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EFFECT OF THE RELATIVISTIC SPIN ROTATION
ON TWO-PARTICLE SPIN COMPOSITION

R. Lednicky∗, V. L. Lyuboshitz∗∗, V. V. Lyuboshitz∗∗∗

Joint Institute for Nuclear Research, Dubna

The effect of the relativistic spin rotation on two-particle spin states, conditioned by the setting
of the spins of the particles in their rest frames and by the noncommutativity of the Lorentz transfor-
mations along noncollinear directions, is discussed. Particularly, the transition from the c.m.s. of two
spin-1/2 particles to the laboratory is considered. When the vectors of the c.m.s. particle velocities
are not collinear with the velocity vector of the c.m.s., the angles of the relativistic spin rotation for
the two particles are different. As a result, the relative fractions of the singlet and triplet states in the
relativistic system of two spin-1/2 particles with a nonzero vector of relative momentum depend on
the concrete frame in which the two-particle system is analyzed.

�¡¸Ê¦¤ ¥É¸Ö ¢²¨Ö´¨¥ ·¥²ÖÉ¨¢¨¸É¸±µ£µ ¢· Ð¥´¨Ö ¸¶¨´  ´  ¤¢ÊÌÎ ¸É¨Î´Ò¥ ¸¶¨´µ¢Ò¥ ¸µ¸Éµ-
Ö´¨Ö ¸ ÊÎ¥Éµ³ Ë¨±¸ Í¨¨ ¸¶¨´µ¢ ¢ ¸¨¸É¥³ Ì ¶µ±µÖ Î ¸É¨Í ¨ ´¥±µ³³ÊÉ É¨¢´µ¸É¨ ¶·¥µ¡· §µ¢ ´¨°
‹µ·¥´Í  ¢¤µ²Ó ´¥±µ²²¨´¥ ·´ÒÌ ´ ¶· ¢²¥´¨°. ‚ Î ¸É´µ¸É¨, · ¸¸³µÉ·¥´ ¶¥·¥Ìµ¤ ¨§ ¸. Í. ³. ¤¢ÊÌ
Î ¸É¨Í ¸µ ¸¶¨´µ³ 1/2 ¢ ² ¡µ· Éµ·´ÊÕ. Šµ£¤  ¸±µ·µ¸É¨ Î ¸É¨Í ¢ ¸. Í. ³. ´¥ ±µ²²¨´¥ ·´Ò ¸±µ·µ¸É¨
¸. Í. ³., Ê£²Ò ·¥²ÖÉ¨¢¨¸É¸±µ£µ ¸¶¨´µ¢µ£µ ¢· Ð¥´¨Ö ¤²Ö ¤¢ÊÌ Î ¸É¨Í · §²¨Î´Ò. ‚ ·¥§Ê²ÓÉ É¥ µÉ´µ-
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 ´ ²¨§¨·Ê¥É¸Ö ¤¢ÊÌÎ ¸É¨Î´ Ö ¸¨¸É¥³ .

1. Earlier the spin correlations in two-particle quantum systems were analyzed
in detail as a tool allowing one to measure the space-time characteristics of
particle production [1Ä5], to study the two-particle interaction and the production
dynamics (see [3,4] and references therein) and to verify the consequences of the
quantum-mechanical coherence with the help of Bell-type inequalities [4].

The spin state of the system of two particles in an arbitrary frame is described

by the two-particle density matrix, the elements of which, ρ
(1,2)
m1m1′; m2m2′ , are

given in the representation of the spin projections of the ˇrst and second particle
in the corresponding rest frames onto the common coordinate axis z (see, e.g.,
[3, 5])∗∗∗∗. However, one should take into account the relativistic spin rotation
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conditioned by the additional rotation of the spatial axes at the successive Lorentz
transformations along noncollinear directions [7Ä9]∗. As a result, the concrete
description of a particle spin state depends on the frame from which the transition
to the particle rest frame is performed. Particularly, the total spin composition
of the two-particle state with a nonzero vector of relative momentum is generally
frame-dependent due to different relativistic rotation angles of the two spins at
the transition to the frame moving in the direction which is not collinear with the
velocity vectors of both particles.

Usually, it is convenient to consider the spin correlations in the centre-of-
mass system (c.m.s.) of the particle pair. This is natural at the addition of
the two-particle total spin and the relative orbital angular momentum into the
conserved total angular momentum. In some cases, however, it may be useful to
make transition to the laboratory, e.g., in the case when the particle scatterings
are used as their spin analyzers [1]∗∗. Denoting Ml and pl = ±k the masses and
c.m.s. momenta of the two particles, l = 1, 2, their respective c.m.s. velocities
in the units of the velocity of light (c = 1) are vl = ±k/

√
k2 + M2

l . Here and
below the ± signs correspond to the ˇrst (l = 1) and second (l = 2) particle,
respectively. We denote the corresponding laboratory velocities as ṽl and the
laboratory velocity of the particle pair as V. At the Lorentz transformation from
the c.m.s. of the particle pair to the laboratory frame with parallel respective
spatial axes, the spins of the ˇrst and the second particle (in their respective
rest frames) rotate in opposite directions around the axis which is parallel to the
vector [kV]∗∗∗. The rotation angles ωl are given by the Stapp formula [7] (see
also [8, 9]):

sin ωl = ±γγlV vl sin θ
1 + γ + γl + γ̃l

(1 + γ)(1 + γl)(1 + γ̃l)
, (1)

where the positive sign corresponds to the direction of the nearest rotation from the
vector k to the vector V; θ is the angle between the vectors k and V (0 � θ � π),

of the inhomogeneous Lorentz group and avoids the problem of the noncommutativity of the spin
operators with the free Hamiltonian [6]. This circumstance was not understood in Ref. 2, where the
unnecessary condition of nonrelativistic particle velocities was required.

∗The relativistic rotation of the spatial axes leads to the nontransitivity of the parallelism in the
theory of relativity (see [10] and references therein): generally, the parallel axes of the frames K1

and K , K2 and K do not imply the parallel axes of the frames K1 and K2. The axes of all the three
frames could be mutually parallel if only their velocities were collinear (for example, if K1 and K2

were the rest frames of the two particles and K Å their c.m.s.).
∗∗In principle, this transition is not necessary since one can transform the four vectors deˇning

the polarization analyzers ˇrst to the pair c.m.s. and then to the respective particle rest frames.
∗∗∗The relativistic spin rotation is the purely kinematical effect: the angles of the space rotation

coincide with the angles between the vectors of the resulting velocities at the relativistic addition of
velocities vl and V in the direct and reverse orders [11].
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vl = |vl|, ṽl = |ṽl|, V = |V| and γl =
(
1 − v2

l

)−1/2
, γ̃l =

(
1 − ṽ2

l

)−1/2
,

γ =
(
1 − V 2

)−1/2
are the Lorentz factors;

γ̃l = γlγ(1 ± vlV cos θ). (2)

In the case of equal-mass particles the relations v1 = −v2, γ1 = γ2 hold (but
γ̃1 �= γ̃2 when V cos θ �= 0).

Using the equality

(1 + γ + γl + γ̃l)2 = 2(1 + γ)(1 + γl)(1 + γ̃l) − (γ2 − 1)(γ2
l − 1) sin2 θ,

one can write the analogous expressions for the cosines of the spin rotation angles:

cos ωl = 1 − (γ − 1)(γl − 1)
(1 + γ̃l)

sin2 θ. (1a)

In the case of the collinearity of the velocity vectors vl and V, when θ = 0 or
θ = π, both the rotation angles are equal to zero.

At nonrelativistic velocities vl in the c.m.s. of the particle pair (γl ≈ 1,
γ̃l ≈ γ), the angles ωl of the spin rotation are small and scale with vl:

ωl ≈ ± γ

γ + 1
vlV sin θ. (3)

In the ultrarelativistic limit, when γl → ∞, γ̃l/γl → γ (1 ± V cos θ), one has

sin ωl≈±V sin θ
1+γ(1±V cos θ)

(1+γ)(1±V cos θ)
, cos ωl≈1− γ−1

γ(1±V cos θ)
sin2 θ. (4)

Relations (4) are valid exactly for massless particles (photons, neutrinos). In this
case the rotation angles coincide with the aberration angles (the angles between
the vectors vl and ṽl); then the helicity (the spin projection of the particle onto
the direction of its momentum) is the relativistic invariant [9].

Taking into account the relativistic spin rotation at the transition from the
two-particle c.m.s. to the laboratory, the two-particle spin density matrix is
transformed as follows:

ρ̂′(1,2) = D̂(1)(ω1) ⊗ D̂(2)(ω2)ρ̂(1,2)D̂(1)+(ω1) ⊗ D̂(2)+(ω2), (5)

where
D̂(l)(ωl) = exp (iωl̂jln) (6)

are the matrices of the space rotations generated by the vector spin operators ĵl,
n is the unit vector parallel to the direction of the vector [kV].
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2. In the case of two spin-1/2 particles, the two-particle spin density matrix
has the structure [1, 3, 4]:

ρ̂(1,2) =
1
4

[
Î(1) ⊗ Î(2) + (σ̂(1)P1) ⊗ Î(2) + Î(1) ⊗ (σ̂(2)P2)+

+
3∑

i=1

3∑
k=1

Tikσ̂
(1)
i ⊗ σ̂

(2)
k

]
. (7)

Here Î is the two-row unit matrix; σ̂ is the Pauli vector operator; Pl = 〈σ̂(l)〉
are the polarization vectors; Tik = 〈σ̂(1)

i ⊗ σ̂
(2)
k 〉 are the components of the cor-

relation tensor, {1, 2, 3} ≡ {x, y, z}. The left and right indexes of the correlation
tensor correspond to the rest frames of the ˇrst (l = 1) and second (l = 2)
particle, respectively. The corresponding probability to select the particles with

the polarizations ζ(l) can be obtained by the substitution of the matrices σ̂
(l)
i in

expression (7) with the corresponding projections ζ
(l)
i . Particularly, when analyz-

ing the polarization states with the help of particle decays, the vector analyzing
power ζ(l) = αlnl, where αl is the decay asymmetry corresponding to the decay
analyzer unit vector nl. As a result [3, 4], the correlation between the decay
analyzers is determined by the product of the decay asymmetries and the trace of
the spin correlation tensor

T = Txx + Tyy + Tzz.

For example, the angular correlation n1n2 = cos θ12 between the directions of
the three-momenta of the decay protons in the respective rest frames of two
Λ-hyperons decaying into the channel Λ → p + π− with the P -odd asymmetry
α = 0.642 is described by the normalized probability density

W (cos θ12) =
1
2

(
1 + α2 T

3
cos θ12

)
. (8)

Clearly, the structure of both Eq. (7) and the corresponding angular dis-
tribution of the spin analyzers (e.g., Eq. (8)) does not depend on the system
from which the transitions to the particle rest frames are performed. The sys-
tem dependence manifests only through the relativistic rotations in the successive
Lorentz transformations along noncolinear directions. The matrices of the space
rotations due to the transition from the c.m.s. of two free spin-1/2 particles to the
laboratory are the following:

D̂(l)(ωl) = cos
ωl

2
+ iσ̂(l)n sin

ωl

2
. (9)

Selecting the z-axis parallel to the direction of the vector n = [kV]/|[kV]|, and
the axes x and y in the plane perpendicular to this vector, the polarization vectors
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and the spin correlation tensor transform at the transition to the laboratory in
accordance with the (active) rotations around the z-axis by the angles ω1 and ω2

for the ˇrst and second particle, respectively:

P ′
lx = Plx cos ωl − Ply sin ωl; P ′

ly = Ply cos ωl + Plx sin ωl; P ′
lz = Plz ;

T ′
xx=(Txx cos ω1−Tyx sin ω1) cos ω2−(Txy cos ω1−Tyy sin ω1) sin ω2;

T ′
yy=(Tyy cos ω1+Txy sin ω1) cos ω2+(Tyx cos ω1+Txx sin ω1) sin ω2;

(10)
T ′

zz = Tzz;

T ′
xy=(Txy cos ω1−Tyy sin ω1) cos ω2+(Txx cos ω1−Tyx sin ω1) sin ω2;

T ′
yx=(Tyx cos ω1+Txx sin ω1) cos ω2−(Tyy cos ω1+Txy sin ω1) sin ω2;

T ′
xz = Txz cos ω1 − Tyz sin ω1; T ′

zx = Tzx cos ω2 − Tzy sin ω2;

T ′
yz = Tyz cos ω1 + Txz sin ω1; T ′

zy = Tzy cos ω2 + Tzx sin ω2.

Particularly, the trace of the spin correlation tensor transforms at the transition to
the laboratory as:

T ′ = (Txx + Tyy) cos (ω1 − ω2) + (Txy − Tyx) sin (ω1 − ω2) + Tzz (11)

or, in the case of a symmetric tensor, as:

T ′ = T − 2 (Txx + Tyy) sin2 ω1 − ω2

2
. (12)

So, the c.m.s. trace T in Eq. (8) is substituted by the laboratory one T ′ calculated
using Eqs. (11) or (12) together with Eqs. (1) and (2) for the spin rotation angles.

3. It was shown [3, 4] (see also [12, 13]) that the trace of the correlation
tensor of a system of two spin-1/2 particles is the following linear combination of
the relative fractions of singlet (the total spin S = 0) and triplet (S = 1) states:

T = 〈σ̂(1) ⊗ σ̂(2)〉 = ρt − 3ρs, ρt + ρs = 1. (13)

When we have the pure singlet state of the particle pair in its c.m.s. (ρs = 1, ρt =
0, Tik = −δik, T = −3), the transformation to the laboratory gives

T ′ = −3 + 4 sin2 ω1 − ω2

2
. (14)

It follows from Eqs. (13) and (14) that at the transition to the laboratory the
relative fraction of the singlet state decreases in favor of a triplet state:

ρ′s = cos2
ω1 − ω2

2
, ρ′t = sin2 ω1 − ω2

2
. (15)
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Thus the square of the total spin of two free particles with a nonzero vector
of relative velocity is not a relativistic invariant (see [8]). Introducing the two-
particle singlet state:

|ψ〉00 =
1√
2

(
| + 1/2〉(1)z | − 1/2〉(2)z − | − 1/2〉(1)z | + 1/2〉(2)z

)
(16)

and the triplet state with the zero projection onto the rotation axis z:

|ψ〉10 =
1√
2

(
| + 1/2〉(1)z | − 1/2〉(2)z + | − 1/2〉(1)z | + 1/2〉(2)z

)
, (17)

the result in Eq. (15) also follows directly from the matrices of space rotations
in Eq. (9), the singlet state in the two-particle c.m.s. is transformed into the
following superposition of the singlet and triplet states in the laboratory:

|ψ′
s〉 = cos

ω1 − ω2

2
|ψ〉00 + i sin

ω1 − ω2

2
|ψ〉10. (18)

Similarly, the transformation of the pure triplet state |ψ〉10 in the two-particle
c.m.s. (ρs = 0, ρt = 1, Tzz = −1, Txx = Tyy = 1, T = 1) to the laboratory gives

T ′ = 1 − 4 sin2 ω1 − ω2

2
, (19)

the corresponding fractions being

ρ′s = sin2 ω1 − ω2

2
, ρ′t = cos2

ω1 − ω2

2
, (20)

in accordance with the transformation:

|ψ′
t〉 = cos

ω1 − ω2

2
|ψ〉10 + i sin

ω1 − ω2

2
|ψ〉00. (21)

In the case of the unpolarized triplet in the two-particle c.m.s. (ρs = 0, ρt =
1, Tik = δik/3, T = 1 [1, 4]), we have

T ′ = 1 − 4
3

sin2 ω1 − ω2

2
, (22)

ρ′s =
1
3

sin2 ω1 − ω2

2
, ρ′t = 1 − 1

3
sin2 ω1 − ω2

2
. (23)

Using Eqs. (1) and (2), it is easy to show that in the case of two spin-1/2
particles with the same masses (γ2 = γ1, v2 = v1) the measure of the spin mixing
can be written in the form:

K ≡ sin2 ω1 − ω2

2
= (v1V )2 sin2 θ

[(
1
γ

+
1
γ1

)2

+ (v1V )2 sin2 θ

]−1

. (24)
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The maximum of the mixing factor K corresponds to the angle θ = π/2. In
the ultrarelativistic limit, when γ1 
 1, γ 
 1 and sin θ 
 max (1/γ, 1/γ1),
the factor K approaches unity. Then the singlet state in the two-particle c.m.s.
becomes in the laboratory the triplet state with the zero projection of the total
spin onto the spin rotation axis z and, vice versa.

Thus, the effect of the relativistic spin rotation leads to the dependence
of the total spin composition (the singlet and triplet fractions in particular) on
the concrete frame in which the system of two-particles, moving with different
velocity vectors, is analyzed. The physical origin of this dependence is the
violation of the parallelism of the spatial axes of the particle rest frames, except
for the case when the Lorentz transformations to these frames are done along the
directions collinear with the relative velocity (e.g., from the c.m.s. of the two
particles).

We would like to thank M. I. Shirokov for useful remarks.
This work was supported by GA Czech Republic, Grant. No. 292/01/0779,

by Russian Foundation for Basic Research, Grant No. 03-02-16210, and within
the Agreements IN2P3-ASCR No. 00-16 and IN2P3-Dubna No. 00-46.

REFERENCES

1. Lyuboshitz V. L., Podgoretsky M. I. // Yad. Fiz. 1997. V. 60. P. 45; Phys. At. Nucl. 1997. V. 60.
P. 39.

2. Alexander G., Lipkin H. J. // Phys. Lett. B. 1995. V. 352. P. 162.

3. Lednicky R. Report MPI-PhE/99-10. Munich, 1999.

4. Lednicky R., Lyuboshitz V. L. // Phys. Lett. B. 2001. V. 508. P. 146.

5. Lednicky R., Lyuboshitz V. V., Lyuboshitz V. L. // Yad. Fiz. 2003. V. 66. P. 1007; Phys. At. Nucl.
2003. V. 66. P. 975.

6. Foldy L. L. // Phys. Rev. 1956. V. 102. P. 568.

7. Stapp H. P. // Ibid. V. 103. P. 425.

8. Chou Kuang-chao, Shirokov M. I. // Zh. Eksp. Teor. Fiz. 1958. V. 34. P. 1230; JETP. 1958. V. 7.
P. 851.

9. Ritus V. I. // Zh. Eksp. Teor. Fiz. 1961. V. 40. P. 352; JETP. 1961. V. 13. P. 240.

10. Shirokov M. I. JINR Preprint E2-99-299. Dubna, 1999.

11. Baldin A. M. et al. Kinematika Yadernykh Reakcij (Kinematics of Nuclear Reactions). M., 1968.
Part I, §6.

12. Jayet B. et al. // Nuovo Cim. A. 1978. V. 45. P. 371.

13. Barnes P. D. et al. // Nucl. Phys. A. 1991. V. 526. P. 575.


