ≈ 30 GeV/c (see
Fig. 5.5).

An analogous phenomenon follows also from the hypothesis of lim-
iting fragmentation, where the growth of 〈n〉 with p⊥ arises due to the
impossibility of giving large transverse momentum to a hadron without
its break-up.

Note that in the multiperipheral model the mean multiplicity decreases
logarithmically with growing p⊥*. This decrease is apparently a conse-
quence of the fact that the multiperipheral model corresponds mainly to
the mechanisms of secondary production connected with the appearance
of hadron clusters in a central region, while the results of the coherent
state model (Matveev, Tavkhelidze), the straight-line path method and
fragmentation picture correspond to the mechanism of diffractive disso-
ciation of colliding particles. The inclusive cross sections for a diffrac-
tive production of high-p⊥ particle corresponding to topological (semi-
inclusive) distribution, satisfying the differential scaling law, Eq. (4.18),
are consistent with a power asymptotic behaviour of the form

dσ

dp2
⊥

∼ 1
(p2

⊥)α+2
F

(
p2α
⊥√
s

)
,

F (z) = e−2z − ec
√

s/2.

(5.5)

The associated multiplicity has approximately rising dependence on p⊥:

〈n(p⊥)〉 ∼ (ap⊥)2α. (5.6)

In this connection, note that the assumptions made in the framework
of our consideration make it possible to establish a relation between
the effective degree of fall for the inclusive cross sections at large p⊥
(taking into account the factor F (x⊥)) and the increasing character of
the associated multiplicity relative to p⊥. This correlation depends on the
range of x⊥.

*Within the MP scheme it is possible to reproduce the growth of spectra
with energy and their power decrease p−8

⊥ at large transverse momenta.
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It is of interest to turn back to Fig. 5.1, where the correlation of such
a type is drawn, i.e., an effective dependence of degree of power decreases
on the interval of the variable x⊥.

In particular it may serve as some evidence of the possibility to describe
the inclusive spectra at large p⊥ not by a single term of the type (5.2), but
by their superposition with various N . The value of N for the given region
x⊥ decreases with increasing energy. Note that from the theoretical point
of view the appearance of an effective dependence of the degree of the
value may be interpreted as a result of the competition of several different
dynamic mechanisms:

Mq →Mq N = 2nM = 4

qq̄ →MM̄ « — »
q̄B → M2q N = nM + nB = 5

q2q →MB « — »
. . . . . .

In the language of quarks, the process of inclusive production of meson
M with large p⊥ is determined by one of the exclusive interactions.

The extrapolation of the found dependence into the region gives n ≈ 2
that would correspond to the point-like behaviour of a cross section and
could be defined by the elementary process qq → qq with the subse-
quent fragmentation of quarks into real particles. A direct experimental
examination of a dependence of the associated multiplicity on the particle
transverse momentum is thus of great interest in the testing of theoretical
models.

This lecture has been prepared together with the discussion leader
Dr Leonid Slepchenko. Thanks a lot to him.
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