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SMALL-x BEHAVIOUR OF THE NONSINGLET
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Explicit expressions for the nonsinglet and singlet structure functions g1 at the small-x region are
obtained. They include the total resummation of double-logarithmic contributions and accounting for
the running QCD coupling effects. We predict that asymptotically the singlet g1 ∼ x−∆S , with the
intercept ∆S = 0.86, which is approximately twice larger than the nonsinglet intercept ∆NS = 0.4.
The impact of the initial quark and gluon densities on the sign of g1 at x � 1 is discussed.

�µ²ÊÎ¥´Ò Ö¢´Ò¥ ¢Ò· ¦¥´¨Ö ¤²Ö ´¥¸¨´£²¥É´µ° ¨ ¸¨´£²¥É´µ° g1 ¢ µ¡² ¸É¨ ³ ²ÒÌ x. �´¨
¢±²ÕÎ ÕÉ ¶µ²´µ¥ ¸Ê³³¨·µ¢ ´¨¥ ¤¢ ¦¤Ò ²µ£ ·¨Ë³¨Î¥¸±¨Ì ¢±² ¤µ¢ ¨ ÊÎ¥É ÔËË¥±Éµ¢ ¡¥£ÊÐ¥°
±µ´¸É ´ÉÒ Š•„. �·¥¤¸± §Ò¢ ¥É¸Ö, ÎÉµ  ¸¨³¶ÉµÉ¨Î¥¸±¨ ¸¨´£²¥É´ Ö g1 ∼ x−∆S ¸ ¨´É¥·¸¥¶Éµ³
∆S = 0,86, ¶·¨³¥·´µ ¢¤¢µ¥ ¡µ²ÓÏ¨³ ´¥¸¨´£²¥É´µ£µ ∆NS = 0,4. �¡¸Ê¦¤ ¥É¸Ö ¢²¨Ö´¨¥ ´ Î ²Ó-
´ÒÌ ±¢ ·±µ¢ÒÌ ¨ £²Õµ´´ÒÌ ¶²µÉ´µ¸É¥° ´  §´ ± g1 ¶·¨ x � 1.

INTRODUCTION

Deep inelastic scattering (DIS) is one of the basic processes for investigating
the structure of hadrons. As is well known, all information about the hadrons
participating into DIS comes from the hadronic tensor Wµν . The imaginary
part of Wµν is proportional to the forward Compton amplitude when the deeply
off-shell photon with virtuality q2 scatters off an on-shell hadron with momentum
p. For the electron-hadron DIS, the spin-dependent part, W s

µν , of Wµν is

W s
µν = ıεµµλρ

qλm

pq

[
Sρg1 +

(
Sρ − (Sq)

pq
pρ

)
g2

]
≈

≈ ıεµµλρ
qλm

pq

[
S||

ρ g1 + S⊥
ρ

(
g1 + g2

)]
(1)
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where m is the hadron mass; S
||
ρ and S⊥

ρ are the longltudinal and transverse
(with respect to the plane formed by p and q) components of the hadron spin
Sρ; g1 and g2 are the spin structure functions. Both of them depend on
x = −q2/2pq, 0 < x � 1, and Q2 = −q2 > 0. Obviously, small x corre-

sponds to s = (p + q)2 ≈ 2pq � Q2. In this case, S
||
ρ ≈ pρ/m and therefore

the part of W s
µν related to g1 does not depend on m. Then if Q2 � m2, one

can assume the factorization and regard W s
µν as a convolution of two objects (see

Fig. 1). The ˇrst of them is the probability Φ (Φ = Φq in Fig. 1, a and Φ = Φg

in Fig. 1, b) to ˇnd a polarized parton (a quark or a gluon) in the hadron. The
second one is the partonic tensor W̃ s

µν deˇned and parametrized similarly to W s
µν .

Fig. 1. Representation of the hadronic tensor as the covolution of the fragmentation func-
tions Φq,g and the partonic tensor

Whereas Φq,g are essentially nonperturbative objects, the partonic tensor W̃ s
µν ,

i.e., the partonic structure functions g1 and g2, can be studied within perturbative
QCD. The lack of knowledge of Φ is usually compensated by introducing initial
parton distributions that are found from phenomenological considerations. On
the contrary, there are regular perturbative methods for calculating the structure
functions in the partonic tensor W̃ s

µν . The best known instrument to calculate the
structure functions to all orders in αs is the DGLAP [1] approach. Once applied to
the description of the experimental data, DGLAP provides good results [2]. The
extrapolation into the small-x region of DGLAP predicts an asymptotical behav-
iour ∼ exp (

√
C ln (1/x) ln ln Q2) for all DIS structure functions (with different

factors C). However, from the theoretical point of view, such an extrapolation
is rather doubtful. In particular, it neglects in a systematical way contributions
∼ (αs ln2(1/x))k which are small when x ∼ 1 but become large when x � 1.
The total resummation of these double-logarithmic (DL) contributions made in
Refs. 3, 4 for the nonsinglet (gNS

1 ) and singlet g1, respectively, leads to the Regge

(power-like) asymptotics g1(gNS
1 ) ∼ (1/x)∆

DL
((1/x)∆

DL
NS ), with ∆DL, ∆DL

NS be-
ing the intercepts calculated in the double-logarithmic approximation (DLA). The
weakest point of Refs. 3, 4 is the fact that they keep αs ˇxed (at some unknown
scale). It leads therefore to the intercepts ∆DL, ∆DL

NS explicitly depending on
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this unknown coupling, whereas αs is well known to be running. The results
of Refs. 3, 4 led many authors (see, e.g., [5]) to suggest that the DGLAP para-
metrization αs = αs(Q2) has to be used. However, according to the results of
Ref. 6, such a parametrization is correct only for x ∼ 1 and cannot be used for
x � 1. The explicit dependence of αs suggested in Ref. 6 has been used to
calculate both gNS

1 and g1 at small x in Ref. 7. The present talk is based on the
results obtained in those papers.

Instead of a direct study of g1, it is more convenient to consider the forward
Compton amplitude A related to g1 as follows:

g1(x, Q2) =
1
π
�sA(s, Q2). (2)

We cannot use DGLAP for studying g1 or A at small x because it does
not account for double-log (and single-log) contributions which are independent
of Q2. In order to account for the double-logs of both x and Q2, we need to
construct two-dimensional evolution equations that would combine the x and Q2

evolutions. On the other hand, these equations should sum up the contributions
of the Feynman graphs involved to all orders in αs. Some of those graphs have
either ultraviolet or infrared (IR) divergencies. The ultraviolet divergencies are
regulated by the usual renormalization procedure. In order to regulate the IR ones,
we have to introduce an IR cut-off. We use the IR cut-off µ in the transverse
momentum space for momenta ki of all virtual quarks and gluons:

µ < ki⊥, (3)

where ki⊥ stands for the transverse (with respect to the plane formed by the
external momenta p and q) component of ki. This way of regulating the
IR divergencies was suggested by L. N. Lipatov and used ˇrst in Ref. 8 for
quarkÄquark scattering. Using this cut-off µ, A acquires a dependence on µ.
Therefore, one can evolve A with respect to µ, constructing thereby some In-
frared Evolution Equations (IREE). As A = A(s/µ2, Q2/µ2),

−µ2∂A/∂µ2 = ∂A/∂ρ + ∂A/∂y, (4)

where ρ = ln (s/µ2) and y = ln (Q2/µ2). Equation (4) is the l.h.s. of the
IREE for A. In order to write the r.h.s. of the IREE, it is convenient to use the
SommerfeldÄWatson transform

A(s, Q2) =
∫ ı∞

−ı∞

dω

2πı
(s/µ2)ωξ(ω)F (ω, Q2), (5)

where ξ(ω) is the negative signature factor; ξ(ω) = [1 − e−ıπω]/2 ≈ ıπω/2.
It must be noted that the transform inverse to Eq. (5) involves the imaginary
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parts of A:

F (ω, Q2) =
2

πω

∫ ∞

0

dρ e−ρω �A(s, Q2). (6)

Notice that contrary to the amplitude A, the structure function g1 does not have
any signature and therefore ξ(ω) = 1, when transform (5) is applied directly to g1.

INFRARED EVOLUTION EQUATIONS FOR g1

When the factorization depicted in Fig. 1 is assumed, the calculation of g1 (we
will not use the superscript ®s¯ for g1 singlet, though we use the notaion gNS

1 for
the nonsinglet g1) is reduced to calculating the Feynman graphs contributing the
partonic tensor W̃ s

µν depicted as the upper blobs in Fig. 1. Both cases (Fig. 1, a),
when the virtual photon scatters off the nearly on-shell polarized quark, and
(Fig. 1, b), when the quark is replaced by the polarized gluon, should be taken
into account. Therefore, in contrast to Eq. (2), we need to introduce two Compton
amplitudes: Aq and Ag corresponding to the upper blob in Fig. 1, a and b,
respectively. The subscripts ®q¯ and ®g¯ refer to the initial partons. Therefore,

g1(x, Q2) = gq(x, Q2) + gq(x, Q2), (7)

where

gq =
1
π
�sAq(s, Q2), gg =

1
π
�sAg(s, Q2). (8)

Let us now construct the IREE for the amplitudes Aq,g related to g1. To this
aim, let us consider a virtual parton with minimal k⊥. We call such a parton
the softest one. If it is a gluon, its DL contribution can be factorized, i.e., its
DL contribution comes from the graphs where its propagator is attached to the
external lines. As the gluon propagator cannot be attached to photons, this case
is absent in IREE for Aq,g . The second option is when the softest partons are
a t-channel quarkÄantiquark or gluon pair. It leads us to the IREE depicted
in Fig. 2.

Applying the operator −µ2∂/∂µ2 to it, combining the result with Eq. (4) and
using (5), we arrive at the following system of equations:(

ω +
∂

∂y

)
Fq(ω, y) =

1
8π2

[
Fqq(ω)Fq(ω, y) + Fqg(ω)Fg(ω, y)

]
,(

ω +
∂

∂y

)
Fg(ω, y) =

1
8π2

[
Fgq(ω)Fq(ω, y) + Fgg(ω)Fg(ω, y)

]
.

(9)

The amplitudes Fq, Fg are related to Aq, Ag through transform (5). The Mellin
amplitudes Fik, with i, k = q, g, describe the partonÄparton forward scattering.
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Fig. 2. Infrared evolution equations for the amplitudes Aq, Ag

They contain DL contributions to all orders in αs. We can introduce the new
anomalous dimensions Hik = (1/8π2)Fik . The way of writing the subscripts
®q, g¯ corresponds to the DGLAP notations. Solving this system of equations
and using Eq. (8) leads to

gq(x, Q2) =
∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[
C+(ω) eΩ+y + C−(ω) eΩ−y

]
,

gg(x, Q2)=
∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[
C+(ω)

X+
√

R

2Hqg
eΩ+y+C−(ω)

X−
√

R

2Hqg
eΩ−y

]
.

(10)

The unknown factors C±(ω) have to be speciˇed. All other factors in Eq. (10)
can be expressed in terms of Hik:

X = Hgg − Hqq , R = (Hgg − Hqq)2 + 4HqgHgq,

Ω± =
1
2

[
Hqq + Hgg ±

√
(Hqq − Hgg)2 + 4HqgHgq

]
.

(11)

The anomalous dimension matrix Hik was calculated in Ref. 7:

Hgg =
1
2

(
ω + Y +

bqq − bgg

Y

)
, Hqq =

1
2

(
ω + Y − bqq − bgg

Y

)
,

Hgq = −bgq

Y
, Hqg = −bqg

Y
,

(12)
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where

Y =

=−
√(

ω2−2(bqq+bgg)+
√

[(ω2−2(bqq+bgg))2−4(bqq−bgg)2−16bqgbgq]
)
/2,

(13)

bik = aik + Vik, (14)

aqq =
A(ω)CF

2π
, agg =

2A(ω)N
π

, agq = −nfA′(ω)
2π

, aqg =
A′(ω)CF

π
, (15)

and
Vik =

mik

π2
D(ω), (16)

with

mqq =
CF

2N
, mgg = −2N2, mqg = nf

N

2
, mgq = −NCF . (17)

We have used here the notations CF = 4/3, N = 3 and nf = 4. The factors A
and D account for running αs. They are given by the following expressions:

A(ω) =
1
b

[ η

η2 + π2
−

∫ ∞

0

dρ e−ωρ

(ρ + η)2 + π2

]
, (18)

D(ω) =
1

2b2

∫ ∞

0

dρ e−ωρ ln
(
(ρ + η)/η

)[ ρ + η

(ρ + η)2 + π2
+

1
ρ + η

]
(19)

with η = ln (µ2/Λ2
QCD) and b = (33− 2nf)/12π. A′ is deˇned as A with the π2

term dropped out. Now we can specify the coefˇcients C± of Eq. (10). When
Q2 = µ2,

gq = ∆̃q(x0), gg = ∆̃g(x0), (20)

where ∆̃q(x0) and ∆̃g(x0) are the input distributions of the polarized partons at
x0 = µ2/s. They do not depend on Q2. Using Eq. (20) allows one to express
C±(ω) in terms of ∆q(ω) and ∆g(ω), which are related to ∆̃q(x0) and ∆̃g(x0)
through the ordinary Mellin transform. Indeed,

C+ + C− = ∆q, C+
X +

√
R

2Hqg
+ C−

X −
√

R

2Hqg
= ∆g. (21)

This leads to the following expressions for gq and gg:

gq(x, Q2) =
∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[(
A(−)∆q + B∆g

)
eΩ+y+

+
(
A(+)∆q − B∆g

)
eΩ−y

]
, (22)
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gg(x, Q2) =
∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[(
E∆q + A(+)∆g

)
eΩ+y+

+
(
− E∆q + A(−)∆g

)
eΩ−y

]
(23)

with

A(±) =
(1

2
± X

2
√

R

)
, B =

Hqg√
R

, E =
Hgq√

R
. (24)

Equations (22), (23) express g1 in terms of the parton distributions ∆q(ω)
and ∆g(ω). However, they are related to the distributions ∆̃q(x0) and ∆̃g(x0)
at very low x: x0 ≈ µ2/s � 1. Therefore, they scarcely can be found from
experimental data. It is much more useful to express gq, gg in terms of the initial
parton densities δ̃q and δ̃g deˇned at x ∼ 1. We can do it, using the evolution
of ∆̃q(x0), ∆̃g(x0) with respect to s. Indeed, the s evolution of δ̃q, δ̃q from
s ≈ µ2 to s � µ2 at ˇxed Q2 (Q2 = µ2) is equivalent to their x evolution from
x ∼ 1 to x � 1. In the ω space, the system of IREE for the parton distributions
looks quite similar to Eqs. (9). However, the equations for ∆q, ∆g are algebraic
because they do not depend on Q2:

∆q(ω) = (〈e2
q〉/2)δq(ω) + (1/ω) [Hqq(ω)∆q(ω) + Hqg(ω)∆g(ω)] ,

∆g(ω) = (〈e2
q〉/2)δ̂g(ω) + (1/ω) [Hgq(ω)∆q(ω) + Hgg(ω)∆g(ω)] ,

(25)

where 〈e2
q〉 is the sum of the quark electric charges (〈e2

q〉 = 10/9 for nf = 4); δq

is the sum of the initial quark and antiquark densities and δ̂g ≡ −(A′(ω)/2πω2)δg
is the starting point of the evolution of the gluon density δg. It corresponds to
Fig. 1, b where the upper blob is substituted by the quark box. Solving Eqs. (25),
we obtain

∆q = (〈e2
q〉/2)

[
ω(ω − Hgg)δq + ωHqg δ̂g

][
ω2 − ω(Hqq + Hgg) + (HqqHgg − HqgHgq)

] , (26)

∆g = (〈e2
q〉/2)

[
ωHgqδq + ω(ω − Hqq)δ̂g

][
ω2 − ω(Hqq + Hgg) + (HqqHgg − HqgHgq)

] . (27)

Then Eqs. (22), (23), (26), (27) express g1 in terms of the initial parton
densities δq, δg.

When we put Hqg = Hgq = Hgg = 0 and do not sum over eq, we arrive at
the expression for the nonsinglet structure function gNS

1 : Obviously, in this case
A(+) = B = E = Ω− = 0, A(−) = 1, Ω+ = Hqq . However, the nonsinglet
anomalous dimension Hqq should be calculated in the limit bgg = bqg = bgq = 0.
We denote such Hqq ≡ HNS. The explicit expression for it is

HNS = (1/2)
[
ω −

√
ω2 − 4bqq

]
. (28)
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Therefore, we arrive at

gNS
1 =

e2
q

2

∫ ı∞

−ı∞

dω

2πı

( ωδq

ω − HNS

)(
1/x

)ω(
Q2/µ2

)HNS

. (29)

SMALL-x ASYMPTOTICS FOR g1

When x → 0 and Q2 � µ2, one can neglect contributions with Ω− in
Eqs. (10). As is known, g1 ∼ (1/x)ω0 at x → 0, with ω0 being the position of
the leading singularity of the integrand of g1. According to Eqs. (12), the leading
singularity, ωNS for gNS

1 is the rightmost root of the equation

ω2 − 4bqq = 0 (30)

while the leading singularity, ω0 for g1 is the rightmost root of

ω4 − 4(bqq + bgg)ω2 + 16(bqqbgg − bqgbgq) = 0. (31)

Fig. 3. Dependence of the intercept ω0 on infrared cut-off η = ln (µ2/ΛQCD) for gNS
1

Fig. 4. Dependence on η of the rightmost root of Eq. (31), ω0. Curve 2 corresponds to
the case when gluon contributions only are taken into account; curve 1 is the result of
accounting for both gluon and quark contributions

In our approach, all factors bik depend on η = ln (µ2/ΛQCD), so the roots
of Eqs. (30), (31) also depend on η. This dependence is plotted in Fig. 3 for
ωNS and in Fig. 4 for ω0. Both the curve in Fig. 3 and curve 1 in Fig. 4 have a
maximum. We denote this maximum as the intercept. Therefore,

gNS
1 ∼ (e2

q/2)δq
(

1
x

)∆NS (
Q2

µ2

)∆NS/2

,

g1 ∼ (1/2)[Z1δq + Z2δg]
(

1
x

)∆S
(

Q2

µ2

)∆S/2

,

(32)
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and we ˇnd for the intercepts

∆NS ≈ 0.4, ∆S ≈ 0.86 (33)

and Z1 = −1.2, Z2 = −0.08. This implies that gNS
1 is positive when x → 0,

whereas g1 can be either positive or negative, depending on the relation between
δq and δg. In particular, g1 is positive when

15 δq + δg < 0. (34)

otherwise it is negative. In other words, the sign of g1 at small x can be positive
if the initial gluon density is negative and large.

CONCLUSION

The total resummation of the most singular (∼ αn
s /ω2n+1) terms in the

expressions for the anomalous dimensions and the coefˇcient functions leads to
the expressions of Eqs. (7), (22), (23), (29) for the singlet and the nonsinglet
structure functions g1. It guarantees the Regge (power-like) behaviour (32) of
g1, gNS

1 when x → 0, with the intercepts given by Eq. (33). The intercepts
∆NS, ∆S are of course obtained with the running QCD coupling effects taken
into account. The value of the nonsinglet intercept ∆NS = 0.4 is now conˇrmed
by several independent analyses [10] of experimental data. The value ∆S = 0.86
of the singlet intercept is in good agreement with the estimate ∆S = 0.88 obtained
in Ref. 11 from analysis of the HERMES data.

Another interesting point to discuss is the sign of these structure functions.
Equation (29) states that gNS

1 is positive both at x ∼ 1 and at x � 1. The
situation concerning the singlet g1 is more involved: being positive at x ∼ 1, the
singlet g1 can remain positive at x � 1 only if the initial parton densities obey
Eq. (34), otherwise it becomes negative.
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