
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2004. ’. 35. ‚›�. 7

“„Š 539.125.17, 530.145

MAPPING OUT THE QUARK STRUCTURE OF
HADRONS IN QCD

A. P. Bakulev∗, S. V. Mikhailov∗∗, N. G. Stefanis∗∗∗

Joint Institute for Nuclear Research, Dubna

In the context of QCD sum rules with nonlocal condensates we present a pion distribution
amplitude, which is double-humped with its end-points x → (0 , 1) and strongly suppressed, and
show that it matches the CLEO experimental data on the pionÄphoton transition at the 1σ level
accuracy, being also in compliance with the CELLO data. We also include some comments on the
nucleon distribution amplitude and the nucleon evolution equation.

‚ ¶µ¤Ìµ¤¥ ¶· ¢¨² ¸Ê³³ Š•„ ¸ ´¥²µ± ²Ó´Ò³¨ ±µ´¤¥´¸ É ³¨ ¶µ²ÊÎ¥´  ¶¨µ´´ Ö  ³¶²¨ÉÊ¤ 
· ¸¶·¥¤¥²¥´¨Ö, Ö¢²ÖÕÐ Ö¸Ö µ¤´µ¢·¥³¥´´µ ¤¢Ê£µ·¡µ° ¨ ¸¨²Ó´µ ¶µ¤ ¢²¥´´µ° ¢ ±µ´Í¥¢ÒÌ ÉµÎ± Ì
x → (0 , 1). �µ± § ´µ, ÎÉµ µ´  Ìµ·µÏµ ¸µ£² ¸Ê¥É¸Ö ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨ ¶µ ¶¥·¥Ìµ¤-
´µ³Ê ¶¨µ´-ËµÉµ´´µ³Ê Ëµ·³Ë ±Éµ·Ê ± ± £·Ê¶¶Ò CLEO (´  Ê·µ¢´¥ 1 ¸É ´¤ ·É´µ£µ µÉ±²µ´¥´¨Ö),
É ± ¨ £·Ê¶¶Ò CELLO (¡µ²¥¥ · ´´¨³¨ ¨ ³¥´¥¥ ÉµÎ´Ò³¨). �·¥¤¸É ¢²¥´Ò É ±¦¥ ´¥±µÉµ·Ò¥ § ³¥-
Î ´¨Ö ¶µ ´Ê±²µ´´µ°  ³¶²¨ÉÊ¤¥ · ¸¶·¥¤¥²¥´¨Ö ¨ Ê· ¢´¥´¨Ö³ Ô¢µ²ÕÍ¨¨ ¤²Ö ´¥¥.

1. A TRIBUTE TO PROF. EFREMOV'S CELEBRATION
OF HIS 70th BIRTHDAY

Prof. Efremov gives us the opportunity to point out in this Festschrift the
in�uence of his work on our own research activities.

A. V. Efremov is one of the inventors of factorization theorems in quantum
ˇeld theory that are particularly indispensable in applying perturbative QCD in
inclusive [1] and exclusive reactions [2, 3] involving hadrons. Without these
tools, the experimental veriˇcation of QCD would constitute an intractable task.
Together with his then student A. V. Radyushkin he accomplished the factorization
theorems for the meson form factors, linking diagrammatic technique with the
operator product expansion (OPE). The grounds for these works were supplied
by previous investigations by Efremov [4] and Efremov and collaborators [5].
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Moreover, Efremov and Radyushkin have diagonalized the anomalous di-
mensions matrix for meson operators (in leading order) in terms of Gegen-
bauer polynomials and ˇrst obtained the asymptotic distribution amplitude (DA)
ϕ(x, µ2 → ∞) → ϕas(x) = 6x(1 − x) [3, 6].

Factorization theorems [3, 6, 7] make it possible to calculate various hard
processes in QCD involving mesons, in which the meson DAs enter as the central
nonperturbative input.

In the context of the present occasion, we are primarily interested in present-
ing recent achievements in describing the pion characteristics by mapping out its
internal quark structure. A short note on the nucleon is also included.

2. NONLOCAL CONDENSATES AND PION DISTRIBUTION
AMPLITUDE

The pion DA of twist-2, ϕπ(x, µ2), is a gauge- and process-independent
characteristic of the pion that universally speciˇes the longitudinal momentum
xP distribution of valence quarks in the pion with momentum P

〈0 | d̄(0)γµγ5E(0, z)u(z) | π(P )〉
∣∣∣
z2=0

= ifπPµ

∫ 1

0

dx eix(zP ) ϕπ(x, µ2), (1)

and where E(0, z) = P exp
[
−igs

∫ z

0 taAa
µ(y)dyµ

]
is a phase factor, path-ordered

along the straight line connecting the points 0 and z to preserve gauge invariance.
2.1. Average QCD Vacuum Quark Virtuality λ2

q . The pion DA encap-
sulates the long-distance effects and therefore re�ects the nonperturbative fea-
tures of the QCD vacuum. The latter can be effectively parameterized in terms
of nonlocal condensates, as developed in [8Ä10] by A. Radyushkin and two of
us (A. B. and S. M.). This provides a reliable method of constructing hadron
DAs that inherently accounts for the fact that quarks and gluons can �ow
through the QCD vacuum with nonzero momentum kq. This means, in par-
ticular, that the average virtuality of vacuum quarks, 〈k2

q〉 = λ2
q is not zero,

like in the local sum-rule approach [11], but can have values in the range [12]
λ2

q = 〈q̄ (ig σµνGµν) q〉/(2〈q̄q〉) = 0.35−0.55 GeV2. Therefore, the nonlocal
condensates in the coordinate representation, say, 〈q̄(0)E(0, z)q(z)〉, are no longer
constants, but depend on the interval z2 in Euclidean space and decay with the
correlation length Λ ∼ 1/λq. Lacking an exact knowledge of nonlocal conden-
sates of higher dimensionality, one has de facto to resort to speciˇc Anzéatze [13],
in order to parameterize the nonlocal condensates. Nevertheless, it is important to
stress that we were able to determine in [14] λ2

q directly from the CLEO data [15]
within the range predicted by QCD sum rules [12] and lattice simulations [13],
favoring the value λ2

q � 0.4 GeV2.
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2.2. QCD Sum Rules. The distribution amplitudes ϕπ(A1)(x, µ2) for the pion
and its ˇrst resonance can be related to the nonlocal condensates by means of the
following sum rule that is based on the correlator of two axial currents

f2
πϕπ(x) + f2

A1
ϕA1(x) exp

{
−

m2
A1

M2

}
=

=
∫ s0

π

0

ρpert(x; s) e−s/M2
ds +

〈αsGG〉
24πM2

ΦG

(
x; M2

)
+

+
8παs〈q̄q〉2

81M4

∑
i=S,V,T1,T2,T3

Φi

(
x; M2

)
, (2)

where the index i runs over scalar, vector, and tensor condensates [16, 17]; M2

is the Borel parameter, and s0
π is the duality interval in the axial channel. Above,

the dependence on the nonlocality parameter enters on the RHS in the way
exempliˇed by the numerically important scalar-condensate contribution

ΦS

(
x; M2

)
=

18
∆̄∆2

{
θ (x̄ > ∆ > x) x̄ [x + (∆ − x) ln (x̄)] + (x̄ → x) +

+ θ(1 > ∆)θ
(
∆ > x > ∆̄

) [
∆̄ + (∆ − 2x̄x) ln(∆)

]}
(3)

with ∆ ≡ λ2
q/(2M2), ∆̄ ≡ 1 − ∆, and x̄ ≡ 1 − x. In the so-called local

approach [11], the end-point contributions (x → 0 or 1) are strongly enhanced
by δ(x), δ′(x) . . . because they disregard the ˇniteness of the vacuum correlation
length Λ by setting in Eq. (3) λ2

q → 0 to obtain

lim
∆→0

ΦS

(
x; M2

)
= 9 [δ(x) + δ(1 − x)] . (4)

In contrast, taking into account the nonlocality of the condensates via λ2
q , leads

to a strong suppression of these regions. Due to the end-point suppression prop-
erty, the sum rule (2) allows us to determine the ˇrst ten moments 〈ξN 〉π ≡∫ 1

0
ϕπ(x)(2x−1)Ndx of the pion DA and independently also the inverse moment

〈x−1〉π ≡
∫ 1

0 ϕπ(x) x−1dx quite accurately (see in [18,19] for more details). The
intrinsic accuracy of this procedure admits one to obtain the pion DA moments
with uncertainties varying in the range of 10%.

2.3. Models for the Pion Distribution Amplitude. Models for the pion DA,
in correspondence with the extracted moments, can be constructed in different
ways [8, 17]. However, on the grounds explained above, it appears that two-
parameter models, the parameters being the ˇrst Gegenbauer coefˇcients a2 and
a4, enable one to ˇt all the moment constraints for 〈ξN 〉π, as well as to reproduce
the value of 〈x−1〉π within the QCD sum-rule error range, resulting into a ®bunch¯
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Fig. 1. Comparison of selected pion DAs denoted by obvious acronyms: ϕas (dotted
line) [3, 6], ϕPR (dashed line) [20], ϕDor (dashed-dotted line) [21], and ϕBMS (solid line)
[16]. Also shown is the whole ®bunch¯ determined via QCD sum rules with nonlocal
condensates [16]. All DAs are normalized at the same scale µ2

0 ≈ 1 GeV2

of DAs displayed in Fig. 1. The optimum sample out of this ®bunch¯, termed
BMS model, is described by the following expression

ϕBMS(x) = ϕas(x)
[
1 + a2 C

3/2
2 (2x − 1) + a4 C

3/2
4 (2x − 1)

]
(5)

with a2 = +0.20, a4 = −0.14 and is emphasized by a solid line in Fig. 1. The
shape of this ®bunch¯ is conˇrmed by a nondiagonal correlator, based on the
QCD sum rules considered in [22].

3. CLEO DATA ANALYSIS

The CLEO data [15] on Fπγ provide one rigorous constraint on theoretical
models for the pion DA in QCD. Indeed, it was ˇrst shown in [23] that these
data exclude the CZ pion DA because the prediction derived from it overshoots
these data by orders of magnitude.

Very recently, we analyzed [14, 19] the CLEO data by combining attributes
from QCD light-cone sum rules [24, 25], NLO EfremovÄRadyushkinÄBrodskyÄ
Lepage (ERBL) [2,3,6] evolution [26,27], and detailed estimates of uncertainties
owing to higher-twist contributions and NNLO perturbative corrections [28].

The upshot of this analysis is that the CZ pion DA is excluded at the 4σ level
of accuracy and Å perhaps somewhat surprisingly Å that also the asymptotic pion
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Fig. 2. Analysis of the CLEO data on Fπγ∗γ(Q2) in the (a2, a4) plane in terms of error
regions around the best-ˇt point ( ) with the following designations: 1σ (dashed line);
2σ (solid line); 3σ (dashed-dotted line). Various theoretical models are also shown for
comparison. The designations are as follows: Å the asymptotic DA; Å BMS model;

Å CZ DA; Å best-ˇt point; Å [29]; Å [20]; Å instanton models [31];
Å transverse lattice result [30]. The slanted rectangle represents the BMS ®bunch¯ of

pion DAs dictated by the nonlocal QCD sum rules for the value λ2
q = 0.4 GeV2. All

constraints are evaluated at µ2 = 5.76 GeV2 after NLO ERBL evolution

DA lies outside the 3σ error ellipse in the (a2, a4) plane (see Fig. 2), even if one
allows the theoretical uncertainties owing to unknown higher-twist contributions
to be of the order of 30% and presumes that the size of NNLO perturbative
corrections is also large. On the other hand, the BMS pion DA calculated with
a vacuum virtuality λ2

q � 0.4 GeV2 was found to be inside the 1σ error ellipse,
while other rival models, based on differing instantons approaches [20, 31], or
derived with the aid of lattice simulations [30], are located in the vicinity of
the border of the 3σ contour. It is worth emphasizing that the more precise the
instanton-based models become, the further away from the asymptotic pion DA
towards the region of the ®bunch¯ they move (we refer to [19] for more details)∗.
It was pointed out before in [32] that the CLEO data ask for a broader pion DA
than the asymptotic one.

In Fig. 3, a we compare our prediction for the scaled pionÄphoton transition
form factor with those from the CZ model (1) and the asymptotic DA (2). One

∗The new model relative to [31], proposed in [21], involves more than two Gegenbauer coefˇ-
cients and can therefore not be displayed in Fig. 2. However, reverting this model to an approximate
one by utilizing only two (effective) Gegenbauer coefˇcients a2 and a4 shows that it is close to the
3σ error ellipse boundary, as said above.
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Fig. 3. a) Light-cone sum-rule predictions for Q2Fγ∗γ→π(Q2) in comparison with the
CELLO (�, [33]) and the CLEO (�, [15]) experimental data evaluated with the twist-4
parameter value δ2

Tw-4 = 0.19 GeV2 [14, 19]. The predictions correspond to selected pion
DAs; viz., ϕCZ (curve 1) [11], BMS-®bunch¯ (shaded strip) [16], and ϕas (curve 2) [3,6].
b) Our prediction for Q2Fγ∗γ→π(Q2) corresponding to the ®bunch¯ of pion DAs in Fig. 1
(shaded strip) in comparison with experimental data for twist-4 parameter values varied in
the range δ2

Tw-4 = 0.15−0.23 GeV2

observes that the strip obtained from the ®bunch¯ of DAs is in very good agree-
ment with both the CLEO data and also with the CELLO data [33]. Figure 3, b
illustrates in the form of a shaded band the region of uncertainty induced by
our limited knowledge of higher-twist contributions. One observes that even the
low-Q2 CELLO data are in reasonable compliance with the theoretical prediction
(the shaded strip).

Let us close this section by mentioning that other approaches claim to be
able to describe the CLEO data with the asymptotic pion DA [23,34,35], taking
into account only the leading-twist contribution and using only perturbative QCD
(see for more details [14]).

4. OTHER EXCLUSIVE PROCESSES

Factorization theorems can be extended Å at least formally Å to baryons
and their form factors [6]. The primary goal below is to give a brief summary of
main results rather than to review the subject and the status of individual exclusive
processes or baryon DAs (for a recent review, we refer to [36]). For instance,
the situation concerning the nucleon DA is more controversial compared to the
meson case. It is undoubtedly true that the asymptotic nucleon DA is unable
to describe the nucleon form factors [6]. On the other hand, asymmetric DAs
constructed via moments determined by local QCD sum rules following [11],
as, for example, in [37Ä42] (see Fig. 4, a for illustration), seem to yield to
strongly suppressed results for the magnetic nucleon form factor when transverse
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Fig. 4. a) The heterotic nucleon distribution amplitude, proposed in [41]. b) Spectrum of
the anomalous dimensions of trilinear twist-3 quark operators up to the order of M = 400.
The solid lines (upper and lower envelopes of the spectrum) represent logarithmic ˇts up
to the maximum considered order 400, taking into consideration all orders above 10. The
dashed line gives for comparison a previous logarithmic ˇt [36] which takes into account
all orders up to 150

momentum Å intrinsic and Sudakov Å effects are included [36, 43]. Valuable
information on the inner structure of the nucleon was recently provided in [44]
in the context of instantons, where it was shown that the shape of the proton DA
is far from the asymptotic one.

While the nonperturbative nature of the nucleon is yet not well-understood,
its evolution on the basis of the renormalization-group equation can be performed
to a high level of accuracy within QCD perturbation theory. Indeed, within the
basis of symmetrized Appell polynomials [36,45], the nucleon evolution equation
can be solved by employing factorization of the dependence on the longitudinal
momentum from that on the external (large) momentum scale Q2 up to any desired
polynomial order∗. The spectrum of the corresponding anomalous dimensions
of trilinear quark operators was also determined [36, 45, 46] and its large-order
behavior seems to increase logarithmically, re�ecting the enhanced emission of
soft gluons that forces the probability for ˇnding bare quarks to decrease (see
Fig. 4, b). This spectrum can be reproduced by the logarithmic ˇt

γn(M) = c + d ln (M + b). (6)

The upper envelope of the spectrum is best described by the following values

∗The eigenfunctions of the nucleon evolution equation are linear combinations of symmetrized
Appell polynomials, appropriately orthonormalized [36].
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of the parameters with their errors: b = 1.90989 ± 0.00676, c = −0.637947 ±
0.000634, and d = 0.88822±0.000119. For the lower envelope, the corresponding
values are b = 3.006±0.483, c = −0.3954±0.0290, and d = 0.59691±0.00545.
The spacing of eigenvalues at very large order is reproduced by the values b =
−0.027± 0.728, c = −0.2460± 0.0248, and d = 0.291883± 0.00475. For every
order M , there are M + 1 eigenfunctions of the same order with an excess of
symmetric (under the permutation P13) terms (denoted by black dots in Fig. 4)
by one for even orders. The total number of eigenfunctions up to order M is

nmax(M) =
1
2
(M + 1)(M + 2) and the corresponding (M + 1) eigenvalues are

obtained by diagonalizing the (M + 1) × (M + 1) matrix. Up to order 150,
both sectors (corresponding to the permutation parity Sn = ±1) of eigenvalues
are included. Beyond that order, for reasons of technical convenience, only the
antisymmetric (open circles) ones have been taken into account. The multiplet
structure of the anomalous dimensions spectrum was found independently later
on [47] in the context of a Hamiltonian approach to the one-dimensional XXX
Heisenberg spin magnet of noncompact spin s = −1.

5. CONCLUDING REMARKS

Our discussion of the pion DA in the context of QCD sum rules with nonlocal
condensates shows that the vacuum nonlocality parameter can serve to extract
valuable information on the underlying nonperturbative dynamics. The double-
humped shape with suppressed end-points of the derived pion DA is in good
agreement with the CLEO data with a 1σ accuracy and agrees with the CELLO
data as well. Progress of the nonlocal sum-rules approach to encompass three-
quarks states, like the nucleon, appears promising, while the perturbative apparatus
for the evolution of such DAs is already well-developed.

In conclusion, let us mention as a personal statement that the major part of our
scientiˇc work depends to a great extent on the power of factorization theorems
and their usage in QCD in the context of form factors, structure functions, etc.
Therefore, we feel particularly attached to Prof. Efremov, given also that he was
the Leader of the BLTPh QCD group, where two of us (A. P. B. and S. V. M.)
have been working for over a decade, and he was also one of the opponents of
one of us (N. G. S.) in defending his Doctor ˇziko-matematicheskih nauk degree.
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