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We consider neutrino oscillations as nonstationary phenomenon based on the Schréodinger evo-
lution equation and mixed neutrino states with deˇnite �avor. It is demonstrated that for such states
invariance under translations in time does not take place. It is shown that time-energy uncertainty rela-
tion plays a crucial role in neutrino oscillations. Neutrino oscillations are compared with K0 � K̄0,
B0

d � B̄0
d and other oscillations.
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INTRODUCTION

Evidence for neutrino oscillations obtained in the atmospheric Super-Kamio-
kande [1], solar SNO [2], reactor KamLAND [3] and other neutrino experiments
[4Ä8] is an important signature of a new beyond the Standard Model Physics.

In spite of the fact that the existence of neutrino oscillations is established, the
basics of this new phenomenon are still a subject of different opinions and active
discussions (see [9] and references therein). We will consider here neutrino
oscillations as nonstationary phenomenon based on the Schréodinger evolution
equation and notion of mixed states for �avor neutrinos νe, νμ, and ντ , which
are produced in CC weak processes together with, correspondingly, e, μ, and
τ . We will discuss �avor neutrino states in some detail. We will show that for
usual neutrino beams with neutrino energies many orders of magnitude larger than
neutrino masses, �avor lepton numbers Le, Lμ, and Lτ are effectively conserved
in the neutrino-production and neutrino-detection SM weak processes, and states
of produced (and detected) �avor neutrinos are mixed states.
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The basic evolution equation of the quantum ˇeld theory is the Schréodinger
equation. According to this equation if at t = 0 �avor neutrino (antineutrino) is
produced, at the time t the neutrino (antineutrino) state is nonstationary one. The
time-energy uncertainty relation is a characteristic feature of such states (see, for
example, [10Ä13]). We will show that this relation plays a crucial role in neutrino
oscillations (see [14]). Neutrino oscillations, which are characterized by ˇnite time
during which the state of the system is signiˇcantly changed, in accordance with
time-energy uncertainty relation require uncertainty in energy. In fact, we will
demonstrate that for �avor neutrino states invariance under translations in time
does not hold.

Neutrino oscillations have the same quantum-mechanical origin as Bd � B̄d,
K0 � K̄0, etc., oscillations. We will compare here neutrino oscillations with
Bd � B̄d oscillations which were studied recently in detail at asymmetric B
factories.

1. ON THE STATUS OF NEUTRINO OSCILLATIONS

The probabilities of the transitions να → να′ and ν̄α → ν̄α′ in vacuum in
the general case of n neutrinos with deˇnite masses are given by the following
expressions (see [15Ä18]):

P(να → να′) =
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Here L is the distance between production and detection points; E is the neutrino
energy, Δm2

ik = m2
k−m2

i . Indices α, α′ take the values e, μ, τ, s1, s2, . . . , indices
si label sterile neutrinos.

All existing neutrino oscillation data (with the exception of the LSND data
[19])∗ are in good agreement with the assumption that the number of neutri-
nos with deˇnite masses is equal to the number of the �avor neutrinos (three),
determined from the measurement of the width of the decay of Z0 boson into
neutrinoÄantineutrino pairs at the LEP experiments. In the following we will
consider the three-neutrino mixing.

∗Indication in favor of ν̄μ � ν̄e oscillations obtained several years ago in the accelerator
short-baseline LSND experiment are going to be checked by the running at the Fermilab MiniBooNE
experiment [20].
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The three-neutrino probabilities of the transitions νl → νl′ and ν̄l → ν̄l′

in vacuum (l, l′ = e, μ, τ ) can be presented in the following form (see, for
example, [18]):

P (νl → νl′) =
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Here U is 3 × 3 PMNS [21,22] mixing matrix.
In the case of the Dirac neutrinos νi, the matrix U is characterized by three

mixing angles and one CP phase and in the standard parameterization has the
form

U =

⎛
⎝ c12c13 s12c13 s13 e−iδ

−s12c23 − c12s23s13 eiδ c12c23 − s12s23s13 eiδ s23c13

s12s23 − c12c23s13e eiδ −c12s23 − s12c23s13 eiδ c23c13

⎞
⎠ . (5)

Here sij = sin θij , cij = cos θij .
In the case of Majorana neutrinos νi, the mixing matrix is given by

UM = U S(α), (6)

where Sik(α) = eiαiδik; α3 = 0. Majorana phases α2,3 do not enter into ex-
pressions (3) and (4) for neutrino and antineutrino transition probabilities. Thus,
investigation of neutrino oscillations cannot make it possible to reveal the nature
of neutrinos with deˇnite masses (Majorana or Dirac?) [23] (see recent discussion
in [24]).

The probabilities (3) and (4) depend on six parameters (two neutrino mass-
squared differences Δm2

12 and Δm2
23, three mixing angles θ12, θ23, and θ13 and

CP phase δ) and have rather complicated form. Taking into account the accuracy
of the present-day neutrino oscillation experiments, we can consider, however,
neutrino oscillations in the leading approximation (see, review [18]).
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This approximation is based on the smallness of two parameters

Δm2
12

Δm2
23

� 3.3 · 10−2; sin2 θ13 � 5 · 10−2. (7)

The value of the parameter
Δm2

12

Δm2
23

can be inferred from the analysis of solar,

atmospheric and KamLAND neutrino oscillation data. The upper bound of the
parameter sin2 θ13 can be obtained from the data of the reactor CHOOZ experi-
ment [25].

Let us consider ˇrst the atmospheric-accelerator long baseline region of
L

E
in which

Δm2
23

L

E
� 1. (8)

In this region in the transition probabilities (3) and (4) we can neglect the con-
tribution of the Δm2

12 term. If we neglect also the term proportional to sin2 θ13,
we come to the conclusion that the only possible transitions in this region are
νμ → ντ and ν̄μ → ν̄τ . For the probabilities of νμ (ν̄μ) to survive from (3) and
(4) we ˇnd the standard two-neutrino expression

P (νμ → νμ) = P (ν̄μ → ν̄μ) = 1 − 1
2

sin2 2θ23

(
1 − cosΔm2

23

L

2E

)
. (9)

Existing atmospheric and K2K data are perfectly described by (9). From the
analysis of the data of the atmospheric Super-Kamiokande experiment the follow-
ing 90% CL ranges of the oscillation parameters were obtained [1]:

1.5 · 10−3 � Δm2
23 � 3.4 · 10−3 eV2; sin2 2θ23 > 0.92. (10)

For solar and reactor KamLAND experiments small Δm2
12 is relevant. In the

corresponding transition probabilities contributions of the ®large¯ Δm2
23 are av-

eraged. For νe (ν̄e) survival probabilities in vacuum (or in matter) the following
general expression can be obtained [26]:

P (νe → νe) = P (ν̄e → ν̄e) = sin4 θ13 + (1 − sin2 θ13)2 P (12)(νe → νe), (11)

where P (12)(νe → νe) is the two-neutrino νe (ν̄e) survival probability in vacuum
(or in matter).

If we neglect the contribution of sin2 θ13, for the probability of reactor ν̄e to
survive in vacuum we ˇnd the following expression:

P (ν̄e → ν̄e) = 1 − 1
2

sin2 2 θ12

(
1 − cosΔm2

12

L

2E

)
. (12)
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The probability of solar νe to survive in matter in the approximation sin2 θ13 →
0 is given by the standard two-neutrino expression which depends on Δm2

12,
tan2 θ12 and electron number density ρe(x) (see, for example, [27]).

From global analysis of solar and KamLAND data it was found [2]

Δm2
12 = 8.0+0.6

−0.4 · 10−5 eV2; tan2 θ12 = 0.45+0.09
−0.07. (13)

The existing neutrino oscillation data are compatible with two different types
of neutrino-mass spectra:

1. normal spectrum m1 < m2 < m3; Δm2
12 � Δm2

23;
2. inverted spectrum∗ m3 < m1 < m2; Δm2

12 � |Δm2
13|.

In the case of the normal spectrum neutrino masses are given by

m2 =
√

m2
1 + Δm2

12; m3 =
√

m2
1 + Δm2

12 + Δm2
23. (14)

For the inverted spectrum we have

m1 =
√

m2
3 + |Δm2

13|; m2 =
√

m2
3 + |Δm2

13| + Δm2
12. (15)

Neutrino mass-squared differences are known from neutrino oscillation data. Only
upper bound of the lightest neutrino mass is known at present. From the data of
the Mainz [28] and Troitsk [29] tritium β-decay experiments it was found

m1(3) � 2.3 eV. (16)

Future KATRIN [30] tritium experiment will be sensitive to

m1(3) � 0.2 eV. (17)

From cosmological data for the sum of neutrino masses upper bounds in the range
∑

i

mi � 0.4−1.7 eV (18)

can be inferred (see [31]). The precision of the cosmological measurements will
signiˇcantly increase in future. It is expected that the future sensitivity to the

sum of neutrino masses will reach
∑

i

mi � 0.05 eV [32].

∗In order to keep for the solar-KamLAND neutrino mass-squared difference notation Δm2
12 > 0,

neutrino masses are usually labeled differently in the cases of normal and inverted neutrino spectra.
In the case of the normal spectrum Δm2

23 > 0 and in the case of the inverted spectrum Δm2
13 < 0.

Thus, with such notations for the neutrino masses the character of the neutrino-mass spectrum is
determined by the sign of atmospheric neutrino mass-squared difference.
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The accuracies of future neutrino oscillation experiments are planned to be
much higher than today. In the experiments of the next generation one of the
major efforts will be dedicated to the measurement of the important parameter
sin2 θ13. In the accelerator T2K experiment, νμ → νe oscillations in the at-
mospheric range of the neutrino mass-squared difference will be searched for.
The sensitivity sin2 θ13 � 1.5 · 10−3 will be reached in this experiment [33]. In
the reactor DOUBLE CHOOZ experiment the sensitivity sin2 θ13 � 1 · 10−2 is
planned to be achieved [34]. If it will occur that the parameter sin2 θ13 is not
too small, the character of the neutrino-mass spectrum and CP violation in the
lepton sector can be probed at the Super Beam [35] , β-beam [36] and Neutrino
Factory [37] facilities.

2. FLAVOR NEUTRINO STATES

From the point of view of the ˇeld theory, neutrino oscillations are based on
the mixing relation for the ˇelds

νlL(x) =
3∑

i=1

UliνiL(x) (l = e, μ, τ), (19)

here νi(x) is (Majorana or Dirac) ˇeld of neutrino with mass mi, U is the unitary
PMNS mixing matrix, and νlL(x) is the so-called �avor ˇeld. The �avor ˇelds
νlL(x) enter into the standard CC and NC Lagrangians

LCC
I = − g

2
√

2
jCC
α Wα + h.c.; jCC

α = 2
∑

l=e,μ,τ

ν̄lLγαlL (20)

and
LNC

I = − g

2 cos θW
jNC
α Zα; jNC

α =
∑

l=e,μ,τ

ν̄lLγανlL, (21)

where g is the SU(2) gauge constant and θW is the weak angle.
The relation (19) is the result of the diagonalization of a neutrino mass term

of the total Lagrangian. There are two possible types of the neutrino mass terms:
Majorana and Dirac (see [15Ä18]). In the case of the Majorana mass term, νi(x)
is the ˇeld of truly neutral Majorana particles which satisˇes the condition

νi(x) = νc
i (x) = C ν̄T

i (x), (22)

where C is the matrix of the charge conjugation.
In the case of the Dirac mass term, νi(x) is the ˇeld of particles νi and

antiparticles ν̄i which differ by the conserved total lepton number L = Le +Lμ +
Lτ (L(νi) = −L(ν̄i) = 1).
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As we have mentioned before, investigation of neutrino oscillations does not
allow one to establish the nature of νi. In order to reveal the nature of the massive
neutrinos it is necessary to study precesses in which the total lepton number L
is violated. The most sensitive to the nature of neutrino process is neutrinoless
double β decay of nuclei (see [38])

(A, Z) → (A, Z + 2) + e− + e−. (23)

The nature of neutrinos with deˇnite masses will be not important for our
discussion. In this section we will consider the production of neutrinos (and
antineutrinos) in the case of the neutrino mixing (see [39]). Neutrinos (and
antineutrinos) are produced in CC decays and reactions. Let us consider the
production of neutrinos in a CC decay

a → b + l+ + νi, (24)

where a and b are some hadrons.
Neutrino mass-squared differences (10) and (13) are so small that due to

Heisenberg uncertainty relation it is impossible to distinguish momenta of pro-
duced neutrinos with different masses. For the state of the ˇnal neutrinos we
have

|νf 〉 =
∑

i

|νi〉 〈νi, l+ b |S| a〉, (25)

where 〈νi l+ b |S| a〉 is the matrix element of the process (24), and |νi〉 is the
state of left-handed neutrino with mass mi

∗, momentum p and energy Ei =√
p2 + m2

i � p +
m2

i

2p
. We have

H0 |νi〉 = Ei |νi〉, (26)

where H0 is the free Hamiltonian.
In neutrino experiments energies of neutrinos E are much larger than neu-

trino masses: in solar and reactor experiments E � 1 MeV, in atmospheric and
accelerator long-baseline experiments E � 1 GeV, etc. Taking into account that

mi � 1 eV, we have
m2

i

E2
� 10−12. Thus, neutrino masses can be safely neglected

in matrix elements of neutrino production processes. From (19) and (20) we ˇnd

〈νi l+ b |S| a〉 � U∗
li 〈νl l+ b |S| a〉SM, (27)

∗Contributions of the states with positive helicity are proportional to
mi

E
and are negligibly

small.
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where 〈νl l
+ b |S| a〉SM is the Standard Model matrix element of the process of

the emission of massless �avor neutrino νl in the decay

a → b + l+ + νl. (28)

We have

〈νl l+ b |S| a〉SM =

= −i
GF√

2
N 2 ūL(p) γα vL(p′) 〈b| Jα(0) |a〉 (2π)4 δ(P ′ − P ). (29)

Here N is the product of the standard normalization factors; p is neutrino mo-
mentum; p′ is the momentum of l+; P and P ′ are total initial and ˇnal momenta,
and Jα is hadronic charged current∗.

From (25) and (27) for the ˇnal neutrino state we ˇnd the expression

|νf 〉 = |νl〉〈νl l+ b |S| a〉SM, (30)

where

|νl〉 =
3∑

i=1

U∗
li |νi〉 (31)

is normalized left-handed neutrino state. It follows from (30) that the probability
of the decay (28) is given by the Standard Model (assuming that νl is massless).

Neutrino which is produced in a CC weak decay together with l+ is called
�avor neutrino νl. We have shown that the state of �avor neutrino is given by
coherent superposition of states of neutrinos with deˇnite masses.

Analogously, in CC processes together with lepton l− right-handed �avor
antineutrino ν̄l is produced. The state of ν̄l is given by the expression

|ν̄l〉 =
3∑

i=1

Uli|νi〉, (32)

∗The arguments presented above are not applicable to high-energy part of β spectrum of the
decay 3H → 3He+ e− + ν̄e which corresponds to the emission of neutrino with energy comparable
with neutrino mass. For the spectrum we have

d Γ

d E
= C p (E + me) (E0 − E)

∑
i

|Uei|2
√

(E0 − E)2 − m2
i F (E) θ(E0 − E − mi),

where E0 is the energy, released in the decay; me is the mass of the electron; F (E) is the Fermi
function which takes into account the Coulomb interaction of the ˇnal particles, and C is a constant.
From the measurement of the electron spectrum in the high-energy region the bound (16) was obtained
in the Troitsk and Mainz experiments.
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where |νi〉 is the state of the right-handed neutrino (or right-handed antineutrino

in the Dirac case) with mass mi, momentum p, and energy Ei � p +
m2

i

2p
.

We will consider now detection of neutrinos with energies much larger than
neutrino masses. Neutrinos are detected via the observation of CC and NC weak
processes. Let us consider, for example, inclusive process

νl′ + N → l− + X. (33)

Neglecting neutrino masses, for the matrix element of the process we have

〈lX |S|νl′N〉 =
∑

i

〈lX |S|νiN〉U∗
l′i =

= 〈lX |S|νl N〉SM

∑
i

U∗
l′iUli = 〈lX |S|νlN〉SMδl′l. (34)

Here

〈lX |S|νlN〉SM =

= −i
GF√

2
N2ūL(p′)γαuL(p)〈X |Jα(0)|N〉(2π)4δ(P ′ − P ), (35)

where p′ is the momentum of ˇnal lepton, and p is the neutrino momentum.
It follows from (34) that due to unitarity of the neutrino mixing matrix the

matrix element 〈lX |S|νl′N〉 is different from zero only if l′ = l. Thus, the
lepton l− is produced in CC process (33) by the left-handed �avor neutrino νl.
Analogously, the lepton l+ can be produced in inclusive CC process

ν̄l + N → l+ + X (36)

by the right-handed �avor antineutrino ν̄l. We come to the conclusion that in CC
processes �avor lepton numbers are effectively conserved.

Let us summarize previous discussion. For neutrinos with energies many
orders of magnitude larger than neutrino masses in matrix elements of neutrino-
production and neutrino-detection processes neutrino masses can be neglected.
As a result of that

• Flavor lepton numbers Le, Lμ, and Lτ are conserved in such processes:
together with l− right-handed �avor antineutrino ν̄l is produced, left-handed �avor
neutrinos νl in the processes of interaction with nucleon produce l−, etc.

Nonconservation of the �avor lepton numbers can be revealed only in such
processes in which effects of neutrino masses are relevant. Such processes are
neutrino oscillations in vacuum and neutrino transitions in matter.
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• Matrix elements of neutrino-production and neutrino-detection processes
are given by the Standard Model expressions (in which neutrino masses can be
neglected).

• States of �avor neutrino νl and antineutrino ν̄l are given by coherent
superpositions (31) and (32).

Let us stress that states of �avor neutrino νl and �avor antineutrino ν̄l are the
superpositions of the states of neutrinos with deˇnite masses νi with coefˇcients
U∗

li and Uli, respectively. Because of this difference in the case of the CP violation

P (νl → νl′) �= P (ν̄l → ν̄l′); l′ �= l.

The mixed �avor neutrinos and antineutrinos states (31) and (32) are different
from usual states of particles in the Quantum Field Theory. We will show now
that for such state invariance under translation in time is not valid.

Let us consider translations in space and time (see, for example, [40])

x′
α = xα + aα, (37)

where a is a constant vector. In the case of the invariance under translation we
have

|Ψ〉′ = eiPa|Ψ〉 (38)

and

O(x + a) = eiPaO(x)e−iPa, (39)

where Pα is the operator of the total momentum; O(x) is an operator, and vectors
|Ψ〉 and |Ψ〉′ describe the same physical state.

If |Ψ〉 is a state with total momentum p, vectors |Ψ〉 and |Ψ〉′ differ by the
phase factor

|Ψ〉′ = eipa|Ψ〉. (40)

Let us apply now the operator of the translations eiPa to the mixed �avor neutrino
state |νl〉 given by Eq. (31). We have

|νl〉′ = eiPa|νl〉 = e−ipa
∑
l′

|νl′〉
∑

i

Ul′ieiEia
0
U∗

li. (41)

The vector |νl〉′ describes superposition of different �avor states. Thus, initial
and transformed vectors describe different states. We come to the conclusion
that in the case of the states which describe mixed �avor neutrinos with deˇnite
momentum p there is no invariance under translation in time. This means that
in transitions between different �avor neutrinos (and antineutrinos) energy is not
conserved.



ON NEUTRINO OSCILLATIONS AND TIME-ENERGY UNCERTAINTY RELATION 243

3. NEUTRINO OSCILLATIONS IN VACUUM
AND TIME-ENERGY UNCERTAINTY RELATION

The basic evolution equation of the quantum ˇeld theory is the Schréodinger
equation

i
∂|Ψ(t)〉

∂t
= H |Ψ(t)〉, (42)

where H is the total Hamiltonian. The general solution of equation (42) has the
form

|Ψ(t)〉 = e−iHt |Ψ(0)〉, (43)

where |Ψ(0)〉 is an initial state.
Let us consider the evolution in vacuum of the states of �avor neutrinos νl

and �avor antineutrinos ν̄l produced in weak processes. We have in this case

|Ψ(0)〉 = |νl〉; or |Ψ(0)〉 = |ν̄l〉; H = H0, (44)

where H0 is the free Hamiltonian and the states |νl〉 and |ν̄l〉 are given by Eq. (31)
and Eq. (32). Taking into account (43) for neutrino and antineutrino states at the
time t � 0 we have

|νl〉t =
3∑

i=1

|νi〉 e−iEitU∗
li (45)

and

|ν̄l〉t =
3∑

i=1

|νi〉 e−iEitUli. (46)

Thus, �avor neutrinos νl and antineutrinos ν̄l, produced in weak processes at
t = 0, at t > 0 are described by nonstationary states.

It is a general property of quantum theory that for nonstationary states the
time-energy uncertainty relation

ΔEΔt � 1 (47)

takes place (see, for example, [10Ä13,41]). In this relation ΔE is uncertainty in
energy and Δt is time interval during which signiˇcant changes in the system
happen.

In the neutrino case

(ΔE)ik = Ek − Ei �
Δm2

ik

2E
, (48)

and time-energy uncertainty relation takes the form

Δm2
ik

2E
t � 1, (49)
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where t is the time interval during which �avor content of neutrino state is
changed.

Neutrinos are detected through the observation of weak processes. Let us
develop the state |νl〉t over �avor states |νl′〉. We have

|νl〉t =
∑
l′

|νl′〉A(νl → νl′ ; t), (50)

where

A(νl → νl′ ; t) =
3∑

i=1

Ul′i e−iEitU∗
li (51)

is the amplitude of the transition νl → νl′ during the time t∗.
Analogously in the case of the antineutrino we have

|ν̄l〉t =
∑
l′

|ν̄l′〉A(ν̄l → ν̄l′ ; t), (52)

where the amplitude of the transition ν̄l → ν̄l′ is given by

A(ν̄l → ν̄l′ ; t) =
3∑

i=1

U∗
l′i e−iEitUli. (53)

Expressions (51) and (53) have a simple meaning: U∗
li(Uli) is the amplitude of

the transition from initial �avor neutrino (antineutrino) state |νl〉(|ν̄l〉) to the state
|νi〉; the factor e−iEit describes propagation in the state with deˇnite energy
Ei, and Ul′i(U∗

l′i) is the amplitude of the transition from the state |νi〉 to the
ˇnal �avor state |νl′〉(|ν̄l′ 〉). Because neutrino masses cannot be resolved in the
production and detection processes, in the amplitudes (51) and (53) sum over all
i is performed.

It is instructive to derive expressions (51) and (54) starting from the �avor
representation. We have

|Ψ(t)〉 =
∑

l=e,μ,τ

|νl〉al(t), (54)

∗We can obtain the same result in another way. Let us consider the process νi + N → l′ + X.
For neutrinos with energies many orders of magnitude larger than neutrino masses we have

〈lX|S|νiN〉 � 〈l′X|S|νl′N〉SMUl′i.

From (45) and this relation we will ˇnd the expression (51) for νl → νl′ transition amplitude.
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where al(t) = 〈νl|Ψ(t)〉 is the wave function of neutrino in the �avor represen-
tation. From (42) for the equation of motion in vacuum we ˇnd

i
∂a(t)
∂t

= H0a(t), (55)

where
(H0)l′l = 〈νl′ |H0|νl〉 =

∑
i

Ul′iEiU
∗
li = (UEU †)l′l (56)

is the free Hamiltonian in the �avor representation. In order to obtain the solution
of Eq. (55) let us introduce the function

a′(t) = U †a(t). (57)

From (55) and (57) we have

i
∂a′(t)

∂t
= Ea′(t). (58)

The solution of this equation is obvious:

a′(t) = e−iEta′(0). (59)

From (57) and (59) we ˇnd that solution of Eq. (55) is given by

a(t) = U e−iEtU †a(0). (60)

Assuming that al′′(0) = δl′′l for the amplitude of the transition νl → νl′ we
ˇnd the expression

al′(t) = (U e−iEtU †)l′l, (61)

which coincides with (51).
Analogously, in the case of antineutrino we have

|Ψ(t)〉 =
∑

l=e,μ,τ

|ν̄l〉bl(t), (62)

where bl(t) = 〈ν̄l|Ψ(t)〉 is the wave function of antineutrino in the �avor repre-
sentation. The function b(t) satisˇes the following evolution equation:

i
∂b(t)
∂t

= H̄0b(t), (63)

where
(H̄0)l′l = 〈ν̄l′ |H0|ν̄l〉 = (U∗EUT )l′l (64)
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is the free Hamiltonian in the �avor representation. The solution of this equation
is given by

b(t) = U∗ e−iEtUT b(0). (65)

If we assume that bl′′(0) = δl′′l for the amplitude of the transition ν̄l → ν̄l′ we
ˇnd the expression

bl′(t) = (U∗ e−iEtUT )l′l, (66)

which coincides with (53).
From (51) and (53) for the probabilities of the transitions νl → νl′ and

ν̄l → ν̄l′ in vacuum we obtain the following standard expressions:

P (νl → νl′) = |A(νl → νl′ ; t)|2 =

=

∣∣∣∣∣δl′l +
∑

i=2,3

Ul′i

(
exp

(
−iΔm2

1i

L

2E

)
− 1

)
U∗

li

∣∣∣∣∣
2

(67)

and

P (ν̄l → ν̄l′) = |A(ν̄l → ν̄l′ ; t)|2 =

=

∣∣∣∣∣δl′l +
∑

i=2,3

U∗
l′i

(
exp

(
−iΔm2

1i

L

2E

)
− 1

)
Uli

∣∣∣∣∣
2

. (68)

Taking into account the unitarity of the neutrino mixing matrix it is easy to check
that P (νl → νl′) and P (νl → νl′) are normalized probabilities∗:

∑
l′=e,μ,τ

P (νl → νl′) = 1;
∑

l′=e,μ,τ

P (ν̄l → ν̄l′) = 1. (69)

In (67) and (68) we have used the relation

t � L, (70)

∗We assumed that states |νi〉 are the states with the same momentum p. Correspondingly, mixed
states |νl〉 and |ν̄i〉 are characterized by momentum p. Notice that this is the standard procedure,
which corresponds to conditions of experiments with beams of particles. If we assume, however,
that |νi〉 are states with different momenta pi, for oscillation phases in (67) and (68) we will have

(Ei − E1)t �
[
(pi − p1)L + Δm2

1i

L

2E

]
, where the ˇrst term pi − pi is proportional to Δm2

1i

with some unknown coefˇcient which could vary from one experiment to another. There is no such
term in the oscillation phases: data of different neutrino oscillation experiments are compatible if
the standard expressions (67) and (68) for transition probabilities are used. In the framework of
the considered formalism with mixed �avor neutrino states and Schréodinger evolution equation, ®the
equal momentum assumption¯ is the only possibility to obtain oscillation phases which do not depend
on experimental conditions.
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where L is the distance between neutrino-production and neutrino-detection points.
There were many discussions in literature connected with the relation (70) (see
[9, 42]). After K2K experiment [4] there is no reasons for such discussions. In
this experiment this relation was conˇrmed and used to select neutrino events.

In the K2K experiment, neutrinos were produced by protons from the KEK
accelerator in 1.1 μs spills. Protons were extracted from the accelerator every
2.2 s. The difference of the time of the detection of neutrinos in the Super-
Kamiokande detector (tSK) and the time of the production of neutrinos at KEK
(tSK) t = tSK − tKEK was measured in the K2K experiment. Let us determine

Δt � t − tTOF, (71)

where tTOF = L/c. In the K2K experiment, muon neutrino events which satisfy
the criteria

−0.2 � Δt � 1.3 μs

were selected. Notice that in the K2K experiment L � 250 km and L/c �
0.83 · 103 μs.

It follows from (67) and (68) that neutrino oscillations can be observed if at
least for one value of i the following inequality is satisˇed (see [15,16])∗:

Δm2
1i

2E
L � 1. (72)

Comparing (49) and (72) we conclude that in the case of neutrino oscillations
time-energy uncertainty relation coincides with the condition of the observation
of neutrino oscillations [14].

Let us stress that ˇnite time during which a signiˇcant change of the �avor
content of neutrino state happens (oscillation time) in accordance with time-
energy uncertainty relation requires uncertainty in energy. This corresponds to
the violation of the invariance under translation in time in the case of the mixed
neutrino states, which we discussed in the previous section.

We will make the following remark. It was stated in some papers (see [42Ä
44]) that neutrino oscillations can take place only if energies of different neutrinos
νi are equal. This statement is based on the assumption that in experiments on
the study of neutrino oscillations only distance L is relevant. The time is not
measured and transition probability must be averaged over time.

We do not see any reasons for such assumption. Of course, the time of the
traveling of neutrinos from production to detection points is not measured in the
solar, atmospheric, and reactor experiments. However, from the K2K experiment,

∗It is obvious that inequality (72) is only necessary condition of the observation of neutrino
oscillations. For the transition νl → νl′ to be observed, corresponding elements of the neutrino
mixing matrix have to be not small.
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in which this time is measured, we know that traveling time and distance between
production and detection points are equal.

We will present another argument against ®equal energy¯ assumption. Let
us consider the propagation of neutrino in matter. The evolution equation in the
�avor representation has the form

i
∂a(t)
∂t

= Ha(t). (73)

Here
H = H0 + HI , (74)

where H0 is the free Hamiltonian; and HI , the effective Hamiltonian of interaction
of neutrino with matter.

The free Hamiltonian in the �avor representation is given by

(H0)l′l = 〈νl′ |H0|νl〉 =
∑

i

Ul′iEiU
∗
li. (75)

The refraction indices of �avor neutrinos in matter are determined by am-
plitudes of elastic neutrino scattering in forward direction and target particles
densities. Taking into account νe − νμ − ντ universality of NC for the effective
Hamiltonian of interaction of neutrino with matter we have [45]

(HI)l′l =
√

2GF ρeηl′l, (76)

where ρe is the electron number density, ηee = 1, other elements of ηl′l are equal
to zero. Let us stress that HI is determined by the CC part of the Standard
Model amplitude of the νee → νee forward scattering. Neutrino masses in the
interaction Hamiltonian do not enter.

If energies of neutrinos with deˇnite masses are equal (Ei = E), in this case
the free Hamiltonian is unit matrix

(H0)l′l = Eδl′l. (77)

With such free Hamiltonian it will be no matter effect [46] which was observed
in solar neutrino experiments [47]. Thus, assumption of ®equal energies¯ is not
compatible with data of solar neutrino experiments.

4. COMPARISON OF NEUTRINO OSCILLATIONS
WITH B0

d � B̄0
d OSCILLATIONS

Neutrino oscillations and �avor oscillations of neutral mesons (K0 � K̄0,
B0

d � B̄0
d , etc.) have the same quantum-mechanical origin∗.

∗In fact, the existence of K0 � K̄0 oscillations was a major argument for B. Pontecorvo [21]
to propose neutrino oscillations in 1957.
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We will compare here neutrino oscillations with Bd � B̄d oscillations which
were studied recently in detail at asymmetric B factories [48].

The states of Bd and B̄d mesons are eigenstates of the Hamiltonian H0

which is the sum of the free Hamiltonian and Hamiltonians of the strong and
electromagnetic interactions. Assuming CPT invariance of the strong interaction
in the rest frame of B0

d(B̄0
d) we have

H0|B0
d〉 = mB|B0

d〉; H0|B̄0
d〉 = mB|B̄0

d〉, (78)

where mB is the mass of Bd(B̄d) meson.
B0

d and B̄0
d mesons are produced in the decays of Υ(4S) and other strong

processes in which quark �avor is conserved. Effects of weak interaction can
be neglected in production processes. After B0

d and B̄0
d mesons are produced,

weak interaction plays the major role: due to weak interaction particles decay,
eigenstates of the total effective Hamiltonian have different masses, etc.

Let us assume that at t = 0 B0
d(B̄0

d) was produced. At t > 0 for the vector
of the state we have

|Ψ(t)〉 =
∑

α=Bd,B̄d

aα(t)|α〉 +
∑

i

bi(t)|i〉, (79)

where aα(t) is the wave function of B0
d − B̄0

d system in the �avor representation,
and the states |i〉 describe products of the decay of B0

d and B̄0
d . The vector |Ψ(t)〉

satisˇes the Schréodinger equation (42). From (79) and (42) it can be shown
(see [49]) that in the WaiskopfÄWigner approximation the function a(t) satisˇes
the evolution equation

i
∂a(t)
∂t

= Ha(t). (80)

Here H is the total effective non-Hermitian Hamiltonian of B0
d − B̄0

d system in
the �avor representation. The Hamiltonian H has the form

H = M − i

2
Γ, (81)

where M = M † and Γ = Γ† are 2 × 2 matrices of mass and width.
For the eigenstates of the total Hamiltonian we have

HaH = λHaH ; HaL = λLaL. (82)

Here

λH = mH − i

2
ΓH ; λL = mL − i

2
ΓL, (83)

where mH , mL and ΓH , ΓL are masses and total widths of B0
H and B0

L mesons.



250 BILENKY S.M., MATEEV M. D.

From (82) for the states of B0
H and B0

L mesons we have

|B0
H〉 = N

(
|B0

d〉 +
q

p
|B̄0

d〉
)

; |B0
L〉 = N

(
|B0

d〉 −
q

p
|B̄0

d〉
)

. (84)

Here N = 1/
√

1 + |q/p|2, q =
√

HB̄dBd
, and p =

√
HBdB̄d

. The parameter
q

p

characterizes CP violation of the weak interaction (if CP is conserved
q

p
= 1).

For the states of B0
d and B̄0

d mesons, produced in the decays of Υ(4S) and
in other strong processes, from (84) we have

|B0
d〉 =

1
2N

(
|B0

H〉 + |B0
L〉

)
; |B̄0

d〉 =
1

2N

p

q

(
|B0

H〉 − |B0
L〉

)
. (85)

Thus, in the strong interaction, coherent superpositions of states of B0
H and B0

L

mesons, particles with deˇnite masses and widths, are produced.
Let us compare relations (85) with neutrino relations (31) and (32). Flavor

neutrinos and antineutrinos νl and ν̄l are produced in weak processes in which
at neutrino energies many orders of magnitudes larger than neutrino masses the
lepton �avor numbers Le, Lμ, and Lτ are effectively conserved. The states
of these neutrinos are coherent superpositions of the states of neutrinos with
deˇnite masses. Flavor B0

d and B̄0
d mesons are produced because quark �avor is

conserved in strong interaction. Their states are coherent superposition (85).
There exists also an important difference between mixing of states of neutral

mesons and mixing of neutrino states. Neutrino mixing is determined by the
PMNS mixing matrix. Even in the case of the two neutrinos mixing angle
is an arbitrary parameter. In the case of neutral mesons mixing is maximal
(independently of the values of CKM mixing angles). This is connected with CPT
invariance of the strong interaction and the fact that B0

d and B̄0
d are transformed

into each other under CP transformation. CPT invariance does not put any
constraints on neutrino mixing angles.

We will consider now time evolution of the states of B0
d and B̄0

d mesons.
From (80), (82), and (85) we ˇnd

|B0
d〉t =

1
2N

(
|B0

H〉 e−iλH t + |B̄0
L〉 e−iλLt

)
(86)

and
|B̄0

d〉t =
1

2N

p

q

(
|B0

H〉 e−iλH t − |B̄0
L〉 e−iλLt

)
, (87)

where t is the proper time.
Neutral B mesons are detected through the observation of the decays of B0

d

and B̄0
d , which are determined by transitions b̄ → c̄(ū)+W+ and b → c(u)+W−.

For lepton decays we have

B0
d → l+ + νl + X ; B̄0

d → l− + ν̄l + X.
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Thus, the sign of the charged lepton determines the type of the neutral B meson.
From (86) and (87) we ˇnd

|B0
d〉t = g+(t)|B0

d〉 +
q

p
g−(t)|B̄0〉 (88)

and |B̄0
d〉t = g−(t)

p

q
|B0

d〉 + g+(t)|B̄0〉, (89)

here
g±(t) =

1
2

(e−iλH t ± e−iλLt). (90)

Equations (88) and (89) are analogous to Eqs. (45) and (46) in the neutrino case.
For the transition probabilities we ˇnd the following expression:

P (B0
d → B̄0

d) = P (B̄0
d → B0

d) =
1
2

e−Γt(1 − cosΔmBt), (91)

where
ΔmB = mH − mL (92)

is the difference of masses of B0
H and B0

L mesons. We took into account in (91)
that ΓH � ΓL = Γ and |p/q| � 1 (see [50]).

The probability of B0 (B̄0) to survive is given by the expression

P (B0
d → B0

d) = P (B̄0
d → B̄0

d) =
1
2

e−Γt(1 + cosΔmBt). (93)

Equations (91) and (93) are analogous to equations (67) and (68) in the neutrino
case.

The main differences between neutrino oscillations and B0
d � B̄0

d oscillations
are the following:

• In the B-mesons case mixing is maximal. In the neutrino case mixing
angles are parameters. Investigation of neutrino oscillations is the only possible
source of information about the elements of the PMNS mixing matrix. Mod-
ulus of elements of the quark CKM mixing matrix can be determined from
the investigation of different weak decays and neutrino reactions. Information
about CP phase can be inferred from the measurement of CP -odd asymmetry in
B0

d(B̄0
d) → J/ψ + KS and other decays (see [48]).

• Neutral B mesons are unstable particles. Lifetime is given by � 1/Γ and
time-energy uncertainty relation

ΔmB
1
Γ

� 1 (94)

is the condition of the observation of B0
d � B̄0

d oscillations.
Neutrinos are stable particles. The time t � L in the time-energy uncertainty

relation (49) is determined by experimental conditions (intensity of a neutrino
beam, size of a detector, background conditions, etc.).
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The formalism of B0
d � B̄0

d oscillations, which we shortly discussed here
(and similar formalism of K0 � K̄0 oscillations) is based on the evolution
equation (80), mixed �avor states, nonstationary states |B0

d〉t and |B̄0
d〉t, given by

(88) and (89). This formalism describes a lot of precise experimental data. From
our point of view correct formalism of neutrino oscillations also must be based on
the Schréodinger evolution equation, mixed �avor neutrino states and time-energy
uncertainty relation.

CONCLUSION

Observation of neutrino oscillations in SK, SNO, KamLAND and other neu-
trino experiments [1Ä8] is an important recent discovery in particle physics. In-
vestigation of this new phenomenon allowed one to determine such fundamental
parameters as neutrino mass squared differences and neutrino mixing angles. It
is a common opinion that generation of neutrino masses, which are many orders
of magnitude smaller than masses of leptons and quarks, requires a new physics
and a new beyond the Standard Model mechanism of the mass generation.

Taking into account importance of neutrino oscillations for particle physics
we think that the understanding of the physical basis of this new phenomenon is
an important issue. In literature there exist different interpretations of the basics
of neutrino oscillations (see [9, 42]). We present here the following point of view:

• Neutrino masses are many orders of magnitude smaller than energies of
neutrinos in reactor, solar, atmospheric and accelerator neutrino experiments.
This means that neutrino masses can be neglected in matrix elements of neutrino-
production and neutrino-detection processes. Therefore in CC weak processes
together with l+ (l−) �avor left-handed neutrinos νl (�avor right-handed antineu-
trinos ν̄l) are produced which states are described by coherent superpositions of
states of neutrinos with deˇnite masses. The possibility of neglecting neutrino
masses in production and detection processes signiˇes that in these processes
�avor lepton numbers are effectively conserved.

• Flavor neutrinos and antineutrinos at time t after production are described
by nonstationary states (coherent superposition of stationary states). For such
states, time-energy uncertainty relation is valid. This means that neutrino oscilla-
tions with ˇnite oscillation time require uncertainty of energy.

• The presented here nonstationary formalism of neutrino oscillations is the
same as the well-known formalism of K0 � K̄0, B0

d � B̄0
d , etc., oscillations,

which is conˇrmed by numerous high-precision experiments.
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