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The article describes the ®inclusive¯ approach to the nonequilibrium dissipative system on the
early (kinetic) stage of evolution, when the temperature is distributed nonuniformly. The perturbation
theory is formulated in terms of the space-time local temperature Green functions.
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¢ ¶·μ¸É· ´¸É¢¥-¢·¥³¥´¨ É¥³¶¥· ÉÊ·Ò.

INTRODUCTION

The aim of this article is to construct the relativistic perturbation theory for-
malism for the nonequilibrium media description. As an example of interesting
system one can have in mind the hadrons very high-multiplicity (VHM) pro-
duction process. It will be assumed to distinguish this processes as the hadron
number

n � n̄(s), (1)

where n̄(s) is the mean multiplicity at the energy
√

s∗∗∗. The phenomenology
of high-multiplicity processes was given in [1]. One can offer also the following
VHM condition: √

s � ε̄f , (2)

where ε̄fin is the mean energy of the ˇnal state.

∗E-mail: joseph@nusun.jinr.ru
∗∗E-mail: sisakian@jinr.ru

∗∗∗The CM frame will be used everywhere and the energy is measured in π-on mass mπ units.
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The process (1) is a rear one since the primary kinetic energy is completely
dissipated into the mass of secondaries. From thermodynamical point of view it
looks like the processes of total dissipation of the high-temperature space-time
local 	uctuation in a low temperature media. Noting that the multiplicity n is
a measure of incident energy dissipation, it is natural to assume that the system
becomes equilibrium if n is sufˇciently large.

We understand the equilibrium state as the state with uniform energy dis-
tribution over all degrees of freedom and with small energy 	uctuations near
its uniform value, ε̄f . In other terms, the equilibrium-states energy distribution
should be described by the exponent, exp {−βε}, of the GibbsÄBoltzmann law,
where 1/β is the produced particle mean energy, β = 1/ε̄f . Therefore, to de-
scribe at least the energy property of such completely thermalized system, it is
enough to know (measure) only the particle mean energy 1/β.

So, the tendency to equilibrium with the rising multiplicity is the important
proposition, see also Appendix A.

The temperature evolves in the inelastic processes and, generally speaking,
is not distributed uniformly at least on the early stages. In the present paper
we will consider the general theory of such processes in the frame of various
boundary conditions. This will allow one to use the approach not only in the
particle physics.

Symmetry Constraints. One should take into account that the hadron inelastic
processes have additional special characteristics. This becomes evident noting
that the hadron mean multiplicity rises with energy, n̄(s) ∼ ln2 s � 1, but is
sufˇciently smaller than its boundary value nmax, n̄(s) � nmax =

√
s.

This effect may be explained as the consequence of high symmetry con-
straints ®hidden¯ in the underlying ˇeld theory. So, the symmetry consequence
is the integrals of motion in involution and one constraint can reduce a number
of degrees of freedom by two units. It is the so-called LiouvilleÄArnold theo-
rem [2]. Therefore, if the number of constraints exceed the number of the phase
space degrees of freedom, then there would not be any thermalization process.
This phenomenon was noted ˇrstly by Fermi, Pasta and Ulam [3] in the ˇfties
and was explained theoretically by Zakharov [4] in the seventies. The fact that
n̄(s) ∼ ln2 s means therefore that the number of constraints in the hadron ˇeld
theory is insufˇcient to suppress the thermalization effect completely. But these
constraints exist and they are able to prevent complete thermalization for which
n̄(s) � nmax =

√
s is natural. Notice here that the ˇrst consistent model of mul-

tiple production of FermiÄLandau [5] was based on the complete thermalization
assumption and the symmetry constraints were ignored in it.

Therefore, it is impossible to hope to observe the equilibrium state in the
experimentally observed processes with n � nmax. It was shown [1] that to have
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the thermalized ˇnal state the multiple energy correlators should be small:

Rl(n, s) =
|Kl(n, s)|2/l

|K2(n, s)| � 1, l = 3, 4, . . . , (3)

where

Kl =
∑
{ε}

〈
l∏

i=1

(εi − 〈ε〉)〉

and the bracket 〈. . .〉 means the averaging over existing inelastic states for given
multiplicity and incident energy. The model analysis and the experiment show
that Rl(n, s) � 1, l � 3 if n ∼ n̄(s) [6]. This result is natural since, as was
explained above, at multiplicity n ∼ n̄(s) the symmetry induces the preventing
thermalization constraints and in the result the correlations should be high, i.e.,
Rl(n, s), l > 2 should be large.

We may offer the following scenario of the multiple production event. At
the low multiplicity processes, n ∼ n̄(s), the thermalization is depressed by
the symmetry constraints. The probability of such processes is the largest and
the multiplicity is comparatively small. One may assume that with rising n the
mechanism of particle production changes. The possibility that the production
dynamics is multicomponent was considered in [7].

We would like to remind now that the symmetry constraints have a ®long
range¯ character. Let us consider then the situation when the one of the multiple
production channels is ®short range¯, where the constraints are not effective. Such
a process should be a ®fast¯ one, i.e., the particle-production ®speed¯ should be
larger than the particle-dissipation velocity. In such conditions only we would
have the VHM ˇnal state. It should be stressed once more that the VHM ˇnal
states are produced in the result of special initial conditions, when the incoming
particles interact hardly. That is why the VHM ˇnal state is so rear.

The S-Matrix Interpretation of Thermodynamics. The only way to intro-
duce the temperature in the S-matrix formalism is to follow the microcanonical
approach. The temperature T , in the frame of this approach, is introduced as the
Lagrange multiplier of the energy conservation law. Then the physical (measur-
able) value of T will be deˇned by the equation of states. It should be assumed
also that the 	uctuations near this physical values of T are sufˇciently small.

So, we will attach the physical sense to temperature T assuming that the
	uctuations near T are Gaussian. Just this condition leads to the inequality (3).
Moreover, it can be shown that if this condition (3) is satisˇed, then the probability
of the initial states transition into the ˇnal one looks like∗ the equilibrium partition

∗Compare Sec. 1 and Sec. 3.
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function of Matsubara [1, 9] if there is no special correlations on the remote
hypersurface [9].

Therefore, saying that given parameter is measurable, i.e., is a slowly 	uctu-
ating quantity, we get to the equilibrium over this parameter. Such an approach
seems for us to be interesting since it does not force one to introduce the canoni-
cal deˇnition of the equilibrium notion through the condition of equilibrium with
the hypothetical external heat bath (thermostat)∗. In this case the system under
consideration should have the same value of thermodynamical parameters as the
thermostat.

The inclusive formalism has one more important property. So, to formulate
the theory of irreversible processes in the linear response approximation one may
introduce the mechanical disturbances [10]. They are considered as an addition
of the energy of given controlled environment to the Hamiltonian of the system
under consideration. But there are also the thermal disturbances and they cannot
be deˇned unambiguously as the part of Hamiltonian since the thermal property
assumes averaging over appropriate degrees of freedom, i.e., is the collective
property.

Such an approach to the irreversible-processes description creates the problem
which becomes apparent for quantum case. The most problem consists in the ne-
cessity to describe the in	uence of mechanical and thermal 	ows on a subsystem
of macroscopic system [11]. Then, it is not hard to understand that in quantum
case this two 	ows are noncommutativity operators, i.e., the result depends on
the order of their action. The attempt to resolve this problem was given in [12].
But it was shown that distinguishing the external thermal 	ow leads to ®thermal¯
renormalization of propagators even in the case when the interaction constant is
equal to zero. Detailed analysis of this problem is given in Appendix B.

Let us consider now the inclusive approach. The temperature is introduced
in this case as the mean energy of produced particles, i.e., when all interactions
were ˇnished, if the ˇnal state temperature is considered, or not yet started, if
the initial state is described. Therefore, there is no necessity to distinguish the
mechanical and thermal 	ows.

The above described programme was realized in [13] for uniform tempera-
ture distribution. This formalism may be naturally extended also over the case of
nonuniform temperature distributions. Introducing cells of measuring device and
introducing the energy-momentum shells of each cell separately, we can introduce
the individual temperatures in each cell. This can be done since the measure-
ment performed by free (mass-shell) particles in the S-matrix theory, i.e., the
measurement of energy (and momentum), can be performed in each cell sepa-
rately.

∗Which is by itself ®equilibrium¯!
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The quantum uncertainty principle leads to impossibility of taking the
4-dimension of measurement cell, δR, arbitrary small. This is the main difˇ-
culty of the considered approach. We will offer the solution introducing, based
on the inclusive approach formalism, the Lorentz-covariant interpretation of the
Wigner-functions theory [14] given by Carruthers and Zachariasen [15]. This
gives the theoretical possibility to ˇx the canonically conjugate variables simul-
taneously, i.e., to take the theoretical limit δR = 0.

Boundary Conditions. The usual KuboÄMartinÄSchwinger (KMS) periodic
boundary conditions [16] cannot be applied if the nonequilibrium case is consid-
ered [12] (see also [1]). We will introduce the boundary conditions ®by hands¯,
modelling the environment of the system. Supposing that the system is in a vac-
uum we will have a usual ˇeld-theoretical vacuum boundary condition (Sec. 1).
We will consider also the system in the background ˇeld of black-body radiation
and the latter restores in the equilibrium limit the theory with KMS boundary
condition.

1. VACUUM BOUNDARY CONDITION

The probability r(P ) of in- into out-states transition with the ˇxed total
4-momentum P can be calculated using the n- into m-particle transition amplitude
an,m. It looks as follows [13]:

an,m((q)n, (p)m) =
n∏

k=1

φ̂(qk)
m∏

k=1

φ̂∗(pk)Z(φ), (4)

where qk(pk) are the momentum of in(out)-going particles, and the annihilation
operator

φ̂(q) =
∫

d4x e−iqxφ̂(x), φ̂ =
δ

δφ(x)
, (5)

was introduced. Correspondingly, φ̂∗(p) is the creation operator. One can put
the auxiliary ˇeld φ(x) equal to zero at the end of calculation. The vacuum-into-
vacuum transition amplitude in the presence of external ˇeld φ

Z(φ) =
∫

DΦ exp(iSC+ (Φ)−iVC+ (Φ+φ)) (6)

is deˇned on the Mills complex time contour Cf [14], i.e., Cf : t → t+ iê, ê > 0.
In Eq. (6), SCf

is the free part of the action and VCf
describes the interactions.

In this section we will propose the vacuum boundary condition:∫
σ∞

dσμΦ∂μΦ = 0, (7)

where σ∞ is the inˇnitely far hypersurface.
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Let us consider now the (unnormalized) probability

r(P ) =
∑
n,m

r(P ; n, m) =
∑
n,m

1
n!m!

∫
dωn(q)dωm(p)×

× δ(4)

(
Q −

n∑
k=1

qk

)
δ(4)

(
P −

m∑
k=1

pk

)
|an,m|2 , (8)

where

dωn(q) =
n∏

k=1

dω(qk) =
n∏

k=1

d3qk

(2π)32ε(qk)
, ε(q) = (q2 + m2)1/2. (9)

Equation (8) is the basic formula of our calculations. The microcanonical descrip-
tion was introduced in [12] considering the Fourier transformation of δ functions
of (8).

We start the consideration with the assumption that the temperature 	uctua-
tions are large scale. In a cell the dimension of which is much smaller than the
	uctuation scale of temperature, we can assume that the temperature is a ®good¯
parameter. (The ®good¯ parameter means that the corresponding 	uctuations are
Gaussian.)

Let us surround the interaction region, i.e., the system under consideration,
by N cells with the known space-time position and let us suppose that we can
measure the energy and momentum of groups of in- and out-going particles in
each cell. The 4-dimension of cells cannot be arbitrary small because of the
quantum uncertainty principle.

We decompose δ functions in (8) on the product of (N + 1) δ functions:

δ

(
P −

n∑
k=1

qk

)
=

∫ N∏
ν=1

{
dQνδ

(
Qν −

nν∑
k=1

qk,ν

)}
δ

(
P −

N∑
ν=1

Qν

)
, (10)

N∑
ν=1

nν = n,

where qk,ν are the momentum of kth in-going particle in the νth cell and Qν is
the total 4-momenta of nν in-going particles in this cell. The same decomposition
will be used for the second δ function in (8). Inserting this decomposition into
(8), we must take into account the multinomial character of particle decomposition
on N groups. This will give the coefˇcient

n!
n1! · · ·nN !

δK

(
n −

N∑
ν=1

nν

)
m!

m1! · · ·mN !
δK

(
m −

N∑
ν=1

mν

)
, (11)

where δK is Kronecker's δ function.
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As a result, the quantity

r ((Q)N , (P )N ) =
∑

(n.m)

∫
|a(n,m)|2×

×
N∏

ν=1

{
nν∏

k=1

dω(qk,ν)
nν !

δ

(
Qν −

nν∑
k=1

qk,ν

)
mν∏
k=1

dω(pk,ν)
mν !

δ

(
Pν −

mν∑
k=1

pk,ν

)}

(12)
describes the probability that in the νth cell we observe the 	ows of in-going
particles with the total 4-momentum Qν and of out-going particles with the total
4-momentum Pν . The sequence of these two measurements is not ˇxed.

The Fourier transformation of δ functions in (12) gives the formula:

r((Q)N , (P )N ) =

=
∫ N∏

ν=1

d4αi,ν

(2π)4
d4αf,ν

(2π)4
exp

(
i

N∑
ν=1

(Qναi,ν + Pναf,ν)

)
R((αi)N , (αf )N ),

(13)

where R((αi)N , (αf )N ) ≡ R(αi,1, αi,2, . . . , αi,N ; αf,1, αf,2, . . . , αf,N ) has the
form:

R((αi)N , (αf )N ) =

=
∫ N∏

ν=1

{
nν∏

k=1

dω(qk,ν)
nν !

e−iαi,νqk,ν

mν∏
k=1

dω(pk,ν)
mν !

e−iαf,ν pk.ν

}
|a(n,m)|2. (14)

Inserting (4) into (14) we ˇnd:

ln R((αi)N , (αf )N ) = −i

N∑
ν=1

∫
dxdx′

[
φ̂f (x)Dfi(x − x′; αf,ν)φ̂i(x′) −

− φ̂i(x)Dif (x − x′; αi,ν)φ̂f (x′)
]
Z(φf )Z∗(φi), (15)

where φi is deˇned on the complex conjugate contour Ci : t → t − iê and

Dfi(x − x′; α) = −i

∫
dω(q) eiq(x−x′) e−iαq, (16)

Dif (x − x′; α) = i

∫
dω(q) e−iq(x−x′) e−iαq (17)

are the positive and negative frequency correlation functions.
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We must integrate over sets (Q)N and (P )N if the distribution of 	ows
momentum is unknown. As a result,

r(P ) =
∫

D4αi(P )D4αf (P )R((αi)N , (αf )N ), (18)

where the differential measure

D4α(P ) =
N∏

ν=1

d4αν

(2π)4
K(P, (α)N ) (19)

takes into account the energy-momentum conservation laws:

K(P, (α)N ) =
∫ N∏

ν=1

d4Qν exp

(
i

N∑
ν=1

ανQν

)
δ

(
P −

N∑
ν=1

Qν

)
. (20)

The explicit integration gives

K(P, (α)N ) ∼
N∏

ν=1

δ(3)(α − αν), (21)

where the 3-coordinate α is conjugate to the total 3-momentum P.
To simplify the consideration let us put α = (−iβ,0). As a result,

K(E, (β)N ) =
∫ ∞

0

N∏
ν=1

dEν exp

(
N∑

ν=1

βνEν

)
δ

(
E −

N∑
ν=1

Eν

)
. (22)

At the same time,

r(E) =
∫

Dβf (E)Dβi(E)R((βf )N , (βi)N ), (23)

where

Dβ(E) =
N∏

ν=1

dβν

2πi
K(E, (β)N ) (24)

and R((β)N ) was deˇned in (15) with αk,ν = (−iβk,ν ,0), Re βk,ν > 0,
k = f,−.

We will calculate integrals over βk using the stationary phase method. The
equations for mostly probable values of βk:

− 1
K(E, (βk)N )

∂

∂βk,ν
K(E, (βk)N ) =

1
R((β1)N )

∂

∂βk,ν
R((β)N ), k = f, i,

(25)
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always have the unique positive solutions β̃k,ν(E). We propose that the 	uc-
tuations of βk near β̃k are small, i.e., are Gaussian. This is the basis of the
local-equilibrium hypothesis [13]. In this case 1/β̃i,ν is the temperature in the
initial state in the measurement cell ν, and 1/β̃f,ν is the temperature of the ˇnal
state in the νth measurement cell.

The last formulation (18) implies that the 4-momenta (Q)N and (P )N cannot
be measured. It is possible to consider another formulation also. For instance,
we can suppose that the initial set (Q)N is ˇxed (measured) but (P )N is not. In
this case we will have mixed experiment: β̃i,ν is deˇned by the equation

Eν = − 1
R

∂

∂βi,ν
R (26)

and β̃f,ν is deˇned by the second equation in (25).
Considering limit N → ∞, the dimension of cells tends to zero. In this case

we are forced by quantum uncertainty principle to propose that the 4-momenta
sets (Q) and (P ) are not ˇxed. This formulation becomes pure thermodynamical:
we must assume that (βi) and (βf ) are measurable quantities. For instance, we
can ˇx (βi) and try to ˇnd (βf ) as the function of E and (βi). In this case
Eqs. (25) become the functional equations.

In the considered microcanonical description the ˇniteness of temperature
does not touch the quantization mechanism. Really, one can see from (15) that
all thermodynamical information is conˇned in the operator exponent

∏
ν

∏
i�=j

ei
∫

φ̂iDij φ̂j = eN(φ̂iφ̂j), (27)

the expansion of which describes the environment, and the ®mechanical¯ pertur-
bations are described by the amplitude Z(φ). This factorization was achieved by
introduction of auxiliary ˇeld φ and is independent of the choice of boundary
conditions, i.e., of the choice of the considered systems environment.

2. THE DISTRIBUTION FUNCTIONS

In the previous section the generating functional R((β)N ) was calculated by
means of dividing the ®measuring device¯ (calorimeter) on the N cells. It was
assumed that the dimension of the device cells tends to zero (N → ∞). Now we
will specify the cells coordinates using Wigner's description [1,2].

Let us introduce the distribution function Fn which deˇnes the probability
to ˇnd n particles with deˇnite momentum and with arbitrary coordinates. These
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probabilities (cross section) are usually measured in particle physics. The corre-
sponding Fourier-transformed generating functional can be deduced from (15):

F (z, (βf )N , (βi)N ) =

=
N∏

ν=1

∏
k �=j

exp
{∫

dω(q)φ̂∗
k(q) e−βj,νε(q)φ̂j(q)zν

kj(q)
}

Z(φf )Z∗(φi). (28)

The variation of F over zν
kj(q) generates corresponding distribution functions.

One can interpret zν
ij(q) as the local activity: the logarithm of zν

ij(q) is conjugate
to the particles number in the cell ν with momentum q for the initial (kj = +−)
or ˇnal (kj = −+) states. Note that zν

kj(q)φ̂
∗
k(q)φ̂j(q) can be considered as the

operator of activity.
The Boltzmann factor e−βj,νε(q) can be interpreted as the probability to ˇnd

a particle with the energy ε(q) in the ˇnal state (j = f ) and in the initial state
(j = i). The total probability, i.e., the process of creation and further absorption
of n particles, is deˇned by multiplication of these factors.

The generating functional (28) is normalized as follows:

F (z = 1, (β)) = R(β), (29)

F (z = 0, (β)) = |Z(0)|2 = R0(φ)|φ=0, (30)

where
R0(φ) = Z(φf )Z∗(φi) (31)

is the ®probability¯ of the vacuum into vacuum transition in the presence of
auxiliary ˇelds φi(f). The one-particle distribution function

F1 ((βf )N , (βi)N ; q) =
δ

δzν
kj(q)

F

∣∣∣∣∣
z=0

=

=
{
φ̂∗

k(q) e−βν
k ε(q)/2

}{
φ̂j(q) e−βν

kε(q)/2
}

R0(φ±) (32)

describes the probability to ˇnd one free particle.
Using deˇnition (5), we have

F1((βf )N , (βi)N ; q) =
∫

dxdx′ eiq(x−x′) e−βk,νε(q)φ̂k(x)φ̂j(x′)R0(φ±) =

=
∫

dY
{
dy eiqy e−βi,νε(q)

}
φ̂i(Y + y/2)φ̂j(Y − y/2)R0(φ±). (33)

We introduce using this deˇnition the ®one-particle Wigner function¯ W1 [2]:

F1((βf )N , (βi)N ; q) =
∫

dY W1((βf )N , (βi)N ; Y, q), (34)
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so,

W1((βf )N , (βi)N ; Y, q) =

=
∫

dy eiqy e−βk,νε(q)φ̂k(Y + y/2)φ̂j(Y − y/2)R0(φ±). (35)

This distribution function describes the conditional probability to ˇnd the free
particle with momentum q at the point Y in the cell ν.

It is natural to adjust the cell coordinate to the coordinate of measurement
Y since the choice of the device coordinates is in our hands:

W1((βf )N , (βi)N ; Y, q) =

=
∫

dy eiqy e−βk(Y )ε(q)φ̂k(Y + y/2)φ̂j(Y − y/2)R0(φ±). (36)

We will ˇnd in concluding Section the Liouville equation for W1 to make more
exact the physical sense of the phase space coordinate (Y, q).

This choice of the device coordinates leads to the following generating func-
tional:

ln F (z, β) = i

∫
dydY

[
φ̂f (Y + y/2)Dfi(y; βf(Y ), z)φ̂i(Y − y/2)−

− φ̂i(Y + y/2)Dif(y; βi(Y ), z)φ̂f (Y − y/2)
]
R0(φ±), (37)

where

Dfi(y; βf (Y ), z) = −i

∫
dω(q)zfi(Y, q) eiqy e−βf (Y )ε(q), (38)

Dif (y; βf (Y ), z) = i

∫
dω(q)zif (Y, q) e−iqy e−βi(Y )ε(q) (39)

are the modiˇed positive and negative correlation functions (16), (17).

3. THE CLOSED-PATH BOUNDARY CONDITION

The developed in Sec. 1 formalism allows one to introduce the more general
boundary conditions instead of (6). Considering the probability R which has the
double-path integral representation we will introduce integration over closed path.
This allows one to introduce the equality:∫

σ∞

dσμ(Φf∂μΦf − Φi∂
μΦi) = 0, (40)
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as the boundary condition, where σ∞ is the inˇnitely far hypersurface. The
general solution of this equation is:

Φ±(σ∞) = Φ(σ∞) (41)

where Φ(σ∞) is the ®turning-point¯ ˇeld. The result of this changing of boundary
condition was analyzed in [12] for the case of uniform temperature distribution.

In terms of S matrix the ˇeld Φ(σ∞) represents the background 	ow of
mass-shell particles. We will propose that the probability to ˇnd a particle of
the background 	ow is determined by the energy-momentum conservation law
only. In another words, we will propose that the system under consideration is
surrounded by the black-body radiation.

Presence of additional 	ow will reorganize the differential operator
exp {N(φ̂iφ̂j)} only, and new generating functional Rcp has the form:

Rcp(αf , αi) = eN(φ̂iφ̂j)R0(φ±). (42)

The calculation of operator N(φ̂iφ̂j) is strictly the same as in [12]. Introducing
the cells in the Y space we will ˇnd that

N(φ̂iφ̂j) =
∫

dY dyφ̂i(Y + y/2)ñij(Y, y)φ̂j(Y − y/2), (43)

where the occupation number ñij carries the cells index Y :

ñij(Y, y) =
∫

dω(q) eiqynij(Y, q) (44)

and (q0 = ε(q))

n++(Y, q0) = n−−(Y, q0) = ñ(Y, (βf + βi)|q0|/2) =

=
1

exp ((βf + βi)(Y )|q0|/2) − 1
, (45)

n+−(Y, q0) = Θ(q0)(1 + ñ(Y, βfq0)) + Θ(−q0)ñ(Y,−βiq0), (46)

n−+(Y, q0) = n+−(Y,−q0). (47)

For simplicity the CM system was used.
Calculating R0 perturbatively we will ˇnd that

Rcp(β) = exp
{
−iV (−iĵf ) + iV (−iĵi)

}
×

× exp
{

i

∫
dY dy[ĵi(Y + y/2)Gij(y, (β(Y ))ĵj(Y − y/2)

}
, (48)
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where, using the matrix notations,

iG(q, (β(Y ))) =

⎛
⎜⎝

i

q2 − m2 + iê
0

0 − i

q2 − m2 − iê

⎞
⎟⎠+

+ 2πδ(q2 − m2)

⎛
⎜⎜⎝

n

(
(βf + βi)(Y )

2
|q0|

)
n(βf (Y )|q0|)af (βf )

n(βi(Y )|q0|)ai(βi) n

(
(βf + βi)(Y )

2
|q0|

)
⎞
⎟⎟⎠ , (49)

and
a±(β) = −eβ(|q0|±q0)/2. (50)

Formally these Green functions obey the standard equations in the y space:

(∂2 − m2)yGii = δ(y),

(∂2 − m2)yGij = 0, i �= j
(51)

since Φ(σ∞) �= 0 re	ects the mass-shell particles. But the boundary conditions
for these equations are not evident.

4. CONCLUDING REMARKS

One may note that the natural generalization of inclusive approach consisted
in offering to consider the particles beam in the cell as a one particle. This idea is
based on the possibility to have the particle subsystems in the ®pre-equilibrium¯
state.

In other words, the ®pre-equilibrium¯ media consist of macroscopic-size
equilibrium domains Ω(Y ). We offer to consider a subset of particles Ωq(Y ) ∈
Ω(Y ) as a particle with coordinate Y . It can have some additional property q.
We would like to take into account here the fact that all particles, or arbitrary set
of particles, have the same thermal properties.

This generalization has evident beneˇts from experimental point of view.
It is important since the VHM processes are rear and it is hard to believe in
possibility to have a large statistics. The above idea means that the ®thermody-
namical¯ rough measurement may give complete information about the system
under consideration.

Another interesting question regards the possibility of using the phase space
description of the state produced in the high-energy particles collision. The (rel-
ativistic) phase space distribution function can be introduced through the Wigner
function W1, see (34). This interpretation follows from the fact that W1 should
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obey the Liouville equation, i.e., it conserves the phase space volume. This state-
ment may be proven using just the functional integral representation (36) (see
Appendix C).

Appendix A
VHM ASYMPTOTICS

Returning to (8),

r(P ) =
∑
n,m

r(P ; n, m) =

=
∑
n,m

1
n!m!

∫
dωn(q)ωm(p)δ

(
P −

n∑
k=1

qk

)
δ

(
P −

m∑
k=1

pk

)
|an,m|2 , (A.1)

let us assume that anm is a constant over particle momenta. If the hadron (actually
of the π meson) mass is not equal to zero, then the zero momentum limit should
exist. So, we will assume that mπ �= 0. Leaving in the sum over m one term
m = 2, we will consider the asymptotics over n → nmax of the expression:

r(E, n) =
ān(E)

n!

∫
dωn(q)δ

(
E −

n∑
k=1

εk

)
. (A.2)

Notice that the momentum conservation function was omitted. Introducing the
Fourier transform of the remaining δ function, we can write:

r(E, n) =
ān(E)

n!

∫
dβ

2π
eβE e−F (β,n), (A.3)

where

F (β, n) = −n ln
{∫

dω1(p) e−βε(p)

}
, ε(p) = mπ +

p2

2mπ
. (A.4)

The integral over β will be calculated using the saddle-point method. To ˇnd
mostly probable value of β one should solve the equation (of state):

E =
∂

∂β
F (β, n) = n

∫
dω1(p)(mπ + p2/2mπ) e−βε(p)∫

dω1(p) e−βε(p)
� n

(
mπ +

a

β

)
, (A.5)

where a is the inessential positive constant. Therefore, the ®physical¯ value

βc �
na

E − mπn
=

a

mπ

n

nmax − n
→ ∞ at n → nmax. (A.6)
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Expanding F (β, n) near βc:

F (β, n) = F (βc, n) +
1
2!

F (2)(βc, n)(β − βc)2 +
1
3!

F (3)(βc, n)(βc − β)3 + . . .

we must expand over F l(βc, n). Resulting perturbation series has the zero radii
of convergence. Assuming that we are dealing with asymptotic series, one must
assume that at least

|F (3)(βc, n)|2/3

|F (2)(βc, n)| � 1. (A.7)

It is not hard to see that this inequality leads to (3). In the considered asymptotics
(A.6), we would have that

R3(n, s) ∼ 1
n
� 1. (A.8)

Therefore, we can offer the proposition: if the theory is ˇnite in the soft particles
limit, then the ˇnal state described by such theory appears to be equilibrium in
the limit n → nmax.

Appendix B
ZUBAREV'S NONSTATIONARY OPERATOR FORMALISM

One cannot expect the evident connection between the above considered and
Zubarev's [11] approaches. The reason is as follows.

In Zubarev's theory the ®local-equilibrium¯ hypothesis was adopted as the
boundary condition. It is assumed that in the suitably deˇned cells of a system at
a given temperature distribution T (x, t) = 1/β(x, t), where (x, t) is the index of
the cell, the entropy is maximum. The corresponding nonequilibrium statistical
operator

Rz ∼ e−
∫

d3xβT00 (B.1)

describes evolution of a system. Here Tμν is the energy-momentum tensor. It is
assumed that the system ®follows¯ to β(x, t) evolution and the local temperature
T (x, t) is deˇned as the external parameter which is the regulator of the systems
dynamics. For this purpose the special iε prescription was introduced [13].

But the KMS periodic boundary condition cannot be applied and by this
reason the decomposition

β(x, t) = β0 + β1(x, t) (B.2)

was offered [11]. Here β0 is the constant and the inequality

β0 � |β1(x, t)| (B.3)
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is assumed. Then,

Rz ∼ e−β0(H0+V +B) (B.4)

where H0 is the free part of the Hamiltonian; V describes the interactions; and
the linear over β1/β0 term B is connected with the deviation of temperature from
the ®equilibrium¯ value 1/β0. Considering V and B as the perturbations one
can calculate the observables averaging over equilibrium states, i.e., adopting the
KMS boundary condition. Using standard terminology [9] one can consider V as
the ®mechanical¯ and B as the ®thermal¯ perturbations.

The quantization problem of operator (B.4) is connected with deˇnition of
the space-time sequence of mechanical (V ) and thermal (B) excitations. It is
necessary since the mechanical excitations affect the thermal ones and vice versa.
It was assumed in [11] that V and B are commuting operators, i.e., the sequence
of V and B perturbations is not sufˇcient. This solution leads to the parti-
cle propagator renormalization by the interactions with the external ˇeld β(x, t)
even without interactions among fundamental ˇelds. (Note the absence of these
renormalizations in our formalism.)

In [11], the operators V and B are noncommutative ones and B perturbations
were switched on after V perturbations. In this formulation, the ®nondynamical¯
renormalizations are also present but it is unlikely that they are cancelled at the
very end of calculations.

This formulation with β(x, t) as the external ˇeld remained the old, ˇrstly
quantized, ˇeld theory in which matter is quantized but ˇelds are not. It is known
that consistent quantum ˇeld theory requires the second quantization. Following
this analogy, if we want to take into account consistently the reciprocal in	uence
of V and B perturbations, the ˇeld β(x, t) must be fundamental, i.e., must be
quantized. But this is the evidently wrong idea in the canonical Gibbs formalism.
So, as in the ˇrstly quantized theory, the theory with operator (B.1) must have
the restricted range of validity [10].

Therefore, we must reduce our formalism just to the hydrodynamic accuracy
to ˇnd the quantitative connection with Zubarev's approach.

Appendix C
LIOUVILLE EQUATION FOR WIGNER FUNCTION

Let us consider (36):

W1((βf )N , (βi)N ; Y, q) =

=
∫

dy eiqy e−βk(Y )ε(q)φ̂k(Y + y/2)φ̂j(Y − y/2)R0(φ±). (C.1)



S-MATRIX DESCRIPTION OF FINITE-TEMPERATURE NONEQUILIBRIUM MEDIA 1067

We would like to investigate under what conditions W1 obey the Liouville equa-
tion.

The functional integral representation for W1 has a form:

W1(β; Y, q)=
∫

dy eiqy e−βk(Y )ε(q)φ̂k(Y + y/2)φ̂j(Y − y/2)
∫

DΦ+DΦ−×

× e

(
iS0

C+(tin)(Φ+)−iVC+(tin)(Φ++φf )−iS0
C−(tin)

(Φ−)+iVC−(tin)(Φ−−φi)

)
=

=
∫

dy eiqy e−βk(Y )ε(q)

∫
DΦ+DΦ−V ′

C+(tin)(Φ+; Y + y/2)V ′
C−(tin)×

× (Φ−; Y − y/2)e(iSC+(tin)(Φ+)−iSC−(tin)(Φ−)), (C.2)

where S0
C±(tin) is the free part of the total action, SC±(tin)(Φ±) = S0

C±(tin)(Φ±)−
VC±(tin)(Φ±), and the Mills time contour

C±(tin) : t → ±iε, ε → +0, tin � t � +∞, tin → −∞ (C.3)

was introduced. We should use the closed-path boundary condition (41):

Φ±(σtin) = Φ(σtin), (C.4)

where the hypersurface σtin crosses the point tin. It should be stressed that the
integration over the ®turning-point¯ ˇeld Φ(σtin) must be performed. Notice that
the closed-path boundary condition only allows at ˇnite tin to be saved from the
unlike ®surface terms¯.

The representation (C.2) contains the vertices

V ′
C−(tin)(Φ±; Y ± y/2) =

δ

δΦ±(Y ± y/2)
VC−(tin)(Φ±). (C.5)

Notice that there is no any necessity to cut the integral over y at y = tin
since the action of the operators φ̂j(Y ± y/2) ends at the time (Y ± y/2)0 = tin.
Therefore, W1(β; Y, q) exist for the time interval Y0 < tin. The tin dependence
of DΦ± on tin is not important since we always can add (inˇnite) integration
over

tin∏
t=−∞

dΦ(t),

assuming that this inˇnity may be cancelled by normalization factor.
It is known that the double functional integral (C.2) is deˇned on the δ-like

Dirac measure [1, 17]. The result looks as follows:

W1(β; Y, q) =
∫

dy eiqy e−βk(Y )ε(q) e−iK(je)

∫
DM(Φ)V ′

C+(tin)×

× (Φ + e; Y + y/2)V ′
C−(tin)(Φ − e; Y − y/2) e−iUC(Φ;e). (C.6)
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Expanding exp {−iK(je)} over the operator

2K(je) =
∫

dx
δ

δj(x)
δ

δe(x)
, (C.7)

we will obtain the ordinary perturbation theory. Notice that the operator K(je)
is tin-independent.

The functional integral (C.6) is deˇned on the Dirac measure:

DM(Φ) =
∏
x

′
dΦ(x)δ

(
δS(Φ)
δΦ(x)

− j(x)
)

, (C.8)

where the prime means that the functional δ function does not include the time
end point x0 = tin.

At the end of deˇnitions, the functional UC+(Φ; φ, e) describes interactions
[1]. The explicit form of it is not important for us.

Deriving the Liouville equation, the dynamics should be described in the
phase space. It is easy to see that the measure (C.8) has the following form in
the phase space:

DM(Φ) =
∏
x

dΦ(x)dP (x)δ
(

Φ̇ − δHj(Φ, P )
δP (x)

)
δ

(
Ṗ +

δHj(Φ, P )
δΦ(x)

)
, (C.9)

where the Hamiltonian

Hj(Φ, P ) =
∫

d3x

{
1
2
P 2 +

1
2
(∇Φ)2 + v(Φ) − jΦ

}
(C.10)

explicitly depends on the produced quantum perturbation force j(x), and v(Φ) is
the potential term. Transition from (C.8) to (C.9) may raise a doubt caused by a
possible symmetry of the problem under consideration. To avoid this ambiguity,
one may consider this transition as the introduction of the ˇrst order formalism.

Notice now that the equalities:

Φ̇ =
δHj(Φ, P )

δP (x)
, Ṗ = −δHj(Φ, P )

δΦ(x)
(C.11)

cannot ˇx the boundary values Φ0 and P0. For this reason one may omit the
prime in the measure (C.9), i.e., including the boundary value of t = tin in the
Dirac measure.

Now it is important to note that, following our deˇnition,∫ ∏
x

dΦ(x)δ(Φ̇(x)) =
∫

dΦ(tin) =
∫

dΦ0.
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Therefore, the boundary values (Φ0, P0) stay undeˇned by our functional δ func-
tions and, generally speaking, integration over them is assumed:

W1(β; Y, q, tin) =
∫

dΦ0dP0W1(β; Y, q, Φ0, P0). (C.12)

The Liouville equation exists just for W1(β; Y, q, Φ0, P0).
Indeed, let us calculate the total derivative over tin:

d

dtin
W1(β; Y, q, Φ0, P0) =

=
∂W1(β; Y, q, Φ0, P0)

∂Φ0
Φ̇0 +

∂W1(β; Y, q, Φ0, P0)
∂P0

Ṗ0. (C.13)

But having the measure (C.9), one may write that

d

dtin
W1(β; Y, q, Φ0, P0) =

= e−iK(je)e−iUC(Φ;0,e) {W1(β; Y, q, Φ0, P0), Hj(Φ0, P0)} , (C.14)

where the Poisson bracket

{W1, Hj} =
∂W1

∂Φ
∂Hj

∂P
− ∂W1

∂P

∂Hj

∂Φ
.

Notice the quantum character of this equation: r.h.s. contains the operator of
quantum perturbations K(je). It acts on j in the Hamiltonian Hj = Hj(Φ0, P0)
and e in the interaction functional UC(Φ; 0, e). Notice, all quantities are deˇned
at the time moment tin.

Acknowledgements. We would like to thank V.Kadyshevsky and A. Tavkhe-
lidze for stimulating interest to the approach.

REFERENCES

1. Manjavidze J., Sissakian A. // Phys. Rep. 2001. V. 346. P. 1.

2. Arnold V. I. Mathematical Methods of Classical Mechanics. N.Y.: Springer Verlag, 1978.

3. Fermi E., Pasta J. R., Ulam S. M. Los Alamos Report. LA-1940. 1955; Coll. Works of E. Fermy.
Univ. of Chicago Press, 1965. V. 2.

4. Zakharov V. // JETP. 1973. V. 65. P. 219.

5. Fermi E. // Progr. Theor. Phys. 1950. V. 4. P. 579; Phys. Rev. 1950. V. 81. P. 115; 1953. V. 92.
P. 452;
Landau L. D. // Izv. AN SSSR. 1953. V. 17. P. 85.

6. Sissakian A., Manjavidze J. // Talk given at ISMD31, Sept. 1Ä5, 2001, Datong, China.



1070 MANJAVIDZE J., SISSAKIAN A.

7. Sissakian A. N., Slepchenko L. A. JINR Preprint P2-10651. Dubna, 1977;
Sissakian A. N., Slepchenko L. A. // Fizika. 1978. V. 10. P. 21;
Mavrodiev S.Ch. et al. // Sov. Yad. Phys. 1979. V. 30. P. 245.

8. Logunov A. A., Mestvirishvili M. A., Nguen Van Hieu // Phys. Lett. B. 1967. V. 25. P. 611;
Logunov A. A., Mestvirishvili M. A., Petrov V. A. Quantum Field Theory. M.: Nauka, 1977;
Logunov A. A., Mestvirishvili M. A. CERN TH/1659;
Logunov A. A., Mestvirishvili M. A. CERN TH-1707. 1973

9. Landsman N. P., van Weert Ch. G. // Phys. Rep. 1987. V. 145. P. 141.

10. Mori H. // J. Phys. Soc. Japan. 1956. V. 11. P. 1029;
Kubo R. // J. Phys. Soc. Japan. 1957. V. 12. P. 570;
Kubo R., Yokoto M., Nakajima S. // Ibid. P. 1203.

11. Zubarev D. N. Nonequilibrium Statistical Thermodynamics. N.Y.: Consultants Bureau, 1974.

12. Bibilashvili T., Pasiashvili I. // Ann. Phys. (N.Y.). 1992. V. 220. P. 134;
Bibilashvili T. // Phys. Lett. B. 1993. V. 313. P. 119.

13. Manjavidze J., Sissakian A. // Part. Nucl. 2000. V. 31. P. 104.

14. Wigner E. P. // Phys. Rev. 1932. V. 40. P. 749.

15. Carruthers E., Zachariasen F. // Rev. Mod. Phys. 1983. V. 55. P. 245;
Calsetta E., Hu B. L. // Phys. Rev. 1988. V. 37. P. 2878.

16. Martin P. S., Schwinger J. // Phys. Rev. 1959. V. 115. P. 342.

17. Manjavidze J., Sissakian A. // Theor. Math. Phys. 2002. V. 130. P. 2.


