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IN ep → eπ+π−p′ AT HERA FOR DISCOVERY

OF ODDERON AND MEASUREMENT
OF POMERON PHASE

I. F. Ginzburg

Sobolev Institute of Mathematics, Novosibirsk, Russia

I. P. Ivanov

INFN, Gruppo Collegato di Cosenza, Italy

We discuss how to discover the odderon and measure the Pomeron phase via the study of charge
asymmetry of pions in diffractive reaction ep → eπ+π−p′. We ˇnd kinematical regions suitable for
independent solution of both problems in a single experiment at HERA.
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INTRODUCTION

We consider diffractive-type high-energy process

γp → π+π−p′ studied via process ep → eπ+π−p′ (1)

in the case when the exchanged photon virtuality (pe − p′e)
2 is very low (and

the scattered electron can escape observation). Here p′ is either proton or its low
mass excitation, separated from the dipion produced by a large rapidity gap.

Denoting by p± the momenta of the π± and introducing

rµ = pµ
+ − pµ

− , kµ = pµ
+ + pµ

− , M =
√

k2, β =
√

1 − 4m2
π/M2 , (2)

we deˇne the z axis as the γp collision axis and label the (transverse) vectors
orthogonal to this axis by ⊥. We consider process (1) at the typical HERA
energies,

√
sγp ∼ 100 ÷ 200 GeV, and at

M < 1.45 GeV, k⊥ < 1 GeV. (3)
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• The main mechanism of reaction (1) is diffractive production of dipions in
the C-odd state (the ρ meson and its ®tails¯) via the vacuum quantum number
exchange in the t channel, which we call the ®real Pomeron¯. Besides, dipions
can be produced in the C-even state. We discuss these mechanisms in Sec. 2.

The interference of amplitudes of the C-odd and C-even dipion production
provides charge asymmetry of the observed pion distribution. In this paper we
discuss how the experimental study of this charge asymmetry can be used for
the discovery of the odderon [1, 2] (see also [4, 5]) and for measurement of the
Pomeron phase [1, 3].

• The odderon exchange is yet an elusive but necessary element of the QCD
motivated hadron physics. One can treat the Pomeron and odderon as t channel
objects for the 2 → 2 processes, that have vacuum quantum numbers with the
only difference: the Pomeron is C-even, while the odderon is C-odd (similarly
to the photon). Pomeron exchange describes small angle elastic and total cross
sections at high energies. The odderon is responsible, again at high energies,
for the difference σtot

pp − σtot
p̄p [7] and for processes like γp → f2p, γp → π0p

with the change of C parity in the boson vertex [8]. The energy dependence of
the Pomeron and odderon amplitudes at large s is given by factors fIP ∝ sαIP ,
fO ∝ sαO , where αIP and αO are the intercepts of the Pomeron and the odderon,
respectively. An inequality αO � αIP must hold, since |σtot

pp −σtot
p̄p | < σtot

pp +σtot
p̄p .

Within perturbative QCD, the Pomeron and odderon are based on two-gluon
and d-coupled three-gluon exchanges in t channel, respectively [9]. Hence, both
the Pomeron and odderon intercepts are expected to be close to the gluon spin,
αO, αIP ∼ 1. It is well known that the Pomeron exchange amplitude is predomi-
nantly imaginary. The odderon exchange amplitude is C-odd, it has the opposite
signature, therefore this amplitude is predominantly real. The experimental data
and BFKL calculations show that the Pomeron intercept αIP(0) > 1.

The odderon has not been observed till now, and at the moment there is no
widely accepted approach that would give reliable estimates of the cross sections
of the odderon-induced processes like γp → f2p

′ for real photons. Recent
experiments [10] gave upper bounds to these cross sections but only for the
case when p′ is a proton excitation (this needless constraint was implemented
following poorly justiˇed proposal of Ref. 11 Å see Ref. 2 for explanation and
for discussion of the status of the modern estimates for odderon).

• Pomeron phase. The phase δF of the forward amplitude of the hadronic
elastic scattering (Pomeron phase)

A = |A| eiδF ≡ |A| exp
[
i
π

2
(1 + ∆F )

]
(4)

is an important object in hadron physics whose nature is not completely clear
now. In the naive Regge-pole Pomeron model, this phase is related directly to
the Pomeron intercept, ∆F = αIP − 1, in the model with a simple Regge cut
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∆F = αIP − 1 + c/ ln (s/m2
p). The measurement of Pomeron phase will be a

useful step towards clariˇcation of its nature.
Up to the moment, this phase was measured at high enough energy in a single

type of experiments, namely, via the study of Coulomb interference in pp or p̄p
elastic scattering (see [6] and references therein). However, such experiments
demand a difˇcult measurement of the cross section at extremely low transverse
momentum of the recorded particle, p⊥ ≈

√
|t| � 30 MeV, which translates into

very small scattering angles.

1. KINEMATICS, ETC.

• γp collision. The initial momenta of the photon and proton are q = pe −p′e
and P , respectively, s = (q+P )2, t = (q−k)2 ≈ −k2

⊥, initial photon polarization
vector is e. Let us denote by z+ and z− the standard light cone variables for
each charged pion, z± ≈ (ε± + p±z)/(2Eγ) = (p±P )/(qP ) (z+ + z− = 1, with
very high precision).

We direct the x axis along the vector k⊥ and deˇne by ψ the azimuthal angle
of the linear photon polarization with respect to the ˇxed lab frame of reference;
for instance, for the virtual photon in the process ep → eπ+π−p′, that is the
azimuthal angle of the electron scattering plane. The polarization vector of the
initial photon with helicity λγ = ±1 can be written as ẽλ = −e−iλγψ(λγ , i)/

√
2.

It is useful also to consider polar and azimuthal angles of π+ in the dipion
c.m.s., θ and φ, so that rc.m.s = βM(0, sin θ cos φ, sin θ cos φ, cos θ). We
denote by J the total angular momentum (total spin) of dipion, by λγ and λππ

the helicities of photon and produced dipion, respectively, and by n = |λγ −λππ|
and np = |λp − λp′ | the values of helicity �ip in the (photon → dipion) and
proton vertices, respectively, for each amplitude.

We describe the forwardÄbackward (FB) and transverse (T) charge asymme-
tries by variables

FB: ξ =
z+ − z−

β(z+ + z−)
= cos θ,

T: v =
p2
+⊥ − p2

−⊥ − ξk2
⊥

βM |k⊥|
≡ (ρ⊥k⊥)

βM |k⊥|
= sin θ cosφ; ρ⊥ = r⊥ − ξk⊥.

(5)
The amplitude of the dipion production A is normalized so that

dσ = |A|2 βdM2 dk2
⊥ d cos θ dφ

dψ

2π
=

=
2√

1 − ξ2 − v2
|A|2 βdM2 dk2

⊥ dξ dv
dψ

2π
. (6)
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• ep collision. In the description of ep collision we direct z axis along ep
collision axis and keep almost all previous notations. The main contribution to
the observable cross section is given by very low values of photon virtuality
−q2 = −(pe − p′e)2, i.e., very small values of photon transverse momentum q⊥
(we assume no recording of electrons). Therefore, the z axes for ep and γp
collisions practically coincide, and the variable ξ is the same as in γp collision.
The total transverse momentum of dipion is now

K⊥ = q⊥ + k⊥. (7)

The measured value of transverse variable v is given by the equation of the same
form as above (5) but with the change k⊥ → K⊥.

• We describe below the magnitude of the asymmetry by quantities

∆σFB =
∫

dσ(ξ > 0) −
∫

dσ(ξ < 0), ∆σT =
∫

dσ(v > 0) −
∫

dσ(v < 0).

(8)
Value of the given asymmetry is determined by its statistical signiˇcance

SS deˇned via the numbers of signal and background events integrated over
some charge symmetric domain. With the integral luminosity L the statistical
signiˇcance SS and its local value SS(M) are

SS =
L|∆σw|√
Lσbkgd

, SS(M) =
L|d∆σw/dM2|√
Ldσbkgd/dM2

(w = FB or T). (9)

(Note that SS 	=
∫

SS(M)dM2.) The study of shape of this SS(M) helps us in
the choice of cuts in M for data processing.

In the numerical estimates we use for deˇniteness the luminosity integral
(HERA)

Lep = 100 pb−1. (10)

2. AMPLITUDES

We assume that the amplitude of dipion photoproduction can be factorized
as

A =
∑

A±(s, t, M2|J, λγ , λππ , λp, λp′) DJ(M2) Eλγ ,λππ

J . (11)

The ˇrst factor A is the helicity amplitude for the production of a dip-
ion state (perhaps, as a resonance) with angular momentum J . The super-
script + or − marks the C parity of produced dipion, with J = 1, 3, . . . for
C-odd dipions and J = 0, 2, . . . for C-even dipions. Assuming integration over
ˇnal states of p′, we do not write similar factors D and E , related to the pp′
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vertex and omit below signs λp, λp′ . Besides, due to the P -parity conservation,
A±(s, t, M2|J, λγ , λππ) = A±(s, t, M2|J,−λγ ,−λππ). So that we will write all
equations for the case λγ = 1 and omit this sign later. Finally, we use below
shorter notation A±(s, t, M2|J, λγ , λππ, λp, λp′) → A±

J,λππ
(s, t, M2).

The second factor DJ(M) describes the decay of this dipion state to pions.
(In numerical estimates we assume usually that the M dependence of the ampli-
tude is accumulated in these DJ .) For example, near the resonance R pole the
factor DJ is described well by the standard BreitÄWigner factor (together with
coupling of this resonance to charged pions)

DJ (M2) =

√
mRΓRBr(R → π+π−)/π

−M2 + m2
R − imRΓR

at |M − mR| 
 mR . (12)

The third factor Eλγ ,λππ

J describes the angular distribution of pions in their

centre-of-mass frame, Eλγ ,λππ

J = Y J,λππ (θ, φ) e−iλγψ.
2.1. Amplitudes of C-Odd Dipion Photoproduction. The C-odd dipion

diffractive production is described by the ®real Pomeron¯. It has been studied
both in theory and in experiment as a production of C-odd resonances, mainly
ρ(770) meson with well-known properties. In the mass interval under discussion
main contribution is given by dipions with J = 1. It can be parameterized
roughly as

AIP
J,λππ

≡ A−
J,λππ

= ζ(IP) eiδF
gJ,λππ√

n!

√
σIPBIP |BIPk2

⊥|n/2 e−BIPk2
⊥/2,

ζ(IP) = 1,
∑

g2
J,λππ

= 1, σIP ≈ 11 µb, BIP ≈ 10 GeV−2.
(13)

Here the s dependence of the cross section is included in the quantity σIP.
Factors gJ,λππ describe relative magnitudes of different helicity �ips. Factor
ζ(IP) is written here to describe in future other exchanges with similar notation,
it represents the signature factor in the standard deˇnition. Factor |BIPk2

⊥|n/2

describes weak violation of helicity conservation near the forward direction.
The (approximate) s-channel helicity conservation (SCHC) takes place at

small t Å the dipion helicity coincides with that of an initial photon, it means
that

gJ=1,1 ≈ 1, |gJ=1,0|, |gJ=1,−1| 
 1. (14)

In the same manner SCHC means that the helicities of p and p′ coincide. Besides,
the vertex pIPp′ is the most signiˇcant one when p′ coincides with proton p (the
admixture from proton dissociation to excited states with masses M ′ � 2 GeV
is below 25%). As mentioned above, we omit all factors related to the proton
vertex and helicities there.

In the considered dipion mass interval (3) the main part of dipions is produced
as ρ(770) meson. Here the factor D1 is approximated well by the well-known
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BreitÄWigner form (12). Far from resonance this factor is naturally modiˇed.
At 2mπ < M < Mρ one can use for D1 the well-known GounarisÄSakurai
approximation obtained for the pion form factor. At M > Mρ one should take
into account also ρ′, etc. states similarly to what is done for the pion form factor
(see, e.g., [13]).

2.2. Amplitudes of C-Even Dipion Photoproduction. The C-even pion pairs
can be produced diffractively via the following t-channel exchanges: ρ/ω Regge
exchange, odderon exchange, and via the photon exchange (Primakoff effect).

• The contribution of the ρ/ω Reggeon exchanges is estimated with the
standard Regge extrapolation from the low energy data. In the considered energy
interval it is below 0.2 nb [2] (in γp collision), and it is neglected below.

• The Primakoff effect is dipion production in collision of the incident photon
with the photon emitted by the proton. Its amplitude can be written in the form of
Eq. (11), it is the same as that in the two-photon processes e+e− → e+e−π+π−

[12, 14]. In the regions under interest (3), the dominant contribution is given by
the almost real photon exchanges with both an electron and a proton. Therefore,
the total helicity of the initial two-photon state and respectively of dipions can be
0 and 2.

Beginning from the threshold, the pions interact strongly in the I = J =
0 state (which is described by f0 resonances). The other partial waves are
described well with QED approximation for point-like pions (with known small
modiˇcations). The QED amplitude with I = 0, J = 2 is relatively large starting
from M = 0.5−0.7 GeV. The other amplitudes can be neglected everywhere in
our problem.

At M2 
 sγp, the amplitude of the Primakoff γp → Rp process can
be written [12] via the two-photon decay width ΓR

γγ of the resonance R with
spin J as

Aγ =
√

σ2
|k⊥|

k2
⊥ + Q2

m

with σ2 ≡
8παΓR

γγ(2J + 1)
m3

R

, Qm =
mpM

2

sγp
, (15a)

Q2
m is the minimal value of the virtuality of the exchanged photon, typically

Qm < me.
In our numerical estimates we will concentrate on the mass interval 1.1 <

M < 1.4 GeV. Here the main contribution is given by the I = 0, J = 2 partial
wave (other partial waves being negligible), the f2-meson (J = 2) production
dominates and for more precise calculation also the QED contribution should be
accounted. In rough estimates we consider only f2 contribution. We deˇne by g0

and g2 the relative probability amplitudes of the dipion production in the states
with helicity 0 and 2; g2

0 + g2
2 = 1. According to the data, the contribution of

total helicity λππ = 2 dominates, i.e., g2
2 � g2

0 (see, e.g., [15]). Similarly to (11),
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the amplitude of the process can be written as (with λγ = ±1)

A+ = AγD2(M2) (g2Y2,2(θ, φ) + g0Y2,0(θ, φ)) e−iλγψ ≡

≡ AγD2(M2)

√
15
32π

[
g2(1 − ξ2) e2iλγφ + g0

√
2
3
(3ξ2 − 1)

]
e−iλγψ. (15b)

• We assume the odderon to be a Reggeon-like object so that the odderon
amplitude can be written in the same form (11), (13) as the Pomeron amplitude
but with J = 0, 2 (instead of 1) and with naturally different values of numerical
parameters g, σIP → σO, BIP → BO and different signature factor ζ(IP) →
ζ(O) = i. Certainly, in this case all parameters g σO, and BO are unknown. In
numerical estimates we assume

BO ∼ BIP, 100 � σO � 1 nb ∼ (10−2 ÷ 10−4)σIP. (16)

(At σO > 100 nb the odderon should be deˇnitely seen as a small bump in the
π+π− effective mass distribution near M = 1270 MeV or as π0π0 peak in this
mass region. If σO < 1 nb, it will be difˇcult to distinguish odderon effect from
the ρω exchange.) In the reggeized 3-gluon exchange quark-diquark model [16]
(which was also used Å in some speciˇc variant Å in Ref. 11) the coupling of
the odderon to the proton is roughly similar to that of the Pomeron. Therefore,
we assume the amplitudes with p′ = p and proton helicity conservation to be
either dominant or contributing not less than other amplitudes.

We assume that Å as it is customary for other phenomena at M � 1.5 GeV Å
the pion pairs are produced mainly via resonance states (f0 and f2 mesons). At
M � 1.1 GeV, we deal here with the γOf2(1270) vertex. We have no informa-
tion about the helicity structure of the γ O (ππ) vertex. Therefore, we consider
both variants, SCHC in this vertex, with λππ = λγ , and violation of SCHC with
the same dipion helicity as in the Primakoff case, λππ = 2 or 0 at λγ = 1.

• It is seen that the Primakoff effect contribution is concentrated at very low
k⊥, while the odderon contribution has a much �atter k⊥ dependence. This is a
key to a clean separation of studying the effects due to these two exchanges.

3. DIFFERENTIAL CROSS SECTION. γp COLLISIONS

In this section we present equations for the mass interval 1.1 < M <
1.4 GeV. Here we have β = 1 with high precision, and omit this factor in
the results. (The corresponding equations for M < 1.1 GeV can be easily written
in the similar form.)
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The differential cross section of the dipion photoproduction averaged over
the initial photon polarizations is

dσ = 2
|A− + A+|2√
1 − ξ2 − v2

dM2dk2
⊥dξdv = dσsym + dσasym,

dσsym = dσIP + dσO + dσPr + dσO−Pr, dσasym = dσIP−O + dσIP−Pr.

(17)

We introduced here evident notation: dσIP is the contribution to cross section
from the Pomeron; dσO Å from the odderon; dσPr Å from the Primakoff
effect, and dσO−Pr is the contribution of the Primakoff-odderon interference. All
these contributions are charge symmetric. The charge asymmetric contribution to
cross section is the sum of Pomeron-odderon (dσIP−O) and PomeronÄPrimakoff
(dσIP−Pr) interference terms.

3.1. Charge Symmetric Background. In our problem of studying the charge
asymmetric contribution, the charge-symmetric contribution presents background
so that here it is sufˇcient to consider only the main part of dσsym. Here the
dominant contribution is given by the Pomeron contribution, while contributions
dσO and dσO−Pr can be neglected in our analysis. For estimates, we present
main contribution here (both differential and integrated over ξ and v)

dσγp
sym ≈ dσγp

IP ≈ 3
4π

|AIP(s, t)|2|D1(M2)|2(1 − ξ2)
dM2dk2

⊥dξdv√
1 − ξ2 − v2

⇒

⇒ σIPBIP|D1(M2)|2 e−BIPk2
⊥dM2dk2

⊥. (18)

The Primakoff effect contribution is generally also small but it is strongly
peaked at small k⊥. So, it is necessary to calculate it in more detail,

dσγp
Pr = σ2

k2
⊥

(k2
⊥ + Q2

m)2
|D2(M2)|2 15

16π
T (ξ, v)

dM2dk2
⊥dξdv√

1 − ξ2 − v2
⇒

⇒ σ2
k2
⊥

(k2
⊥ + Q2

m)2
|D2(M2)|2dM2dk2

⊥,

T (ξ, v) =

[
g2
2(1 − ξ2)2 +

2
3

g2
0(3ξ2 − 1)2 +

+ 2g0g2

√
2
3

(3ξ2 − 1)(2v2 + ξ2 − 1)

]
.

(19a)

For the numerical estimates, it is useful to calculate the total cross section
of the f2 production and the cross section integrated over some regions of k⊥.
Simple integration over k2

⊥ and M with dipole form factor of proton (with the
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scale ∼ m2
ρ) results in

σγp,tot
Pr,f2

= σ2

[
2 ln

(
mρsγp

M2
f mp

)
− 2.8

]
≈ (14 ÷ 16)σ2 ≈ 7 nb,

σPr,f2(k2
⊥ � k2

m 
 m2
ρ) = σ2

[
2 ln

(
kmsγp

M2
f mp

)
− 1

]
.

(19b)

Therefore, more than 90% of cross section is concentrated at k⊥ � 100 MeV,
while the regions k⊥ > 200 MeV or k⊥ > 300 MeV give respectively 0.5 or
0.2 nb. The latter quantities can be neglected in all calculations.

3.2. The Charge Asymmetric Part of Cross Section. 3.2.1. Type of Asym-
metry. In respect of ep collisions, we consider the cross sections averaged over
electron scattering angle. For γp collision it corresponds to averaging over initial
photon spin states. When we consider product (A+)†A−, the integration over ψ
leaves, in the result, only the terms with identical λγ in A+ and A−. Besides,
due to P invariance, for real photons (λγ = ±1) the other factors in Eq. (11)
depend only on the helicity �ip n = |λππ − λγ |, not on the value of the helicity
itself. Therefore, denoting by λ+ and λ− the helicities of C-even and C-odd
dipion systems, respectively, the interference effects become proportional to sums
over opposite initial photon helicities with simultaneous change of the sign of the
ˇnal dipion helicities

E∗J,λ−
λγ

EJ,λ+
λγ

+ E∗J,−λ−
−λγ

EJ,−λ+
−λγ

∝ cos [(λ− − λ+)φ]. (20)

Since |J+ − J−| is odd, this quantity changes sign with θ → π − θ, φ → π + φ
(i.e., p− ↔ p+). In particular:

The terms with odd λ+−λ− change sign with φ → π+φ, i.e., with v → −v.
They are responsible for the T asymmetry.

The terms with even λ+ − λ− remain invariant under φ → π + φ. Therefore,
they must change sign with θ → π − θ, i.e., they are responsible for the FB
asymmetry.

3.2.2. The Shape of M Dependence. In our approximation (11) the M
dependence of the interference of the C-odd and C-even dipion production at
M > 1.1 GeV is given by the helicity-independent overlap functions, related to
the difference between Pomeron and odderon intercepts δF − δO, or the Pomeron
intercept and the Primakoff phase, respectively, for the Pomeron-odderon and
PomeronÄPrimakoff contributions, as

IZ(M) = Re
[
D1D

†
2 ei∆

]
with ∆ =

{
δF − δO − π

2
for Z = IP −O,

δF for Z = IP − Pr.
(21)
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Fig. 1. Overlap function IZ for ∆−π/2 =
0 and 0.25, respectively, Z is IP − O or
IP − Pr

The shapes of these overlap func-
tions are independent of the helicity
structure of the dipion production ampli-
tude, i.e., of the interrelation among co-
efˇcients gi. Besides, if the odderon in-
tercept is close to 1, i.e., δO ≈ π/2, these
two overlap functions are close to each
other. For preliminary estimate we use
for both D1 and D2 the BreitÄWigner
form (12) for ρ and f2 mesons, respec-
tively (see Fig. 1). As it was discussed
above that is a good approximation for
D2, and it should be improved for D1 at
1.1 < M < 1.4 GeV.

Since the Pomeron intercept is close to 1, the overlap function is large (∼ 1)
when the phase shift between two BreitÄWigner factors is close to π/2. This
happens in a wide enough region around the resonance peaks, where the DR1

(one resonance) is almost real while the DR2 (the other one) is almost imaginary.

Fig. 2. The local statistical signiˇcance
of the charge asymmetry, in notations
of Fig. 1

• The numerical estimates given be-
low show that the charge symmetric back-
ground is described with high precision by
the Pomeron contribution ∝ |D1(M2)| only.

Therefore the local statistical signiˇ-
cance (9), SS ∝ I12/

√
|D1(M2)| repro-

duces roughly the shape of the f2 peak (and
weakly depends on details of D1), as it is
shown in Fig. 2. Therefore, the largest sta-
tistical signiˇcance comes from the region
under the f2 peak mf −Γf < M < mf +Γf

which can be recommended for the data
analysis (real cuts can be even more nar-
row without loss of SS). Integration of |Di|2
and of the overlap function IIP−O over this
range gives at ∆ − π/2 = 0

(mf − Γf < M < mf + Γf ) ⇒ ∆IZ =
∫

dM2I(M2) = 0.09;

C1 =
∫

dM2|D1(M2)|2 = 0.038; C2 =
∫

dM2|D2(M2)|2 = 0.40.
(22)

Note that the value of ∆IZ depends on phase difference ∆ only weakly.
3.2.3. PomeronÄPrimakoff Interference. The charge asymmetry given by an

interference of Pomeron with Primakoff amplitude can be substantial only at very
small k⊥ � 100 MeV. Here the k⊥ dependence of Pomeron amplitude and helicity
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�ip contributions are negligible. Due to SCHC for Pomeron amplitude, in this
case |λ+ − λ−| = 1 and consequently main asymmetry is transverse one,

dσγp
IP−Pr = v

√
σ2σIPBIP IIP−Pr(M)Z(ξ)

|k⊥|
k2
⊥ + Q2

m

dM2dk2
⊥dξdv√

1 − ξ2 − v2
,

Z(ξ) =
3
√

5
4π

[
g2(1 − ξ2) + g0

√
2
3
(3ξ2 − 1)

]
.

(23)

This asymmetry is peaked at small k⊥.
The FB asymmetry in this case has no peak at small k⊥, its absolute value

is no more than 1 ÷ 3% of the T asymmetry at k⊥ < 100 MeV.
3.2.4. Pomeron-Odderon Interference. The charge asymmetric contribution

given by an interference of Pomeron and odderon has more complex structure.
Neglecting contributions with higher helicity �ips n > 1 one can write the inter-
ference contribution to the cross section in the form

dσγp
IP−O =

3
√

5IIP−O(M)
2π

√
σIPσOBIPBO e−(BIP+BO)k2

⊥/2×

× (ξTξ + v|k⊥|Tv)
dM2dk2

⊥dξdv√
1 − ξ2 − v2

;

Tξ = g1,1g2,1(1 − ξ2) + g1,0

√
BOBIP k2

⊥×

×
[

1√
2
g2,2(2v2 + ξ2 − 1) +

1√
3
g2,0(3ξ2 − 1)

]
, (24)

Tv = g1,1

[
1
2
g2,2(1 − ξ2) +

1√
6
g2,0(3ξ2 − 1)

] √
BO + g1,0g2,1ξ

2
√

BIP.

Here the term Tξ, with even λ+ − λ−, describes the FB asymmetry, while the
term Tv, with odd λ+ − λ−, describes the T asymmetry. If the SCHC holds
for the odderon, then the principal effect would be the FB asymmetry. The T
asymmetry is dominant in the case of strong s-channel helicity nonconservation
for odderon, for instance, if the f2 meson is produced in the state with maximal
helicity λf = ±2.

• It is useful to compare the PomeronÄPrimakoff and the transverse Pomeron-
odderon charge asymmetries. For deˇniteness, we consider the case of maximal
SCHC violation for odderon with g2,2 ≈ 1 and g2 ≈ 1 for the Primakoff effect
at BOk2

⊥ < 1. In this case the ratio of transverse asymmetries given by an
interference of Pomeron with Primakoff effect and odderon can be written in
very simple form

dσγp
IP−Pr

dσγp
IP−O

=
K2

∗
k2
⊥

with K2
∗ =

√
σ2

σO

1
BIP

. (25)
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Therefore, the Pomeron-odderon contribution can be neglected at k⊥ < K∗ ≈
80 MeV even for very large odderon photoproduction cross section σO = 100 nb,
while the Primakoff contribution can be neglected at k⊥ > K∗ ≈ 260 MeV even
at very low σO = 1 nb.

4. ep COLLISIONS. PHYSICAL PROBLEMS

In real experiments, e.g., at HERA, the γp reactions are studied in ep col-
lisions. In our opinion, the most efˇcient way of studying the problems under
interest here is to consider dipion production without recording of the scattered
electrons. The dominant part of the ep cross section comes from the region of
very small virtuality of the exchanged photon −q2 ≡ −(pe − p′e)2. Here trans-
verse component of photon momentum q⊥ is small, the photon energy ω with
high accuracy coincides with the total dipion energy and the equivalent photon
approximation has very high precision (see, e.g., [12]). In this approximation the
�ux of the equivalent photons with energy ω = yEe and transverse momentum
q⊥ is

dnγ =
α

π

dy

y

[
ν(y) − (1 − y)

q2
e

q2
⊥

]
q2
⊥dq2

⊥
(q2

⊥ + q2
e)2

with q2
e =

m2
ey

2

1 − y
, ν(y) = 1 − y +

y2

2
. (26)

We present all results here for the measurable values of K⊥, that is K2
⊥ �

Q2
m, q2

e .
The ep cross section is given by a convolution of the virtual photon �ux

originating from the electron with the cross section of the γp subprocess under
condition (7). In the numerical estimates below we integrate cross sections over
interval 0.1 � y � 0.9.

4.1. Possible Discovery of Odderon, 1.1 < M < 1.45 GeV. In the discus-
sion of odderon, the main problem is to detect its signal. In our opinion, the
observation of the discussed charge asymmetry of pions provides the best solution
for this problem. To estimate the feasibility of this observation, we consider the
(Pomeron) background and the corresponding Pomeron-odderon charge asymme-
try in ep collisions. In this estimate the logarithmic accuracy sufˇces. To simplify
equations below we assume BO ≈ BIP (accounting for the difference is trivial
with the above equations).

In this case the background is given by integration of the above-mentioned
convolution of the photon �ux with the Pomeron contribution over K⊥. In
this integration one should take into account also the dependence of hadronic
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contribution on q2 (form factor) which scale mr ∼ mρ,

dσep
IP,tot = NIP,tot σIP|D1|2dydM2, NIP,tot =

α

πy

[
ν(y) log

(
m2

r

q2
e

)
− (1 − y)

]
.

(27)
The results for asymmetry depend on (still unknown) helicity structure of the
odderon amplitude.

• If SCHC takes place also for odderon amplitude, i.e., g2,1 ≈ 1, the main
charge asymmetry is the forwardÄbackward one. In this case the PomeronÄ
Primakoff background is practically absent, and no additional cuts in K⊥ are
necessary. The integrated FB charge asymmetry can be written in the form like
(27) with the same total photon �ux NIP,tot and Tξ (24),

dσep
IP−O,tot = ξNIP,tot

3
√

5IIP−O(M)
2π

√
σIPσO Tξ

dy dM2dK2
⊥dξdv√

1 − ξ2 − v2
. (28)

The ˇrst term in Tξ (24) is dominant in charge asymmetry at small k⊥.
With the growth of k⊥, the terms with helicity �ip both for the Pomeron and
odderon become essential, and, generally, not small. Note that upon the azimuthal
integration over entire region of v variation, the contribution from production of
f2 in the state with helicity-2 vanishes because

∫
cos 2φdφ = 0.

The subsequent integration over M around the f2 peak (22) and over y
(with

∫
NIP,totdy = 0.053) gives (with logarithmic accuracy) the total back-

ground σep
bkgd. To estimate the value of charge asymmetry ∆σFB (8) we assume

additionally that g1,1 ≈ g2,1 ≈ 1 and for the calculation of statistical signiˇ-
cance of the FB asymmetry measurement (9) we use HERA luminosity (10). For
σO = 1 ÷ 100 nb we have (see (22))

σep
bkgd,FB = 0.053 σIP C1 = 22 nb,

∆σIP−O,FB =
3
√

5
4

0.053
√

σIPσO|∆IIP−O| = 0.83 nb

√
σO
nb

⇒

⇒ SSFB = 56
√

σO
nb

= 56 ÷ 560. (29)

• If SCHC is violated strongly for odderon amplitude, i.e., for example,
g2,2 ≈ 1 (as for the photon exchange), the main charge asymmetry is the
transverse one, its relative value increases with growth of k⊥. Here PomeronÄ
Primakoff interference is also essential. However, the latter decreases with growth
of k⊥, and cut in K⊥ from below at K⊥ = Km ≈ 300 MeV eliminates this con-
tribution (see estimates (25)). Besides, the relative growth of transverse charge
asymmetry with k⊥ provides improvement of signal-to-background ratio with the
growth of Km. With the cut K⊥ � Km < 1/

√
BIP, the background contribution
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(27) is reduced by factor e−BIPK2
m , while the transverse charge asymmetry is

given by

dσep
IP−O,T =

= vK⊥NIP,tot RT
3
√

5IIP−O(M)
2π

√
σIPσOBO Tv

dy dM2dK2
⊥dξdv√

1 − ξ2 − v2
,

RT =
∞∫

BIPK2
m

√
x e−xdx.

(30)

In the numerical estimates with Km = 300 MeV it gives, similarly to (29),

σep
bkgd,T ≈ 9 nb; ∆σIP−O,T ≈ 0.34

√
σO
nb

nb ⇒ SST = 35
√

σO
nb

= 35 ÷ 350.

(31)
• The numbers in (29), (31) are very promising. They offer certain conˇdence

that the odderon signal is indeed within the reach of the current experiments even
with very low value for the odderon-induced cross section 1 nb.

4.2. Small K⊥. Measuring Pomeron Phase, 1.1 < M < 1.45 GeV. In this
subsection we consider effects at Kmin = 20 MeV < K⊥ � Kmax = 80 MeV,
where the Pomeron-odderon interference contribution can ne neglected with good
conˇdence (25). Here the PomeronÄPrimakoff interference dominates in charge
asymmetry. Since Primakoff contribution is either well known (at 1.1 < M <
1.4 GeV) or can be established well (at M < 1.1 GeV), it is suggested [3] to use
the measurement of charge asymmetry at these K⊥ to extract the Pomeron phase
from the data.

Let us stress a vital feature of our suggestion. The procedure we propose
does not demand the measurement of very small scattering angles of pions. The
pions that hit the detector have transverse momenta p±⊥ ∼ M/2 ∼ 500 MeV,
which looks not so difˇcult for the measurement. It is the sum of the transverse
momenta of the two pions k⊥ that is supposed to be small and measurable. So,
in order for this method to be efˇcient, we need a reasonable resolution of the
reconstruction of each pion's transverse momentum. The choice of the lower
bound Kmin in K⊥ corresponds to the anticipated accuracy of this measurement.

The upper bound Kmax = 80 MeV is chosen in accordance with Eq. (25)
for the case of extremely high odderon-induced f2 production cross section of
100 nb with prevalent helicity 2 production. The study of K⊥ dependence of
the transverse charge asymmetry at K⊥ > 100 MeV will allow one to either
determine this odderon cross section or set up its upper bound. After that, the
upper limit Kmax can be increased. Fortunately, the statistical signiˇcance of the
discussed effect (34) changes very little even if Kmax varies from, e.g., 70 up to
150 MeV.

To extract Pomeron phase from the data, accurate calculations should be
made. In the text below we will mark the point where these accurate calculations
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are changed to estimates that are necessary for understanding the potential of this
approach.

At K⊥ � 150 MeV the proper k⊥ dependence of the Pomeron amplitude
becomes inessential except for its scale given by exp (−BIPk2

⊥). To simplify
integration, we change this dependence to 1/(1 + BIPk2

⊥) (that is good approx-
imation at BIPK2

⊥ < 0.1). Now the charge symmetric part of cross section
(background) is (see also (19))

dσep
bkgd,∗ = dσep

IP,∗ + dσep
Pr;

dσep
IP,∗ = σIPBIP|D1(M2)|2 3

4π
(1 − ξ2)NIP,∗

dy dM2 dK2
⊥ dξ dv√

1 − ξ2 − v2
,

NIP,∗ =
α

πy

[
ν(y)

(
log

(
1

BIPq2
e

)
− 1

)
− (1 − y)

]
;

dσep
Pr = Nγ

dy dM2 dK2
⊥ dξ dv√

1 − ξ2 − v2

σ2|D2(M2)|2
K2

⊥ + Q2
m + q2

e

15
16π

T (ξ, v),

Nγ =
α

πy

[
ν(y)

(
log

(
(K2

⊥)2

Q2
mq2

e

)
− 2

)
− (1 − y)

]
.

(32)

Here we keep term Q2
m + q2

e in the denominator which is negligible at the
measurable values of K⊥ but useful in an estimate of the total cross section.

The PomeronÄPrimakoff interference term describes transverse asymmetry, it
can be written in the form (cf. Eq. (23))

dσep
IP−Pr=vNIPγ

dy dM2 dK2
⊥ dξ dv√

1 − ξ2 − v2

√
σIPBIP σ2

|K⊥|
K2

⊥
IIP−Pr(M2)Z(ξ),

NIPγ =
α

πy

[
ν(y)

(
log

K2
⊥

q2
e

− 1
2

)
− 1 − y

2

]
.

(33)
For good extraction of Pomeron phase from the data one should have more
accurate equations for Di as it was mentioned above. That is the subject of the
forthcoming work.

To estimate experimental possibilities, it is sufˇcient to use simple resonant
approximations written above. In this estimate we also neglect Primakoff con-
tribution to background. After integration over y, at integral luminosity (10) we
obtain similar to (29)

σep
bkgd ≈ 1.1 nb, ∆σIP−Pr,T ≈ 0.1 nb ⇒ SST ≈ 30. (34)

This value of the integral SS shows that the effect is observable at HERA
with good conˇdence. We hope that after dedicated speciˇcation of the models
for Di, a detailed study of the M shape of this charge asymmetry will allow for
extraction of the Pomeron phase δF with reasonable precision.
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4.3. The Case M < 1.1 GeV. Certainly, the region of effective masses below
1.1 GeV can be also used for the discovery of the odderon and for measuring
the Pomeron phase. Just as above, the observation of FB charge asymmetry or
transverse asymmetry at K⊥ > 300 MeV will be a clear signal of the existence
of the odderon. Unfortunately, we have no motivated understanding what would
be the odderon amplitude in this mass interval.

The observation of transverse charge asymmetry at K⊥ � 100 MeV can be
a source of information about the Pomeron phase. A more detailed model for
the γγ → π+π− is necessary to make more accurate predictions for the study of
Pomeron phase. This model can be veriˇed by measurement of similar charge
asymmetry in the process e+e− → e+e−π+π− at modern e+e− colliders [14].
That is the subject of the forthcoming studies.

Preliminary estimates show that below the ρ peak the phases of factors D1

and DI=0
0 are close to each other, so that the contribution of this term to the

considered asymmetry is small, and the dominant contribution to the charge
asymmetry is given by the ρ−QED interference. The best statistical signiˇcance
of charge asymmetry is given in the region M = 0.4−0.8 GeV.

5. DISCUSSION AND CONCLUSIONS

We have shown that the measurement of charge asymmetry of pions in
diffractive process ep → eπ+π−p′ at HERA allows one to discover the odderon
and to measure the Pomeron phase. We assume here experiments without tagging
of scattered electrons (or with antitagging of scattered electrons with the transverse
momentum q⊥ > 300 ÷ 600 MeV).

For the odderon discovery, one only needs to observe the signal of charge
asymmetry at not too small dipion transverse momenta. Our estimates show that
HERA has very large potential in this problem, and this potential does not depend
on any particular model of the odderon.

In order to measure the Pomeron phase δF , one needs to perform detailed
measurements of charge asymmetry at sufˇciently small dipion momenta. The
suggested approach avoids problems associated with the measurement of very
small transverse momenta of the detected particles, in contrast to the strong-
Coulomb interference in elastic pp scattering (where one should measure trans-
verse momenta p⊥ � 100 MeV). Here, detected pions have typical transverse
momenta |p±⊥| ∼ 500 MeV, which should be measurable with good precision.

Equations written in the text allow one to obtain preliminary estimate for δF

and ˇnd its s dependence with accuracy limited by details of experimentation. A
more precise extraction of the absolute value of δF demands more accurate models
for both Pomeron and Primakoff amplitudes. The main features of these models
are well known, and these models can be further improved right in the course of
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dedicated experiments on charge asymmetries (both at high-energy lepton-hadron
and low-energy e+e− colliders). The sketch of how predictions can be made
more precise is given in the text. For each mass interval, these problems should
be studied separately.

Acknowledgements. We are thankful to S. Brodsky, A. V. Efremov,
D. Yu. Ivanov, A. B. Kaidalov, N. N. Nikolaev, B. Pire, M. Ryskin, V. G. Serbo,
G. N. Shestakov, Yu. A. Simonov, L. Szymanowski, O. V. Teryaev, H. Jung for
valuable comments. This paper is supported by grants RFBR 02-02-17884,
NSh-2339.2003.2, INTAS 00-00679 and grant 015.02.01.16 Russian Universities.

REFERENCES

1. Ginzburg I. F. hep-ph/0211099.

2. Ginzburg I. F., Ivanov I. P., Nikolaev N. N. // Eur. Phys. J. C. 2003. V. 5. P. 02; Proc. of the IX
Intern. Workshop on Deep Inelastic Scattering (DIS 2001), Bologna, Italy, April 27 Ä May 1,
2001; hep-ph/0110181.

3. Ginzburg I. F., Ivanov I. P. hep-ph/0401180.

4. Brodsky S. J., Rathsman J., Merino C. // Phys. Lett. B. 1999. V. 461. P. 114.

5. Hagler Ph. et al. // Phys. Lett. B. 2002. V. 535. P. 117; V. 540. P. 324; hep-ph/0206270; hep-
ph/0209242.

6. E-811 Collab. // Phys. Lett. B. 2002. V. 537. P. 41.

7. Gribov V. N. et al. // Sov. J. Nucl. Phys. 1971. V. 12. P. 699;
Lukaszuk L., Nicolescu B. // Lett. Nuovo Cim. 1973. V. 8. P. 405;
Joyson D. et al. // Nuovo Cim. A. 1975. V. 30. P. 345.

8. Ginzburg I. F., Ivanov I. P. // Nucl. Phys. B. 1992. V. 338. P. 376;
Barakhovsky V. V., Zhitnitsky I. R., Shelkovenko A. N. // Phys. Lett. B. 1991. V. 267. P. 532.

9. Bartels J. // Nucl. Phys. B. 1980. V. 175. P. 365;
Kwiecinski J., Praszalowicz M. // Phys. Lett. B. 1980. V. 94. P. 413;
Donnachie A., Landshoff P. V. // Nucl. Phys. B. 1984. V. 231. P. 189; Phys. Lett. B. 1983. V. 123.
P. 345.

10. Golling T. for H1 Collab. // Proc. of the IX Intern. Workshop on Deep Inelastic Scattering (DIS
2001), Bologna, Italy, April 27 Ä May 1, 2001;
Olsson J. for H1 Collab. // New Trends in High Energy Physics, Yalta, Ukraine, Sept. 22Ä29,
2001; hep-ex/0112012.

11. Berger E. R. et al. // Phys. Rev. D. 1999. V. 59. P. 014018; Eur. Phys. J. C. 1999. V. 9. P. 491;
2000. V. 14. P. 673.

12. Budnev V. M. et al. // Phys. Rep. 1975. V. 15. P. 181.

13. Achasov N. N., Kozhevnikov A. A. // Phys. Rev. D. 1997. V. 55. P. 2663.

14. Ginzburg I. F., Schiller A., Serbo V. G. // Eur. Phys. J. C. 2001. V. 18. P. 731.

15. Boglione M., Pennington M. R. // Eur. Phys. J. C. 1999. V. 9. P. 11.

16. Zakharov B. G. // Sov. J. Nucl. Phys. 1989. V. 49. P. 860.


