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EFFECT OF THE RELATIVISTIC SPIN ROTATION

ON TWO-PARTICLE SPIN COMPOSITION
R. Lednicky*, V. L. Lyuboshitz**, V. V. Lyuboshitz***

Joint Institute for Nuclear Research, Dubna

The effect of the relativistic spin rotation on two-particle spin states, conditioned by the setting
of the spins of the particles in their rest frames and by the noncommutativity of the Lorentz transfor-
mations along noncollinear directions, is discussed. Particularly, the transition from the c.m.s. of two
spin-1/2 particles to the laboratory is considered. When the vectors of the c.m.s. particle velocities
are not collinear with the velocity vector of the c.m.s., the angles of the relativistic spin rotation for
the two particles are different. As a result, the relative fractions of the singlet and triplet states in the
relativistic system of two spin-1/2 particles with a nonzero vector of relative momentum depend on
the concrete frame in which the two-particle system is analyzed.

OG6cyxn ercsl BIUSIHHE PEITITUBACTCKOIO Bp INEHHS CIHMH H JIByXY CTHYHBIC CIIMHOBBIE COCTO-
SHUS C y4eTOM (DHKC LIMM CIIMHOB B CHCTEM X IIOKOS 4 CTHI| M HEKOMMYT THBHOCTH IIpeoOp 30B HHIt
JlopeHLl BOJIb HEKO/UIMHE PHBIX H NP BIeHWI. B 4 CTHOCTH, p cCMOTpeH mnepexol U3 C. 1. M. ABYX
4 cTul co criHoM 1/2 B 1 Gop TopHyto. Korg cKOpocTH 4 CTHI B C. II. M. HE KOJUTMHE PHBI CKOPOCTH
C. 1. M., YIJIBl PENIITUBUCTCKOTO CIIMHOBOIO Bp LIEHMS I/ ABYX 4 CTHUL P 3IMYHBL. B pe3yiabT Te OTHO-
CHTEJNIbHBIC [OJIM CUHIJIETHOIO U TPUIUIETHOTO COCTOSIHUN B PEIATHBUCTCKOH CHCTeMe [BYX 4 CTHI] CO
CIUHOM 1/2 M HEHyNeBbIM OTHOCHUTEIBHBIM HMITYJIbCOM 3 BHCAT OT KOHKPETHOH CHCTEMBI, B KOTOPOW

H JIM3UpYeTCs ABYXY CTUYH S CUCTEM .

1. Earlier the spin correlations in two-particle quantum systems were analyzed
in detail as a tool allowing one to measure the space-time characteristics of
particle production [1-5], to study the two-particle interaction and the production
dynamics (see [3,4] and references therein) and to verify the consequences of the
quantum-mechanical coherence with the help of Bell-type inequalities [4].

The spin state of the system of two particles in an arbitrary frame is described
by the two-particle density matrix, the elements of which, pgiﬁr?zl’;mzmz” are
given in the representation of the spin projections of the first and second particle
in the corresponding rest frames onto the common coordinate axis z (see, e.g.,
[3,5)****. However, one should take into account the relativistic spin rotation
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conditioned by the additional rotation of the spatial axes at the successive Lorentz
transformations along noncollinear directions [7-9]*. As a result, the concrete
description of a particle spin state depends on the frame from which the transition
to the particle rest frame is performed. Particularly, the total spin composition
of the two-particle state with a nonzero vector of relative momentum is generally
frame-dependent due to different relativistic rotation angles of the two spins at
the transition to the frame moving in the direction which is not collinear with the
velocity vectors of both particles.

Usually, it is convenient to consider the spin correlations in the centre-of-
mass system (c.m.s.) of the particle pair. This is natural at the addition of
the two-particle total spin and the relative orbital angular momentum into the
conserved total angular momentum. In some cases, however, it may be useful to
make transition to the laboratory, e.g., in the case when the particle scatterings
are used as their spin analyzers [1]**. Denoting M; and p; = £k the masses and
c.m.s. momenta of the two particles, [ = 1,2, their respective c.m.s. velocities
in the units of the velocity of light (¢ = 1) are v; = +k//k? 4+ M. Here and
below the + signs correspond to the first (! = 1) and second (I = 2) particle,
respectively. We denote the corresponding laboratory velocities as v; and the
laboratory velocity of the particle pair as V. At the Lorentz transformation from
the c.m.s. of the particle pair to the laboratory frame with parallel respective
spatial axes, the spins of the first and the second particle (in their respective
rest frames) rotate in opposite directions around the axis which is parallel to the
vector [kV]***. The rotation angles w; are given by the Stapp formula [7] (see
also [8,9]):

I+y+v+m
L +7)A+7)(@+7)

where the positive sign corresponds to the direction of the nearest rotation from the
vector k to the vector V; 6 is the angle between the vectors k and V (0 < 0 < 7),

sin w; = £y, Vv, sin 0 (1)

of the inhomogeneous Lorentz group and avoids the problem of the noncommutativity of the spin
operators with the free Hamiltonian [6]. This circumstance was not understood in Ref.2, where the
unnecessary condition of nonrelativistic particle velocities was required.

*The relativistic rotation of the spatial axes leads to the nontransitivity of the parallelism in the
theory of relativity (see [10] and references therein): generally, the parallel axes of the frames K
and K, K> and K do not imply the parallel axes of the frames K; and K. The axes of all the three
frames could be mutually parallel if only their velocities were collinear (for example, if K1 and Ko
were the rest frames of the two particles and K — their c.m.s.).

**In principle, this transition is not necessary since one can transform the four vectors defining
the polarization analyzers first to the pair c.m.s. and then to the respective particle rest frames.

***The relativistic spin rotation is the purely kinematical effect: the angles of the space rotation
coincide with the angles between the vectors of the resulting velocities at the relativistic addition of
velocities v; and V in the direct and reverse orders [11].
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0] v -1/2 ~ —1/2
v = |Vl|7 v = |Vl|» V = |V| and v = (1 _UIQ) / , W= (1 _%“IQ) / ,
y=(1- V2)71/2 are the Lorentz factors;

Y1 = yy(1 £ vV cosb). 2)

In the case of equal-mass particles the relations vi = —va, v = 72 hold (but
Y1 # Y2 when V' cos 6 # 0).
Using the equality

A+v+5n+7)° =20+ +n) 1 +3) — (> = 1) (77 — 1)sin® 6,
one can write the analogous expressions for the cosines of the spin rotation angles:

(y=D(n—-1) sin? 6.

0+ e

cosw;=1-—
In the case of the collinearity of the velocity vectors v; and V, when 6 = 0 or
6 = 7, both the rotation angles are equal to zero.
At nonrelativistic velocities v; in the c.m.s. of the particle pair (y; =~ 1,
41 =~ ), the angles w; of the spin rotation are small and scale with v;:

v
+1

w A~ + vV sin 6. 3)

In the ultrarelativistic limit, when +; — oo, 7; /v — 7 (1 £V cos ), one has

1+~v(1+V cos 6)
(147)(1£V cos 0)

Y
~Y(1£V cos 6)

sin wy~+V sin 6 , cos wR1l— sin? 6. (4)

Relations (4) are valid exactly for massless particles (photons, neutrinos). In this
case the rotation angles coincide with the aberration angles (the angles between
the vectors v; and v;); then the helicity (the spin projection of the particle onto
the direction of its momentum) is the relativistic invariant [9].

Taking into account the relativistic spin rotation at the transition from the
two-particle c.m.s. to the laboratory, the two-particle spin density matrix is
transformed as follows:

P12 = DO () @ D () 1D DO+ (w1) © DO (), )

where
DW(w;) = exp (iwjim) (6)

are the matrices of the space rotations generated by the vector spin operators jl,
n is the unit vector parallel to the direction of the vector [k'V].
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2. In the case of two spin-1/2 particles, the two-particle spin density matrix
has the structure [1,3,4]:

11, A - .
p2) = 1 D e i@ 4 (6'(1)P1) ®I® 4 1) g (&(2)P2)+

3
+3 N sV esd | @)
i=1 k=1
Here [ is the two-row unit matrix; & is the Pauli vector operator; P; = (&(l)>

are the polarization vectors; 155, = <&§1) ® 6,5,2)> are the components of the cor-
relation tensor, {1,2,3} = {«,y, z}. The left and right indexes of the correlation
tensor correspond to the rest frames of the first (! = 1) and second (I = 2)

particle, respectively. The corresponding probability to select the particles with
(

the polarizations ¢ () can be obtained by the substitution of the matrices 6/) in
expression (7) with the corresponding projections Ci(l). Particularly, when analyz-
ing the polarization states with the help of particle decays, the vector analyzing
power ¢ O ain;, where o is the decay asymmetry corresponding to the decay
analyzer unit vector n;. As a result [3,4], the correlation between the decay
analyzers is determined by the product of the decay asymmetries and the trace of
the spin correlation tensor

T =Thy + Tyy + Tev.

For example, the angular correlation nin, = cos 615 between the directions of
the three-momenta of the decay protons in the respective rest frames of two
A-hyperons decaying into the channel A — p + 7~ with the P-odd asymmetry
a = 0.642 is described by the normalized probability density

1 T
W(cosbi2) = 5 <1 + 042§ cos 912) . 8)

Clearly, the structure of both Eq. (7) and the corresponding angular dis-
tribution of the spin analyzers (e.g., Eq. (8)) does not depend on the system
from which the transitions to the particle rest frames are performed. The sys-
tem dependence manifests only through the relativistic rotations in the successive
Lorentz transformations along noncolinear directions. The matrices of the space
rotations due to the transition from the c.m.s. of two free spin-1/2 particles to the
laboratory are the following:

DO (W) = cos % +i6On sin % 9)

Selecting the z-axis parallel to the direction of the vector n = [kV]/|[kV]|, and
the axes x and y in the plane perpendicular to this vector, the polarization vectors
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and the spin correlation tensor transform at the transition to the laboratory in
accordance with the (active) rotations around the z-axis by the angles w; and wo
for the first and second particle, respectively:

P/, = Py, cos w; — Py sin wy; Pl’y = Py, cos w; + Py sin wy; P/, = Pp.;

T, =(Tpq cos w1 —Tyz sin wi) cos wa—(Tyy cos w1 —Ty, sin wq) sin wo;

Téy:(Tyy cos w1+ Ty sin wr) cos wat(Tyy cos w1+, sin wy) sin wo;
(10)
Tz/z = Tzz;

T;y:(sz cos w1 —Tyysin wi) cos wat(Type cos wi—Ty, sin wy) sin wo;
Ty’x:(Tyx cos w1+T 7y, sin wy) cos we—(Tyy cos w141y, sin wy) sin wo;

T), =Ty, coS wy — Ty.sin wi; TL, =T,y cos wy — T,y sin wo;

TZ;Z =Ty, cos wi + Tj sin wy; Téy =T,y cos wy + Tz sin ws.
Particularly, the trace of the spin correlation tensor transforms at the transition to
the laboratory as:

T' = (Tyw + Tyy) cos (w1 — w2) + (Tpy — Tyz) sin (w1 — wa) + T (11)

or, in the case of a symmetric tensor, as:

T' =T =2 (Tyy + Tyy) sin® 222

(12)
So, the c.m.s. trace T in Eq. (8) is substituted by the laboratory one 7" calculated
using Eqgs. (11) or (12) together with Egs. (1) and (2) for the spin rotation angles.
3. It was shown [3,4] (see also [12, 13]) that the trace of the correlation
tensor of a system of two spin-1/2 particles is the following linear combination of
the relative fractions of singlet (the total spin S = 0) and triplet (S = 1) states:
T=Ye06®) =p ~3p, ptps=1 (13)
When we have the pure singlet state of the particle pair in its c.m.s. (ps = 1, py =
0, T;x = —0;%, T = —3), the transformation to the laboratory gives
T/ = —3 + 4sin? %

It follows from Eqgs. (13) and (14) that at the transition to the laboratory the
relative fraction of the singlet state decreases in favor of a triplet state:

(14)

o W1 — W2
2 )

Pl = cos p} = sin? % (15)
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Thus the square of the total spin of two free particles with a nonzero vector
of relative velocity is not a relativistic invariant (see [8]). Introducing the two-
particle singlet state:

1
V2

and the triplet state with the zero projection onto the rotation axis z:

%00 = (| +1/2)0 [ =1/2)P — | —1/2)V | + 1/2>§2>) (16)

1

[ho = —= (1+1/20 = 1/2@ +|-1/2)0 | +1/2), a7
V2

the result in Eq. (15) also follows directly from the matrices of space rotations

in Eq. (9), the singlet state in the two-particle c.m.s. is transformed into the

following superposition of the singlet and triplet states in the laboratory:

w1 —
2

w1 —

. “2 1) 10 (18)

w .
2 |4h)oo + i sin

[¢l) = cos

Similarly, the transformation of the pure triplet state |1))10 in the two-particle
cms. (ps=0,p,=1,T,, = -1,T,, =T,, = 1,T = 1) to the laboratory gives

w1 — w2

T' =1 — 4sin® —5 (19)
the corresponding fractions being
p. = sin® w, Py = cos? wv (20)
2 2
in accordance with the transformation:
W] — w L W —w
[5) = cos =)0 + i sin == [1))oo. 21

In the case of the unpolarized triplet in the two-particle c.m.s. (ps = 0, p =
L, Tk = 0ix/3, T =1 [1,4]), we have

4 swi—w

T':l—gsm 5 (22)
1w —wy / 1 ywi —ws
ps = 3 sin 5 ptzl—gsm 5 (23)

Using Egs. (1) and (2), it is easy to show that in the case of two spin-1/2
particles with the same masses (y2 = 71, v2 = v1) the measure of the spin mixing
can be written in the form:

. g W1 — Wy 2 .
K =sin®? ——= = (v, V)“sin? 0

7

1 1\? 5 s -
(;—l——) + (v1V)” sin“ 6 . (24




EFFECT OF THE RELATIVISTIC SPIN ROTATION 99

The maximum of the mixing factor K corresponds to the angle § = 7/2. In
the ultrarelativistic limit, when v; > 1, v > 1 and sinf > max (1/v, 1/v1),
the factor K approaches unity. Then the singlet state in the two-particle c.m.s.
becomes in the laboratory the triplet state with the zero projection of the total
spin onto the spin rotation axis z and, vice versa.

Thus, the effect of the relativistic spin rotation leads to the dependence
of the total spin composition (the singlet and triplet fractions in particular) on
the concrete frame in which the system of two-particles, moving with different
velocity vectors, is analyzed. The physical origin of this dependence is the
violation of the parallelism of the spatial axes of the particle rest frames, except
for the case when the Lorentz transformations to these frames are done along the
directions collinear with the relative velocity (e.g., from the c.m.s. of the two
particles).
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