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Explicit expressions for the nonsinglet and singlet structure functions g at the small-z region are
obtained. They include the total resummation of double-logarithmic contributions and accounting for
the running QCD coupling effects. We predict that asymptotically the singlet g1 ~ x2S, with the
intercept Ag = 0.86, which is approximately twice larger than the nonsinglet intercept Ang = 0.4.
The impact of the initial quark and gluon densities on the sign of g1 at < 1 is discussed.

IMosydeHs! sBHbIE BBIP KEHHS JUIS HECHHIVIETHONH M CHHIVICTHOI g1 B 001 cTH M Jjbix z. OHH
BKJIIOY 0T TIOJTHOE CYMMHUPOB HHE B XJbl JIOT PUCMUYECKHX BKJI JOB M y4eT 3(pceKkToB Oeryrueit
koHcT HTBI KXJI. Ilpenck 3bIB eTcs, YTO CHMITOTHYECKH CHHIVIETH S g1 ~ T~ =S ¢ MHTepcenToM
Ag = 0,86, npumepno BaBoe Gonpiunm HecunrietHoro Ans = 0,4. O6¢yXn ercs BIUsSHUE H 4 Jib-
HBIX KB PKOBBIX M IJTIOOHHBIX IUIOTHOCTEH H 3H K g1 npu = < 1.

INTRODUCTION

Deep inelastic scattering (DIS) is one of the basic processes for investigating
the structure of hadrons. As is well known, all information about the hadrons
participating into DIS comes from the hadronic tensor W,,. The imaginary
part of W, is proportional to the forward Compton amplitude when the deeply
off-shell photon with virtuality ¢? scatters off an on-shell hadron with momentum

p. For the electron-hadron DIS, the spin-dependent part, Wju, of Wy, is

ga\xm (SQ)
W = 1€uunp—— |S,9 —l—(S——p)g]z
I BUAP g |: pY1 P g p 2

om
~ Z€uuz\pﬁ [Sfl)lgl + Spl (gl + 92)} (1)
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where m is the hadron mass; S,U and SpL are the longltudinal and transverse
(with respect to the plane formed by p and q) components of the hadron spin
Sp; g1 and go are the spin structure functions. Both of them depend on
r=—¢*/2pq, 0 < x < 1, and Q* = —¢* > 0. Obviously, small = corre-
sponds to s = (p + q)? ~ 2pg > Q2. In this case, S,U ~ p,/m and therefore
the part of W7, related to g1 does not depend on m. Then if Q? > m?, one
can assume the factorization and regard W, as a convolution of two objects (see
Fig. 1). The first of them is the probability ® (® = &, in Fig. 1, a and & = &,
in Fig. 1, b) to find a polarized parton (a quark or a gluon) in the hadron. The
second one is the partonic tensor W/jl, defined and parametrized similarly to W7,,.

Fig. 1. Representation of the hadronic tensor as the covolution of the fragmentation func-
tions ®,,, and the partonic tensor

Whereas ®, , are essentially nonperturbative objects, the partonic tensor W/fl,,
i.e., the partonic structure functions g; and g2, can be studied within perturbative
QCD. The lack of knowledge of ® is usually compensated by introducing initial
parton distributions that are found from phenomenological considerations. On
the contrary, there are regular perturbative methods for calculating the structure
functions in the partonic tensor W:V The best known instrument to calculate the
structure functions to all orders in « is the DGLAP [1] approach. Once applied to
the description of the experimental data, DGLAP provides good results [2]. The
extrapolation into the small-z region of DGLAP predicts an asymptotical behav-
iour ~ exp (1/C'1n (1/x) Inln @2) for all DIS structure functions (with different
factors C'). However, from the theoretical point of view, such an extrapolation
is rather doubtful. In particular, it neglects in a systematical way contributions
~ (s In?(1/x))* which are small when z ~ 1 but become large when = < 1.
The total resummation of these double-logarithmic (DL) contributions made in
Refs. 3, 4 for the nonsinglet (¢)¥°) and singlet gy, respectively, leads to the Regge
(power-like) asymptotics g1 (gNS) ~ (1/2)2""((1/x)2R$), with APE ADL pe-
ing the intercepts calculated in the double-logarithmic approximation (DLA). The
weakest point of Refs.3, 4 is the fact that they keep a fixed (at some unknown
scale). It leads therefore to the intercepts APY ARL explicitly depending on
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this unknown coupling, whereas «, is well known to be running. The results
of Refs.3, 4 led many authors (see, e.g., [5]) to suggest that the DGLAP para-
metrization s = a5(Q?) has to be used. However, according to the results of
Ref. 6, such a parametrization is correct only for z ~ 1 and cannot be used for
r < 1. The explicit dependence of « suggested in Ref.6 has been used to
calculate both ¢S and g; at small z in Ref.7. The present talk is based on the
results obtained in those papers.

Instead of a direct study of g, it is more convenient to consider the forward
Compton amplitude A related to g; as follows:

01(5, Q%) = ~S.A(5, Q). ®)

We cannot use DGLAP for studying g; or A at small = because it does
not account for double-log (and single-log) contributions which are independent
of Q2. In order to account for the double-logs of both 2 and Q?, we need to
construct two-dimensional evolution equations that would combine the 2 and Q>
evolutions. On the other hand, these equations should sum up the contributions
of the Feynman graphs involved to all orders in a;. Some of those graphs have
either ultraviolet or infrared (IR) divergencies. The ultraviolet divergencies are
regulated by the usual renormalization procedure. In order to regulate the IR ones,
we have to introduce an IR cut-off. We use the IR cut-off p in the transverse
momentum space for momenta k; of all virtual quarks and gluons:

n< kiJJ (3)

where k;| stands for the transverse (with respect to the plane formed by the
external momenta p and ¢) component of k;. This way of regulating the
IR divergencies was suggested by L.N.Lipatov and used first in Ref.8 for
quark—quark scattering. Using this cut-off u, A acquires a dependence on pu.
Therefore, one can evolve A with respect to p, constructing thereby some In-
frared Evolution Equations (IREE). As A = A(s/pu?,Q?/u?),

—120A/Op2 = 0A/dp + DA/ Dy, @)

where p = In(s/p?) and y = In(Q?/u?). Equation (4) is the Lh.s. of the
IREE for A. In order to write the r.h.s. of the IREE, it is convenient to use the
Sommerfeld—-Watson transform

1200 d
A, Q) = [ 32 F ., ©
where £(w) is the negative signature factor; {(w) = [1 — e "™]/2 ~ wmw/2.

It must be noted that the transform inverse to Eq. (5) involves the imaginary
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parts of A:

2 o0
FQ) = = [ dpe 3 A(s, Q7). ©)
Tw Jo
Notice that contrary to the amplitude A, the structure function g; does not have
any signature and therefore £(w) = 1, when transform (5) is applied directly to g;.

INFRARED EVOLUTION EQUATIONS FOR ¢;

When the factorization depicted in Fig. 1 is assumed, the calculation of g; (we
will not use the superscript «s» for g; singlet, though we use the notaion g\'® for
the nonsinglet g;) is reduced to calculating the Feynman graphs contributing the
partonic tensor ij depicted as the upper blobs in Fig. 1. Both cases (Fig. 1, a),
when the virtual photon scatters off the nearly on-shell polarized quark, and
(Fig. 1, b), when the quark is replaced by the polarized gluon, should be taken
into account. Therefore, in contrast to Eq. (2), we need to introduce two Compton
amplitudes: A, and A, corresponding to the upper blob in Fig.1, a and b,
respectively. The subscripts «g» and «g» refer to the initial partons. Therefore,

91(2, Q%) = gg(z, Q) + gq(z, Q?), (7)

where ) )
9q = ;%sAq(stQ)v 99 = ;%SAg(S, QQ) (8)

Let us now construct the IREE for the amplitudes A, , related to g;. To this
aim, let us consider a virtual parton with minimal k,. We call such a parton
the softest one. If it is a gluon, its DL contribution can be factorized, i.e., its
DL contribution comes from the graphs where its propagator is attached to the
external lines. As the gluon propagator cannot be attached to photons, this case
is absent in IREE for A, ,. The second option is when the softest partons are
a t-channel quark—antiquark or gluon pair. It leads us to the IREE depicted
in Fig.2.

Applying the operator —20/9u? to it, combining the result with Eq. (4) and
using (5), we arrive at the following system of equations:

<w " f%) Folw,y) = # [Fag (@) Fy(w,y) + Fog(w) Fy(w, y)],

(W + 5%) Fy(w,y) = 8% [ng(W)Fq(Way) + Fgg(w)Fg(w,y)]-

The amplitudes Fy, Fy;, are related to A, A, through transform (5). The Mellin
amplitudes Fj, with ¢,k = ¢, g, describe the parton—parton forward scattering.

©)
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Fgg

Fig. 2. Infrared evolution equations for the amplitudes A4, A4

They contain DL contributions to all orders in as. We can introduce the new
anomalous dimensions H;; = (1/872)F;,. The way of writing the subscripts
«q, g» corresponds to the DGLAP notations. Solving this system of equations
and using Eq. (8) leads to

100 dw

a@ @) = [ 5210 [Chte) e 4 ()]

o0 2T
X+VR X—VR
+769+y+c_(w) -y
2Hy, 2Hy,

00 dw

sl @)= [ 520/

o0 2T

Ci(w)

(10)
The unknown factors C+ (w) have to be specified. All other factors in Eq. (10)
can be expressed in terms of Hy:

X =Hgg—Hyq, R= (Hgg - qu)Q +4HqgHgq,

1 (11)
2 = 2 {qu + Hyg + \/(qu — Hgg)? + 4Hnggq] .
The anomalous dimension matrix H;; was calculated in Ref.7:
1 — 1 _
I{gg:_(w_|_y_|_M)7 qu:_(w+y_bqq bgg)7
2 Y 2 Y (12)
b b
ng* %a Hqg*_$a
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where
Y =
=—\/(w2_Q(bqq"’bgg)"‘\/[(wQ_z(bqq+bgg))2_4(bqq_b99)2_16bnggq])/2v
(13)
bir = aix + Vi, (14)
A(w)Crp 2A(w)N nrA'(w) A'(w)Crg
Ggqq = om Ggg = — agq:_fTa aqg:f’ (15
and Mik
Vi = S5 D(w), (16)
with o N
mqq:ﬁ, Mgy = —2N2, Mg = 1f 7 mgq = —NCF. (17)

We have used here the notations Cr = 4/3, N = 3 and ny = 4. The factors A
and D account for running «. They are given by the following expressions:

_lrom [T dpeer
A(u})ib{nz’ﬂ2 /0 (p+77)2+7r2}’ 1o

p+n)?+m® p+n

with 77 = In (u*/Acp) and b = (33 —2ny)/127. A’ is defined as A with the 7
term dropped out. Now we can specify the coefficients C'y of Eq. (10). When

Q* =,

D(w)zzibQ/Ooodpe“’pln((p—f'??)/n)[( L + 1} (19)

9q = Aq(z0), 99 = Ag(o), (20)

where Ag(xo) and Ag(zo) are the input distributions of the polarized partons at
2o = p?/s. They do not depend on Q2. Using Eq. (20) allows one to express
C(w) in terms of Ag(w) and Ag(w), which are related to Ag(z) and Ag(zo)
through the ordinary Mellin transform. Indeed,

X+VR . X-VR_
2H,, T 2H,

C+ + C_ = Aq, C+ Ag (21)

This leads to the following expressions for g, and g,:

w0 @) = [ 1)) (A Bq + BAg) v+

00 20

+ (A Aq — BAg) eﬂ—ﬂ, (22)
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0.0 = [ 1) (BB + AT g) 0
+ (= BAq+ AT Ag) eﬂfy} 23)

with X p . .
A(i):(§iﬁ)v B:ﬁ, E:ﬁ. (24)

Equations (22), (23) express g; in terms of the parton distributions Ag(w)
and Ag(w). However, they are related to the distributions Ag(zo) and Ag(z)
at very low x: x9 ~ p?/s < 1. Therefore, they scarcely can be found from
experimental data. It is much more useful to express g4, g, in terms of the initial
parton densities g and g defined at z ~ 1. We can do it, using the evolution
of Ag(z), Ag(xzo) with respect to s. Indeed, the s evolution of dg, d¢ from
s~ pu? to s> p? at fixed Q? (Q? = p?) is equivalent to their = evolution from
z ~1tox < 1. In the w space, the system of IREE for the parton distributions
looks quite similar to Egs. (9). However, the equations for Ag, Ag are algebraic
because they do not depend on Q?%:

Aq(w) = ((e7)/2)d¢(w) + (1/w) [Hyq(w) Agq(w) + Hyg(w)Ag(w)],
Ag(w) = ((€3)/2)09(w) + (1/w) [Hgq (w) Aq(w) + Hyg(w)Ag(w)],

where (e2) is the sum of the quark electric charges ({e2) = 10/9 for ny = 4); 6q

(25)

is the sum of the initial quark and antiquark densities and g = — (A’ (w)/27w?)dg
is the starting point of the evolution of the gluon density dg. It corresponds to
Fig. 1, b where the upper blob is substituted by the quark box. Solving Egs. (25),
we obtain

w(w — Hyg)dq + WHqg‘SAg}
w? —w(Hgq + Hyg) + (HgqHgg — Hnggq)]

B0 = ()2, SC)

VR (Ey p— L L] .
[W —w(Hgq + Hyg) + (HeqHgg — Hnggq)}
Then Egs. (22), (23), (26), (27) express g; in terms of the initial parton
densities g, dg.
When we put Hyy = Hyqy = Hyy = 0 and do not sum over ¢;, we arrive at
the expression for the nonsinglet structure function g)¥: Obviously, in this case
AN = B=E=Q_ =0, AO) =1, Q4 = H,. However, the nonsinglet

anomalous dimension Hy, should be calculated in the limit byy = bgg = bgq = 0.
We denote such H,, = HYS. The explicit expression for it is

HYS = (1/2)[ —Jw? - 4bqq] 28)

27)
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Therefore, we arrive at

e2 [ dw wdgq w HNS
e = Eq/zooz—m(m)(l/x) (/)" . (29)

SMALL-z ASYMPTOTICS FOR ¢,

When £ — 0 and Q2 > u2, one can neglect contributions with Q_ in
Egs. (10). As is known, g; ~ (1/x)“° at x — 0, with wp being the position of
the leading singularity of the integrand of g;. According to Egs. (12), the leading
singularity, wNS for g% is the rightmost root of the equation

w? —4bgg =0 (30)
while the leading singularity, wq for g; is the rightmost root of
wt - 4(bgq + bgg)WQ + 16(bgqbgg — bggbgq) = 0. (3D
(UO wo
03 1.4}
0.471 127 P
1.0t
037 0.8t N
021 0.61
0.41
0.11 02l
5 4 6 g 10" 3 70 15 26 "

Fig. 3. Dependence of the intercept wo on infrared cut-off 7 = In (u?/Aqcp) for gY'°

Fig. 4. Dependence on 7 of the rightmost root of Eq. (31), wo. Curve 2 corresponds to
the case when gluon contributions only are taken into account; curve [ is the result of
accounting for both gluon and quark contributions

In our approach, all factors b;; depend on 1 = In (u?/Aqcp), so the roots
of Egs. (30), (31) also depend on n. This dependence is plotted in Fig.3 for
w™S and in Fig.4 for wy. Both the curve in Fig.3 and curve / in Fig.4 have a
maximum. We denote this maximum as the intercept. Therefore,

ANs 2\ Ans/2
1 Q
a~e@ma(;) (%)

H
Q2 Ag/2
")

As >
g1 ~ (1/2)[Z18q + Za6,] G) <
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and we find for the intercepts
ANS ~ 04, AS ~ 0.86 (33)

and Z; = —1.2, Z; = —0.08. This implies that ¢} is positive when 2 — 0,
whereas g; can be either positive or negative, depending on the relation between
dq and dg. In particular, g; is positive when

158q + g < 0. (34)

otherwise it is negative. In other words, the sign of g; at small = can be positive
if the initial gluon density is negative and large.

CONCLUSION

The total resummation of the most singular (~ a?/w?**1) terms in the
expressions for the anomalous dimensions and the coefficient functions leads to
the expressions of Eqgs. (7), (22), (23), (29) for the singlet and the nonsinglet
structure functions g;. It guarantees the Regge (power-like) behaviour (32) of
g1, g% when 2 — 0, with the intercepts given by Eq. (33). The intercepts
Ans,Ag are of course obtained with the running QCD coupling effects taken
into account. The value of the nonsinglet intercept Anxg = 0.4 is now confirmed
by several independent analyses [10] of experimental data. The value Ag = 0.86
of the singlet intercept is in good agreement with the estimate Ag = 0.88 obtained
in Ref. 11 from analysis of the HERMES data.

Another interesting point to discuss is the sign of these structure functions.
Equation (29) states that ¢S is positive both at z ~ 1 and at z < 1. The
situation concerning the singlet g; is more involved: being positive at x ~ 1, the
singlet g; can remain positive at z < 1 only if the initial parton densities obey
Eq. (34), otherwise it becomes negative.
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