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The nonperturbative effects in the processes involving strongly interacting particles are system-
atically studied within the instanton liquid model (ILM) of the QCD vacuum. The detailed analysis of
the nonperturbative contributions to the electromagnetic quark form factor is presented. We consider
the structure of the instanton induced effects in the evolution equation describing the high-energy
behaviour of the form factor and demonstrate that the instanton contributions result in the ˇnite
renormalization of the subleading perturbative result and numerically are characterized by small factor
re�ecting the diluteness of the QCD vacuum. The consequences of the IR renormalon induced effects
as well as various analytization procedures of the strong coupling constant in the IR domain are con-
sidered. The role of the instanton induced effects in high-energy diffractive quark-quark scattering, in
particular, in formation of the soft Pomeron, is discussed. The further applications of the developed
approach to the study of the nonperturbative effects in high-energy hadronic processes are discussed.
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INTRODUCTION

The very powerful methods of the perturbative Quantum ChromoDynamics
(pQCD) have been developed in order to describe the processes involving strong
interacting particles at high energies (for a review and comprehensive description
of the methods, see, e.g., [1]). The total cross section of the e+e− annihilation
and the logarithmic violation of scaling in deep inelastic scattering became the
classical tests of pQCD already in the lowest orders of expansion in the strong
coupling constant [2], and nowadays there are no doubts that the QCD Lagrangian
provides a proper basis for a quantum ˇeld theory of strong interactions.
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At the same time, the present status of pQCD does not allow one to consider
it as the only tool for investigation of the hadronic properties even at the highest
energies accessible at modern machines. The perturbative methods should be
supplied by certain information that cannot be obtained (at least, in the present
stage of development) directly from pQCD calculations. For instance, a nontrivial
situation arises when at high energy two or more hard scales appear. In that case
in order to make predictions reliable it is necessary to resum the soft part of
the quark-gluon interaction to all orders. Moreover, in several situations the
applicability of pQCD can be deˇnitely justiˇed only at asymptotically high
energies, while in experimentally accessible region the nonperturbative effects
could be important and even dominant. Therefore, the study of the role of the
nonperturbative input in investigation of the processes with strongly interacting
particles is not only an interesting theoretical problem, but also an important task
for phenomenology of hadronic physics.

While the explicit perturbative calculations even in high energy domain re-
quire certain nonperturbative supplement, the hadron processes at the low and
moderate energies appear to be a natural ground for development of nonpertur-
bative methods. Coming down in energy, more and more powers of the strong
coupling constant have to be taken into account. Moreover, in the intermedi-
ate energy region the power corrections come into play that are very sensitive
to the intrinsic hadron structure. Typically, the coefˇcients of the expansion
in powers of the coupling constant and the inverse momentum transfer squared
are the quark-gluon matrix elements taken at hadronic energy scale and have
to be found by nonperturbative methods. The dependence of these matrix ele-
ments on the energy scale is governed by the evolution equations that are de-
termined within pQCD for different hard processes. These equations start to be
applicable at momentum transfer squared of order 1 GeV2 or higher where the
strong coupling constant becomes small. So, it is necessary to ˇnd the initial
data for the evolution equation which is essentially a nonperturbative problem.
The presence of the nonperturbative effects may be important in this energy
region. There are different approaches to treat manifestations of nonperturba-
tive phenomena at high energies: QCD sum rules, lattice QCD, quark mod-
els, etc.

On the other hand, a great progress has been made in the study of the QCD
ground state, its vacuum, and a number of important results has been obtained
that relate the properties of the vacuum to the characteristics of hadrons.

Although the QCD vacuum is known to play an important role in the high-
energy collisions, the direct investigation of these effects remains a difˇcult
task. The idea that the nontrivial vacuum structure could be relevant in high-
energy hadronic processes was ˇrst explicitly formulated for the soft Pomeron
case in [3Ä5], and further developed using the eikonal approximation and the
Wilson integral formalism in [6].
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Here, we will consider the nonperturbative effects originating from the non-
trivial structure of the QCD vacuum treating the latter within the framework of
the instanton liquid model (ILM) [7Ä11]. The approach based on similar princi-
ples was successfully developed within the stochastic vacuum model, where some
important and interesting results were obtained (see, e.g., [12]). However, since
the correspondence between both pictures is not completely clear at the moment,
we restrict ourselves by the ILM only.

Considering QCD vacuum as an ensemble of instantons, one can describe a
number of low-energy phenomena in strong interactions on qualitative and quan-
titative levels [8, 10]. The importance of the instanton induced effects in the
strong interaction is also supported by lattice simulations [8, 13]. The instan-
ton picture is generally considered as a fruitful and perspective framework for
hadronic physics. The role of instantons in the hard hadronic processes has been
studied intensively, both theoretically and experimentally. The contact with the
perturbative QCD results is possible providing the unique information about the
quark-gluon distribution functions in the QCD vacuum and hadrons at low-energy
normalization point. The perspectives for an unambiguous experimental detection
of instanton contributions are believed to be optimistic and promising.

In the present review, we report recent results on investigation of the instanton
induced effects in a number of processes involving strongly interacting particles
in high-energy regime. All considered cases manifest, in a sense, a similar
structure and are studied within the uniˇed framework Å the Wilson integral
approach, which allows one to study both perturbative and nonperturbative effects
on the same footing. The method of path-ordered Wilson integrals is known as a
powerful (and sometimes unique) tool in QCD which reformulates the theory in
terms of the gauge invariant quantities Å the Wilson loops Å while the gauge
ˇelds are considered as chiral ˇelds in the space of all possible loops [14]. The
Green functions, amplitudes and cross sections can be expressed completely in
terms of the Wilson integrals over the contours with geometry determined by
speciˇc kinematics, in an intrinsically nondiagrammatic (that is, nonperturbative)
fashion [16Ä18]. We apply the Wilson loop formalism to the study of both the
perturbative and nonperturbative contributions to the following quantities: ˇrst,
we analyze the nonperturbative contributions in the simplest case Å the amplitude
of the quark elastic scattering in an external color singlet gauge ˇeld, that is, the
electromagnetic quark form factor. Then, we investigate the role of instantons in
the diffractive quark-quark scattering and formation of the soft Pomeron.

1. ELECTROMAGNETIC QUARK FORM FACTOR

1.1. Introduction. The behaviour of the form factors in various energy
domains is one of the most important questions in the theory of hadronic exclusive
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processes. The electromagnetic quark form factors are determined via the elastic
scattering amplitude of a quark in an external color singlet gauge ˇeld:

Mµ = Fq

[
(p1 − p2)2

]
ū(p1)γµv(p2)−

− Gq

[
(p1 − p2)2

]
ū(p1)

σµν(p1 − p2)ν

2m
v(p2), (1)

where u(p1), v(p2) are the spinors of outgoing and incoming quarks, and
σµν = [γµ, γν ]/2. In high-energy regime the Pauli form factor Gq is power
suppressed and will be neglected in the present consideration. However, it should
be emphasized that in low and moderate energy domains it becomes important and
there arise interesting perturbative and nonperturbative effects (see, e.g., recent
works [42,43]). The kinematics is described by the two invariants (see Fig. 1, a):

Fig. 1. The notations for the quark momenta and the total cusp-dependent part of the
Wilson loop integral for the quark form factor (a); the leading order contributions of
the perturbative (b) and nonperturbative (single-instanton) (c) ˇelds; the all-order single
instanton result (d); the exponentiation of the single instanton result (e)

m2 = p2
1 = p2

2, (p1p2) = m2 coshχ, (2)

or

s = (p1 + p2)2 = 2m2(1 + cosh χ), t = −Q2 = (p1 − p2)2 = 2m2(1− coshχ).
(3)

We assume that both the momentum transfer −t and the total centre-of-mass
energy s are large compared to the quark mass:

(p1p2) � m2, or (s + t) � (s − t), or cosh χ � 1. (4)

We take the reference frame where the scattering point is in the origin and
introduce the scattering vectors of quark as

v1 = (1, 0, 0⊥), v2 = (coshχ, i sinhχ, 0⊥),

v2
1 = v2

2 = 1, (v1v2) = coshχ,
(5)

where the velocities v1 = p1/m and v2 = p2/m deˇne the scattering plane.
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The colour singlet quark form factor is one of the simplest and convenient
objects for investigation of the double logarithmic behaviour of the amplitudes
in QCD in the high-energy regime. From the methodological point of view,
it requires a perturbative resummation procedure beyond the standard renormal-
ization group techniques. Besides this, the resummation methods developed for
this particular case can be applied to many other processes which possess the
logarithmic enhancements near the kinematic boundaries. On the other hand, in
spite of the evident theoretical signiˇcance, the computation of the quark form
factor has important phenomenological applications. The quark form factor enters
into the cross sections of a number of high-energy hadronic processes [2]. For
example, the total cross section of the DrellÄYan process (normalized to deep
inelastic (DIS) one) is determined by the ratio of the time-like and space-like
form factors [19,20]:

σDY
n

σPM
n

∼
∣∣∣∣∣ Fq(Q2)
Fq(−Q2)

∣∣∣∣∣
2

, (6)

where σPM
n is the nth moment of the cross section calculated within the parton

model. Similar resummation approach is also used in the study of the near-forward
quark-quark scattering and the evaluation of the soft Pomeron properties [21]. In
the latter case, the nonleading logarithmic terms become quite important.

Recently, it was shown how the experimental and phenomenological investi-
gations of the electromagnetic quark form factors at low and moderate energies
can shed a light on the problem of scaling violation in DIS and the structure of
constituent quarks [22]. The energy regime, where Q2 is larger than the typical
hadronic scale determined by Λ2

QCD and lower than the characteristic scale of the
chiral symmetry breaking: Λ2

QCD ∼ Λ2
conf < Q2 < Λ2

χSB, is the most convenient
one for detection of the nonperturbative phenomena, like the instanton induced
effects. It was shown that the size of a constituent quark consistent with the data
is about 0.2Ä0.3 fm while the mean instanton size in ILM is also about 0.3 fm.
The complicated interplay of nonperturbative effects can lead in this regime to
formation of the constituent quark which is, in a sense, an intermediate object
between color-neutral hadron and pointlike structureless partons, associated with
the fundamental QCD particles Å quarks and gluons. The form factors of con-
stituent quarks may be extracted [22] from the JLab experiment [24] data on the
inelastic Nachtmann moments [23] of the unpolarized proton structure function,
F p

2 (x, Q2).
The ˇrst example of large logarithm resummation was given by Sudakov for

the case of off-shell fermion in the external Abelian gauge ˇeld in the leading
logarithmic approximation (LLA), where the terms of order of (αn

s ln2n Q2) are
taken into account while the contributions from O(αn

s ln2n−1 Q2) are neglected.
The exponentiation of the leading double logarithmic result was found [25].



602 DOROKHOV A. E., CHEREDNIKOV I. O.

This exponential decreasing of the form factor at large-Q2 means that the elastic
scattering of a quark by a virtual photon is suppressed at asymptotically large mo-
mentum transfer. The exponentiation for the on-shell form factor in the Abelian
case was obtained in LLA in [26]. As expected, the non-Abelian gauge theories
appeared to be more complicated: ˇrst, the LLA terms in the QCD perturbative
series were found to be consistent with the exponentiation in [27] (the inelas-
tic on-shell form factor with emission of one and two gluons was calculated in
the same context in [28]; the role of the quark Sudakov form factor in the de-
scription of e+e− one-photon annihilation in quarks and gluons was considered
in LLA in [29]), and the all-order LLA non-Abelian exponentiation has been
proved in [30]. In LLA, the exponentiated form factor behaves as a rapidly de-
creasing at high momentum transfer function, but the question if the nonleading
logarithmic terms could upset the LLA behaviour required a further work. The
all-(logarithmic)-order resummation was performed in the Abelian case and the
exponentiation was demonstrated in [31]. In the paper [32], the non-Abelian
all-order exponentiation for the so-called hard part of the on-shell form factor has
been shown ˇrst within the powerful factorization approach. Note, that in this
work the case where a time-like photon with large invariant mass decays into
a quark-antiquark pair was considered, however it can be easily shown that the
results remain true as well for our case of a quark scattering in an external EM
ˇeld.

In the work [32], the detailed study of hard part of the form factor (which is
responsible for the ultraviolet (UV) properties) was performed, while the status
of the soft part, containing all the infrared (IR) and collinear singularities and,
as a consequence, all possible nonperturbative effects, remained unclear. The
important results on the IR properties of the QCD vertex functions were obtained
in [34] within the Wilson integral approach. In these works, the soft part of
the form factor had been presented as the vacuum averaged ordered exponent
of the path integral of a gauge ˇeld over the contour of a special form Å an
angle with sides of inˇnite length. The use of the gauge and renormalization
group invariance allowed one to derive the perturbative evolution equation de-
scribing the high energy behaviour of the form factor taking into account all (not
power suppressed) parts of the factorized amplitude, both for the on- [33] and
off-shell [35] cases. It was shown that the leading asymptotic is controlled by the
cusp-anomalous dimension which arises due to the multiplicative renormalization
of the soft part, and can be calculated within the Wilson integral formalism up
to the two-loop order [34]. It is worth noting that within the Wilson integral ap-
proach, the non-Abelian exponentiation can be proved independently [36], what is
another important advantage of this framework. The efˇciency of the Wilson inte-
grals approach had been successfully demonstrated in a series of works [18,37,38].
In these papers, the nondiagrammatic framework is developed what allows one to
calculate the fermionic Green's functions, Sudakov form factors, amplitudes and
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cross sections in QED and QCD completely in terms of world-line integrals, and
thus avoid complicated diagrammatic factorization analysis.

The results presented above allow one to conclude that the leading high-
energy behaviour of the quark form factor in non-Abelian gauge theory is com-
pletely determined by the perturbative evolution equation, and is given by the fast
decreasing exponent:

∼ exp
[
−2CF

β0
ln Q2 ln lnQ2 + O(ln Q2)

]
. (7)

This rapid fall-off is not changed by any other logarithmic contributions [32,33,35,
38]. However, the nonleading logarithmic corrections are nevertheless important
for evaluation of the numerical value of the form factor. Some of them are of
a purely perturbative origin (higher loop corrections and subleading logarithmic
terms), while the others can be attributed to the nonperturbative phenomena. The
usual approach to treatment of the latter is developed within the IR renormalon
picture (there are plenty of papers on this subject, for the most recent reviews
see [39]). However they could only give the power-suppressed terms, which
become, of course, important in low energy domain, but can be neglected at
asymptotically large momenta. Here we should note, that this conclusion is
to be changed for processes with two scales (such as quark-quark scattering,
DrellÄYan process, etc.): then the corrections proportional to the powers of a
smaller scale must be also involved in the game [40]. In the present work,
we try to advocate the point of view that the true (not connected directly to
renormalons) nonperturbative effects can be taken into account consistently in
the evolution equation, and therefore they yield the nonvanishing subleading
(perhaps, parametrically suppressed, but still logarithmic) contributions ∼ ln Q2

to the high-energy behaviour. Further, we analyze another possible source of
contributions which can be considered as ®nonperturbative¯ Å the IR renormalon
ambiguities. We demonstrate explicitly that they produce the corrections with
different IR structure compared to that one generated by instantons. Moreover,
as can be shown these direct renormalon effects disappear in the dimensional
regularization [20] and in the analytical perturbation theory [41], what means that
one could hardly expect a considerable signature of the IR renormalon effects in
this process.

In this Section we describe the consequences of the RG invariance properties
of the factorized form factor, and derive the linear evolution equation considering
the nonperturbative input as the initial value for perturbative evolution. Then,
these nonperturbative effects are estimated in the weak-ˇeld approximation within
the instanton model of QCD vacuum. The all-orders instanton contribution is
evaluated using the Gaussian simulation of the instanton proˇle function. The
large-Q2 behaviour of the form factor is analyzed taking into account the leading
perturbative and instanton induced contributions. The consequences of the IR
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renormalon ambiguities of the perturbative series and their relevance within the
context of some analytization procedures are also studied.

1.2. Evolution Equation for the Quark Form Factor and Nonperturbative
Effects. The classiˇcation of the diagrams with respect to the momenta carried
by their internal lines allows one to express the form factor Fq in the amplitude
(1) in the factorized form [31Ä33] (compare with the world-line expression for
the three-point vertex in [38])

Fq(q2) = FH(q2/µ2, αs)FS(q2/m2, µ2/λ2, αs)FJ (µ2/λ2, αs), (8)

where the hard, soft, and collinear (jet) part are separated. Note, that in the
present paper, all dimensional variables are assumed to be expressed in units of
the QCD scale Λ, so that q2 = Q2/Λ2

QCD, etc. The arbitrary scale µ2 stands for
the boundary value of the internal momenta squared which divides the different
parts, and is assumed to be equal to the UV normalization point.

The total form factor Fq is the renormalization invariant quantity:

µ2 d

dµ2
Fq(µ2, αs(µ2)) =

(
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

)
Fq(µ2, αs(µ2)) = 0, (9)

that in the large-q2 regime leads to the following relations

µ2 d

dµ2

[
∂ ln FH

∂ ln q2

]
= −µ2 d

dµ2

[
∂ ln FS

∂ ln q2

]
=

1
2

Γcusp(αs). (10)

For convenience, we work with logarithmic derivatives in q2. This allows us to
avoid the problems with additional light-cone singularities in the soft part [33,44].
The collinear part FJ , being independent of q2, does not contribute to these
equations.

Within the eikonal approximation, the resummation of all logarithmic terms
coming from the soft gluon subprocesses allows us to express FS in terms of the
vacuum average of the gauge invariant path ordered Wilson integral [14,15]

FS(q2/m2, µ2/λ2, αs) =

= W (Cχ; µ2/λ2, αs) =
1

Nc
Tr

〈
0

∣∣∣∣∣P exp

{
ig

∫
Cχ

dxµÂµ(x)

} ∣∣∣∣∣0
〉

. (11)

In Eq. (11) the integration path corresponding to the considered process goes
along the closed contour Cχ: the angle (cusp) with inˇnite sides. We parameterize
the integration path Cχ = {zµ(t); t = [−∞,∞]} as follows

zµ(t) =
{

v1t, −∞ < t < 0,
v2t, 0 < t < ∞.

(12)
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The gauge ˇeld Âµ(x) = T aAa
µ(x) (Tr [T aT b] = (1/2)δab) belongs to

the Lie algebra of the gauge group SU(Nc), while the Wilson loop operator
P exp

(
ig
∫

dxA(x)
)

lies in its fundamental representation. The cusp anomalous
dimension Γcusp is found from the multiplicative renormalization of the Wilson
integral (11) [16,34]:

W (Cχ; µ2/λ2, αs(µ2)) = Zcusp(Cχ; µ̄2/µ2, αs(µ2))Wbare(Cχ; µ̄2/λ2, αs),
(13)

where µ̄2 is the UV cut-off; µ2 is the normalization point, and λ2 is the IR cut-
off. The presence of the IR divergence in (13) is a common feature of on-shell
amplitudes in massless QCD. Since Wbare knows nothing about the normalization
point (the latter is ˇxed by choosing a concrete Zcusp), one can write:

1
2

Γcusp(Cχ; αs(µ2)) = −µ2 d

dµ2
ln W (Cχ; µ2/λ2, αs(µ2)) =

= −µ2 d

dµ2
ln Zcusp(Cχ; µ̄2/µ2, αs(µ2)). (14)

It can be shown that the cusp anomalous dimension (10) is linear in the scattering
angle χ to all orders of perturbation theory in the large-q2 regime [34]:

Γcusp(Cχ; αs) = ln q2 Γcusp(αs) + O(ln0 q2). (15)

Then, from Eqs. (10), (14), (15) one ˇnds after simple calculations [33]:

∂ ln FH(q2)
∂ ln q2

=
∫ µ2

q2

dξ

2ξ
Γcusp(αs(ξ)) + Γ(αs(q2)), (16)

∂ ln FS(q2)
∂ ln q2

= −
∫ µ2

λ2

dξ

2ξ
Γcusp(αs(ξ)) +

∂ ln Wnp(q2)
∂ ln q2

, (17)

where the ®integration constant¯ of the hard part reads

Γ(αs(q2)) =
∂ ln FH(q2)

∂ ln q2

∣∣∣∣∣
µ2=q2

, (18)

and Wnp arises as the initial value of the soft part:

∂ ln Wnp(q2)
∂ ln q2

=
∂ ln FS(q2)

∂ ln q2

∣∣∣∣∣
µ2=λ2

, (19)

and is the only quantity where, according to our suggestion, the nonperturbative
effects take place [46, 47]. Then we get the q2-evolution equation of the total
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form factor at large q2:

ln
Fq(q2)
Fq(q2

0)
= −

∫ q2

q2
0

dξ

2ξ

[
ln

q2

ξ
Γcusp(αs(ξ)) − 2Γ(αs(ξ))

]
−

− ln
q2

q2
0

∫ q2
0

λ2

dξ

2ξ
Γcusp(αs(ξ)) + ln

Wnp(q2)
Wnp(q2

0)
. (20)

In the next subsection, we explicitly calculate the perturbative quantities entering
Eq. (20) in the one-loop approximation.

1.3. Analysis of the Perturbative Contributions to the Wilson Integral.
The analysis of the hard contributions [32,33] at large q2 yields:

∂ ln FH(q2/µ2, αs)
∂ ln q2

= −αs

2π
CF

(
ln

q2

µ2
− 3

2

)
+ O(α2

s), (21)

where CF = (N2
c − 1)/2Nc. For the hard ®integration constant¯ (18) one has:

Γ(αs(q2)) =
3
4

αs(q2)
π

CF . (22)

The expression (21) is IR-safe, while the low-energy information is accumulated
in the soft part of the quark form factor FS . The Wilson integral (11) can be
presented as a series:

W (Cχ) = 1 +
1

Nc
〈0|
∑
n=2

(ig)n

∫
Cχ

∫
Cχ

· · ·
∫

Cχ

dxn
µn

dxn−1
µn−1

· · · dx1
µ1
×

× θ(xn, xn−1, . . . , x1) Tr
[
Âµn(xn)Âµn−1(x

n−1) · · · Âµ1 (x
1)
]
|0〉, (23)

where the function θ(x) orders the color matrices along the integration contour.
The leading order of the expansion (23) (one-loop Å for the perturbative

gauge ˇeld and weak-ˇeld limit for the instanton) is given by expression (see
Fig. 1, b, c):

W
(1)
bare(Cχ) = −g2CF

2

∫
Cχ

dxµ

∫
Cχ

dyν Dµν(x − y), (24)

where the gauge ˇeld propagator Dµν(z) in n-dimensional space-time (n =
4 − 2ε) can be presented in the form:〈

0
∣∣∣T Aa

µ(z)Ab
ν(0)

∣∣∣0〉 = δabDµν(z), (25)

Dµν(z) = gµν∂2
z∆1(ε, z2, µ̄2/λ2) − ∂µ∂ν∆2(ε, z2, µ̄2/λ2). (26)
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Here µ̄2 is a parameter of dimensional regularization. The exponentiation theorem
for non-Abelian path-ordered Wilson integrals [36] allows us to express (to one-
loop accuracy) the Wilson integral (11) as the exponentiated one-loop term of the
series (23):

Wbare(Cχ; ε, µ̄2/λ2) = exp
[
W

(1)
bare(Cχ; ε, µ̄2/λ2) + O(α2

s)
]
. (27)

In general, the expression (24) contains UV and IR divergences, that can be
multiplicatively renormalized in a consistent way [16]. In the present work, we
use the dimensional regularization for the UV singularities, and deˇne the ®gluon
mass¯ λ2 as the IR regulator. The dimensionally regularized free propagator
reads (n = 4 − 2ε), ε > 0:

Dµν(z; ξ) =

= µ4−n 1
i

∫
dnk

(2π)n
e−ikz

(
gµν

k2 − λ2 + i0
− ξ

kµkν/
[
k2 − (1 − ξ)λ2 + i0

]
k2 − λ2 + i0

)
,

(28)

where ξ is a gauge parameter. It is convenient to express the partial derivatives in
terms of the derivative with respect to the interval z2 in n-dimensional space-time

∂2
z = 2n∂z2 + 4z2∂2

z2 , ∂µ∂ν = 2gµν∂z2 + 4zµzν∂2
z2 (29)

and the scalar products of the scattering vectors (5) in terms of the scattering
angle χ

v1
µv2

νgµν = cosh χ, v1
µv2

νzµzν = z2 coshχ + στ sinh2 χ,

z2 = (v1σ + v2τ)2 = σ2 + τ2 + 2στ coshχ.
(30)

For the calculations of different terms we use the following integrals:∫ ∞

0

dσ

∫ ∞

0

dτ exp
[
−α(σ2 + τ2 + 2στ coshχ)

]
=

1
2α

χ

sinh χ
(31)

and∫ ∞

0

dσ

∫ ∞

0

dτ στ exp
[
−α(σ2 + τ2 + 2στ coshχ)

]
= −1 − χ coth χ

4α2 sinh2 χ
. (32)

Therefore, one has for the functions ∆i(z2) deˇned in (26) and (28):

∆{k}
i (z2) = (−)k

∫ ∞

0

dααk e−αz2
∆̄i(α) (33)
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and gets ∫ ∞

0

dσ

∫ ∞

0

dτ ∆′(z2) = − χ

2 sinhχ
∆(0),∫ ∞

0

dσ

∫ ∞

0

dτ z2∆′′(z2) =
χ

2 sinh χ
∆(0), (34)∫ ∞

0

dσ

∫ ∞

0

dτ στ∆′′(z2) = −1 − χ coth χ

4 sinh2 χ
∆(0).

Then, the dimensionally regularized formula for the leading order (LO) term (24)
can be written as [46]:

W
(1)
bare(Cχ; ε, µ̄2/λ2, αs) = 8παsCF h(χ)(1 − ε)∆1(ε, 0, µ̄2/λ2), (35)

where h(χ) is the universal cusp factor:

h(χ) = χ coth χ − 1, (36)

which at large-q2 is given by:

lim
χ→∞

h(χ) → χ ∝ ln
q2

m2
. (37)

In Eq. (35), for the perturbative gauge ˇeld one has

∆1(ε, 0, µ̄2/λ2) = − 1
16π2

(
4π

µ̄2

λ2

)ε Γ(ε)
1 − ε

. (38)

The independence of the expression (35) of the function ∆2 is a direct
consequence of the gauge invariance. Then, in the one-loop approximation,

Wbare(Cχ; ε, µ̄2/λ2, αs) = 1 − αs

2π
CF h(χ)

(
1
ε
− γE + ln 4π + ln

µ̄2

λ2

)
, (39)

and the cusp dependent renormalization constant, within the MS scheme which
ˇxes the UV normalization point, reads:

Zcusp(Cχ; ε, µ̄2/µ2, αs(µ2)) = 1 +
αs(µ2)

2π
CF h(χ)

(
1
ε
− γE + ln 4π

)
+ O(α2

s).

(40)
Using Eq. (35), one ˇnds the known one-loop result for the perturbative

ˇeld, which contains the dependence on the UV normalization point µ2 and IR
cut-off λ2 (e.g., [34,38]):

W
(1)
pt (Cχ; µ2/λ2, αs(µ2)) = −αs(µ2)

2π
CF h(χ) ln

µ2

λ2
+ O(α2

s). (41)
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Therefore, in the leading order the kinematic dependence of the expression (24)
is factorized into the cusp factor h(χ).

From the one-loop result (41), the cusp anomalous dimension which satisˇes
the RG equation (14) in one-loop order is given by:

Γ(1)
cusp(αs(µ2)) =

αs(µ2)
π

CF . (42)

Substituting into Eq. (20) the anomalous dimension (42) with the strong coupling
constant given in the one-loop approximation, one ˇnds

F (1)
q (q2) = exp

[
−2CF

β0

[
ln q2

(
ln

ln q2

ln λ2
− 1

)
−

− 3
2

ln
ln q2

ln q2
0

+ ln q2
0

(
1 − ln

ln q2
0

ln λ2

)]
+ Wnp(q2)

]
F (1)(q2

0). (43)

Note, that the exponent in Eq. (43) has an unphysical singularity at λ2 = 1 (in
dimensional notations, λ̄2 = Λ2

QCD), i.e., where the one-loop coupling constant

αs(λ̄2) has the Landau pole. This feature can be treated in terms of IR renor-
malon ambiguities (see the next Section), and is often considered as a signal of
nonperturbative physics. In the present paper, we will consistently separate the
sources of nonperturbative effects which can be attributed to uncertainties of re-
summation of the perturbative series from the ®true¯ nonperturbative phenomena.
An important example of the latter is provided by instanton induced effects within
the instanton model of QCD vacuum, which is considered in Subsec. 1.5.

1.4. IR Renormalon Induced Effects and Analytization of the Coupling
Constant. As was pointed out at the end of the previous Subsection, the per-
turbative evolution equation (43) possesses an unphysical singularity at the point
λ2 = 1. Therefore, it is instructive to study the consequences of this feature. It
is known that the presence of the Landau pole in the one-loop expression for the
coupling constant leads to the IR renormalons [39] resulting in power suppressed
corrections. In the present situation one can expect the corrections proportional
to the powers of both scales: µ2 and λ2. We will treat here the power µ2 terms
to be strongly suppressed in large-q2 regime, and focus on the power λ2 cor-
rections. To ˇnd them, let us consider the perturbative function ∆1(ε, 0, µ̄2/λ2)
in Eq. (35). The insertion of the fermion bubble 1-chain to the one-loop order
expression (24) is equivalent to replacement of the frozen coupling constant g2

by the running one g2 → g2(k2) = 4παs(k2) [40] (for convenience, we work
here in Euclidean space):

∆̃1(ε, 0, µ̄2/λ2) = −4πµ̄2ε

∫
dnk

(2π)n
αs(k2)

eikzδ(z2)
k2(k2 + λ2)

. (44)
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By using the integral representation for the one-loop running coupling αs(k2) =∫∞
0

dσ(1/k2)σb, b = β0/4π, we ˇnd:

∆̃1(ε, 0, µ̄2/λ2) =

= − 1
β0(1 − ε)

(
4π

µ̄2

λ2

)ε ∫ ∞

0

dx
Γ(1 − x − ε)Γ(1 + x + ε)

(x + ε)Γ(1 − ε)

(
1
λ2

)x

. (45)

To deˇne properly the integral in r.h.s. of Eq. (45), one needs to specify a pre-
scription to go around the poles, which are at the points x̄n = n, n ∈ N. Thus,
the result of integration depends on this prescription giving an ambiguity propor-
tional to

(
1/λ2

)n
for each pole. Then, the IR renormalons produce the power

corrections to the one-loop perturbative result, which we assume to exponentiate
with the latter [40]. Extracting from (45) the UV singular part in vicinity of
the origin x = 0, we divide the integration interval [0,∞] in two parts: [0, δ]
and [δ,∞], where δ < 1. This procedure allows us to evaluate separately the
ultraviolet and the renormalon-induced pieces. For the ultraviolet piece, we apply
the expansion of the integrand in ∆1 in powers of small x and replace the ratio
of Γ functions by exp (−γEε):

∆̃UV
1 (ε, 0, µ̄2/λ2) =

= − 1
β0(1 − ε)

∑
k,n=0

(−)n

(
ln 4π − γE + ln(µ̄2/λ2)

)k
k!εn−k+1

∫ δ

0

dx xn

(
1
λ2

)x

,

(46)

which after subtraction of the poles in the MS scheme becomes:

∆̃UV
1 (0, µ2/λ2) =

1
β0(1 − ε)

∑
n=1

(
ln

µ2

λ2

)n (−)n

n!

∫ δ

0

dxxn−1

(
1
λ2

)x

. (47)

In analogy with results of [58], this expression may be rewritten in a closed form
as

∆̃UV
1 (0, µ2/λ2) =

1
β0(1 − ε)

∫ δ

0

dx

x

[
e−x ln µ2 − e−x ln λ2

]
. (48)

Then, using the relation

∂W (1)(q2)
∂ ln q2

= 2CF (1 − ε)∆̃UV
1 (0, µ2/λ2), (49)
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one ˇnds(
µ2 ∂

∂µ2
+ β(g)

∂

∂g

)
∂ ln W (1)(q2)

∂ ln q2
=

= −1
2
Γ(1)

cusp(αs(µ2))
(

1 − exp
[
−δ

4π

β0αs(µ2)

])
. (50)

The second exponent in the last equation yields the power suppressed terms(
1/q2

)δ
in large-q2 regime. In LLA, Eq. (49) is reduced to:

∂W (1)(q2)
∂ ln q2

= −2CF

β0

(
ln

ln µ2

ln λ2

)
. (51)

The last expression obviously satisˇes the perturbative evolution equation (43).
The remaining integral in Eq. (45) over the interval [δ,∞] is evaluated at

ε = 0 since there are no UV singularities. The resulting expression does not
depend on the normalization point µ, and thus it is determined by the IR region
including nonperturbative effects. It contains the renormalon ambiguities due to
different prescriptions in going around the poles x̄n in the Borel plane which
yields the power corrections to the quark form factor.

After the substitution µ2 = q2 and integration, we ˇnd in LLA (for compar-
ison, see Eq. (43)):

F ren
q (q2) = exp

[
−2CF

β0
ln q2

(
ln ln q2 − 1

)
− ln q2Φren(λ2)

]
F ren(q2

0), (52)

where the function Φren(λ2) =
∑

k=0 φk(1/λ2)k accumulates the effects of the
IR renormalons. The coefˇcients φk cannot be calculated in perturbation theory
and are treated often as ®the minimal set¯ of nonperturbative parameters. It is
worth noting that the logarithmic q2 dependence of the renormalon induced cor-
rections in the large-q2 regime is factorized, and thus Eq. (52) corresponds to the
structure of nonperturbative contributions found in the one-loop evolution equa-
tion (43), in a sense of its large-q2 behaviour. On the other hand, the IR structures
of the renormalon corrections and the instanton induced ones (78) are different.
Moreover, it can be shown that careful account of partially resumed perturbative
series yields, sometimes, cancellation of the leading power corrections associated
with the leading renormalon contributions [40]. As the corresponding nonpertur-
bative terms are calculated independently (e.g., by means of the ILM) their direct
relation to the IR renormalon ambiguities should be questioned. In our point of
view, it allows us to separate the true nonperturbative (e.g., instanton induced, but
not only) effects from that ones related to ambiguities of the resumed perturbative
series.
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The latter conclusion can be illustrated by considering the consequences of
an analytization of the strong coupling constant [41] in the perturbative evolution
equation. In this approach, the one-loop strong coupling constant αs(µ2) is
replaced by the expression which is analytical at µ2 = 1 (i.e., at Λ2

QCD in
dimensional variables):

αAN
s (µ2) =

4π

β0

(
1

ln µ2
+

1
1 − µ2

)
. (53)

The direct substitution of (53) into the evolution equation (20) yields (for brevity,
we assume q2

0 = λ2):

−
(

β0

2CF

)
ln FAN

q (q2) = ln q2 ln
ln q2

ln λ2
− ln

q2

λ2
− 3

2
ln

ln q2

ln λ2
+

+ ln q2

(
ln

q2

q2 − 1
+ ln

λ2 − 1
λ2

)
− 1

2
(
ln2 q2 − ln2 λ2

)
−

− Li2(1 − q2) + Li2(1 − λ2) +
3
2

(
ln

q2

q2 − 1
+ ln

λ2 − 1
λ2

)
. (54)

The functions Li2 in the resulting expression accumulate the power corrections of
q2 and IR scale λ2, but do not exhibit a singularity at λ2 = 1. Therefore, it gives
no room for IR renormalons ambiguities, at least in the considered approximation.
Nevertheless, the power corrections of nonperturbative origin do contribute to the
large-q2 behaviour, and the investigation of the correspondence between latter and
the instanton corrections calculated in the next Section would be an interesting
task. Note, that the consequences of the analytization of the strong coupling
constant in the IR region have been studied earlier in the case of the Sudakov
effects in the pion form factor and DrellÄYan cross section in the works [63].

Another possible way to avoid the Landau pole at the integration path was
developed within the dimensional regularization scheme [20]. In this case, the
running coupling reads

αDR
s (ε; µ2) =

4πε

β0 [(q2)ε − 1]
, (55)

and for complex ε, Re ε < 0, it has the Landau pole at the complex value of µ2,
thus this singularity moves out of the integration contour. In the limit ε → 0, the
form factor reads [20] (for comparison, see Eq. (43)):

FDR
q (q2) = exp

[
−2CF

β0

(
ζ(2)
ε

+ ln ε

(
ln q2 − 3

2

)
+ ln q2

(
ln ln q2 − 1

)
−

− 3
2

ln ln q2

)
+ O(ε, ε ln ε)

]
. (56)
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This expression also leaves no room for any renormalon induced effects. At the
same time, the instanton induced contributions still take place since they enter
into the ®integration constant¯ Wnp, (17), which is not directly related to the
analytical properties of the coupling constant.

1.5. Large-q2 Behaviour of the Instanton Induced Contribution. The in-
stanton induced effects in the high-energy QCD processes have been actively
studied since the seventies [50, 51]). Recently, the investigation of these effects
was renewed with promising perspectives [43,45Ä49,52Ä55]. The Wilson integral
formalism is considered as a useful and convenient tool in the instanton appli-
cations mainly due to signiˇcant simpliˇcation in the path integral calculations
if an explicit form of the gauge ˇeld is known. Another important feature of
this approach is the possibility of making a correct analytical continuation of the
results obtained in the Euclidean space (where the instantons are only determined)
to the physical Minkowski space-time where the scattering processes actually take
place. Namely, one maps the scattering angle, χ, to the Euclidean space angle,
γ, by analytical continuation [56]

χ → iγ, (57)

and performs the inverse transformation to the Minkowski space-time in the ˇnal
expressions in order to restore the q2 dependence.

Let us consider the instanton induced contribution to the function Wnp(q2)
from Eq. (19). Each instanton is taken in the singular gauge

Âµ(x; ρ) = Aa
µ(x; ρ)

σa

2
=

1
g

Rabσaη±b
µν(x − z0)νϕ(x − z0; ρ) (58)

with the proˇle function

ϕI(x) =
ρ2

x2 (x2 + ρ2)
, (59)

where Rab is the colour orientation matrix (a = 1, . . . , (N2
c − 1), b = 1, 2, 3)

which provides an embedding of SU(2) instanton ˇeld into SU(3) colour group;
σa's are the Pauli matrices, and (±) corresponds to the instanton, or anti-instanton.

The averaging of the Wilson operator over the nonperturbative vacuum is
performed by the integration over the coordinate of the instanton centre z0, the
color orientation and the instanton size ρ. The measure for the averaging over the
instanton ensemble reads dI = dR d4z0 dn(ρ), where dR refers to the averaging
over color orientation, and dn(ρ) depends on the choice of the instanton size
distribution. Taking into account (58), we write the Wilson integral (11) in the
single instanton approximation in the form:

wI(Cγ) =
1

Nc
〈0|Tr exp (iσaφa) |0〉, (60)
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where

φa(z0, ρ) = Rabη±b
µν

∫
Cγ

dxµ (x − z0)νϕ(x − z0; ρ). (61)

We omit the path ordering operator P in (60) because the instanton ˇeld (58) is a
hedgehog in color space, and so it locks the color orientation by space coordinates.

As is explained in [34], w(Cγ) may be treated as an amplitude of the elastic
scattering of an on-mass-shell (p2 = 0) one-dimensional fermion on a color
singlet potential. The contributions to this amplitude are due to both the self-
energy corrections Σ(p) = Σ(0) + p∂Σ(0)/∂p + . . . to the fermion lines and the
vertex corrections Γ(p, p′; χ). The latter satisfy the equality

Γ(0, 0; 0) = −∂Σ(p)
∂p

∣∣∣∣∣
p=0

(62)

following from the gauge properties. Hence, the all-order single instanton contri-
bution to the quark form factor is given by [46]

wI(Cγ) =
∫

d4z0

∫
dn(ρ) [cos φ(γ, z0, ρ) − cos φ(0, z0, ρ)] , (63)

and to calculate it one can consider only the vertex corrections. In Eq. (63), the
squared phase φ2 = φaφa may be written as

φ2(γ, z0, ρ) =
∑

i,j=1,2

[
(vivj)z2

0 − (viz0)(vjz0)
]
×

×
∫ ∞

0

dσϕ
[
((−1)i+1viσ − z0)2; ρ

] ∫ ∞

0

dσ′ϕ
[
((−1)j+1vjσ

′ − z0)2; ρ
]
, (64)

where v1,2 = p1,2/m, and v2
1,2 = 1, (v1v2) = cos γ in Euclidean geometry. Let

us note that due to nonperturbative factor g−1 in the instanton ˇeld (58) the phase
(64) is independent of the coupling constant.

1.6. Exponentiation of the Instanton Contributions in the Dilute Regime.
On the basis of the exponentiation theorem [36] for the non-Abelian path-ordered
exponentials it is well known that perturbative corrections to the Sudakov form
factor are exponentiated to high orders in the QCD coupling constant. The
theorem states that the contour average WP (C) can be expressed as

WP (C) = exp

 ∞∑
n=1

(αs

π

)n ∑
W∈W (n)

Cn(W )Fn(W )

, (65)

where summation in the exponential is over all diagrams W of the set W (n) of
the two-particle irreducible contour averages of nth order of the perturbative ex-
pansion. The coefˇcients Cn(W ) ∝ CF Nn−1

c are the ®maximally non-Abelian¯
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parts of the color factor corresponding to the contribution coming from a diagram
W to the total expression (65) in the contour gauge, and the factor Fn(W ) is the
contour integral presented in the expression for W . This means that the essential
diagrams are only those, which do not contain the lower-order contributions as
subgraphs and, as a result, the higher-order terms are non-Abelian.

Let us now demonstrate how the single instanton contribution is exponentiated
in the small instanton density parameter, treating the instanton vacuum as a dilute
medium [57]. The gauge ˇeld is taken to be the sum of individual instanton
ˇelds in the singular gauge, with their centres at the points zj's. In this gauge,
the instanton ˇelds fall off rapidly at inˇnity, so the instantons may be considered
individually in their effect on the loop. Moreover, the contribution of inˇnitely
distant parts of the contour may be neglected and only those instantons will
in�uence the loop integral, which occupy regions of space-time intersecting with
the quark trajectories. Since the parameterization of the loop integral along rays
of the angle plays the role of the proper time, a time-ordered series of instantons
arises and has an effect on the Wilson loop. Thus, the contribution of n instantons
to the loop integral WI(γ) can be written in the dilute approximation as

W
(n)
I (γ) = Tr

(
U1U2 · · ·UnUn† · · ·U2†U1†) , (66)

where the ordered line integrals Ui's

U j(γ) = T

{
exp

(
ig

∫ ∞

0

dσ vµ
1 Aµ(v1σ − zj)

)
×

× exp
(

ig

∫ 0

−∞
dτ vµ

2 Aµ(v2τ − zj)
)}

are associated with individual instantons with the positions zj's. Because of the
wide separation of the instantons in the dilute phase and rapid fall-off of ˇelds in
the singular gauge, the upper and lower limits of the line integrals are extended
to inˇnity. The line integrals U i†'s take into account the part of the contour that
goes at inˇnity from +∞ back to −∞ and in the singular gauge U i† = 1. For
U j(U j†), the integral is taken over the increasing (decreasing) time piece of the
loop.

Then, the expression is simpliˇed when averaging over the gauge orientations
of instantons. The averaging is reduced to substitution of U j by gjU

jg−1
j , where

gj is an element of colour group, and independent integration of each gj over the
properly normalized group measure is performed. Under this averaging one gets

UnUn† → 1
Nc

Tr(UnUn†), (67)

which is just the single instanton contribution w
(n)
I (γ) as it is given by Eqs. (60),

(63). But then, if the averaging is done in the inverse order, from n down to 1,
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the entire loop integral collapses to a product of traces

W
(n)
I (γ) → lim

n→∞

n∏
j=1

w
(j)
I (γ). (68)

Since the individual instantons are considered to be decoupled in the dilute
medium, the total multiple instanton contribution to the vacuum average of the
Wilson operator simply exponentiates the all-order single instanton term wI(γ)
in (63), and one has

WI(γ) = lim
n→∞

{
1 +

1
n

wI(γ)
}n

= exp [wI(γ)]. (69)

Thus, we prove that in the dilute regime the full instanton contribution to
the quark form factor is given by the exponent of the all-order single instanton
result (see Fig. 1, e). The exponentiation arises due to taking into account the
multi-instanton conˇgurations effect. As is well known, in QED there occurs
the exponentiation of the one-loop result due to Abelian character of the theory.
In the instanton case, the analogous result takes place since instantons belong to
the SU(2) subgroup of the SU(3) color group and the path-ordered exponents
coincide with the ordinary ones.

The following comments are in order. First, the nonperturbative exponenti-
ated expressions are strictly correct only so long as the instanton density nc is
small. Second, it is supposed that UDY(z0) is evaluated using the singular gauge

form of Ainst
µ . On the other hand, Tr

(
UDYU †

DY

)
is identically the ordered loop

integral for a single instanton and is gauge invariant. It is therefore legal to
use the nonsingular gauge form of Ainst

µ in evaluating the trace (a more handing
gauge for computation).

1.7. Large-q2 Behaviour of the Instanton Induced Contribution in the
Weak Field Approximation. Although sometimes such integrals as in Eq. (64)
can be evaluated explicitly, the full expression (63) requires numerical calcula-
tions. Thus, we restrict ourselves by the weak-ˇeld approximation which can be
studied analytically. In this limit the leading instanton induced term (Fig. 1, c)
reads

w
(1)
I (γ) =

= −g2λn−4

2

∫
dn(ρ)

∫
Cγ

dxµ

∫
Cγ

dyν

∫
dnk

(2π)n
Ãa

µ(k; ρ)Ãa
ν(−k; ρ)e−ik(x−y).

(70)

By using the Fourier transform of the instanton ˇeld

Ãa
µ(k; ρ) = −2i

g
η±a

µσkσϕ̃′(k2; ρ), (71)
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Eq. (70) can be written in the form of Eq. (35) with the instantonic analogue of
the function ∆1(z2):

∆1(z2) → DI
1(z

2) = − 1
g2CF

∫
dn(ρ)DI(z2; ρ, λ). (72)

Above, ϕ̃(k2; ρ) is the Fourier transform of the instanton proˇle function ϕ(z2; ρ)
and ϕ̃′(k2; ρ) is it's derivative with respect to k2. Then, in case of the instanton
ˇeld, the LO contribution in Minkowski space reads

w
(1)
I (Cχ) = 2h(χ)

∫
dn(ρ) ∆I

1(0, ρ2λ2), (73)

where

∆I
1(0, ρ2λ2) = −

∫
d4k

(2π)4
eikzδ(z2)

[
2ϕ̃′(k2; ρ)

]2
, (74)

and we use the same IR cut-off λ2, while the UV divergences do not appear at
all due to the ˇnite instanton size. Here, ϕ̃(k2; ρ) is the Fourier transform of the
instanton proˇle function ϕ(z2; ρ), and ϕ̃′(k2; ρ) is it's derivative with respect to
k2. In the singular gauge one gets:

∆I
1(0, ρ2λ2) =

π2ρ4

4
[
ln (ρ2λ2) Φ0(ρ2λ2) + Φ1(ρ2λ2)

]
, (75)

where

Φ0(ρ2λ2) =
1

ρ4λ4

∫ 1

0

dz

z(1 − z)

[
1 + eρ2λ2 − 2ezρ2λ2

]
, lim

λ2→0
Φ0(ρ2λ2) = 1,

(76)
and

Φ1(ρ2λ2) =
∑∞

n=1

∫ 1

0 dxdydz
[−ρ2λ2(xz + y(1 − z))]n

n!n
eρ2λ2[xz+y(1−z)],

limλ2→0 Φ1(ρ2λ2) = 0
(77)

are the IR-ˇnite expressions.
At high energy the instanton induced contribution is reduced to the form:

∂ ln WI(q2)
∂ ln q2

=
π2

2

∫
dn(ρ) ρ4

[
ln (ρ2λ2) Φ0(ρ2λ2) + Φ1(ρ2λ2)

]
≡ −BI(λ2).

(78)
Here we use the exponentiation of the single-instanton result in a dilute instanton
ensemble (see [46] and the previous Subsection) and took only the LO term of
the weak-ˇeld expansion (24): W (1) = wI + (higher order terms).
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1.8. Numerical Estimate of the Instanton Effects. In order to estimate the
magnitude of the instanton induced effect we consider the standard instanton
size distribution [59] multiplied by the exponential suppressing factor which was
suggested in [60] (and discussed in [61] in the framework of constrained instanton
model) in order to describe the lattice data [13]:

dn(ρ) =
dρ

ρ5
CNc

[
2π

αs(µr)

]2Nc

exp
[
− 2π

αs(µr)

]
(ρµr)

β exp
(
−2πσρ2

)
, (79)

where the constant CNc = 4.6/π2 exp (−1.679Nc)/ [(Nc − 1)!(Nc − 2)!] ≈
≈ 0.0015; σ is the string tension; β = β0 + O(αs(µr)), and µr is the nor-
malization point [62]. Given the distribution (79), the main parameters of the
instanton liquid model Å the instanton density n̄ and the mean instanton size
ρ̄ Å will read:

n̄ =
∫ ∞

0

dn(ρ) =
CNcΓ(β/2 − 2)

2

[
2π

αS(ρ̄−1)

]2Nc
[
ΛQCD√

2πσ

]β

(2πσ)2, (80)

ρ̄ =

∫∞
0

ρ dn(ρ)∫∞
0

dn(ρ)
=

Γ(β/2 − 3/2)
Γ(β/2 − 2)

1√
2πσ

. (81)

In Eq. (81) we choose, for convenience, the normalization scale µr of order
of the instanton inverse mean size ρ̄−1, taking into account that the distribution
function (79) is the RG-invariant quantity up to O(α2

s) terms [62]. Note, that
these quantities correspond to the mean size ρ0 and density n0 of instantons
used in the model [7], where the size distribution (79) is approximated by the
delta-function: dn(ρ) = n0δ(ρ − ρ0)dρ.

Thus, we ˇnd the leading instanton contribution (78) in the form:

BI = Kπ2n̄ρ̄4 ln
2πσ

λ2

[
1 + O

(
λ2

2πσ

)]
, (82)

where

K =
Γ(β0/2)[Γ(β0/2 − 2)]3

2 [Γ(β0/2 − 3/2)]4
≈ 0.74, (83)

and we used the one-loop expression for the running coupling constant

αs(ρ̄−1) = − 2π

β0 ln ρ̄Λ
, β0 =

11Nc − 2nf

3
. (84)

The packing fraction π2n̄ρ̄4 characterizes diluteness of the instanton liquid and
within the conventional picture its value is estimated to be 0.12 if one takes the
model parameters as (see [8]):

n̄ ≈ 1 fm−4, ρ̄ ≈ 1/3 fm, σ ≈ (0.44 GeV)2. (85)
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The leading logarithmic contribution to the quark form factor at asymptotically
large q2 is provided by the (perturbative) evolution governed by the cusp anom-
alous dimension (42). Thus, the instantons yield the subleading effects to the
large-q2 behaviour accompanied by a numerically small factor as compared to the
perturbative term:

BI ≈ 0.02 � 2CF

β0
≈ 0.24. (86)

Therefore, from Eqs. (78) and (52), we ˇnd the expression for the quark
form factor at large-q2 with the one-loop perturbative contribution and the non-
perturbative contributions (the function Wnp in Eq. (43)) which include both the
instanton induced terms:

Fq(q2) =

= exp
[
−2CF

β0
ln q2 ln ln q2 − ln q2

(
BI −

2CF

β0

)
+ O(ln ln q2)

]
F0(q2

0 ; λ
2).

(87)

It is clear, that while the asymptotic ®double-logarithmic¯ behaviour is controlled
by the perturbative cusp anomalous dimension, the leading nonperturbative cor-
rections result in a ˇnite renormalization of the subleading perturbative term
(Fig. 2). Note, that the instanton correction has the opposite sign compared to the
perturbative logarithmic term.

Fig. 2. The asymptotic behaviour of the quark
form factor is shown as the function of the
dimensionless variable q2 = Q2/Λ2, up to
terms O(ln ln q2). Curve 1 presents the con-
tribution of one-loop perturbative terms; curve
2 Å the total form factor including the instan-
ton induced part, Eq. (87). For comparison,
the leading (∼ ln q2 ln ln q2) perturbative con-
tribution is shown separately (curve 3)

1.9. All-Order Calculations of the Wilson Loop for Gaussian Proˇle. Let
us consider the properties of the single instanton contribution to the Wilson loop,
wI(χ), deˇned in Eq. (63). First, rewrite this quantity in the equivalent form (in
the ˇxed size instanton model)

wI(χ) = 2nc[wI
c (χ) + wI

s(χ) − wI
c (0) − wI

s(0)], (88)
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wI
c (χ) =

∫
d4z0 cos α(v1, z0) cos α(v2, z0),

wI
s(χ) = −

∫
d4z0 (n̂α

1 nα
2 ) sin α(v1, z0) sin α(v2, z0),

(89)

where the phases corresponding to each scattering ray are deˇned as (from (64))

α(v1, z0) = s(v1, z0)
∫ ∞

0

dλϕ[(v1λ − z0)2; ρ],

α(v2, z0) = s(v2, z0)
∫ ∞

0

dλϕ[(v2λ + z0)2; ρ],
(90)

where
s2(vi, z0) = z2

0 − (viz0)2. (91)

Eq. (88) takes into account the subtraction of the self-energy parts of the quark
form factor.

In order to have simpler analytical form for wI(χ) we shall use Gaussian
Anzatz for the proˇle function

ϕG(x2) = Λ2 e−x2Λ2
, (92)

with the parameter Λ2 ∼ ρ−2 characterizing the vacuum ˇeld nonlocality. Below
we keep the parameter Λ to unity. It is easy to reconstruct the dependence on it
by simple dimension considerations.

From ˇrst glance it is easy to calculate the phases (90) corresponding to the
quark form factor in the instanton background as

α (v1,2, z0) = s(v1,2, z0)
√

π

2
e−s2(v1,2,z0)erfc (∓v1,2z0), (93)

where with deˇnitions from Eq. (12) one has

(v1z0) = t, (v2z0) = t coshχ + iz3 sinhχ, (94)

s2(v1, z0) = z2
3 + z2

⊥, s2(v2, z0) = (z3 coshχ − it sinh χ)2 + z2
⊥. (95)

However, due to exponentially large oscillations at large χ that occur during
integration over instanton position it is not easy to use the closed form for the
phases (64) in general and for the Gaussian proˇle (92) in particular. We have
to note that these complications do not arise in the case of elastic quark-quark
scattering considered in [52]. In the latter case the angle dependence simply
factorizes from the integrand (see also next Section).

In order to kill exponentially large oscillations we need to integrate over the
instanton position. Thus, in order to analyze the χ dependence of the instanton
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corrections to the quark form factor we expand the full expression (88) in powers
of phases and change the order of integrations:

wI
c (χ) =

∫
d4z0

∞∑
n=1

∞∑
m=1

(−1)n+m α2n (v1, z0)α2m (v2, z0)
(2n)! (2m)!

=

=
∞∑

n=1

∞∑
m=1

(−1)n+m

〈
α2n

1 α2m
2

〉
(χ)

(2n)! (2m)!
, (96)

〈
α2n

1 α2m
2

〉
(χ) =

∫ ∞

0

2n∏
i=1

dλi

∫ ∞

0

2m∏
j=1

dλ′
j

∫
d4z0s

2n (v1, z0) s2m (v2, z0)×

× e−
[
(v1λi−z0)

2+(v2λ′
j+z0)2

]
, (97)

wI
s (χ) =

∫
d4z0

∞∑
n=0

∞∑
m=0

(−1)n+m (nα
1 nα

2 )
α2n (v1, z0)α2m (v2, z0)

(2n + 1)! (2m + 1)!
=

=
∞∑

n=0

∞∑
m=0

(−1)n+m

〈
α2n+1

1 α2m+1
2

〉
(χ)

(2n + 1)! (2m + 1)!
, (98)

〈
α2n+1

1 α2m+1
2

〉
(χ) =

=
∫ ∞

0

2n+1∏
i=0

dλi

∫ ∞

0

2m+1∏
j=0

dλ′
j

∫
d4z0s

2n (v1, z0) s2m (v2, z0) s2
12(z0)×

× e−
[
(v1λi−z0)

2+(v2λ′
j+z0)2

]
,

where we separate the sine and cosine terms from (89) and use the symmetry of
the integrands with respect to change of variables

z → z cosh χ + it sinhχ, t → t coshχ − iz sinh χ (99)

to make one sum ˇnite. Above we introduce notation for the color spin correlation
factor

s2
12(z0) =

(
ηα

µνvµ
1 zν

0

) (
ηα

ρσvρ
2zσ

0

)
= (v1v2) z2

0 − (v1z0) (v2z0) =

= z3 (z3 coshχ − it sinh χ) + z2
⊥ coshχ. (100)
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First, let us make change of variables λ by introducing the common lengths

{λi}N →
{

L =
N∑

i=1

λi, xi =
λi

L

}
, {λ′

i}M →

L′ =
M∑

j=1

λ′
j , yj =

λ′
i

L′

 (101)

with new measures given by∫ ∞

0

dLLN−1

∫
d{x}N ,

∫ ∞

0

dL′L′M−1

∫
d{y}M , (102)

where the notation is used
∫

d{x}N =
∫ 1

0 dx1 · · ·
∫ 1−x1−...−xN−2

0 dxN−1.
Then rearrange the power of exponents in Eqs. (96) and (98) to the form

N∑
i

(v1λi − z0)
2 +

M∑
j

(
v2λ

′
j + z0

)2 =

=
N∑
i

λ2
i +

M∑
j

λ′2
j + (N + M)z2

0 − 2t(L − L′ coshχ) + 2iz3L
′ sinh χ =

= (N + M)(z2
⊥ + t′2 + z′23 ) +

N∑
i

λ2
i +

M∑
j

λ′2
j +

+
1

N + M

(
−L2 − L′2 + 2LL′ coshχ

)
=

= (N + M)(z2
⊥ + t′2 + z′23 ) +

N + M − 2
N + M

 N∑
i

λ2
i +

M∑
j

λ′2
j

+

+
1

N + M

L2 + L′2 + 2LL′ cosh χ − 4

 N∑
i>j

λiλj +
M∑
i>j

λ′
iλ

′
j

 , (103)

where t′ = t − L − L′ coshχ

N + M
and z′3 = z3 +

iL′ sinhχ

N + M
. After these transforma-

tions we come to generic expression

〈
αN

1 αM
2

〉
(χ) =

=
∫ ∞

0

dL

∫ ∞

0

dL′ e−(2/(N+M))LL′ cosh χGN,M (L, L′, χ)FN,M (L)FM,N (L′),

(104)
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with deˇnitions

FN,M (L) = LN−1

∫
d{x}N exp

{
− 1

N + M

[
L2+

+ (N + M − 2)
N∑
i

λ2
i − 4

N∑
i>j

λiλj

]}
, (105)

GN,M (L, L′, χ) =
∫

d4z0s
2n (v1, z0) s2m (v2, z0) s2η

12(z0) e−(N+M)(z2
⊥+t′2+z′2

3 ).

(106)
The deˇnition for FM,N (L′) is similar to one of FN,M (L), the power η in

GN,M (L, L′, χ) is equal to one for wI
s (χ) and to zero for wI

c (χ). In principle for
the Gaussian proˇle the integral in GN,M (L, L′, χ) may be done analytically in
any order of expansion, but in practice only few ˇrst terms may be analyzed. In
asymptotic of large χ, as we see below, we are able to do the partial summation
of the double sum. It is important that after d4z0 integration there is no more
complex numbered variables. Thus the Euclidean (transverse) and Minkowskian
(longitudinal on χ) dependencies get factorized.

However, with color spin factors included, the hierarchy disappears and all
diagrams contribute to the leading asymptotic behavior. Furthermore, there is
nontrivial cancellations between higher than leading asymptotics terms. Let us
demonstrate these statements with more details.

Considering the ˇrst few order contributions (one-loop and two-loop) one has

wI(χ) = 2nc

(
−〈α1α2〉(χ)|S +

1
6
〈α3

1α2〉(χ)|S+

+
1
6
〈α1α

3
2〉(χ)|S +

1
4
〈α2

1α
2
2〉(χ)|S + . . .

)
, (107)

where 〈αM
1 αN

2 〉(χ)|S = 〈αM
1 αN

2 〉(χ) − 〈αM
1 αN

2 〉(0). The simplest one-loop di-
agram (Fig. 3, a) corresponds to n = 0, m = 0 term in the expression (98) for
wI

s (χ). In Eq. (104) it corresponds to (N = M = 1) term. All integrals may
be done analytically and the ˇnal result reduces to the weak ˇeld expression (35)
with the function ∆1 given by

∆G
1 (x2) =

π2

4
e−x2

(108)

and thus in the lowest order we have

w
(1,1)
G (χ) = 2nc

π2

4
(χ coth χ − 1),

w
(1,1)
G (χ → 0) = 2nc

π2

12
χ2, w

(1,1)
G (χ → ∞) = 2nc

π2

4
χ.

(109)
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If one would neglected the spin factors in (98), one got another (exponentially
suppressed) dependence on the scattering angle

w
(1,1)
Gs (χ) = 2nc

π2

4
sinh χ − χ

sinh χ
,

w
(1,1)
Gs (χ → 0) = 2nc

π2

24
χ2, w

(1,1)
Gs (χ → ∞) = 2nc

π2

4
.

(110)

Fig. 3. Schematic representation of the lowest order instanton contributions

At two-loop level we have two diagrams corresponding to n = 0, m = 1
(Fig. 3, b) term in wI

s (χ) (N = 1, M = 3) and to n = m = 1 (Fig. 3, c) term
in wI

c (χ) (N = M = 2 in (104)). The functions FN,M (L) and GN,M(L, L′, χ)
become

F1,3(L) = exp
(
−3

4
L2

)
, F2,2(L) =

√
π

2
exp

(
−1

4
L2

)
erf

(
L√
2

)
,

F3,1(L) = L2

∫ 1

0

dx

∫ 1−x

0

dx′ exp
(
−1

4
L2
[
3 + 8(x2 + x′2 + xx′ − x − x′)

])
,

G2,2(L, L′, χ) =
∫

d4z0s
2 (v1, z0) s2 (v2, z0) e−4(z2

⊥+t′2+z′2
3 ) =

=
π2

212

[
L′2 sinh2 χ(L2 sinh2 χ − 6) − 8LL′ sinh2 χ coshχ−

− 6L2 sinh2 χ + 52 + 8 cosh2 χ
]
,

G1,3(L, L′, χ) =
∫

d4z0s
2 (v1, z0) s2

12(z0) e−4(z2
⊥+t′2+z′2

3 ) =

=
π2

212

[
−LL′3 sinh4 χ + 10L′ sinh2 χ(L′ coshχ + L) − 60 coshχ

]
.



QCD INSTANTON EFFECTS IN HIGH-ENERGY PROCESSES 625

The comparison of the one-loop, two-loop calculations and the full result at small
χ is presented in Fig. 4.

Fig. 4. Lowest orders instanton contributions to the Wilson integral with spin factors.
The leading term

〈
α1

1α
1
2

〉
(χ) is the dashed line, next-to-leading terms

〈
α1

1α
3
2

〉
(χ) and〈

α2
1α

2
2

〉
(χ) are the dotted and dash-dotted line, correspondingly. The sum of these

contributions is the solid line

Fig. 5. The same, as in Fig. 4, but without spin factors

Figure 5 corresponds to the calculations without color spin factors, s(v, z0).
In the latter case, the coordinate integral

∫
d4z may be performed easily

Gs
N,M (L, L′, χ) =

π2

(M + N)2
. (111)

The next order calculations may be done in similar way. Finally, in the limit of
large scattering angle χ the asymptotics may be found wI

Gs (χ → ∞) ∼ const.
Thus in this case one has weaker asymptotics than the asymptotics with color
spin factors included.

In the following we are interested in the limit χ → ∞, where the coefˇcient
of χ is free of the light-cone singularities and therefore it has a well-deˇned
limit as quark momenta go on-shell, p2

1 = p2
2 = 0. To ˇnd this limit we use the

properties that FN,M (L → 0) �= 0 and that GN,M (L, L′) is polynomial in L and
L′ after integration in z0. Then we have asymptotics for the L and L′ integrations

lim
χ→∞

∫ ∞

0

dL

∫ ∞

0

dL′ (LL′)n e−αLL′ cosh χFN,M (L)FM,N (L′) =

=
n!χ

(α coshχ)n+1 FN,M (0)FM,N (0),
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lim
χ→∞

∫ ∞

0

dL

∫ ∞

0

dL′ (LL′)n
Lm e−αLL′ cosh χFN,M (L)FM,N (L′) =

=
n!

(α coshχ)n+1 FM,N (0)
∫

dLLm−1FN,M (L). (112)

Fig. 6. Schematic representation of partial summation of the instanton contributions

Let us consider the contribution to the asymptotics from the m = 0 and arbi-
trary n terms of wI

s(χ) (Fig. 6, a). This contribution is reduced to the calculation
of the element

〈
α2n+1

1 α1
2

〉
〈
α2n+1

1 α1
2

〉
= − coshχ

∫ ∞

0

dLL2n

∫ ∞

0

dL′
∫

d{x}2n+1 e−L2∑2n
i x2

i−L′2×

×
∫

d4z0

(
z2
3 − iz3t tanh χ + z2

⊥
) (

z2
3 + z2

⊥
)n ×

× exp
(
−
[
2(n + 1)z2

0 − 2t (L − L′ coshχ) + 2iz3L
′ sinh χ

])
. (113)

The Gaussian integrals over z0 are taken by∫
d2z⊥

(
z2
⊥
)n

e−αz2
⊥ = n!

π

αn+1
,∫ ∞

−∞
dyyn e−py2−qy =

√
π

p
e

q2

4p

2 [n/2]∑
s=0

C
n

s

(
− q

2p

)n−2s 1
ps

,
(114)

where

C
n

s =
n!

s!(n − 2s)!22s
(115)

and we use the binomial formula
(
z2
3 + z2

⊥
)n =

∑n
k=0 Cn

k z2k
⊥ z

2(n−k)
3 . The z0
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integration gives

〈
α2n+1

1 α1
2

〉
= −π2 cosh χ

∫ ∞

0

dLL2n

∫ ∞

0

dL′
∫

d{x}2n+1×

× exp

(
−L2

∑
i

x2
i − L′2

)
exp

(
L2 + L′2 − 2LL′ coshχ

2(n + 1)

)
×

×
n∑

k=0

Cn
k

k!

[2(n + 1)]k+2

[
k + 1

2(n + 1)

(
iL′ sinhχ

2(n + 1)

)2(n−k) n−k∑
s=0

C
2(n−k)

s ys+

+
(

iL′ sinh χ

2(n + 1)

)2(n−k+1) n−k+1∑
s=0

C
2(n−k+1)

s ys −
(

iL′ sinh χ

2(n + 1)

)2(n−k+1)

×

×
n−k∑
s=0

C
2(n−k)+1

s ys + +
iL tanhχ

2(n + 1)

(
iL′ sinh χ

2(n + 1)

)2(n−k)+1 n−k∑
s=0

C
2(n−k)+1

s ys

]
,

(116)

where we introduce notation

y =
2(n + 1)

(iL′ sinh χ)2
. (117)

Eq. (116) is a general expression and we are going to ˇnd its large χ limit. To
do this, we need to analyze the coefˇcients of maximum powers of the leading
diagonal terms (LL′)2n. In the ˇrst and fourth terms in the brackets only terms
in the sums with k = s = 0 provide the leading χ asymptotics and other one
gives the subleading contributions. The second and third terms in the brackets
give dominant asymptotics if k + s � 1 and their sum provides the leading χ
asymptotics, while the terms of higher powers in χ coshχ are canceled. Keeping
only leading terms in (116) leads to

〈
α2n+1

1 α1
2

〉∣∣
χ→∞ = − π2 coshχ

16(n + 1)3

∫ ∞

0

dLL2n

∫ ∞

0

dL′
∫

d{x}2n+1 ×

× e−L2∑
i x2

i−L′2
exp

([
L2 + L′2 − 2LL′ coshχ

]
2(n + 1)

)
×

×
(

iL′ sinh χ

2(n + 1)

)2n(
2n + 3 − LL′sin2(χ)

(n + 1) cos(χ)

)
. (118)

Under asymptotic condition all integrals can be done with the help of Eq. (112),
and we get 〈

α2n+1
1 α1

2

〉∣∣
χ→∞ =

(−1)n+1π2(2n)!
24n+3(n + 1)2

χ. (119)
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Now, let us consider the contribution to the asymptotics from the m = 1
and arbitrary n terms of wI

s (χ) (Fig. 6, b). This contribution is reduced to the
element

〈
α2n

1 α2
2

〉
〈
α2n

1 α2
2

〉
= cosh2 χ

∫ ∞

0

dLL2n−1

∫ ∞

0

dL′L′
∫

d{x}2n

∫ 1

0

dy×

× e−L2∑
i x2

i−L′2(y2+(1−y)2)
∫

d4z0×

×
(

z2
⊥

cosh2 χ
+ z2

3 + 2iz3t tanh χ − t2 tanh2 χ

)
×

×
n∑

k=0

Cn
k z2k

⊥ z
2(n−k)
3 e−[2(n+1)z2

0+2t(L−L′ cosh χ)+2iz3 sinhχ]. (120)

The Gaussian integration over z0, Eq. (114), provides us with

〈
α2n

1 α2
2

〉
= π2

∫ ∞

0

dL

∫ ∞

0

dL′ (LL′)L2(n−1)

∫
d{x}2n

∫ 1

0

dy×

× e−L2∑
i x2

i−L′2(y2+(1−y)2)×

× exp
(

L2 + L′2 − 2LL′ coshχ

2(n + 1)

) n∑
k=0

Cn
k

k!
[2(n + 1)]n+3

(
L′2 sinh2 χ

2(n + 1)

)(n−k)

×

×
[

n−k∑
s=0

C
2(n−k)

s ys

(
−L2 sinh2 χ

2(n + 1)
+

3
2

+ k + s cosh2 χ

)
− ×

× −
n−k−1∑

s=0

C
2(n−k)

s (n − k − s)ys+1LL′ sinh2 χ coshχ

]
, (121)

with y given by Eq. (117). Now, let us take the large χ limit of this expression.
By analyzing the coefˇcients of the maximum powers of the leading diagonal
terms (LL′)2n and keeping only the leading terms, Eq. (121) is reduced to

〈
α2n

1 α2
2

〉∣∣
χ→∞ =

=
(−1)n−1π2 coshχ

[2(n + 1)]2(n+2)

∫ ∞

0

dL

∫ ∞

0

dL′ (LL′ sinh χ)2n−1
∫

d{x}2n

∫ 1

0

dy×

× e−L2∑
i x2

i−L′2(y2+(1−y)2)exp
(

L2 + L′2 − 2LL′ coshχ

2(n + 1)

)
×

×
[
n(n + 1)(2n − 1) − 4n(n + 1)LL′ sinh χ + (LL′ sinh χ)2

]
. (122)
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Taking all integrals in the asymptotic regime one gets that the coefˇcient of
leading asymptotic is equal to zero and thus one has〈

α2n
1 α2

2

〉∣∣
χ→∞ = const. (123)

Moreover, it is possible to show that the leading asymptotic terms appear only if
n � 3 and m � 3, but they are highly suppressed numerically.

From our analysis we ˇnd the leading correction to the quark form factor

wG(Q2) = nc log
Q2

Q2
0

π2

4Λ4

∞∑
n=0

1
16n(n + 1)2(2n + 1)

=

= 1.0053
π2nc

4Λ4
log

Q2

Q2
0

. (124)

Thus we prove that the weak ˇeld limit is a good approximation for the Gaussian
proˇle function (92).

1.10. Discussion of the Results. We have to comment that the weak ˇeld limit
used in the instanton calculations may deviate from the exact result. Nevertheless,
we expect that using the instanton solution in the singular gauge which concen-
trates the ˇeld at small distances, leads to the reasonable numerical estimate of
the full effect. Thus, the resulting diminishing of the instanton contributions with
respect to the perturbative result appears to be a reasonable output. The analysis
of the all-orders instanton contribution performed in the last part of this Section
for a Gaussian proˇle function shows that the weak ˇeld approximation can be
justiˇed, but an additional investigation of this problem is required. It should
be emphasized that in the present paper, all calculations in the weak ˇeld limit
have been performed analytically while the evaluation of the all-orders instanton
contribution required the numerical analysis. Besides this, the use of the singular
gauge for the instanton solution allows us to prove the exponentiation theorem
for the Wilson loop in the instanton ˇeld [46] which permits one to express
the full instanton contribution as the exponent of the all-order single instanton
result (63).

It is also important to note that the results obtained are quite sensitive to
the way one makes the integration over instanton sizes ˇnite. For example,
if one used the sharp cut-off, then the instanton would produce strongly sup-
pressed power corrections like ∝ (1/q)β0 . However, we think that the dis-
tribution function (79) should be considered as more realistic, since it re�ects
more properly the structure of the instanton ensemble modeling the QCD vac-
uum. Indeed, this shape of distribution was recently advocated in [60, 61]
and supported by the lattice calculations [13] (for comparison, see, however,
[64,65]).
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2. INSTANTON MODEL OF POMERON
(LANDSHOFFÄNACHTMANN MODEL)

Soft hadronic collisions are described successfully using Regge phenomenol-
ogy, with the Pomeron exchange being dominating at high energy. The Pomeron
is considered as an effective exchange in the t channel by the object with vacuum
quantum numbers and with positive charge parity C = +1. That is why the
idea of the nontrivial structure of the QCD vacuum is relevant in describing its
mechanism.

To illustrate this let us consider high-energy diffractive quark-quark scatter-
ing, where there is hope that for small momentum transfer the nonperturbative
effects give dominant contribution.

Fig. 7. Schematic representation of partial summation of the instanton contributions to the
quark-quark scattering

At large energy, s, the invariant T -matrix element of the quark-quark scat-
tering exchanging by gluons is

〈q(p3)q(p4) |T | q(p1)q(p2)〉 →
s → ∞ iI(q2)u(p3)γµu(p1)u(p4)γµu(p2), (125)

where the scattering amplitude is expressed in terms of the vacuum average of
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the gauge-invariant path ordered Wilson integrals (see Fig. 7)

I(q2) = −
∫

d2b⊥ eib⊥q 1
Nc

Tr

〈
0

∣∣∣∣∣P exp

{
ig

∫
Cqq

dxµÂµ(x)

} ∣∣∣∣∣0
〉

. (126)

In Eq. (126) the integration path corresponded to the quark scattering process goes
along the closed contour Cqq: two inˇnite lines separated by transverse distance
b⊥ and having relative scattering angle γ. We parameterize the integration path
Cχ = {zµ(t); t = [−∞,∞]} as follows

zµ(t) =
{

v1t, −∞ < t < ∞,
v2t, ∞ < t < −∞,

(127)

Fig. 8. Normalized quark-quark scatter-
ing amplitude Eq. (114)

with scattering vectors

v1 = (1, 0, 0⊥) ,

v2 = (coshχ, i sinh χ, b⊥) ,

v2
1 = v2

2 = 1, (v1v2) = coshχ,

(128)

where v1 = p1/m and v2 = p2/m are the
velocities of quarks.

By making steps similar to Subsec. 1.1
one arrives to the weak ˇeld expansion of
the full amplitude (c.f. Eq. (107))

wI
qq(χ, b⊥) = −2nc

(
1
3
〈α3

1α2〉(χ, b⊥)|S +
1
4
〈α2

1α
2
2〉(χ, b⊥)|S + . . .

)
, (129)

where the phases used here are deˇned as

α(v1, z0) = s(v1, z0)
∫ ∞

−∞
dλϕ[(v1λ − z0)2; ρ], (130)

α(v2, z0) = s(v2, z0)
∫ ∞

−∞
dλϕ[(v2λ − b⊥ + z0)2; ρ], (131)

where s2(vi, z0) are deˇned as in (91). In Eq. (129) only the terms corresponding
to the C = +1 exchange survive and the C = −1 terms vanish in the single
instanton approximation.

In the weak ˇeld limit the model of the Pomeron reduces to the use of
scattering of two instantons (Fig. 8):
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wI
qq(χ, b⊥) = −2nc

∫
d2b⊥ eib⊥q

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ′

∫ ∞

−∞
dη

∫ ∞

−∞
dη′s4

12(z0)×

×
〈

0
∣∣∣∣ϕ(v1λ+v2η−z0−b⊥)ϕ(−z0)

∣∣∣∣0〉〈0
∣∣∣∣ϕ(v1λ

′+v2η
′−z0−b⊥)ϕ(−z0)

∣∣∣∣0〉.

(132)

The vacuum brackets are related to the nonperturbative part of the gluon propa-
gator given by (in the Feynman gauge)

〈0 |: Aµ(x)Aν (0) :| 0〉 = gµν

∫
d4k

(2π)4
e−ikxDnp(k2). (133)

In the Abelian gauge model considered originally by Landshoff and Nacht-
mann [5] the nonperturbative gluon propagator Dnp(k2) is related to the cor-
relation function describing the gauge invariant gluon ˇeld strength correlator
(nonlocal gluon condensate). In general non-Abelian case, this correlator has the
form〈

0
∣∣∣∣: Gµν(x)P exp

[
ig

∫ x

0

dzαAα(z)
]

Gρσ(0) :
∣∣∣∣ 0
〉

=

=
∫

d4k

(2π)4
e−ikx

{(
D0(k2) + D1(k2)

)
k2 (gµρgνσ − gµσgνρ)+

+D1(k2) (kµkρgνσ − kµkσgνρ + kνkσgµρ − kνkρgµσ)
}

, (134)

where the ˇrst tensor structure is called non-Abelian part and the second one is
Abelian part. Indeed, in the Abelian gauge model without monopoles D0(k2) ≡ 0,
and D1(k2) = Dnp(k2). It is this property that has been used in [5] to relate the
Pomeron properties to the value of the gluon condensate.

However, in the non-Abelian model one has opposite situation. Really, for
the QCD instantons we ˇnd [61] D1(k2) ≡ 0 and D0(k2) is nonzero. In the
realistic model of the QCD vacuum, where the interaction with vacuum ˇelds of
large scale, R, is important, the instanton ceases to be an exact solution of the
equations of motion, but the so-called constraint instanton approximate solution
(CI) can be constructed [61]. This name is due to necessity to put constraints
on the system to stabilize the instanton in the external vacuum medium. It was
shown that the constraint instanton is exponentially decreasing at large distances
(∼ R) asymptotics. The constraint instanton has topological number ±1 as an
instanton, however it is not self-dual ˇeld. Thus, in realistic QCD a small part of
D1(k2) appears. Very similar results have been found in the lattice simulations
of the gluon ˇeld strength correlator [67].
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Thus, within the non-Abelian models there is no direct connection of the
gluon propagator to the gluon ˇeld strength correlator. So, let us directly consider
the instanton part of the gluon propagator. The Fourier transform of the instanton
ˇeld is deˇned as

Ãa
µ(p) = ηa

µνpνϕ̃(p2), (135)

where

ϕ̃(p2) =
4πi

p2

∫ ∞

0

dss3J2(|p| s)ϕ(s2), (136)

ϕ(s2) is the (constrained) instanton proˇle and J2(z) is the Bessel function. The
explicit form of the Fourier transform of the pure instanton solution is well known
(in the singular gauge)

ϕ̃I(p2) = i
(4π)2

p4

[
1 − (ρp)2

2
K2 (ρp)

]
, ϕ̃I(p2) =


i (2π)2 ρ2

p2
, p2 → 0,

i (4π)2

p4
, p2 → ∞.

(137)
The constraint solution saves its form at short distances, but changes it at large
ones:

ϕ̃CI(p2) =


iπ2

4
R4ICI, p2 → 0,

i(4π)2

p4
, p2 → ∞,

(138)

where the constant ICI is given by

ICI =
∫ ∞

0

duu2ϕ(u). (139)

Now, the Fourier transform of the single instanton contribution to the gluon
propagator (in the Landau gauge) becomes

Gab
µν(p) ≡

∫
d4x eipx

〈
0
∣∣Aa,I

µ (x)Ab,I
ν (0)

∣∣ 0〉
I

= δab

(
δµν − pµpν

p2

)
G(p),

(140)

G(p) = − 4
N2

c − 1
p2

∫
dn(ρ)ρ4ϕ̃2(p2), (141)

where the effective instanton density takes into account averaging over the instan-
ton size distribution. Thus, we see again that the nonperturbative gluon propagator
and gluon ˇeld strength correlator are quite different functions, and the relation
between them valid in the Abelian gauge model is destroyed in the non-Abelian
case.
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From (137) and (138) it is easy to deduce the asymptotics of the instanton
part of the gluon propagator

GI(p2) =


(2π)4 ncρ

4

N2
c − 1

1
p2

, p2 → 0,

(4π)4 ncρ
4

N2
c − 1

1
p6

, p2 → ∞,

GCI(p2) =


π4ncR

4

16(N2
c − 1)

I2
CIp

2, p2 → 0,

(4π)4 ncρ
4

N2
c − 1

1
p6

, p2 → ∞.

(142)

Calculating (in very similar way as in the LandshoffÄNachtmann model) at
large energy, s, the invariant T -matrix element of the quark-quark scattering
exchanging by two gluons we get (Fig. 8)

I(t) =
1
2

∫
dk⊥
(2π)2

G

[(
k⊥ +

1
2
q⊥

)2
]

G

[(
k⊥ − 1

2
q⊥

)2
]

, (143)

where G(p2) is deˇned in (141) with p2 → p2
⊥. Except numerical coefˇcient,

this expression is in agreement with the NachtmannÄLandshoff formula. This
agreement is due to speciˇc features of the instanton induced interaction.

It is important to note that the original Wilson loop has essentially Minkowski
light-cone geometry whereas the instanton calculations of a Wilson loop are
performed in the Euclidean QCD. The analytical continuation from Minkowski
space to Euclidean and back becomes possible since the dependence of the Wilson
loop on the total energy s and transverse momentum k2

⊥ is factorized in (125)
into two different pieces. The Q2 dependence is given by a constant asymptotics
which is the same in the perturbative and nonperturbative expressions. At the
same time, the k2

⊥ dependence of I naturally comes through the nonperturbative
instanton ˇeld propagator. Notice that in the original expression for the Wilson
loop (126), the nonlocal instanton correlator was integrated over both space-
like and time-like separations x2 corresponding to the distance between different
points on the contour Cqq , whereas the ˇnal expression (143) depends on the
space-like vector squared k2

⊥. Thus we can do equivalently proceeding the formal
calculations in Minkowski space and then make the Wick rotation k2

⊥ → −k2
⊥,

or, that is more natural from the point of view of the instanton model, to perform
formal manipulations in the Euclidean space and then do analytical continuation
by χ → iγ.

It is clear from the infrared behaviour of the instanton induced propagator
(142) that I(0) (143) is inˇnite for the pure instanton solution (137), but it is ˇnite
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for the constraint instanton solution. This fact also noted recently in [60] was
one of the arguments to the construct constraint instanton solution that modiˇes
the proˇle of the instanton at large distances.

From (125) and the optical theorem it follows that the spin averaged total
quark-quark cross section is constant at large energy:

σqq ∼ (ncρ
4
c)R

2. (144)

These results have been recently generalized in [60], where the growing part of
the total cross section was also found

σqq ∼ (ncρ
4
c)∆(t) ln s, (145)

due to inelastic quark-quark scattering in the instanton background.
As was discussed in detail in [5], already this simple model of the Pomeron

explains many properties of the diffractive scattering: the effective vector-like
exchange (125), the additive quark rule and the main features of the total cross
section (144), (145).

CONCLUSION

Besides the considerable progress in investigation of the role of nonperturba-
tive QCD vacuum structure (in particular, of the instanton induced phenomena)
in low and moderate energy domains of hadronic physics, nowadays there is a
lack of understanding of their role in high-energy processes which are intensively
studied in modern experiments in particle physics. In this work we presented
the results of the analysis of the structure of nonperturbative corrections in such
important quantities as the quark form factor and the cross section of diffractive
quark-quark scattering at high energy. The quark scattering process was consid-
ered in the background of QCD vacuum which is described within the instanton
liquid model. The instanton induced contribution to the electromagnetic quark
form factor is calculated in the large momentum transfer regime. We estimated
analytically the weak ˇeld approximation for the instanton induced contribution,
while the all-orders calculations require numerical analysis. Using the Gaussian
simulation of the proˇle function, we calculated the all-orders instanton contribu-
tion and found that the leading contribution to high-energy asymptotic behavior
is provided by the lowest order terms. Although the latter result could be treated
as an argument in favor of validity of the weak ˇeld approximation, the further
work has to be done in this direction since the results for Gaussian proˇle and
the instanton in the singular gauge may be different in general.

The instanton induced effects are more interesting for theoretical study and
more important for phenomenology of hadronic processes possessing two different
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energy scales. (For more detailed discussions see the works [70]). One of such
situations Å quark-quark diffractive scattering Å was considered in the last
Section. Here, the total centre-of-mass energy s (hard characteristic scale) is large
while the squared momentum transfer −t which is small compared to the latter:
−t � s, but nevertheless larger than any IR scale. Besides this, the other cases
of interest where the nonperturbative (including instanton induced) effects may
be signiˇcant are the saturation in deep inelastic scattering (DIS) at small-x [66],
and the transverse momentum distribution of vector bosons in the DrellÄYan
process [40]. The latter is one of the most important objects of the experimental
investigations (in particular, in the context of searches for New Physics and Higgs
bosons Å at future LHC and Tevatron experiments [68]), as well as theoretical
studies of both the predictive power of pQCD at various energy scales and the role
of nonperturbative physics (see, e.g., [69] and references therein). This problem
will be one of the subjects of our forthcoming study.
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