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Joint Institute for Nuclear Research, Dubna

It is a common belief now that the explanation of the microscopic origin of the BekensteinÄ
Hawking entropy of black holes should be available in quantum gravity theory, whatever this theory
will ˇnally look like. Calculations of the entropy of certain black holes in string theory do support
this point of view. In the last few years there also appeared a hope that understanding of black hole
entropy may be possible even without knowing the details of quantum gravity. The thermodynamics
of black holes is a low energy phenomenon, so only a few general features of the fundamental theory
may be really important. The aim of this review is to describe some of the proposals in this direction
and the results obtained.

‘¥°Î ¸ ¤µ¸É ÉµÎ´µ Ï¨·µ±µ · ¸¶·µ¸É· ´¥´µ ³´¥´¨¥, ÎÉµ µ¡ÑÖ¸´¥´¨¥ ³¨±·µ¸±µ¶¨Î¥¸±µ£µ
¶·µ¨¸Ìµ¦¤¥´¨Ö Ô´É·µ¶¨¨ Î¥·´ÒÌ ¤Ò· �¥±¥´ÏÉ¥°´ Ä•µ±¨´£  ³µ¦¥É ¡ÒÉÓ ¶µ²ÊÎ¥´µ ¢ É¥µ·¨¨
±¢ ´Éµ¢µ° £· ¢¨É Í¨¨, ± ± ¡Ò µ±µ´Î É¥²Ó´µ ´¨ ¢Ò£²Ö¤¥²  ÔÉ  É¥µ·¨Ö. �É  ÉµÎ±  §·¥´¨Ö ¤¥°-
¸É¢¨É¥²Ó´µ ¶µ²ÊÎ ¥É ¶µ¤É¢¥·¦¤¥´¨¥ ¢ ¢ÒÎ¨¸²¥´¨ÖÌ Ô´É·µ¶¨¨ µ¶·¥¤¥²¥´´µ£µ É¨¶  Î¥·´ÒÌ ¤Ò·
¢ É¥µ·¨¨ ¸É·Ê´. ‚ ¶µ¸²¥¤´¨¥ ´¥¸±µ²Ó±µ ²¥É ¢µ§´¨±²  É ±¦¥ ´ ¤¥¦¤ , ÎÉµ ¶µ´¨³ ´¨¥ Ô´É·µ¶¨¨
Î¥·´ÒÌ ¤Ò· ¢µ§³µ¦´µ ¤ ¦¥ ¡¥§ §´ ´¨Ö ¤¥É ²¥° É¥µ·¨¨ ±¢ ´Éµ¢µ° £· ¢¨É Í¨¨. ’¥·³µ¤¨´ ³¨± 
Î¥·´ÒÌ ¤Ò· ¥¸ÉÓ Ö¢²¥´¨¥ Ë¨§¨±¨ ´¨§±¨Ì Ô´¥·£¨°, ¶µÔÉµ³Ê ·¥ ²Ó´µ¥ §´ Î¥´¨¥ ¨³¥ÕÉ ²¨ÏÓ ´¥-
¸±µ²Ó±µ µ¡Ð¨Ì µ¸µ¡¥´´µ¸É¥° ËÊ´¤ ³¥´É ²Ó´µ° É¥µ·¨¨. –¥²Ó ¤ ´´µ£µ µ¡§µ·  ¸µ¸Éµ¨É ¢ Éµ³,
ÎÉµ¡Ò µ¶¨¸ ÉÓ ´¥±µÉµ·Ò¥ ¶·¥¤²µ¦¥´¨Ö ¢ ÔÉµ³ ´ ¶· ¢²¥´¨¨ ¨ ¶µ²ÊÎ¥´´Ò¥ ·¥§Ê²ÓÉ ÉÒ.

INTRODUCTION

Black holes are speciˇc solutions of the Einstein equations which describe
regions of a space-time where the gravitational ˇeld is so strong that nothing,
including light signals, can escape them. The interior of a black hole is hidden
from an external observer. The boundary of the unobservable region is called the
horizon.

A black hole can appear as a result of the gravitational collapse of a star.
In this case it quickly reaches a stationary state characterized by a certain mass
M and an angular momentum J . If the collapsing matter was not electrically
neutral, a black hole has an additional parameter, an electric charge Q. These are
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the only parameters a black hole in the EinsteinÄMaxwell theory can have. Its
metric in the most general case is the KerrÄNewmann metric. This statement is
known as the ®no-hair¯ theorem∗. If ΩH is the angular velocity of the black hole
at the horizon, ΦH is the difference of the electric potential at the horizon and
at inˇnity, then by using purely classical equations one arrives at the following
variational formula [2]:

δM = THδSBH + ΩHδJ + ΦHδQ, (1)

SBH =
1

4G
A, TH =

κ

2π
. (2)

Here A is the surface area of the horizon and G is the Newton gravitational
constant∗∗. The constant κ is called the surface gravity. It characterizes the
strength of the gravitational ˇeld near the horizon. Relation (1) has the form of
the ˇrst law of thermodynamics where SBH has the meaning of an entropy, TH

is a temperature, and M is an internal energy. The quantity SBH was introduced
in [4Ä7] and is called the BekensteinÄHawking entropy. Strictly speaking, (1)
deˇnes the entropy and the temperature up to a multiplier. This multiplier is ˇxed
from another considerations: TH is deˇned as the temperature of the Hawking
radiation from a black hole [7]∗∗∗.

One can also ˇnd an analogy with other laws of thermodynamics. For
instance, by considering classical processes with black holes one can conclude
that the area of the horizon never decreases, the observation which is reminiscent
to the second law. In quantum theory this should be true if SBH is considered
together with the entropy of a matter outside the horizon. Black hole must have
an intrinsic entropy proportional to the horizon area. Otherwise processes like a
gravitational collapse would be at odds with the second law.

Thermodynamics and statistical mechanics of black holes are one of the most
interesting and rapidly developing branches of black-hole physics. In the Einstein
theory SBH is a pure geometrical quantity. In real thermodynamical systems the
entropy is the logarithm of the number of microscopic states corresponding to a
given set of macroscopic parameters. This raises a natural question: Do black
holes have microscopic degrees of freedom whose number is consistent with the
BekensteinÄHawking entropy?

∗References on this subject as well as an introduction in black-hole physics can be found in [1].
∗∗Here and in what follows we use the system of units where � = c = kB = 1 (kB is the

Boltzmann constant), and follow the notations adopted in [3]. In particular, the Lorentzian signature
is (−, +, +, +).

∗∗∗The mechanisms which give rise to the Hawking radiation or quantum evaporation of black
hole are analyzed in [8].
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The main reason why this question is fundamental is because it goes beyond
the black-hole physics itself. Its answer may give important insight into the as
yet mysterious nature of quantum gravity.

To see this let us start with a simple estimation and consider a static neutral
supermassive black hole with mass M of the order of 109 solar masses. Such
objects are believed to occur in the centres of certain galaxies. By taking into
account that A = 16πG2M2, one ˇnds from (2) that the entropy of such a black
hole is of the order of 1095. It is eight orders of magnitude larger than the entropy
of the microwave background radiation in the visible part of the Universe! What
makes matters even worse is that in the classical theory a black hole is nothing
but an empty space. Thus, an explanation of the BekensteinÄHawking entropy is
one of those problems which cannot be solved in classical gravity theory.

Suppose the horizon surface is covered by cells of a Planckian size LPl ∼√
G. Then, according to (2), SBH is of the same order as the number of ways to

distribute signs ®+¯ and ®Ä¯ over these cells. The appearance of the Planck scale
in this estimate is not an accident. It indicates that a reasonable resolution of
the black-hole entropy problem has to be based on quantum gravity. Moreover,
reproduction of SBH by the methods of statistical mechanics has to be considered
as a very nontrivial test for any candidate theory.

At the present moment the most promising candidate is believed to be string
(D-brane) theory. A successful statistical-mechanical derivation of SBH for ex-
tremal [9Ä11] and near-extremal black holes [12,13] is among the most important
results in this theory during the last decade. The string computations, however,
do not solve the problem of the BekensteinÄHawking entropy completely. They
are not universal and, what may be worse, they are done for models in 	at space-
times which are in some sense dual to the string theory on a given black-hole
background. This kind of derivation says nothing about the real microscopic
degrees of freedom responsible for SBH and where they are located. A review of
the string computations can be found in [14Ä16].

Another approach to quantum gravity, loop quantum gravity, also offers an
interesting explanation of SBH (see [17, 18]). Loop quantum gravity is aimed at
a quantum description of the geometry. The area of a surface in this approach is
treated as an operator. The degeneracy of the eigenvalues of such operators can
be computed. The suggestion of loop quantum gravity is that the BekensteinÄ
Hawking entropy is related to the degeneracy of eigenvalues of the area operator
which are comparable in magnitude to the area of the black-hole horizon. How-
ever, there is a main open issue here how general relativity, coupled to quantum
matter ˇelds, is recovered from loop quantum gravity in a suitable low-energy
limit [19]. Till this question is resolved, it is not clear how to describe black
holes in this approach.

Let us emphasize that the thermodynamics of black holes is determined only
by the Einstein equations and classical gravitational couplings. This may indicate
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that an understanding of black-hole entropy is possible without knowing the details
of quantum gravity. Only a few general features of the fundamental theory may
be really important. If so, the question is: What are those features?

There were two main directions along which this idea was investigated during
the last few years. One of them was based on the assumption that classical sym-
metries on a black-hole background can control the density of states in quantum
gravity and in this way enable one to derive the entropy of a black hole.

The other direction of research starts from the suggestion that the origin of the
BekensteinÄHawking entropy is related to the properties of the physical vacuum
in a strong gravitational ˇeld. The BekensteinÄHawking entropy measures the
loss of information about quantum states hidden inside the horizon.

In this review, we analyze the ®pluses¯ and ®minuses¯ of the two approaches
and show that the two ways of counting SBH do not necessarily contradict each
other. The review is organized as follows. In Sec. 1 we discuss two-dimensional
conformal theories (CFT) in relation to the problem of black-hole entropy. We
start with black holes whose thermodynamical relations can be interpreted in
terms of such CFT's and use these examples to introduce some properties of
the conformal theory. Special attention is paid to near-extremal black holes and
black holes in anti-de Sitter (AdS) gravities. After that we discuss counting of
the BekensteinÄHawking entropy by using a near-horizon conformal symmetry.

The relation of SBH to the entropy of the thermal atmosphere around a black
hole and an entanglement entropy is discussed in Sec. 2. We argue that in the
most consistent way available at the present moment this relation can be studied in
induced gravity models. The Einstein gravity in these models is entirely induced
by quantum effects and the underlying theory is free from the leading ultraviolet
divergences.

A possible connection of the two approaches is discussed in Sec. 3 where we
show how to construct a concrete representation of the near horizon conformal
algebra in induced gravity. Our conclusions are summarized in the last section.

One of our purposes is to present the material in a form suitable for nonspe-
cialists in this ˇeld of research, thus when possible we avoid technical details.
Many interesting topics related to the black-hole entropy problem are not consid-
ered here or discussed brie	y. They can be found in other review works on this
subject (see, for instance, [8, 14Ä16,20Ä22] and further references below).

1. BLACK-HOLE ENTROPY AND ASYMPTOTIC SYMMETRIES

1.1. Black Holes Which Look Two-Dimensional. Before studying the prob-
lem of black-hole entropy, one may ask a simple question: Are there some
familiar physical systems in 	at space-time which are thermodynamically equiv-
alent to a given black hole? The equivalence means that the relation between
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the mass, temperature and other parameters of a black hole is the same, after ap-
propriate identiˇcations, as a relation between the energy, temperature and other
parameters of the corresponding system. The answer is positive. It turns out,
however, that different black holes are equivalent to completely different systems.
Moreover, the dimensionalities of the black hole and the 	at space-time do not co-
incide in general. Some black holes may have quite complicated thermodynamical
properties∗, some others are very simple.

Consider a ReissnerÄNordstréom solution which describes a charged black
hole in EinsteinÄMaxwell theory

ds2 = −Bdt2 +
dr2

B
+ r2dΩ2. (3)

Here dΩ2 is the metric on a unit sphere and

B =
1
r2

(r − r−)(r − r+), r± = m ±
√

m2 − q2. (4)

The parameter q = Q
√

G is related to the electric charge Q of the black hole,
while m = MG, where M is its mass∗∗. The radius of the horizon is r+. The
Hawking temperature (2) of this black hole is

TH =
1

2πr+

√
m2 − q2, (5)

and the BekensteinÄHawking entropy is SBH = πr2
+/G.

This solution has an interesting property: the Hawking temperature vanishes
in the limit when m = q or M = QMPl, where MPl = G−1/2 is the Planck mass.
Such a limiting solution is called an extremal black hole. Strictly speaking, there
are no physical processes which enable one to turn a charged black hole with
m > q to an extremal one∗∗∗. Macroscopic extremal black holes hardly exist.
These solutions, however, have a theoretical interest for reasons we discuss later.

We consider now black holes which are ®almost extremal¯ (or near-extremal)
whose mass parameter is

m = q + E, E � q. (6)

∗For example, charged black holes in anti-de Sitter space-times have a phase structure similar to
that of the Van der WaalsÄMaxwell liquid-gas systems in a space-time of one dimension lower [23].

∗∗In four dimensions the Newton constant G (in the system of units we work in) has the
dimensionality (length)2.

∗∗∗The reason why these black holes are different can be easily seen when going in (3) from
the Lorentzian to the Euclidean signature. Then in the r − t plane a nonextremal black hole in a
cavity has the disk topology, while an extremal black hole looks like an inˇnite throat.
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Thermodynamical relations for these objects are very simple. If we introduce the
parameter λ = (2π2q3)1/2, then

TH � E1/2

λ
, (7)

and deviations of the mass and the entropy of the black hole from the extremal
values are

E = m − q = λ2T 2
H , S = SBH − π

G
q2 =

2λ2

G
TH . (8)

What can one say about these relations? Consider a gas of some number of
massless noninteracting scalar ˇelds φk on an interval of length b. The equations
of the ˇelds are

(∂2
t − ∂2

x)φk(t, x) = 0, φk(t, 0) = φk(t, b) = 0. (9)

Suppose that this system is in a state of thermal equilibrium at some temperature
T . This is a one-dimensional analog of an ideal gas of photons in a cavity. Let
us denote the number of ˇeld species by c. The free energy of this model is

F (T, L) = cT
∑

n

ln
(
1 − e−ωn/T

)
, (10)

where the frequencies of single-particle excitations ωn = πn/b, n = 1, 2, . . . , are
determined from (9). In the thermodynamical limit, Tb � 1, series (10) can be
easily calculated

F (T, b) � −πc

6
bT 2, (11)

thus, the energy E(T, b) and the entropy S(T, b) of the system are

E(T, b) � πc

6
bT 2, S(T, b) � πc

3
bT. (12)

For c = 1 formula for the energy is just an analog of the StefanÄBoltzmann law.
A microcanonical ensemble is characterized by the relation

S = S(E, b) = 2π

√
c

6
bE

π
, (13)

which can be obtained from (12). By comparing (12) with (8) one can conclude
that thermodynamical properties of a charged black hole near the extremal limit
are identical to properties of an ideal gas in a 	at two-dimensional space-time.
If we identify in (8) and (12) the temperatures and the entropies, TH = T ,
S = S(T, b), then cb = 12πQ3LPl, where Q is the electric charge of the black
hole and LPl =

√
G is the Planck length.
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1.2. Conformal Symmetry. Models (9) have an important common feature.
They possess a high level of symmetry which becomes manifest if the equations
are rewritten in terms of the light-cone coordinates u = t − x and v = t + x,

∂u∂vφk(x) = 0. (14)

It is easy to see that equations (14) are invariant under transformations u′ = f(u),
v′ = g(v), where f and g are some smooth functions. These transformations are
called conformal transformations and the massless 2D quantum ˇeld model is an
example of conformal ˇeld theory (CFT)∗. In the Euclidean theory, an analog of
these transformations is z = f(z′) and z̄ = f̄(z̄′), where z and z̄ are coordinates
in the complex plane. Conformal transformations preserve the angle between two
vectors but rescale intervals between neighboring points.

The group of conformal transformations is an inˇnite group. To see this it
is sufˇcient to analyze small transformations of coordinates x′µ = xµ + δxµ(x).
The vector ˇeld δxµ in the light-cone coordinates has components δxµ = ζµ(u)+
ζ̄µ(v), where ζv(u) = ζ̄u(v) = 0. The commutator [ζ1, ζ2] of two vector ˇelds∗∗

is again a vector ˇeld, so one can say that these ˇelds make some algebra with
certain commutation relations. As in the case of the algebra of the rotation group
the algebra of diffeomorphisms can be characterized by commutation relations in
some basis. Suppose for simplicity that in the model we consider the ˇelds live
on a circle, i.e., instead of the Dirichlet condition in (9) we choose a periodic
condition φk(t, 0) = φk(t, b). Then one can use Fourier decomposition for each
vector

ζµ(u) =
∑

n

cnζµ
n , ζ̄µ(u) =

∑
n

dnζ̄µ
n ,

(15)

ζv
n(v) =

ib

2π
e2πinv/b, ζ̄u

n(u) =
ib

2π
e2πinu/b,

where n is an integer and cn, dn are some constants. The algebra of these vector
ˇelds has the form

[ζn, ζm] = (n − m)ζn+m, [ζ̄n, ζ̄m] = (n − m)ζ̄n+m, [ζn, ζ̄m] = 0. (16)

In fact, one has two commuting sets of generators, each making an inˇnite-
dimensional algebra called the Virasoro algebra.

In CFT models, the parameter c is called the central charge. Although c
is not an integer in general, a number of relations, such, for example, as (13)

∗For a brief introduction in CFT models see, for example, [24].
∗∗The commutator, or a Lie bracket, [ζ1, ζ2] of two vector ˇelds, ζµ

1 and ζµ
2 , is a vector ˇeld

with components ζµ
3 = ζν

1 ∂νζµ
2 − ζν

2 ∂νζµ
1 .
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are universal and applicable for any c > 0. The central charge is related to an
important property in 2D CFT. The conformal invariance of classical equation
(14) is broken in the quantized theory. This can be seen from the transformation
of the uu or vv components of the renormalized stress energy tensor Tµν = 〈T̂µν〉
under changes of u and v coordinates. For instance, under an inˇnitesimal change
δu = ζu(u) ≡ ε(u), it can be shown that

δTuu(u) = T ′
uu(u) − Tuu(u) =

= ε(u)∂uTuu(u) + 2∂uε(u)Tuu(u) +
c

24π
∂3

uε(u) + O(ε2). (17)

The term proportional to ∂3
uε(u) is anomalous. It appears because the renormal-

ization procedure requires subtracting the divergent part of the stress energy tensor
which is not scale invariant. This property is analogous to the chiral anomaly in
quantum theory.

Another way to see the conformal anomaly is the following. In quantum
theory the generators of conformal transformations are some operators acting in
the corresponding Fock space [24]. These operators are expressed in terms of the
components of the stress-energy tensor operator T̂µν . In this way, in quantum

theory each vector ζn (ζ̄m) corresponds to some operator L̂n ( ˆ̄Lm) which forms
the following algebra:

[L̂n, L̂m] = (n − m)L̂n+m +
c

12
(n3 − n)δn+m,0, (18)

[ ˆ̄Ln, ˆ̄Lm] = (n − m) ˆ̄Ln+m +
c

12
(n3 − n)δn+m,0, (19)

[L̂n, ˆ̄Lm] = 0. The brackets [ , ] now are the usual commutators. Due to the
conformal anomaly, the quantum algebra (18), (19) differs from the classical one

(16) by the term
c

12
(n3 − n)δn+m,0 which is called a central extension.

The Hamiltonian operator Ĥ of the system, which generates the evolution

along the time coordinate t can be expressed in terms of operators L̂0 and ˆ̄L0 as

Ĥ =
2π

b
(L̂0 + ˆ̄L0). (20)

This equation follows from the deˇnition of coordinates u and v, which together

with (15) implies that i∂t = i∂u + i∂v =
2π

b
(ζµ

0 + ζ̄µ
0 )∂µ.

In a free quantum ˇeld theory the Fock space is constructed by using creation
and annihilation operators. In the CFT theory there is an alternative way to do
this by using the group algebra (18), (19). One can do it independently for each
copy. Let |0〉 be the vacuum vector, such that

L̂k|0〉 = ˆ̄Lk|0〉 = 0, k = 0, 1, 2, . . . (21)
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Consider a vector of the Fock space, |h, h̄〉, which is an eigenvector of operators

L̂0, ˆ̄L0 with eigenvalues h and h̄, respectively. This vector will also be an
eigenvector of the Hamiltonian H with energy∗ E = 2π(h + h̄)/b. Such a vector

can be constructed by acting on the vacuum with operators L̂−k and ˆ̄L−k, where
k � 1,

|h, h̄〉 =
∏
k

(L̂−k)αk

∏
p

( ˆ̄L−p)βp |0〉, (22)

∑
k

kαk = h,
∑

p

pβp = h̄. (23)

The fact that (22) is an eigenvector of L̂0 and ˆ̄L0 can be easily checked by using
the Virasoro algebra (18), (19).

As can be seen from (23) the states |h, h̄〉 are degenerate. Their degeneracy
for large h, h̄ can be found exactly. The degeneracy D corresponding to an
eigenvalue h is

ln D � 2π

√
ch

6
(24)

(analogously for the degeneracy D̄ corresponding to an eigenvalue h̄). This
equation is known as the Cardy formula. It is applicable to theories with any
central charge c > 0.

There are different ways to derive (24) by using conformal properties. For
our purposes, however, it is more instructive to see how it follows from results
discussed in Subsec. 1.1. Consider a state of the scalar model with h = h̄ =
Eb/4π. Its degeneracy is related to the entropy S(E, b) of the microcanonical
ensemble with the given energy E,

S(E, b) = ln D + ln D̄ = 2 ln D.

Then the Cardy formula is just the consequence of the statistical-mechanical
relation (13).

1.3. Digression about Computations in String Theory. Let us emphasize that
in the considered example there is no apparent relation between a classical black
hole and a quantum model (9). Suppose, however, that there is an underlying
fundamental theory of quantum gravity able to provide a statistical explanation
of the BekensteinÄHawking entropy of a near-extremal black hole. Then the
microscopic degrees of freedom responsible for SBH are to be described by a
certain CFT.

∗It should be noted that the total energy of the system is E + E0, where E0 is the energy of
vacuum 	uctuations. In what follows we assume that E is large as compared with E0, so E0 can be
neglected.
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String theory provides an explicit example of how this happens in the case
of extremal black holes. These black holes are special solutions of an effective
supergravity theory which is a low-energy limit of string theory. Typically,
solutions in this theory break the supersymmetry but extremal black holes are
invariant with respect to a part of the supersymmetry transformations. They are
the so-called BPS solitons and the condition of extremality m = q is known as
a BPS bound. This bound ensures that the energy of the soliton receives no
corrections in quantum theory. The BekensteinÄHawking entropy of an extremal
black hole is

SBH =
πq2

G
= πQ2 (25)

and it does not depend on the gravitational coupling. Therefore, in gravity theories
with different G's, the black holes with equal charges Q have equal entropies.

In string theory the gravitational constant G = g2l2. It depends on the string
coupling g (the value of the dilaton) and on the inverse string tension l. The
parameter l determines the typical size of a closed string∗. Because SBH in (25)
does not depend on G one can vary the string coupling g without changing the
entropy of an extremal black hole. Note, however, that the size of the black
hole associated with the horizon radius r+ depends on the gravitational constant,
r+ = MG = Q

√
G = Qgl.

One can consider two limits. In the limit of weak coupling g, the horizon
radius can be much smaller than the string size, r+ � l. In this limit, instead
of a black hole one has a dual object, a point particle in a 	at space. A black
hole is formed in the limit of strong coupling when r+ � l. However, when one
increases the coupling and goes from the weak limit to the strong one, SBH does
not change. This means, that instead of doing calculations of the entropy on the
black-hole background one can consider a dual theory in a 	at space-time, which
is much easier. It turns out that the dual theory is a CFT similar to what we
described above and counting its states gives the correct value of SBH [9].

No doubt, this result is important but it is not quite satisfactory. Since
computations are done in a dual theory, the physical nature and the location of
the black hole degrees of freedom remain unknown. It is also not clear whether
it is possible to extend this analysis to be applicable to any black hole.

1.4. Anti-de Sitter Black Holes. Another interesting example where ther-
modynamical relations of black holes are equivalent to relations emerging in
CFT models appears in the three-dimensional (3D) gravity theory with a negative

∗In quantum theory, strings with size larger than l give an exponentially small contribution to
the functional integral.
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cosmological constant Λ = −l−2. The theory is described by the action

I =
1

16πG3

∫ √
−gd3x

(
R +

2
l2

)
, (26)

where R is the scalar curvature and G3 is the 3D gravitational coupling (note
that G3 has the dimension of length). The important feature of gravity in three
dimensions is that if Λ = 0, the space-time geometry is always locally 	at. A
point mass in such a theory does not have a gravitational potential but changes
global properties of the geometry around itself. Another feature of 3D gravity is
the absence of gravitons.

One of the solutions of 3D gravity with nonzero cosmological constant is
anti-de Sitter, AdS3, space∗

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dϕ2, (27)

where 0 � ϕ � 2π. This space has a constant negative curvature and can be
deˇned as the surface x2 + y2 − z2 − w2 = −l2 in a 	at 4D space with metric
ds2 = dx2 + dy2 − dz2 − dw2. It is denoted as AdS3.

There are also black-hole solutions in this theory discovered in [25] and
called BTZ black holes after the authors. The metric of a BTZ black hole is
simple

ds2 = −
r2 − r2

+

l2
dt2 +

(
r2 − r2

+

l2

)−1

dr2 + r2dϕ2. (28)

The horizon is located at r = r+ and is a circle. The area of the horizon is the
length 2πr+ of this circle. Space (28) has locally the same geometry as (27) but
differs from it by global properties. We denote the black hole space-time by M3

to distinguish it from AdS3.
The mass M of the BTZ black hole is deˇned as M = r2

+/(8l2G3). Thus,
the relation between the BekensteinÄHawking entropy and the mass is

SBH =
2πr+

4G3
= 2π

√
l2M

2G3
. (29)

This formula has the same form as Eq. (13) for the entropy of a CFT. To make
the correspondence more precise note that for a black hole in AdS gravity the
curvature radius l plays the role of a ®size¯ of the black hole∗∗. Thus, l in (29) is

∗For this reason such theories are also called AdS gravities.
∗∗To explain this analogy we take a different example and consider the Schwarzschild black

hole in the Einstein theory. It is known that this black hole is thermodynamically unstable. There are
two ways to solve this problem: to place the black hole in a spherical cavity of a certain radius [26]
or to introduce a negative cosmological constant.
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analogous to parameter b in (13). If we identify the entropy and the mass of the
black hole with the entropy and the energy of the CFT, then the central charge c
of this theory has to be proportional to l/G3. In fact, this is a very good guess:
the correct value of the central charge is

c =
3l

2G3
. (30)

A remarkable property of BTZ black holes is that the corresponding conformal
group is realized not in a dual theory, as in the case of extremal black holes, but as
a group of the asymptotic transformations of the physical space-time background.

As one can see, at large r the BTZ metric (28) behaves like the AdS3

metric (27). One says that BTZ geometry is asymptotically AdS. There is a
group of coordinate transformations δxµ = ζµ(x) which preserves this asymptotic
structure. At large r the diffeomorphism vector ˇelds are [28]:

ζt = l(T + + T−) +
l3

2r2
(∂2

+T + + ∂2
−T−) + O(r−4), (31)

ζϕ = (T + − T−) − l2

2r2
(∂2

+T− − ∂2
−T−) + O(r−4), (32)

ζr = −1
2
r(∂+T + + ∂+T +) + O(r−1), (33)

where ∂± = l∂t ± ∂ϕ, T + is a function of a single variable t/l + ϕ, while T− is
a function of t/l − ϕ.

It is not difˇcult to check that the commutator of vector ˇelds ζ1 and ζ2

which have the asymptotic behavior (31)Ä(33) with functions T±
1 and T±

2 , re-
spectively, is a vector ˇeld ζ3 which has the same asymptotic behavior with
T±

3 = T±
1 ∂±T±

2 − T±
2 ∂±T±

1 . Thus, one can say that generators of these dif-
feomorphisms form a closed algebra. There is a natural choice of basis in this
algebra, ζn, ζ̄n, which is singled out by the the following restrictions on the
corresponding functions:

T +
n =

i

2
ein(t/l+ϕ), T−

n = 0, T̄ +
n = 0, T̄−

n =
i

2
ein(t/l−ϕ), (34)

where n is an integer. The algebra of these vector ˇelds is given by relations (16)
and therefore the group of asymptotic transformations (31)Ä(33) is the conformal
group discussed in Subsec. 1.2.

We have pointed out that the representation of the conformal algebra in quan-
tum theory acquires a central extension due to the conformal anomaly (see (18),
(19)). It is an interesting fact that the Virasoro algebras with central extension
also appear in classical theory, as happens for example, in Liouville theory [27].
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In a classical theory the symmetries can be realized in a phase space. If there is a
symmetry group, its algebra is represented by relations where the Poisson bracket
plays the role of the commutator. In the classical gravity (26) the generators of
diffeomorphisms δxµ = ζµ(x) have the following structure:

H [ζ] =
∫

Σt

ζµφµdΣ + J [ζ]. (35)

The integral goes over a space-like hyper-surface Σt of constant time t. Quantities
φµ and J [ζ] depend on canonical coordinates, gij , and momenta, πij , which are
deˇned from the Lagrangian by standard methods.

To avoid the divergences in the theory at large radii r one has to restrict the
integration over Σt by some large upper bound r � r0 (r0 can be taken to inˇnity
in the last stage of the computation). The last term J [ζ] in (35) is a surface
term deˇned at r0. Quantities J [ζ] are introduced to ensure a canonical form for
variations of H [ζ],

δH [ζ] =
∫

Σt

(Aijδgij + Bijδπij). (36)

The form of J [ζ] in general depends on the boundary conditions at r0.
The equations φµ = 0 are constraints analogous to the Gauss law ∇E−ρ = 0

in electrodynamics. Thus, when the equations of motion are satisˇed, H [ζ] reduce
to pure surface terms. For this reason, in particular, the energy of the system
which is associated with the generator of translations i∂t = iζµ

(t)∂µ along the
Killing time is nontrivial because of the presence of the surface term J . The
on-shell value of H [iζ(t)] is deˇned so that to coincide with mass M of the BTZ
black hole (Eq. (28)).

One can deˇne generators Ln = H [ζn], L̄n = H [ζ̄n] corresponding to the
particular set of diffeomorphism vectors having the asymptotic form (31)Ä(33).
Their canonical commutation relations were investigated by Brown and Hen-
neaux [29] who found that Ln, L̄n form a Virasoro algebra isomorphic to (18),
(19), where the constant c is the central extension given by (30).

As follows from (31)Ä(34), the generator of time translations is represented
as i∂t = i(∂+ + ∂−)/2l = l−1(ζµ

0 + ζ̄µ
0 )∂µ. Therefore, one has the following

relation between the energy and the Virasoro generators:

H [iζ(t)] =
1
l
(H [ζ0] + H [ζ̄0]) =

1
l
(L0 + L̄0). (37)

This equation is analogous to relation (20) discussed in Subsec. 1.1. Now, how-
ever, (37) is a classical quantity deˇned on a phase space. Suppose that modulo
the equations of motion L0 = h, L̄0 = h̄. If the energy of the system coincides
with the mass of the black hole, then, by the symmetry, h = h̄ = Ml/2.
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Do these observations say something about the entropy of the BTZ black
hole? It is a well-known fact that there is a correspondence between the Poisson
brackets in classical mechanics and commutators of operators in quantum theory.
By taking this into account one can make the following suggestions:

i) There is a quantum gravity theory on AdS such that physical states of
this theory yield a representation of the Virasoro algebra related to asymptotic

symmetries; classical generators Ln, L̄n correspond to operators L̂n, ˆ̄Ln in the
quantum gravity.

ii) The central charge c of the Virasoro algebra in quantum gravity coincides
with the central charge (30) of the classical theory.

iii) A quantum state for which the operators L̂0, ˆ̄L0 have eigenvalues h = h̄
corresponds to a static BTZ black hole of mass M = 2h/l.

As follows from iii) the mass of a black hole cannot be arbitrary but takes
some discrete values which can be derived by using the commutation relations
of the Virasoro algebra. The spacing between two levels is determined by the
inverse radius l−1 of AdS3. If M is comparable to l, the black hole is essentially
a quantum object. Note that the semiclassical regime of quantum gravity theory
also requires that R � LPl, where R is characteristic radius of the space-time
curvature, LPl = G3 is the Planck length in three dimensions. The geometry of
the BTZ black hole has two such radii, l and r+ = l

√
8G3M . Thus, the semi-

classical limit requires that l � G3 and M � G3/l2. The ˇrst condition imposes
a restriction on the central charge (30), c � 1. The second condition holds if the
black hole mass is larger than the Planck mass, M � G−1

3 . Both conditions then
imply that M � l−1. This means that the spectrum of a semiclassical black hole
can be considered as continuous.

The classical black hole is a highly degenerate object. The degeneracy D, D̄

of operators L̂n, ˆ̄Ln, can be found by using the Cardy formula (24). The total
degeneracy is

ln D + ln D̄ = 2 lnD � 4π

√
ch

6
= 2π

√
l2M

2G3
, (38)

which is exactly the BekensteinÄHawking entropy (29) of the BTZ black hole
with mass M . The above derivation of (38) was ˇrst given by Strominger [28].
The result can be generalized to the case of a rotating black hole whose state has
additional number, a spin. One can also investigate along these lines black holes
in a 2D AdS gravity [30,31].

There are a number of technical questions in these derivations which can
be addressed [32] but can hardly be resolved without more detailed information
about quantum gravity on AdS3. These questions are related to assumptions ii)
and iii) which may not hold because quantum effects change classical quantities
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and these changes are not always small. However, if the assumptions i)Äiii) are
adopted, one gets a deˇnite answer to the question formulated in the title of this
review. Note that those few properties of the quantum gravity theory relevant
for the entropy counting are determined only by the low-energy constants, l and
G3. These constants deˇne the energy spectrum completely, all one needs to
know! Therefore, the BTZ black hole certainly sets an example where one can
understand black-hole entropy without knowing much about quantum gravity.

Let us emphasize that the above discussion concerns black holes in AdS3

gravity without matter. Introduction of matter ˇelds makes such a derivation of
the entropy impossible in general. Discussion of 3D black holes with matter ˇelds
and further references can be found in [33].

1.5. AdS/CFT Correspondence. Relation (29) can be used to ˇnd the Hawk-
ing temperature of the BTZ black hole TH = (dSBH/dM)−1 = (2G3M/π2l2)1/2.
If the black hole is considered as a canonical ensemble, one can introduce its free
energy, Fbh(T, b), via the standard thermodynamical relation

Fbh(T, b) = M − TSBH = −M = −πc

6
bT 2, b = 2πl, T = TH , (39)

where c is given by (30). It is instructive to compare this result with the free
energy (11) of the model discussed in Subsec. 1.1 and see that Fbh(T, b) is
equivalent to the free energy of c quantum ˇelds living on a circle of the length
b = 2πl so that one can write∗

Fbh(T, b) = FCFT(T, b). (40)

This result could be expected from the previous discussion. Equation (40) relates
classical and quantum quantities. The conformal theory lives on a 	at space-
time M̃2 which is one dimension lower than M3. The metric of M̃2 is dl̃2 =
−dt2 + l2dϕ2. On the other hand, the metrics of constant-radius hypersurfaces
of M3 at large r have the form dl2 ∼ (r/l)2dl̃2. Thus, up to a scale, factor
M̃2 has the same geometry as asymptotically distant sections r = const of M3.
In this sense M̃2 can be called the asymptotic inˇnity of M3 or an asymptotic
boundary∗∗.

It can be shown [25] that Fbh(T, b) in (40) can be obtained from classical
gravitational action (26) on the black-hole background M3. If one had a quantum
gravity on AdS3, the semiclassical limit of this theory in the black-hole sector

∗Let us recall that (11) is applicable in the thermodynamical limit TL � 1 which requires that
the black hole is classical, M � G−1

3 .
∗∗There is a conformal transformation of the AdS3 and BTZ metrics which maps these spaces

to spatially compact space-times such that in the transformed metrics the surface r = ∞ is located at
a ˇnite distance and deˇnes a boundary, see [34] for details.
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would be given by Fbh(T, b). Therefore, a semiclassical limit of quantum gravity
theory on AdS3 is determined by a conformal ˇeld theory deˇned at the asymp-
totic inˇnity of the bulk space-time. This property is known as the AdS/CFT
correspondence.

There are arguments [34Ä36] based on string theory that the AdS/CFT corre-
spondence also holds for higher-dimensional AdS gravities. For a D-dimensional
AdS background MD, the asymptotic boundary is a (D − 1)-dimensional space-
time M̃D−1. The boundary theory living on M̃D−1 is a quantum conformal
theory CFTD−1. It should be emphasized that if D > 3, the properties of the
boundary theory cannot be inferred from the asymptotic symmetries of the back-
ground space-time. The asymptotic symmetry in this case is just the anti-de Sitter
group which is ˇnite-dimensional and does not admit nontrivial central exten-
sions in general [29]. To get the energy spectrum of the CFT more data about the
gauge group of the theory, its coupling constants and others are required. String
theory provides an example how these data can be related to the properties of the
fundamental gravity theory∗.

What is important, however, is that in these examples the characteristics of the
boundary CFT are expressed in terms of the low-energy parameters. For example,
for ˇve-dimensional AdS gravity the effective number of degrees of freedom of
the corresponding CFT (an analog of the central charge (30)) is proportional to
l3/G5 where l is the AdS radius and G5 is the Newton constant. In this regard,
the higher-dimensional case is similar to the BTZ black hole. It supports the idea
that by using the low-energy parameters the entropy of higher-dimensional AdS
black holes can be reproduced by the methods of statistical-mechanics without
knowing the details of quantum gravity theory.

A ˇnal remark is in order. If the AdS/CFT correspondence holds, the infor-
mation about bulk degrees of freedom in AdS is encoded into a dual boundary
theory. This is an example of how a ®holographic principle¯ ˇrst formulated by
't Hooft [37] (see also [38] and the review [39]) is realized. This property does
not explain what are the bulk degrees of freedom and where are they located but
it may help to resolve other problems. For instance, since the boundary theory is
unitary so should be the process of black hole evaporation.

1.6. Near-Horizon Conformal Symmetry. The arguments based on the
AdS/CFT correspondence are not universal because they are restricted to gravity
theories with a negative cosmological constant. They are not applicable to the
most interesting case of asymptotically 	at black hole space-times.

∗The AdS/CFT correspondence in string theory is formulated as follows [35]: IIB-type string
theory on AdS5 × S5 is dual to N = 4, D = 3 + 1 super-YangÄMills theory with SU(N) group.
Coupling constant, gYM, in this theory is related to string coupling constant gst (g2

YM ∼ gst), N
equals ˇve-form 	ux on S5 (N is supposed to be large). Radius of curvature of the background is
proportional to (g2

YMN)1/4 .
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It is easy to understand where the difˇculty comes from. The problem of the
BekensteinÄHawking entropy SBH is related to the physics near the black hole
horizon. The value of the entropy, the temperature of the Hawking radiation and
properties of the spectrum of the radiation (the so-called gray-body factors) are
determined by the space-time geometry near the horizon. These facts strongly
suggest that a universal approach to SBH should be related to the near horizon
region∗ rather than to spatial inˇnity.

It is natural to ask whether one can derive the BekensteinÄHawking entropy
by applying the so far successful arguments based on a symmetry group to
the region near the horizon. The ˇrst attempts in this direction were made
by Carlip [41] and Solodukhin [42] and then continued in a large number of
publications by other authors [43Ä56]. We will not attempt to describe these
works here in full detail. This would require us to go into many technical
questions which are not completely resolved∗∗. Also there is no unique point
of view as to how this approach should be realized. We focus on some general
features related to the formulation of this problem.

In the region near the horizon the black hole metric takes a simple form

ds2 = −κ2ρ2dt2 + dρ2 + dσ2. (41)

The horizon is located at ρ = 0. The coordinate ρ is the proper distance from a
point to the horizon and dσ2 is the metric on the horizon surface. Asymptotically
(41) is valid for nonextremal black holes which have a nonvanishing surface
gravity constant κ (and, hence, a nonzero Hawking temperature TH , see (2)).
Formula (41) is called the Rindler approximation. If dσ2 = dx2 + dy2 is a 	at
metric, Eq. (41) is the metric in Minkowski space written in Rindler coordinates.
An observer moving along the trajectory ρ = const has acceleration 1/ρ.

By using the BTZ black hole as an example one has to look for a relevant
group of coordinate transformations which preserves this form of the metric and
is isomorphic to the conformal group. This can be done in many ways, but
a universal approach should be applicable to black holes in different gravity
theories. In particular, it must work in two-dimensional gravities where the black
hole horizon is a point∗∗∗ and dσ2 = 0 in (41). Thus, it is natural to identify
the conformal group with coordinate transformations in the t − ρ plane, as was
ˇrst proposed in [42]. In arbitrary dimensions this is a two-dimensional plane
G orthogonal to the horizon surface. Let us denote its metric as dγ2. In the

∗This may not be necessarily true because the black-hole entropy is a global quantity [40].
∗∗The latest account of these results and references can be found in [56].
∗∗∗More precisely, the cross section of the black-hole horizon and a constant time hypersurface

in two-dimensional black holes is a point.
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light-cone coordinates

dγ2 = −κ2ρ2dt2 + dρ2 = −κ2ρ2dudv, (42)

u = t − x, v = t + x, x =
1
κ

ln ρ. (43)

The coordinate transformations which lead to the conformal group are those
discussed in Subsec. 1.2, i.e., u′ = f(u), v′ = g(v). Suppose this choice of
transformations is correct. Can it be used to reproduce the BekensteinÄHawking
entropy? To answer this question note that there are several key distinctions
between the near-horizon approach and the approach used in the case of the BTZ
black hole.

i) The thermodynamical relations for a black hole in the near-horizon region
do not look like relations of a 2D CFT. An observer at rest with respect to the
black-hole horizon measures a temperature of the Hawking radiation T which
differs from the Hawking temperature TH by a blue-shift factor, T = TH/

√
B

where B is related to the time-component of the metric (it is the modulus of norm
of the Killing vector ∂t). Near the horizon B � κ2ρ2. Thus, according to (2)
the local temperature is T � 1/(2πρ). It is determined only by the acceleration
of the observer and does not depend on black-hole parameters. According to
York [26], if the black hole is placed in a cavity, its temperature is deˇned as a
local-temperature T on the boundary of the cavity. The black hole is characterized
by an energy E which should be consistent with the ˇrst law of thermodynamics.
For instance, if the radius of the cavity is ˇxed, dE = TdSBH. However, when
the boundary of the cavity is moved close to the horizon, T becomes a free
parameter which means that E = TSBH up to an additive constant. Therefore,
SBH ∼ E and this relation differs from (13)∗.

ii) Approximation (42) leaves only two parameters: the surface area of the
horizon A and the Planck length LPl (deˇned by the Newton coupling constant
in the given theory). For a BTZ black hole there is an extra parameter, the AdS
radius l, which determines the spacing between the energy levels.

iii) The boundary conformal theory in the BTZ case is given on a circle
of length 2πl. Contrary to this in the near-horizon approach the light-cone
coordinates are not compact. Therefore, to have a discrete basis of generators of
the conformal algebra Ln, L̄n one has to impose some boundary conditions on
diffeomorphisms in the t − ρ plane and introduce an extra parameter b, the size
of the space where the CFT theory is deˇned. This scale should determine the
spacing in the energy spectrum.

∗It is interesting to note that such a relation between the energy and the entropy is typical for
string theory where the degeneracy of a level with the energy E is proportional to eE [57].
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iv) Suppose that in the gravity theory the algebra of generators H [ζn] of
the diffeomorphisms in the t − ρ plane is a Virasoro algebra (18) with a central
charge c. What is the value of c in this theory? The black hole is identiˇed with
a certain quantum state with the energy E. To relate the BekensteinÄHawking
entropy to the degeneracy of the energy level E one has to use (13) and condition
that E ∼ SBH. This requires that c ∼ SBH. The precise value of c is ˇxed when
b is ˇxed.

The derivation of the BekensteinÄHawking entropy along these lines was
given in [41, 42] and in subsequent publications. It should be noted that these
derivations used a single copy of the Virasoro algebra and the conformal trans-
formations were not necessarily related to transformations of coordinates u and
v. However, all these works despite technical differences had the basic features
described above.

An attractive feature of the near-horizon approach is its universality and a
certain hope to explain the black hole entropy without relying on the details of
quantum gravity theory. But is this hope justiˇed?

One of the problems is that the central charge c in the boundary CFT is
proportional to the area of the black-hole horizon. This means that c depends on
the background, a property which does not look natural. Let us recall that the
central charge in AdS gravities is a combination of the fundamental constants,
see (30). For this reason, the AdS/CFT correspondence enables one to consider
different backgrounds (for example, a black hole and a pure anti-de Sitter space)
as different quantum states of the same boundary CFT. As a result, black hole
evaporation is equivalent to a time evolution in some CFT. There should be no
loss of information in this process. In contrast to this in the near-horizon approach
black holes with different masses correspond to states in different CFT's. The
evaporation of a black hole is an evolution in a space of theories and it is not
restricted by requirements of unitarity.

The other problem is the choice of the boundary conditions at the hori-
zon and ˇxing the central charge. It is clear that the Rindler approximation
is not enough for this purpose. Perhaps, other characteristics of the gravita-
tional ˇeld in the vicinity of the horizon may help to deˇne the CFT completely.
Some work in this direction can be found in [58]. On the other hand, going
beyond the Rindler approximation certainly puts at risk the universality of the
method.

The problem may be even more serious: to ˇx the boundary CFT one needs
to know those details of the quantum gravity theory which are not available at
low energies. The approach based on the near-horizon symmetry gives at best a
statistical representation of SBH. It implies the existence of the corresponding
microstates but does not prove it. Note that the AdS/CFT correspondence is
supported by computations in string theory [34Ä36] while approach [41,42] does
not have such support so far.
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Are there any examples of a microscopic realization of the near-horizon
symmetry and what can one learn from them? This will be discussed in the
second part of the paper.

2. BLACK-HOLE ENTROPY AS A PROPERTY
OF THE PHYSICAL VACUUM

2.1. Thermal Atmosphere and Entanglement Entropy. We now turn to
another approach where the origin of the black-hole entropy is related to the
properties of the physical vacuum in strong gravitational ˇelds. There are always
zero-point 	uctuations of physical ˇelds in a vacuum state. An observer, who
is at rest with respect to the horizon sees these vacuum excitations as a ther-
mal atmosphere around a black hole [59Ä64]. The ˇrst attempts to relate the
BekensteinÄHawking entropy to the thermal atmosphere were made by Thorne
and Zurek [59] and by 't Hooft [60].

Let us calculate, as an example, the entropy S of a quantum scalar ˇeld
around a static black hole. First note that near the horizon the local temperature
is T = 1/(2πρ) and it grows indeˇnitely when the horizon is approached (ρ
goes to zero). Thus, one can use the high-temperature asymptotic form of the
free energy in a gravitational ˇeld. This asymptotic form is well known. In
four-dimensional static space-time the free-energy is∗

F (β) � −π2

90

∫ √
−gT 4d3x. (44)

Here g is the determinant of the metric; T = β−1/
√
|g00| is the local temperature;

g00 is the time-component of the metric. In asymptotically 	at space-times, like
a Schwarzschild black hole, β−1 is the temperature measured by an observer at
inˇnity. For our purposes evaluation of (44) can be done by using the Rindler
approximation (41). By taking into account that g = κρ, d3x = dρd2σ one can
see that the integral in (44) diverges. Let us introduce a cutoff at some small
distance ε near the horizon. The leading contribution to entropy can be found by
using the standard statistical-mechanical deˇnition

S = β2 ∂F (β)
∂β

� 1
360πε2

A. (45)

The quantum ˇeld is supposed to be in thermal equilibrium with the black hole.
This is possible when the temperature coincides with the temperature of the

∗Finite-temperature quantum ˇeld theory in gravitational backgrounds including the case of
black-hole backgrounds is discussed in [65Ä67].
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Hawking radiation. Thus, when the derivative is taken, one puts β = κ/(2π) and
gets the right-hand side of (45). The quantity A is the integral

∫
d2σ which is

the surface area of the horizon.
It is natural to assume [60] that the cutoff parameter is comparable to the

Planck length, ε �
√

G. Then S in (45) has the same order of magnitude as the
BekensteinÄHawking entropy SBH of a black hole.

One may wonder how the entropy can be related to properties of the vacuum.
The explanation is that static observers near a black-hole horizon perceive the
vacuum as a mixed state. This happens because they cannot do measurements
inside the horizon. There is a nontrivial density matrix ρ̂ which appears because
in a local quantum ˇeld theory ®observable¯ and ®nonobservable¯ vacuum 	uc-
tuations are correlated or entangled at the horizon. There is an information loss
which can be quantiˇed by some entanglement entropy Sent = −Tr ρ̂ ln ρ̂. A
remarkable property of black holes is that the entanglement entropy coincides
with the entropy of the thermal atmosphere∗ because ρ̂ is a thermal density ma-
trix [61Ä63].

Can S (or Sent) be the source of the BekensteinÄHawking entropy? To
answer this question one has to resolve the following problems:

i) S depends on the cutoff ε. Therefore, there must be some natural expla-
nation why the cutoff is adjusted so that S = SBH.

ii) In the general case, S receives contributions from all ˇelds present in the
Nature. It depends on the total number of ˇelds and their spins. However, SBH

does not have such dependence.
Before we consider these problems one more property of the thermal entropy

has to be discussed. Introduction of the cutoff ε means that a quantum ˇeld
cannot propagate on the entire black-hole background. It cannot leak inside the
horizon because of some artiˇcial (®brick wall¯) boundary conditions. It should
be emphasized that the horizon is not a boundary and there can be no conditions
in this region but regularity.

There are other regularizations of integral (44) onsistent with this property.
For instance, one way to get rid of the divergences would be to use dimensional
regularization. In a D-dimensional space, integral (44) depends on T D and
converges if D is extrapolated to the region D < 2.

One can also use, as was suggested in [75], a PauliÄVillars (PV) regulariza-
tion. In this method for each physical ˇeld, one introduces 5 additional auxiliary
ˇelds: two ˇelds with masses Mk which have the same statistics as the origi-
nal ˇeld and three ˇelds with masses M ′

r which have the wrong statistics. The
masses can be chosen as follows: M1,2 =

√
3µ2 + m2, M ′

1,2 =
√

µ2 + m2,

∗The fact that Sent is proportional to the horizon area and can be related to the BekensteinÄ
Hawking entropy was ˇrst pointed out in [68Ä70]. This entropy was then studied in [71Ä74].
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M ′
3 =

√
4µ2 + m2, where µ2 plays the role of a regularization parameter. The

leading part of the entropy of each PV ˇeld is given by formula (45) with the
only difference that ˇelds with the wrong statistics give negative contributions to
the total entropy. For this reason the leading divergence is canceled. To ˇnd the
entropy one has to use next-to-leading terms in the high-temperature asymptotic
expressions (see [65] for details). The ˇnal result in the limit of large µ is

S = S(µ) � λ

48π
µ2A, (46)

where λ = ln
729
256

. The divergence in S in the PV method appears in the limit

of inˇnitely heavy PV ˇelds.
Both dimensional and PV regularizations are used in quantum ˇeld theory

to regularize ultraviolet divergences in Feynman diagrams. The fact they can be
used for the entropy indicates that the divergences near the horizon may be related
to the ultraviolet divergences. This in fact is true and, as was ˇrst suggested by
Susskind and Uglum [76] and Callan and Wilczek [72], these divergences can be
removed by the standard renormalization of the Newton constant.

2.2. Entanglement Entropy and Renormalization of Gravitational Cou-
plings. Let us discuss the renormalization in more detail. Vacuum polarization
in an external gravitational ˇeld gµν results in the appearance of a nontrivial
right-hand side in the Einstein equations, the average value of the stress energy
tensor of a quantum ˇeld, 〈T̂µν〉. Such equations can be obtained as an extremum
of an effective action Γ[g] under variation of the background metric gµν . The
effective action has the following form:

Γ[g] = I[g] + W [g], (47)

where I[g] is the classical Einstein action or its modiˇcations and W [g] is a
functional related to the contribution of quantum ˇelds. For instance, for the so-

called (free) nonminimally coupled scalar ˇeld W =
1
2

ln det (−∇2 + ξR+m2),
where ξ is the constant of the coupling with the scalar curvature R.

Computations show that W [g] has ultraviolet divergences which can be ab-
sorbed by a renormalization of the couplings in the classical action I[g]. To this
end the latter is chosen in the form

I(GB , ΛB, ci
B) =

∫
d4x

√
g×

×
[
− ΛB

8πGB
− R

16πGB
+ c1

BR2 + c2
BRµνRµν + c3

BRαβµνRαβµν

]
. (48)
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Denote by Wdiv the UV-divergent part of the quantum action W . Then the
renormalized quantities are deˇned as

Iren ≡ I(Gren, Λren, c
i
ren) = I(GB , ΛB, ci

B) + Wdiv, Wren = W −Wdiv. (49)

The key observation is that Wdiv has the same structure as (48) and hence Wdiv

can be absorbed by simple redeˇnition of the coupling constants in I(GB, ΛB, ci
B).

In other words, Iren is identical to the initial classical action I with the only change
that the bare coefˇcients ΛB , GB , and ci

B are replaced by their renormalized ver-
sions Λren, Gren, and ci

ren. The relation between bare and renormalized couplings
depends on the regularization. For instance, in PV regularization the renormal-
ization of the Newton constant for the nonminimally coupled scalar ˇeld is

1
Gren

=
1

GB
+

λ

2π

(
1
6
− ξ

)
µ2, (50)

where λ = ln
729
256

and µ is the PV cutoff. According to the general prescription,

the observable constants are identiˇed with the renormalized ones. Thus, the
BekensteinÄHawking entropy is SBH = SBH(Gren) = A/(4Gren). As follows
from (46) and (50) it can be written in the following form:

SBH(Gren) = SBH(GB) + S(µ) − Qdiv, (51)

where Qdiv = ξλµ2A/(2π).
Equation (51) explicitly demonstrates that the ®observable¯ BekensteinÄHaw-

king entropy contains the statistical-mechanical entropy S(µ) of the black hole's
quantum excitations as an essential part. It can be shown [75, 77Ä81] that this
result does not depend on the regularization procedure, or on the black-hole
background and holds for the entropies of different ˇelds. In general, equation
(51) is extended to include corrections to the BekensteinÄHawking entropy due
to terms depending on curvatures [77Ä79].

Relation (51) removes the two problems formulated in the end of Subsec. 2.1.
Indeed, if one has a gravity theory where computations are based on the renor-
malization procedure, the leading part of the entanglement entropy of all quantum
excitations is just a part of the observable BekensteinÄHawking entropy, no mat-
ter what kind of regularization is used and how many ˇeld species exist in the
Nature.

Although this fact indicates a strong connection between the entanglement
entropy and SBH, it does not solve the problem of the BekensteinÄHawking
entropy. Indeed, one part of the observable entropy SBH is the ®bare entropy¯
SBH(GB) in (51) which has no statistical-mechanical meaning. Another question
concerns statistical meaning of quantity Qdiv which appears due to nonminimal
couplings.
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2.3. Induced Gravity. As was pointed out in [82Ä84], the problem of the bare
entropy in (51) can be resolved if Einstein gravity is entirely induced by quantum
effects. The idea of induced gravity was formulated by Sakharov [85, 86] and
then developed in different works, see, e.g., [87] and the review papers [88,89].
Sakharov's idea is very simple and physical. Its main assumption is that the
dynamical equations for the gravitational ˇeld gµν are determined by properties of
the physical vacuum which, like an ordinary medium, has a microscopic structure.
The relevant example is a crystal lattice. The metric gµν plays the same role as

the strength tensor σij =
1
2
(ξi,j +ξj,i) which describes macroscopic deformations

of a crystal (here ξi = ξi(x) is a vector of the displacement of the lattice site
at a point with the coordinates x). Gravitons in this picture are analogous to
phonons and are collective excitations of the microscopic degrees of freedom of
the vacuum. We call these degrees of freedom constituents. The constituents are
virtual particles of all possible ˇelds present in Nature. The energy stored in the
deformation of the crystal has the form

E [σ] =
∑
x

(Aσ2
ii(x) + Bσij(x)σij(x)), (52)

where the coefˇcients A and B are determined by the microscopic structure of the
lattice. They are known as Young and Poisson constants. The physical vacuum
responds to variations of the metric gµν in a similar way. Such quantum effects
can be described with the help of the effective gravitational action Γ[g],

eiΓ[g] =
∫

[DΦ] exp (iI[Φ, g]), (53)

where the integration runs over all constituent ˇelds (denoted by Φ). I[Φ, g] is the
classical action of Φ on a classical background with the metric gµν . Sakharov's
idea is based on the observation that the leading contribution to Γ[g] is determined
by the divergent part and has the form of the classical Einstein action

Γ[g] � 1
16πGind

∫ √
gd4x(R(g) − 2Λind). (54)

Here and in what follows we consider four-dimensional gravity. Gind = (γ/l2)−1

is an induced gravitational coupling, γ is a numerical coefˇcient which depends
on the speciˇc set of constituents and l is a cutoff parameter in the region of
high energies. Λind is an induced cosmological constant. It follows from (52)
and (54) that Γ[g] is similar to the energy E [σ], while Gind and Λind appear in
the same way as Young and Poisson constants.

There are very interesting parallels between induced gravity and condensed
matter systems, such as super	uid 3He and 4He (see [90]).
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As was pointed out by Weinberg [91], an analog of induced gravity can be
also found in particle physics. It is a theory of soft pions which can be used in
the limit when the masses of the u and d quarks are neglected. In this limit there
is a global chiral SU(2) × SU(2) symmetry. Gravitational action (54) has the
same meaning as the Lagrangian of the chiral model while the constituents are
analogous to the quarks that the pions are made of.

Let us note that in the interval of low energies, as in the case of pions,
one can develop a quantum theory of gravitons by using (54). This theory can
be used, for instance, to calculate graviton scattering amplitudes, see [92] for
discussion of this topic.

The problem of the statistical interpretation of the BekensteinÄHawking en-
tropy in induced gravity is resolved in the following way. The microscopic
degrees of freedom responsible for SBH are the constituents which live in the
gravitational ˇeld of a black hole. These virtual particles have a nontrivial quan-
tum stress-energy tensor 〈T̂µν〉 which can be obtained by variation of the induced
effective action (53). The background metric is a solution of the equation

〈T̂µν〉 = 0. (55)

In the limit when the gravitational radius is much larger than the Planck length

LPl = G
1/2
ind the effective action reduces to (54) and Eq. (55) reduces to the

Einstein vacuum equations. Because the black hole is a solution of these equations
its entropy is SBH = A/4Gind ∼ A/l2 and it has the same order of magnitude
as the entropy of the constituents near the horizon computed with the use of the
cutoff l.

2.4. Induced Gravity Models. The above explanation of the BekensteinÄ
Hawking entropy is rather schematic because it implies the existence of a cutoff
mechanism in the region of high energies which we do not know.

To verify whether induced gravity can really explain the black-hole entropy,
one needs additional assumptions and concrete models. This step was carried
out in [83,84] where the additional condition was that the theory of constituents
was free from leading ultraviolet divergences. This requirement enables one to
construct models where Gind is a computable quantity.

Induced gravity models having this property may possess different types of
constituent ˇelds. We consider the simplest possibility. The model consists
of Ns scalar constituents φs with masses ms, some of the constituents being
nonminimally coupled to the background curvature with corresponding couplings
ξs, and Nd Dirac ˇelds ψd with masses md. The corresponding actions in (53) are

I[φs, g] = −1
2

∫
d4x

√
−g

[
(∇φs)2 + ξsRφ2

s + m2
sφ

2
s

]
, (56)

I[ψd, g] =
∫

d4x
√
−g ψ̄d(iγµ∇µ + md)ψd. (57)
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Let us impose the following constraints on parameters of the constituents:

p(0) = p(1) = p(2) = p′(2) = 0, (58)

q(0) = q(1) = 0, (59)

where
p(z) =

∑
s

m2z
s − 4

∑
d

m2z
d , q(z) =

∑
k

ckm2z
k , (60)

k = s, d, and cd = 2, cs = 1−6ξs for spinor and scalar constituents, respectively.
Constraints (58) serve to eliminate the induced cosmological constant, while (59)
enable one to get rid of the ultraviolet divergences in the induced Newton constant
Gind. It is the second set of conditions that will be important for our analysis of
black-hole entropy. Given (59), Gind is deˇned by the formula

1
Gind

=
1

12π
q′(1) =

1
12π

∑
k

ckm2
k ln m2

k. (61)

Because Gind is explicitly known one can prove that

SBH =
A

4Gind
= S − Q. (62)

Here S is a statistical-mechanical entropy of the constituents thermally distributed
at the Hawking temperature in the vicinity of the horizon. The quantity Q is a
quantum average of the operator

Q̂ = 2π
∑

s

ξs

∫
Σ

d2σφ̂2
s (63)

where the integration goes over the horizon surface Σ.
The reason why a quantity like Q appears in the entropy formula is the

following. Constraints (59) cannot be satisˇed without introduction of nonmin-
imal couplings ξsRφ2

s in the scalar sector, see (56). Gind and SBH depend on
the nonminimal coupling constants ξs while the thermal entropy S does not.
This disagreement in the behavior of the two entropies appeared already in the
renormalization Eq. (51). What happens in (62) is that the divergence in S is
compensated by the divergence in Q.

Formula (63) is rather universal: it is valid for different models including
those with vector constituents [94] as well as for different kinds of black holes,
rotating [95] and charged [96], in different space-time dimensions.

What can one learn from these results?
i) The induced gravity models give a physical picture of the microscopic

degrees of freedom of a black hole responsible for its entropy. These degrees of
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freedom are the constituents propagating near the black hole horizon. The source
of the BekensteinÄHawking entropy is the entanglement or thermal entropy of the
constituents in the given black-hole background.

ii) Induced gravity is not a fundamental theory but has the key properties
which an ultimate theory of quantum gravity must possess. These properties are:
the generation of the equations of the gravitational ˇeld by quantum effects and
the absence of the leading ultraviolet divergences. As was pointed out in [93],
from the point of view of the open string theory black-hole entropy can be
considered as a loop effect, in full analogy with its origin in induced gravity.

To summarize, induced gravity is an example where one can study the mech-
anism of generation of the BekensteinÄHawking entropy by using very general
properties of a hypothetical fundamental theory.

The question which is not completely resolved in induced gravity models is
the statistical meaning of quantity Q in (62). Since this term is present it is not
quite clear how to represent SBH in the form −Tr ρ̂ ln ρ̂ (see, however, [97]).

The physical reason of subtracting Q in (62), as was explained in [84], is
related to two inequivalent deˇnitions of the energy in the black-hole exterior. One
deˇnition, H , is the canonical energy or the Hamiltonian. The other deˇnition, E,
is the energy expressed in terms of the stress-energy tensor Tµν which is obtained
by variation of the action over the metric tensor. The two energies correspond
to different properties of a black hole. H corresponds to evolution of the system
along the Killing time and for this reason the operator H in quantum theory is
used for constructing the density matrix which yields the entropy S in (62). On
the other hand, E is related to thermodynamical properties of a black hole. If
the black hole mass measured at inˇnity is ˇxed, the change of the entropy SBH

caused by the change of the energy E of ˇelds in the black-hole exterior is

δSBH = −THδE, (64)

where TH is the Hawking temperature of the black hole. The reason why E and
H are not equivalent is in the existence of the horizon. The two quantities being
integrals of metrical and canonical stress tensors differ by a total derivative. This
difference results in a surface term (a Noether charge) on the bifurcation surface
of the horizon. This surface term does not vanish because the horizon is not a
real boundary and the only requirement for ˇelds in this region is regularity. One
can show [98] that the boundary term is the Q appearing in (62). More precisely,

E = H − THQ. (65)

According to (64) the black-hole entropy is related to the distribution over the
energies E of the induced gravity constituents. Hence, the subtraction of Q in
(62) accounts for the difference between E and H in (65).
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It should be noted, however, that an explicit calculation of the black-hole
degeneracy for a given mass M which is connected with the distribution of the
constituent ˇeld states over the energies E is a problem. Two suggestions how
it can be done are discussed in [84] and [97]. The difˇculty is that in quantum
theory a nonzero value of Q in (62) is ensured by modes which, from the point
of view of a static observer, have vanishing frequencies, the so-called soft modes.

3. CFT AND INDUCED GRAVITY

3.1. Dimensional Reduction. We pointed out in Subsec. 1.6 that so far
there are no examples showing that the near-horizon conformal symmetry can
be realized in quantum gravity theory. Before such examples are known one
can investigate this question in some simple models. This is another case where
induced gravity can be quite helpful in developing ones intuition. In this section
we follow the work [99]. Let us note that in the considered models the induced
gravity constituents are massive ˇelds whose masses have to be comparable to
the Planck mass to ensure that the induced Newton constant (61) has the correct
value. The contribution to Gind from the ˇelds observable at low-energies (ˇelds
of the Standard Model) can be neglected. How can the presence of massive
constituents be reconciled with conformal symmetry? The idea is simple: since
the local temperature of quanta near the horizon is large, the ˇelds living within
certain distance to the horizon are effectively massless and scale invariant. The
role of the masses is to introduce a scale (a correlation length) into the CFT
theory.

The curvature effects near the horizon are not important and one can use
approximation (41) where the metric on the horizon itself is replaced by the 	at
metric

dσ2 = dy2
1 + dy2

2 . (66)

The conformal transformations change only the metric dγ2 in two-dimensional
plane G orthogonal to the horizon surface. We will write this metric as

dγ2 = γαβdxαdxβ , (67)

where α, β = 0, 1 and for a moment let γαβ be arbitrary.
In this setting the dynamics of the constituents is essentially two-dimensional.

This can be easily seen if we use the Fourier decomposition in y-plane and deˇne

Φp(x) =
1

2πa

∫
d2y e−ipyΦ(x, y), (68)

where p is a momentum along the horizon, py = piy
i. To avoid volume

divergences related to the inˇnite size of the horizon we assume that the range of
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coordinates yi is restricted, −a/2 � yi � a/2. This means that the horizon area
A is ˇnite and equal to a2.

Thus, each 4D ˇeld Φ(x, y) corresponds to a tower of 2D ˇelds Φp(x) which
live on G. If Φ(x, y) has the mass m then the mass of Φp(x) depends on the
transverse momentum p,

m(p) =
√

m2 + p2. (69)

It should be noted that if the induced gravity constraints (58), (59) are satisˇed
for the set of masses ms, md, they are satisˇed for the masses ms(p), md(p) as
well. This means that a 2D gravity theory induced in each 2D sector at a given
transverse momentum p is free from UV divergences. The effective action Γ[g]
of the 4D induced gravity is the sum of the actions Γ2[γ, p] of 2D gravities

Γ[g] =
∑
p

Γ2[γ, p] � a2

4π

∫ ∞

σ

Γ2[γ, p]dp2. (70)

Here p = |p|. It is assumed in (70) that the parameter a is large, so the sum over
p is replaced by the integral over p. The coefˇcient a2/(4π) is related to the
number of modes with the momentum square p2.

The two-dimensional action can be easily calculated,

Γ2[γ, p] � 1
4G2(p)

∫ √
−γd2x(R + 2λ2(p)). (71)

Here R is the curvature of G, and

1
G2(p)

= − 1
12π

∑
k

ck ln m2
k(p), (72)

λ2(p)
G2(p)

=
1
4π

[∑
s

m2
s(p) ln m2

s(p) − 4
∑

d

m2
d(p) ln m2

d(p)

]
. (73)

The four-dimensional Newton constant Gind can be found by summation over
momenta in (70) if one takes into account that a2 =

∫
dy1dy2. It gives Γ[g] in

the form (54), where R[g] = R[γ] and

1
Gind

= lim
p→0

1
G(p)

,
1

G(p)
=

∫ ∞

p2

dp̃2

G2(p̃)
, (74)

which coincides with (61).
Let us make an additional assumption: we treat the two-dimensional ˇeld

models at any momentum p not just as Fourier components but as physical theories
in a sense that each of these theories yields a 2D induced gravity with strictly
positive gravitational couplings G2(p). In this case the BekensteinÄHawking
entropy of a black hole in such a 2D gravity is positive. Examples of induced
gravity models with this property are presented in [99].
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3.2. Representation of the Near-Horizon CFT. The 2D constituent ˇelds
create a thermal atmosphere around a 2D black hole, see the discussion in Sub-
sec. 2.1. This entropy can be easily computed if we neglect for a moment the
masses of the ˇelds and the nonminimal couplings. Near the horizon the 2D
metric dγ2 is the 2D Rindler metric (42). To avoid divergences near the horizon
we introduce a cutoff ε by imposing a restriction in (42) ε � ρ � R. The upper
cutoff R is needed to eliminate an infrared divergence at spatial inˇnity. Since
the theory is scale invariant one can rescale the metric (42) to the form

dγ̃2 = −dt2 + dx2, x =
1
κ

ln ρ. (75)

Therefore, the theory we are dealing with is a massless 2D ˇeld on an interval of
the length b = κ−1 ln (R/ε). To ˇnd its entropy one can use the result (12)

S = S(TH , b) � π

3
bTH =

1
6

ln
R

ε
, (76)

where we took into account that the temperature has to be identiˇed with the
temperature of the Hawking radiation.

How do masses and nonminimal couplings change this result? As was shown
in [99], one can formulate the following rules:

i) Near the horizon each induced gravity constituent with the momentum
p and mass mk corresponds to a 2D conformal theory on an interval bk =
κ−1 ln (Rk(p)/ε) where the external radius is determined as Rk(p) = mk(p)−1,
p = |p|;

ii) Each of these CFT's is characterized by a central charge ck; charges of
spinor constituents are cd = 2, while charges of scalar ˇelds are cs = 1− 6ξs and
depend on the nonminimal couplings.

The ˇrst rule follows from the fact that the two-point correlator of ˇeld
operators is exponentially small when ˇelds are separated by a distance larger
than their correlation length mk(p)−1. The second rule can be inferred from the
transformation properties of the components of the renormalized stress-energy
tensor of 2D ˇelds. For example, for a scalar ˇeld with the nonminimal coupling
ξ the uu component of the stress-energy tensor

Tuu = 〈−(∂uφ̂)2 + 2ξ((∂uφ̂)2 + φ̂∂2
uφ̂)〉 (77)

transforms as

δTuu = ε∂uTuu + 2∂uεTuu +
1 − 6ξ

24π
∂3

uε + O(ε2) (78)

under an inˇnitesimal change δu = ε(u) of the light-cone coordinate u (the
light-cone coordinates are introduced in (42)). Eq. (78) has the same form as
transformation (17) in a CFT theory with the central charge c = 1 − 6ξ.
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The induced gravity constraints (59) which eliminate the divergences in the
induced Newton constant Gind can be represented in the form∑

k

ck = 0,
∑

k

ckm2
k = 0. (79)

The sum C =
∑

k ck can be interpreted as a total central charge of the con-
stituents. This charge is zero because at each momentum p the 2D theory is free
from ultraviolet divergences.

Note that (79) requires that some central charges cs are negative. Typically
CFT's with negative central charges correspond to ghosts. The ghosts appear in
gauge theories when the Hilbert space is enlarged during quantization. Ghosts
give negative contributions to the entropy to compensate for the contribution of
the extra degrees of freedom in the enlarged Hilbert space. However, if the
system is unitary its total entropy is always positive. As for ghost ˇelds, the
entropy associated with the 2D constituents with negative ck is negative, and as
in gauge theories the total entropy in each 2D induced gravity sector is positive
because of the requirement G2(p) > 0.

Now one can construct a concrete representation of the algebra of conformal
transformations in the ρ− t plane in terms of the operators acting in a Fock space
of the CFT's. This can be used to count the degeneracy of states corresponding
to certain energy levels as is done in the near-horizon approach discussed in
Subsec. 1.6. Instead of doing this we give a simpler derivation based on equation
(76). According to the formulated rules, each 2D constituent gives the following
contribution

s(ck, bk(p)) =
ck

6
ln

Rk(p)
ε

= −ck

6
ln εmk(p) (80)

to the total entropy. The entropy of all constituents in 2D induced gravity at
some momentum p is

s(p) =
∑

k

s(ck, bk(p)) =
1
6

∑
k

ck ln Rk(p) =
π

G2(p)
, (81)

where G2(p) is the 2D induced Newton constant deˇned in (72). The dependence
on cutoff ε disappears because of (79). As was pointed out above, the partial
entropy s(p) > 0 because G2(p) > 0; s(p) is just the entropy of a black hole in
the corresponding 2D induced gravity theory. The entropy in the 4D theory is

Stot =
a2

4π

∫ ∞

0

s(p)dp2 =
A

4Gind
. (82)

It coincides with the BekensteinÄHawking entropy (61) of a four-dimensional
black hole with the horizon area A = a2. The last equality in (81) follows from
relation (74) between 4D and 2D couplings.
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Several remarks about this result are in order.
i) The given analysis shows that the method based on the near-horizon CFT

does reproduce the BekensteinÄHawking entropy in the induced gravity theory
and it has there a concrete realization.

ii) It shows that the dimensional parameter which deˇnes the ®size¯ b of
the near-horizon CFT may have a dynamical origin and is related to physics at
Planckian scales.

iii) The near-horizon CFT's are effective theories because they are obtained
as a result of dimensional reduction. The deˇnition of 2D ˇelds depends on
the horizon radius (see (68)). Thus, black holes with different horizon areas are
described by different CFT's. This property is similar to that one has in the
approach [41,42]. The question of whether black hole evaporation may result in
the information loss should be addressed in the original theory of 4D constituents.

Apart from these similarities the near-horizon CFT in induced gravity has
several features which do not appear in the approach discussed in Subsec. 1.6.

i) The total central charge in this theory vanishes (see (79)). This property
is related to cancellation of the leading ultraviolet divergences.

ii) Because the masses of constituens are different, there is a set of correlation
lengths m−1

k (p). Thus, such a theory may possess several different scales.
iii) What is important for understanding of the black-hole entropy is not only

the conformal symmetry itself but also the way it is broken.
iv) Interpretation of induced gravity in terms of a near-horizon CFT requires

further restrictions on the parameters of constituents to ensure positivity of 2D
gravitational coupling G2(p) at each transverse momentum.

v) Each 2D induced gravity sector contains negative central charges. As for
ghost ˇelds, the entropy associated with the corresponding degrees of freedom has
to be subtracted from the total entropy. This property requires further analysis.

Finally, it should be noted that the computations of SBH we discussed in this
section can be done not only in four-dimensional space-times (see [99]). It would
be very interesting to investigate other possibilities of realizing the near horizon
CFT in induced gravity.

SUMMARY

We discussed several examples that strongly support the idea that a micro-
scopic origin of the BekensteinÄHawking entropy of black holes can be understood
by using a few general properties of a fundamental quantum gravity theory. These
properties may be gleaned entirely from the low-energy physics.

One of the possibilities is that ˇnding a proper place for a group of 2D
conformal symmetries will make it possible to control completely the density of
states in quantum gravity. The other possibility is that the entropy of a black hole
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can be considered as a measure of the information loss inside the horizon provided
that the gravity is entirely induced by quantum effects and the underlying theory
is ultraviolet ˇnite. These two points of view may complement each other.

It is fair to say that although these possibilities are very promising, both
approaches have unresolved problems. It is a matter for future research to see
whether the discussed problems are technical or whether they are more fundamen-
tal and, hence, require something which we cannot know about quantum gravity
at low energies.
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