
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2007. ’. 38. ‚›�. 2

MULTIVARIATE ANALYSIS METHODS IN PHYSICS
M. Wolter

The Henryk Niewodnicza�nski Institute of Nuclear Physics,

Polish Academy of Sciences, Krakow, Poland

In this article a review of multivariate methods based on statistical training is given. Several
popular multivariate methods useful in high-energy physics analysis are discussed. Selected examples
from current research in particle physics are discussed, both from the on-line trigger selection and
from the off-line analysis. Also statistical training methods, not yet applied in particle physics, are
presented and some new applications are suggested.

‚ ¤ ´´μ° · ¡μÉ¥ ¶·¥¤¸É ¢²¥´ μ¡§μ· ³´μ£μ³¥·´ÒÌ ³¥Éμ¤μ¢, μ¸´μ¢ ´´ÒÌ ´ ¸É É¨¸É¨Î¥¸±μ³
®μ¡²ÊÎ¥´¨¨¯. �¡¸Ê¦¤ ¥É¸Ö ´¥¸±μ²Ó±μ ¶μ¶Ê²Ö·´ÒÌ ³¥Éμ¤μ¢, ¨¸¶μ²Ó§Ê¥³ÒÌ ¶·¨ ´ ²¨§¥ ¤ ´´ÒÌ
Ô±¸¶¥·¨³¥´Éμ¢ ¶μ Ë¨§¨±¥ ¢Ò¸μ±¨Ì Ô´¥·£¨°. � ¸¸³ É·¨¢ ÕÉ¸Ö ´¥¸±μ²Ó±μ ¶·¨³¥·μ¢ É¥±ÊÐ¨Ì ¨¸-
¸²¥¤μ¢ ´¨° ¶μ Ë¨§¨±¥ Î ¸É¨Í, ± ¸ ÕÐ¨Ì¸Ö ± ± on-line ¸¥²¥±Í¨¨ ´ Ê·μ¢´¥ É·¨££¥· , É ± ¨ off-line
 ´ ²¨§ . ’ ±¦¥ ¶·¥¤¸É ¢²¥´Ò ´μ¢Ò¥ ³¥Éμ¤Ò ¸É É¨¸É¨Î¥¸±μ£μ ®μ¡²ÊÎ¥´¨Ö¯, ´¥ ¨¸¶μ²Ó§μ¢ ¢Ï¨¥¸Ö
¤μ ¸¨Ì ¶μ· ¢ Ë¨§¨±¥ Î ¸É¨Í, ¨ ¶·¥¤²μ¦¥´μ ´¥¸±μ²Ó±μ ´μ¢ÒÌ ¶·¨²μ¦¥´¨°.

PACS: 02.50.Sk.

INTRODUCTION

High-energy physicists started to use multivariate techniques and have had
considerable success in using them. It seems likely that as analysis becomes
more challenging these methods will be used more routinely. Typical areas of
application are background suppression (classiˇcation) and parameter estimation
(regression), where a physical quantity is extracted from a set of directly measured
observables. The reason to apply statistical training multivariate methods is, in
most cases, simply the lack of knowledge about the mathematical dependence
of the quantity of interest on the relevant measured variables. Either there is
no mathematical model at all and an exhaustive search is the only possibility of
ˇnding the correct dependence, or the known models are insufˇcient and statistical
training provides a better description of data.

Each of the multivariate methods is usually well characterized mathematically,
but they seem to be less different than it might appear. Indeed, it seems that many
of them are simply different algorithms to approximate the same mathematical
object. Moreover, the problems they solve, appear to be relatively few in number,
while many new methods are invented every year. A typical list of problems they
address is:

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 505

• signal-to-background discrimination,
• variable selection (e.g., ˇnding variables which give the maximum sig-

nal/background discrimination),
• dimensionality reduction of the feature space and simpliˇcation (by reduc-

ing the number of variables),
• ˇnding regions of interest in data,
• measuring parameters (regression).

These algorithms can be also classiˇed according to the character of the training
process into two main classes:

• supervised training Å where a set of training events with correct outputs
is given,

• unsupervised training Å where no outputs are given and the algorithm has
to ˇnd them by itself (for example, a classiˇcation of input data into few classes
of similar events).

In this article, an overview of multivariate methods is given together with the
selected examples of applications. The differences and similarities between the
methods are discussed.

1. LINEAR CLASSIFIERS

A linear classiˇer is a classiˇer that uses a linear function of its inputs to
base its decision on. That is, if the input feature vector to the classiˇer is a real
vector x, then the estimated output score (or probability) is:

y = f(w · x) = f

⎛
⎝∑

j

wjxj

⎞
⎠ , (1)

where w is a real vector of weights and f is a function that converts the dot
product of the two vectors into the desired output. Often f is a simple function
that maps all values above a certain threshold to ®yes¯ and all other values
to ®no¯.

For a two-class classiˇcation problem, one can visualize the operation of a
linear classiˇer as splitting of a high-dimensional input space with a hyperplane:
all points on one side of the hyperplane are classiˇed as ®yes¯, while the others
are classiˇed as ®no¯.

A linear classiˇer is often used in situations where the speed of classiˇcation
is an issue, since it is often the fastest classiˇer, especially when x is sparse.
Also, linear classiˇers often work very well when the number of dimensions in
x is large, as in document classiˇcation, where each element in x is typically the
number of counts of a word in a document.

506 WOLTER M.

All of the linear classiˇer algorithms can be converted into nonlinear al-
gorithms operating on a different input space ϕ(x), using the kernel trick (see
Subsec. 4.2), by which the observables x are effectively mapped into a higher
dimensional nonlinear space. Linear classiˇcation in this nonlinear space is then
equivalent to nonlinear classiˇcation in the original space.

1.1. Fisher Linear Discriminant. The design of a good classiˇer becomes
rapidly more difˇcult as the dimensionality of the input space increases. One
way of dealing with this problem is data preprocessing in which the data dimen-
sionality is reduced. Fisher discriminants [1] aim to achieve an optimal linear
dimensionality reduction from N dimensions to one. A simple cut placed on the
output works as a discriminating hyperplane.

Suppose two classes of observations have means μy=0, μy=1 and covariances
σy=0, σy=1, where y = 0, 1 denotes the signal and background, respectively.
Then the linear combination of features w · x will have means w · μy=i and
variances wT σy=iw for i = 1, 2. Fisher deˇned the separation between these
two distributions to be the ratio of the variance between the classes to the variance
within the classes:

S =
σ2

between

σ2
within

=
(w · μy=1 − w · μy=0)2

wT σy=1w + wT σy=0w
=

(w · (μy=1 − μy=0))2

wT (σy=0 + σy=1)w
. (2)

This measure is, in some sense, a measure of the signal-to-noise ratio for the
class labelling. It can be shown that the maximum separation occurs when

w =
(μy=1 − μy=0)
(σy=0 + σy=1)

. (3)

The projected data can subsequently be used to construct a discriminant, by
choosing a threshold f0 so that a new point x is classiˇed as belonging to the
ˇrst class if f(x) = w · x > f0 and to the second class otherwise.

Fisher discriminants are successfully used in HEP for a long time for the
signal and background separation, one of the recent examples is the use of this
technique by BELLE Collaboration [2]. The use of Fisher discriminants, as a
linear methods, requires that data are separable by a hyperplane. If a nonlinear
separation is needed, nonlinear techniques are required. As already mentioned,
Fisher discriminants can be converted to the nonlinear kernel Fisher discrimi-
nant [3] using a kernel trick.

1.2. Principal Component Analysis. Principal Component Analysis
(PCA) [4, 5] is a technique that can be used to simplify a dataset. It is a linear
transformation that chooses, by a rotation of the coordinate system, new coor-
dinates such that the greatest variance by any projection of the data set comes
to lie on the ˇrst axis (then called the ˇrst principal component); the second
greatest variance, on the second axis, and so on. PCA can be used for reducing

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 507

dimensionality in a dataset while retaining those characteristics of the dataset
that contribute most to its variance by eliminating the later principal components.
PCA can be regarded as a form of unsupervised training, since it relies entirely
on the input data.

Principal component analysis is based on the statistical representation of a
random variable. Suppose we have a vector population xi, where the mean of
that population is denoted by

μx =

∑
i

xi

n
(4)

and the covariance matrix of the same data set is

Vx =

∑
i

(xi − μx) · (xi − μx)T

n
. (5)

The variance of a component indicates the spread of the component values around
its mean value. If two components xi and xj of the data are uncorrelated, their
covariance is zero vij = 0. The covariance matrix is, by deˇnition, always
symmetric. We assume that data are normalized, i.e., v11 = v22 = . . . = 1.

From a symmetric matrix such as the covariance matrix, one can calculate an
orthogonal basis by ˇnding its eigenvalues and eigenvectors. The eigenvectors ei

and the corresponding eigenvalues λi are the solutions of the equation:

Vxei = λiei, i = 1, . . . , M. (6)

For simplicity we assume that λi are distinct. These values can be found by
ˇnding the solutions of the characteristic equation

|Vx − λI| = 0, (7)

where I is the identity matrix. By ordering the eigenvectors in the order of
descending eigenvalues (largest ˇrst), one can create an ordered orthogonal basis
with the ˇrst eigenvector having the direction of the largest variance of the data.

Suppose that the ˇrst l eigenvalues have signiˇcantly larger values than the
remaining n − l eigenvalues. This tells us that the data can be represented to
a relatively high accuracy by projection onto the ˇrst l eigenvectors (Fig. 1).
However PCA is limited by being a linear technique and therefore not being able
to capture more complex nonlinear correlations. As a dimensionality reduction
technique it also fails, when the data are better separable along the eigenvector
corresponding to the lower eigenvalue.

Despite the limitations mentioned above, PCA is widely used in pattern
recognition to reduce the data dimensionality. One of the examples is the human

508 WOLTER M.

Fig. 1. Example of linear principal component analysis in two dimensions

face recognition procedure, in which each face is reduced to a smaller set of
linear combinations of eigenvectors called eigenfaces [6]. PCA can also be used
in the analysis of data from high energy physics experiments to reduce the data
dimensionality and extract the useful information. Principal Component Analysis
can be, as well as other linear techniques, converted to the nonlinear methods
using a kernel trick or using a Neural Network as a nonlinear transformation (see
Subsec. 3.5).

1.3. Independent Component Analysis. Independent Component Analysis
(ICA) is a technique that recovers a set of independent non-Gaussian source
signals from a set of measured signals. For a detailed review on ICA see, for
example, [7].

In ICA it is assumed that each measured signal is a linear combination
of independent input signals, and that there is an equal number of measured
signals and input signals. The separation is performed by making the signals
as statistically independent as possible, i.e. ICA is performing a blind source
separation. The components xi of the observed random vector x are generated
as a sum of the independent components sk: x = A · s weighted by the mixing
weights matrix A. The aim is to ˇnd the demixing matrix A−1 and to recover the
original sources by multiplying the observed signals by this matrix s = A−1 · x.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 509

A ˇrst step in the most of the ICA algorithms is to whiten (sphere) the data.
In this operation any correlations in the data are removed, i.e., the signals are
forced to be uncorrelated. We seek a linear transformation V such that when
y = V · x, than

∑
i

(yi · yT
i) = I . This is accomplished by setting V = C−1/2,

where C =
∑

i

(xi · xT
i) is the correlation matrix of the data. After whitening,

the separated signals can be found just by an orthogonal transformation (rotation)
of the whitened signals y. The rotation is performed to maximize the non-
Gaussianity of the signals, since a linear mixture of independent random variables
is necessarily more Gaussian than the original variables (see Fig. 2). This implies
that in ICA at most one input signal can be Gaussian.

Fig. 2. Two input signals (a) and the signals separated by ICA (b). The two independent
signals appeared to be a sinusoid and impulsive noise

The most efˇcient to date algorithm performing ICA is the FastICA [8].
It is using kurtosis to measure the deviation of the signals from the Gaussian
distribution. Kurtosis, the fourth standardized moment, is deˇned as μ4/σ4,

510 WOLTER M.

where μ4 is the fourth moment about the mean and σ is the standard deviation.
Higher kurtosis means more of the variance to be due to the extreme deviations.

Beside the linear ICA there is also a nonlinear algorithm developed [9], in
which the transformation x = Φ(s) can be an arbitrary, nonlinear function. The
main difˇculty of the nonlinear ICA is that it tends to provide the nonunique
solutions.

ICA has many practical applications: ˇltering a single source of sound from
other sources (a cocktail-party problem, requires as many microphones as many
sources we want to separate), separation of brain activity from artifacts in mag-
netoencephalography (MEG) recordings [10], in telecommunication for signal
separation [11] and many others.

ICA is used in astrophysics to separate various signal sources [12,13], also it
was used to decompose the Fermilab booster beam monitor data into independent
source signals [14]. It seems that in particle physics ICA could be a usefull tool
for separating different processes contributing to signals. It could also be used
to move to the new set of variables, which are less dependent than the original
ones, therefore easier to handle.

2. PROBABILITY DENSITY ESTIMATION

Probability Density Estimation (PDE) estimates P (x|S) and P (x|B) for the
signal and background classes. The idea, introduced by Parzen in the 1960s [43],
is very simple: one approximates an unknown probability density as a sum of
probability densities of known functional forms, usually with a few adjustable
parameters. The Parzen method:

p(x) =
∑

i

φ(x, zi) (8)

estimates the unknown P (x) by placing a density function φ(x, zi), called a
kernel, at each point zi, i = 1, . . . , n of a sample of points, one sample from the
signal class and one from the background class. There is considerable freedom
in the choice of kernel function. The main mathematical requirement is that
φ(x, zi) → δ(x − zi) as the sample sizes grow indeˇnitely. Note, if n is the
sample size of each class, this method requires evaluating the kernel function n
times for each class separately.

A Gaussian kernel is a typical application for high-energy physics, since
nearly all variables analyzed have been Gaussian smeared by detector resolution
or other effects. A Gaussian kernel PDE method estimates the probability at point
x by the sum of Gaussians centered at the Monte Carlo generated points:

p(x) =
1

N
√
|V |(2πh)k/2

N∑
i=1

exp
[
−dT

i V −1di

2h2

]
, (9)

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 511

where di = x − zi; V is a covariance matrix; k is the dimensionality of the
parameter space and h is an additional scaling factor.

The matrix V might be determined from the covariance matrix of the overall
sample (the static kernel method), and parameter h set to h = N−1/(k+4) [44] or
V could be calculated from a subsample of points which are spatially closest to
x (Gaussian expansion method [45]).

The kernel methods have a straightforward interpretation and are conceptu-
ally simple. Also in most cases they handle signal/background discrimination
problems equally well as neural network, for some classes of problems they ap-
pear to be even superior [45]. Also they avoid the problem of falling into local
minima, which is typical for neural networks. The drawback is that they need a
lot of CPU for evaluating the kernel function and need to store in memory all the
vectors from the training sample.

Kernel methods were successfully used by D∅ experiment [46]. The algo-
rithm, together with other methods implemented in the QUAERO package, was
used to search for standard model WW , ZZ, and tt production, and to search
for the above objects produced through a new hypothetical heavy resonance
(see Fig. 3).

Fig. 3. The background density (a), signal density (b), and selected region (shaded) (c)
determined by QUAERO for the standard model process WW → eμET (miss). The dots
in the plot c represent events observed in the data collected by D∅ experiment [46]

2.1. PDE-RS Method. Recently a new, faster probability estimation algorithm
based on hypercubical kernels was developed [47]. The PDE-RS method is based
on sampling the signal and background densities in a multidimensional phase
space. Since the kernel functions have ˇnite and short range, usually only few
entries from the training sample are needed to calculate the probability density
function. The event counting is done using a fast range-searching algorithm.
Its speed makes it possible to use very large data samples required in analysis,
where a high reduction of background is necessary, or to scan a large number of
observables for those which give the best separation of signal. This technique

512 WOLTER M.

has been successfully used by ZEUS experiment at HERA for identiˇcation of
isolated charged leptons [48] and also by the τ recognition package at ATLAS
experiment [49].

3. NEURAL NETWORK

The development of Artiˇcial Neural Networks (ANN) was inspired by the
research on the central nervous system and the neurons (also their axons, dendrites
and synapses) which constitute their information processing elements. Currently,
the term ANN tends to refer mostly to mathematical models, which do not need
to be an emulation of the central nervous system and have little in common with
the brain research. The approach stimulated by biological research has been aban-
doned for an approach based on statistics, mathematics and optimization theory.

Fig. 4. Artiˇcial Neural Network de-
pendence graph

Neural network is a nonlinear function
f : x → y which can model relationships
between inputs and outputs. It is trained on
examples to ˇnd the best ˇt between inputs
and outputs. A detailed description of neural
network algorithms can be found in [15, 16],
while in this article only a brief overview is
given.

The word ®network¯ arises from the fact,
that function f is a composition of other func-
tions gi which can be themselves composi-
tions of other functions hi, etc. This structure
can be represented as a network (see Fig. 4),

in which each function is represented by a node and arrows are showing depen-
dences between functions. In most applications the functions are the nonlinear
weighted sums, i.e.:

f(x) = K

(∑
i

(ωigi(x′))

)
, (10)

where x′ might be again a composition of functions acting on input vector x
and K is a predeˇned function called the activation function. Commonly used
activation functions are:

f(x) = wx + w0 linear function;
f(x) = tanh (wx + w0) hyperbolic tangent function; (11)

f(x) =
1

1 + exp (wx + w0)
logistic function.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 513

3.1. Feedforward Networks. Networks such as shown in Fig. 4 are called
feedforward, since the information is feeded from input to output without any
loops. In contrast, the networks with loops are called recurrent.

The most interesting feature of neural networks is their ability of training,
which means ˇnding an optimal function f using a set of observations. This
requires deˇning the cost function C : F → � (F is the space of all functions
f), which for the optimal solution f∗ fulˇlls the relation C(f∗) � C(f)∀f ∈ F .
Training algorithms search through the solution space in order to ˇnd a function
that has the smallest possible cost.

Since training is based on a set of observations the cost function itself must
depend on observations, otherwise it would not be modelling anything related to
the data. In practical cases only a limited number of observations is available,
the cost function is itself only an approximation. Therefore the cost is minimized
over a sample of the observations rather than over the true data distribution. In
many applications the cost function is based on the χ2 minimization:

C(f) =

N∑
i=0

(f(xi) − yi)
2

N
, (12)

where yi is the desired output.
Beside being a classiˇer, the neural network can be used also for regression,

i.e., for estimating real-valued functions.
3.1.1. The Backpropagation Algorithm. In supervised training we are given

a set of observation pairs (x,y), where x is a known input vector and y is the
expected output. This could be taken from the Monte Carlo simulation, where
the true output is known (for example, a type of particle in case of particle
identiˇcation). The aim of the training procedure is to train the network, i.e., to
ˇnd a function f(x) which has the minimal cost function.

In the process of training, patterns are presented to the network which gener-
ates an output. The output is compared with the desired output from the training
sample and the cost function is calculated. Then the weights in nodes should
be adjusted to decrease the value of the cost function. An algorithm is needed,
which propagates the errors back in the neural network from the output units
to the hidden units. This problem was unresolved for 30 years before the error
backpropagation algorithm popularized a way to train hidden units, leading to a
new wave of neural network research and applications. The algorithm was ˇrst
proposed by Paul Werbos in 1974 [17]. However, it was not used until it was
rediscovered in 1986 by Rumelhart, Hinton, and Williams [18].

At the output layer, the output vector is compared to the expected output.
If the difference is not zero, the error is calculated from the delta rule and is
propagated back through the network. Under the so-called delta rule, the change

514 WOLTER M.

in weight of the link between nodes i and j is given as

dwij = rxi(tj − yj), (13)

where r is the learning rate (an arbitrary, small parameter); tj is the target output;
yj is the actual output at unit j, and xi is the actual output of the node i of the
preceding layer.

The delta rule changes the weight vector in a way that minimizes the error,
the difference between the target output and the actual output. It can be shown
mathematically that the delta rule provides a very efˇcient way to modify the ini-
tial weight vector toward the optimal one (the one that corresponds to minimum
error) and that a network using the delta rule can learn associations whenever the
inputs are linearly independent [18]. Such networks can learn arbitrary associa-
tions by using differentiable activation functions.

3.1.2. Supervised Training and Overtraining. In the beginning we should
recall our experience from the ordinary function ˇtting. If there are too many
free parameters in the function, then the function tends to follow the experimental
points, but would not ˇt to the other, statistically independent set of points. The
function doesn't generalize well in unseen examples but simply trains a set of
training points. This effect is called overtraining.

One of the methods to check, whether overtraining occurs is to divide data
into training and validation sets and to perform training on the training set only.
The cost function for both training and validation sets should be calculated pe-
riodically during the training. When the cost for the validation sample becomes
greater than for the training sample, the training should be stopped [19]. The
remedy for overtraining is either to stop training early or to simplify the network
by removing part of the nodes from the hidden layers.

For small data sets cross-validation [20] might be superior to the split-sample
procedure described above. In k-fold cross-validation the data set is divided into
k subsets of (approximately) equal size. The network is trained k times, each
time leaving out one of the subsets from training, but using only the omitted
subset to compute whether the error criterion is fulˇlled.

Other method of dealing with overtraining is, for example, jittering [21],
in which an artiˇcial noise is added deliberately to the inputs during training.
Training with jitter is a form of smoothing. Other techniques are based on regu-
larization or a Bayesian approach with some penalty for overtraining (see [15]).

3.2. Applications in Data Analysis. Neural networks have been used in
many experiments for separating signal from background. A good example could
be the search and later measurements of the top quark by two experiments,
D∅ and CDF working at the Tevatron protonÄantiproton collider at Fermilab.
In the Run-I analysis, when the top quark was discovered, the D∅ experiment
started to use the multivariate methods: probability density estimation and neural

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 515

network. Both the cross-section measurement in the all-jets channel [22] and
the mass measurement in the lepton+jets channel [23] used feedforward neural
networks. The results were superior to the ones obtained by cut methods, since the
neural network allowed to fully exploit the correlations that exist among several
variables providing a discriminating boundary between signal and background in
a multidimensional space. This can yield discrimination close to the theoretical
maximum.

In the Run-II, both experiments, D∅ and CDF, used the multivariate tech-
niques increasing their top-quark sensitivity. The CDF analysis includes a mea-
surement of tt in the lepton+ jets channel using a neural net to distinguish signal
and background events [24] (Fig. 5 shows the NN output). D∅ experiment pre-
sented a search for electroweak production of single top quarks in the s channel
and t channel using neural networks for signal and background separation [25].

Fig. 5. Distribution of CDF experiment NN output in the W+ � 3 jets sample, compared
with the result of the ˇt [24]

One of the applications of neural networks is the reconstruction of physical
quantities. In an example described in [26], Monte Carlo events are generated
with various values of the quantity to be measured (in this case it is Higgs boson

516 WOLTER M.

mass) and used to determine the probability distribution for each value of the
quantity. The probability density functions are ˇtted using a neural network and
the ˇnal value of the measured quantity is obtained as a product of the single
event distributions. In this method no knowledge about the functional dependence
of the measured quantities on the observables is needed.

3.3. Data Selection at the Trigger Level. When implemented in hardware,
neural networks can take advantage of their inherent parallelism and run orders
of magnitude faster than software simulations. They are therefore suitable to be
implemented for event selection on the trigger level using the dedicated hardware,
either commercial NNW chips and neurocomputers, VME boards, etc., as well as
systems built by HEP groups for on-line trigger applications.

The CDF experiment at the Tevatron had several calorimeter neural network
hardware triggers [27]. Their trigger, built out of three ETANN VLSI neural
network chips, receive analog signals from 50 trigger towers. One of the cards
identiˇes isolated photon showers in the central calorimeter and the other looks
for isolated electron showers in the plug calorimeter. Differences in the weighted
sums of central and surrounding towers are calculated by the chips and then
thresholds cuts on the outputs provide the triggers. The third chip implements a
trained network to identify b jets in the central calorimeter.

Also the CPLEAR experiment at CERN was one of the ˇrst implementing
a hardware neural network trigger [28]. The hardware networks were counting
and locating tracks in the tracking detector within 75 ns using NN implemented
in 16 cards with commercial ECL chips and doing on-line event selection within
40 ms, using information from the tracking network.

Later the neural network hardware triggers were implemented also in other
experiments, a good example could be a DIRAC experiment at CERN [29]. In
210 ns the hardware neural network selects events with two particles having low
relative momentum using the fast plastic scintillator information. The algorithm
appeared to be more efˇcient and faster than the traditional methods.

The H1 experiment at DESY successfully uses since 1996 two independent
fast pattern recognition systems operating as second level triggers (L2). The
decision time is 20 μs. One of the two is the neural network trigger [30] running
an array of VME-boards with CNAPS 1064 chips (20 MHz, 128 Mcps) by
Adaptive Solutions.

3.4. Hopˇeld Network for Track Reconstruction. A Hopˇeld net is a form
of recurrent artiˇcial neural network invented by John Hopˇeld [31]. Hopˇeld
nets serve as content-addressable memory systems with binary threshold units.

In the Hopˇeld model, each neuron is in general interacting with every other
neuron. All interactions are symmetric, and the state of each neuron, expressed
by its activation ai, can only be either active ®1¯ or inactive ®0¯. The interaction
is simulated by updating the state of a neuron according to the activations of all
other neurons. The update rule in the Hopˇeld model sets the new activation ai

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 517

of a neuron to

ai =

⎧⎨
⎩

1 if
∑

j

wijsj > θi,

0 otherwise,
(14)

where wij is the connection weight from unit j to unit i; sj is the state of unit
j, and θi is the threshold of unit i. The connections in a Hopˇeld net have two
restrictions on them:

wii = 0 ∀i no unit has a connection with itself,
(15)

wij = wji ∀i,j all connections are symmetric.

It can be shown that such interactions characterize a system with an energy
function:

E = −
∑

j

∑
i,i<j

wijsisj +
∑

i

θisi. (16)

This value is called the ®energy¯ because the deˇnition ensures that if units are
randomly chosen to update their activations, the network will converge to states
which are local minima in the energy function.

In the training process the patterns the network should memorize are presented
to it. When the energy of states which the network should remember are local
minima (trained network) and an unknown pattern is presented to the network, it
will converge to the closest minimum, i.e., the most similar known pattern.

Hopˇeld networks were successfully used for pattern recognition in tracking
algorithms assigning track segments to the tracks. A detailed description of
these tracking algorithms can be found in [32], here only a brief description is
given. An adaptation of Hopˇeld networks to track ˇnding has been developed
by Denby [33], and Peterson [34] and later modiˇed by Ohlsson, Peterson, and
Yuille (the elastic arms algorithm [35]). The basic idea of their method is to
associate each possible connection between two hits with a neuron. Activation of
such a neuron means that both hits are part of the same track. It is then essential
to deˇne an energy function such that in the global energy minimum only neurons
corresponding to valid connections will be active. Interaction is only meaningful
with neurons that have one hit in common.

It is remarkable that the DenbyÄPeterson method works without actual knowl-
edge of a track model, favors series of hits that can be connected by a line as
straight as possible, but also allows small bending angles from one segment to
the next. Thus also curved tracks can be found, provided that a sufˇcient number
of intermediate measurements exists which split the track into a large number
of almost collinear segments. The DenbyÄPeterson algorithm is, in particular,
indifferent about the global shape of the track Å a circle and a wavy track with
the same local bending angles but alternating directions are of equal value.

518 WOLTER M.

The DenbyÄPeterson method was ˇrst explored on track coordinates measured
by the ALEPH experiment TPC chamber [36]. The algorithm found tracks in
hadronic Z0 decays rather accurately, which may be at least partially attributed
to the 3D nature of the hits measured in the TPC and also the clean event
structure and the low occupancy. Later it was applied to the tracks in the forward
tracker of the H1 detector at HERA [37], where it was found that using Hopˇeld
network one should be careful in cases of nearby parallel tracks. The elastic arms
algorithm was also applied to tracks from DELPHI experiment TPC chamber
[35], characterized by the moderate hit density and clean event structure and also
later to the simulated events from the barrel part of ATLAS TRT detector [38].
Here much more dense events with 2D measurements have been targeted and the
Hough transform was used for initialization. The efˇciency found for fast tracks
completely contained in the barrel TRT was practically identical to the one of the
Hough transform itself, indicating that the elastic arms part did not ˇnd any new
tracks that had not been properly covered by the initialization.

3.5. Nonlinear Principal Component Analysis. Multilayer neural networks
can themselves be used to perform nonlinear dimensionality reduction overcoming
some of the limitations of linear principal component analysis. Consider ˇrst a
multilayer network having n input, n output units and one hidden layer with
m nodes, where m < n. The targets used to train the network are simply the
input vectors themselves, so the network is attempting to map each input vector
onto itself. Such a network forms an auto-associative mapping. Since the hidden
layer has a number of units smaller than the number of input units, a perfect
reconstruction of all input vectors in general is not possible.

If the hidden units have linear activation functions, then it can be shown
that the error function has a global unique minimum and that at this minimum
the network performs a projection onto the m-dimensional subspace which is
spanned by the ˇrst m principal components of the data [39]. This result is not
surprising, since both principal component analysis and neural network are using
linear dimensionality reduction and are minimizing the same sum of squares error
function.

The situation is different if additional hidden layers are permitted and they are
nonlinear activation functions. The network can be considered as two mappings
F1 and F2, where the ˇrst mapping projects the original n-dimensional space into
m < n dimensions and F2 projects again m dimensions back to the n-dimensional
space. The mapping is essentially arbitrary, since additional layers of nonlinear
units are present.

A network effectively performs a nonlinear principal component analysis.
Also, the dimensionality of the subspace must be speciˇed in advance of training,
so that in practice it may be necessary to train and compare several networks
having different values of m, which connected with nonlinear minimization tech-
niques might be computationally expensive.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 519

3.6. Self-Organizing Map. The self-organizing map algorithm is an unsuper-
vised technique which can be used for model independent exploration of data by
ˇnding cluster patterns in data. The idea of SOM was ˇrst introduced and devel-
oped by Kohonen in the 1980s [40, 41] (hence also called Kohonen maps). The
algorithm maps multidimensional feature space onto, usually, a two-dimensional
space with a lattice of nodes. Events with similar features will be placed close
to each other (clustered) in the output space. This method allows one to identify
and separate groups of events with similar features.

One begins with n randomly directed vectors, usually modeled as neural
network nodes whose weights are the components of the vector ωi and whose
inputs are the components of the input vector x. Then a distance measure between
the vectors (either the Euclidean distance |ωi − x| or the vector product ωi · x)
is deˇned. In the next step for each input vector x the vector ωi closest to it is
found (the so-called ®winning¯ vector). The winning vector ωi is adjusted to be
closer to x. Other vectors are adjusted as well, but by lesser amounts, depending
on their distance from the winning vector. This procedure is repeated for each
vector x and is continued until the vectors ωi are sufˇciently stable, that is, their
directions change by less than a speciˇed amount per cycle.

Self-organizing maps are used in astrophysics as an automatic classiˇer (see,
for example, [42], where Kohonen networks are used for classiˇcation of singly
periodic astronomical lightcurves). In high-energy physics analysis this technique
might also be useful for automated track, cluster, or event classiˇcation.

4. SUPPORT VECTOR MACHINE

In the early 1960s the linear support vector method was developed to con-
struct separating hyperplanes for pattern recognition problems [50, 51]. It took
30 years that the method was generalized for constructing nonlinear separating
functions [52, 53] and for estimating real-valued functions (regression) [54]. At
that moment it became a general purpose algorithm performing data classiˇcation
and regression which can compete with neural networks and probability density
estimators. Typical applications of SVMs include text categorization, character
recognition, bioinformatics and face detection. The main idea of the SVM ap-
proach is to build a separating hyperplane which maximizes the margin. The
position of the hyperplane is deˇned by the subset of all training vectors called
support vectors. The extension into nonlinear SVM is based on the ®kernel trick¯:
input vectors are mapped into a high-dimensional feature space in which data can
be separated by a linear procedure using the optimal separating hyperplane. Com-
putations in the feature space are avoided by using kernel functions.

520 WOLTER M.

4.1. Linear Support Vector Machine. A detailed description of SVM for-
malism can be found, for example, in [55], here only a brief introduction is given.
Consider a simple two-class classiˇer with oriented hyperplanes. If the training
data is linearly separable, then a set of (w, b) pairs can be found such that the
following constraints are satisˇed:

yi(xi ·w + b) − 1 � 0 ∀i, (17)

where xi are the input vectors; yi are the desired outputs (yi = ±1), and
(w, b) deˇne a hyperplane. The decision function of the classiˇer is f(xi) =

Fig. 6. Hyperplane classiˇer in two dimen-
sions. Points x1, x2 deˇne the margin, i.e.,
they are the support vectors

sign (xi ·w + b), which is +1 for all
points on one side of the hyperplane
and −1 for the points on the other
side.

Intuitively, the classiˇer with the
largest margin will give better gen-
eralization. The margin for this lin-
ear classiˇer is just 2/|w|. Hence to
maximize the margin, one needs to
minimize the |w| with the constraints
in Eq. (17). At this point it would be
beneˇcial to consider the signiˇcance
of different input vectors xi. Those
training data points laying on the
margins are the data that contribute
to deˇning the decision boundary
(see Fig. 6). These data points are
called the support vectors (SV). If the

other data are removed and the classiˇer is retrained on the remaining data,
the training will result in the same decision boundary.

To solve this constrained quadratic optimization problem, we ˇrst reformulate
it in terms of a Lagrangian:

L(w, b, αi) =
(

1
2

)
|w|2 −

∑
i

αi (yi ((xi ·w) + b) − 1) , (18)

where αi � 0 and the condition from Eq. (17) must be fulˇlled. Lagrangian L
should be minimized with respect to w and b and maximized with respect to αi.
The solution has an expansion in terms of a subset of input vectors for which
αi �= 0 (these are the support vectors):

w =
∑

i

αiyixi (19)

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 521

since at extremum ∂L/∂b = 0 and ∂L/∂w = 0. The optimization problem
becomes one of ˇnding the αi which maximize

L(α) =
∑

i

αi −
1
2

∑
ij

αiαjyiyjxi · xj . (20)

Both the optimization problem and the ˇnal decision function depend only on
dot products between input vectors, which is crucial for the generalization to the
nonlinear case.

4.1.1. Nonseparable Data. The above algorithm can be extended to non-
separable data. The correct classiˇcation constraints in Eq. (17) are modiˇed
by adding a slack variable ξi to it (ξi = 0 if the vector is properly classiˇed,
otherwise ξi is a distance to the decision hyperplane)

yi(xi ·w + b) − 1 + ξi � 0, ξi � 0 ∀i. (21)

This will allow some points to be misclassiˇed. The training algorithm will
need to minimize the cost function shown in Eq. (22), i.e., a trade-off between
maximum margin and classiˇcation error

W =
(

1
2

)
|w|2 + C

∑
i

ξi. (22)

The selection of C parameter deˇnes how much a misclassiˇcation increases the
cost function.

4.2. Nonlinear Support Vector Machine. The formulation of SVM presented
above can be further extended to build a nonlinear SVM which can classify
nonlinearly separable data. Consider a mapping Φ which maps the training data
from �n to some higher dimensional space H. In this high-dimensional space,
the data can be linearly separable, hence the linear SVM formulation above can
be applied to these data (see Fig. 7).

In the SVM formulation, data appear only in the form of dot products xi ·xj

(see Eq. (20)). The dot product Φ(xi) · Φ(xj) appears in the high dimension
feature space. It can be replaced by a kernel function

K(xi,xj) = Φ(xi) · Φ(xj). (23)

By computing the dot product directly using a kernel function, one avoids the
mapping Φ(x). This is desirable because Φ(x) can be tricky or impossible to
compute. Using a kernel function, one does not need to know explicitly what the
mapping is. Most frequently used kernel functions are:

K(x,y) = (x · y + 1)d (polynomial of degree d),

K(x,y) = exp (−(1/2) |x · y|2 /2σ2) (Gaussian Radial Basis Function), (24)

K(x,y) = tanh (x · y − Θ) (sigmoid).

522 WOLTER M.

Fig. 7. Example of data separable by an elliptic curve in �2, but linearly separable in the
feature space �3. The mapping to Φ transforms (x1, x2) → (x2

1, x
2
2,
√

2x1x2)

A question arises, whether there is any constraint on the type of kernel function
suitable for this task. It was shown [54] that a function must fulˇll Mercer's
condition to be suitable to be used as a kernel:∫

K(x,y)g(x)g(y)dxdy � 0 (25)

for any function g such that
∫

g(x)2dx is ˇnite.

To extend the methodology described for linear case to nonlinear problems,
one substitutes xi · xj by K(xi,xj) in Eq. (20). Due to Mercer's conditions
on the kernel, the corresponding optimization problem is a well-deˇned convex
quadratic programming problem which means there is a global minimum. This
is an advantage of SVMs compared to neural networks, which may ˇnd only one
of the local minima.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 523

4.3. Regression SVM. A version of a SVM which can perform regression
(called SVR) was proposed in 1997 by Vapnik, Steven Golowich, and Alex
Smola [56]. The model produced by support vector classiˇcation (as described
above) depends only on a subset of the training data, because the cost function for
building the model does not care about training points that lie beyond the margin
and are properly classiˇed. Analogously, the model produced by SVR depends
only on a subset of the training data, because the cost function for building the
model ignores any training data that is close (within a threshold ε) to the model
prediction:

|y − f(x)|ε := max {0, |y − f(x) − ε|}, (26)

W =
(

1
2

)
|w|2 +

C

m

m∑
i=1

|yi − f(xi)|ε . (27)

The ε-insensitive loss function is more robust to small changes in data and
in model and less sensitive to outliers while compared to the least squares loss
function used by neural network (Fig. 8).

Fig. 8. a) ε-insensitive |y − f(x)|ε function. b) The ˇt is sensitive only to points outside
the ±ε bounds

4.4. Comparison of SVM and Neural Networks. For Support Vector Ma-
chines, in contrast to neural networks, the capacity is independent of dimen-
sionality of the data, thus avoiding curse of dimensionality. The algorithm is
statistically well motivated, it can get bounds on the error, can use the theory
of structural risk minimization (theory which characterizes generalization abilities
of training machines). Finding the weights is a quadratic programming problem
guaranteed to ˇnd a minimum of the error surface. Thus the algorithm is efˇcient
and SVMs generate near optimal classiˇcation and obtain good generalization
performance due to high dimensionality of the feature space.

524 WOLTER M.

It has also very few free parameters, in case of classiˇcation these are the type
of the kernel function, kernel parameters (frequently one parameter only, like in
case of Gaussian kernel) and the C parameter. Therefore it is in general possible
to perform a grid search to identify an optimal set of parameters. In contrast, in
case of neural network the entire network architecture has to be optimized.

On the other hand, the training of SVM is deˇnitely slower due to computa-
tionally intensive solution of minimization problem especially for large amounts
of training data. SVM generates complex solutions (frequently more than 60%
of training points are used as support vectors) especially for large amounts of
training data.

4.5. Applications of SVM. Support Vector Machine algorithms are widely
used for classiˇcation problems, however up to now they were rarely used in
particle physics. In 1999, there was an attempt to use SVM on simulated LEP data
for tagging events of the type e+e− → cc and the identiˇcation of muons produced
in multihadronic e+e− annihilation events [57]. The authors compared neural
networks and SVM methods and found that they both give similar results. Later
SVM was proposed to be used in the top quark analysis at CDF experiment at
Fermilab [58], but the actual analysis was never performed. However, since SVM
appeared to be useful in solving many classiˇcation problems outside particle
physics, it seems to be worthwhile to use them in HEP as well.

CONCLUSIONS

PCA, ICA, and SOM are focused on feature extraction and can be used for
ˇnding better sets of variables or some regions of interest. With the exception
of these three methods, each of the methods presented above effects signal-to-
background discrimination by trying to minimize the probability of misclassiˇ-
cation. Consequently, although in practice each method minimizes a different
empirical risk function, all such functions are equivalent to minimizing an ap-
proximation to the function [59]:

ε(D) = C(S)
∫

D(x)<0

p(x|S)P (S)dx + C(B)
∫

D(x)�0

p(x|B)P (B)dx (28)

with respect to the function D(x), which is such that D(x) � 0 leads to the
assignment of event to signal S and D(x) < 0 to the background B. Quantities
p(x|S) and p(x|B) are estimated probability densities and P (S) and P (B) are
the signal and background prior probabilities. C(S) and C(B) are the cost
parameters, they quantify the cost of misclassiˇcation of events.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 525

Minimization of ε(D) leads to a set of inequalities:

p(x|S)P (S)
p(x|B)P (B)

� C(B)
C(S)

when D(x) � 0,

p(x|S)P (S)
p(x|B)P (B)

<
C(B)
C(S)

when D(x) < 0,

(29)

where the ratio
p(x|S)P (S)
p(x|B)P (B)

=
p(S|x)
p(B|x)

(30)

is called the Bayes Discriminant Function. The classiˇcation rule it determines is
called the Bayes rule [15]. The conditions from Eq. (29) hold when we chose:

D(x) =
p(S|x)
p(B|x)

− C(B)
C(S)

. (31)

The various multivariate methods described in this article are different ways
of approximating D(x). Probability density estimation methods calculate p(x|S)
and p(x|B), artiˇcial neural network ˇnds a function of D: D(x)/(1 + D(x)).
Also the Fisher discriminants can be described in these terms: they can be
constructed as an estimate of D(x) in which each density is approximated by a
Gaussian, whose covariance matrix is the quadrature sum of those of the signal
and background classes. The support vector machine method can be regarded
as an algorithm to make the distributions Gaussian by projecting them into a
space of sufˇciently high dimension wherein the Fisher criterion can be applied
to good effect.

There is much debate about which method is superior. Experience suggests
that none is superior in every circumstance. For a given problem a reasonable
deˇnition of ®best method¯ is that which yields the most accurate classiˇcation
or estimation of the physical quantity for a given computational budget. Unfor-
tunately, ˇnding the best method can sometimes be a computationally demanding
task. Fortunately, for the problems addressed in the ˇeld of particle physics the
nonlinear methods presented above give similar performance.

Rather than engage in abstract debate, it is more useful to try a few methods
and see how they perform. It should be kept in mind that many of these methods
approximate the same mathematical object. Therefore, to the degree that the
methods are properly applied and sufˇciently nonlinear, they must give about the
same or very similar results.

Acknowledgements. I would like to thank all the collaborators from the
ATLAS group from IFJ PAN Institute in Krakow, in particular Prof. M. Turala and
Prof. E. Richter-Was, for their encouragement, guidance and fruitful discussions.
I am also grateful the Tufts University group led by Prof. K. 	Sliwa for their

526 WOLTER M.

generous support which enabled me visiting Fermilab and CERN and working
for both ATLAS and CDF experiments.

This work was partially supported by Polish Government grant 620/E-77/SPB/
CERN/P-03/DZ 110/2003-2005.

REFERENCES

1. Fisher Ronald A. The Use of Multiple Measurements in Taxonomic Problems // Ann. of Eugenics.
1936. V. 7. P. 179Ä188.

2. Abe K. et al. (Belle Collab.). Moments of the Photon Energy Spectrum from B → X/s Gamma
Decays Measured by Belle. hep-ex/0508005.

3. Mika S. et al. Fisher Discriminant Analysis with Kernels // IEEE Conf. on Neural Networks for
Signal Processing IX. 1999.

4. Karhunen K. éUber lineare Methoden in der Wahrscheinlichkeitsrechnung // Am. Acad. Sci.,
Fennicade. Ser. A, I. 1947. V. 37. P. 3Ä79.

5. Loeve M. Probability Theory. Van Nostrand, 1955.

6. Kirby M., Sirovich L. Application of the KarhunenÄLoeve Procedure for the Characterization
of Human Faces // IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990. V. 12 (1).
P. 103Ä108.

7. Hyvéarinen A. Survey on Independent Component Analysis // Neural Comp. Surveys. 1999. V. 2.
P. 94Ä128; see also an ICA web page: http://www.cs.helsinki.ˇ/u/ahyvarin/whatisica.shtml

8. Hyvéarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis //
IEEE Trans. on Neural Networks. 1999. V. 10(3). P. 626Ä634; see also FastICA web page:
http://www.cis.hut.ˇ/projects/ica/fastica/

9. Jutten C., Karhunen J. Advances in Blind Source Separation (BSS) and Independent Component
Analysis (ICA) for Nonlinear Mixtures // Intern. J. Neural Syst. 2004. V. 14, No. 5. P. 267Ä292;
see also: http://www.cis.hut.ˇ/projects/ica/nonlinearica/

10. Vig�ario R. et al. Independent Component Analysis for Identiˇcation of Artifacts in Magnetoen-
cephalographic Recordings // Adv. Neural Inform. Proc. Syst. 1998. V. 10. P. 229Ä235.

11. Ristaniemi T., Joutsensalo J. On the Performance of Blind Source Separation in CDMA Down-
link // Proc. of Intern. Workshop on Independent Component Analysis and Signal Separation
(ICA'99), Aussois, France, 1999. P. 437Ä441.

12. Lu H. et al. Ensemble Learning Independent Component Analysis of Normal Galaxy Spectra.
astro-ph/0510246.

13. Maino D. et al. All-Sky Astrophysical Component Separation with Fast Independent Component
Analysis (FastICA). astro-ph/0108362.

14. Huang X. B. et al. Application of Independent Component Analysis to Fermilab Booster // Phys.
Rev. ST Accel. Beams. 2005. V. 8. P. 064001.

15. Bishop C. M. Neural Networks for Pattern Recognition. Oxford: Oxford Univ. Press, 1995.

16. Zell A. Simulation neuronaler Netze. Munich: R. Oldenbourg Verlag, 2000.

17. Werbos P. J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioural
Sciences. Ph.D. Thesis. Boston: Harvard Univ., 1974.

MULTIVARIATE ANALYSIS METHODS IN PHYSICS 527

18. Rumelhart D. E., Hinton G.E., Williams R. J. Learning Internal Representations by Error Propa-
gation // Computational Models of Cognition and Perception. Cambridge: MIT Press, 1986. V. 1,
Ch. 8. P. 319Ä362.

19. Sarle W. S. Stopped Training and Other Remedies for Overˇtting // Proc. of the 27th Symp. on
the Interface of Comp. Science and Statistics. 1995. P. 352Ä360.

20. Goutte C. Note on Free Lunches and Cross-Validation // Neural Computation. 1997. V. 9. 1211Ä
1215.

21. Holmstréom L., Koistinen P. Using Additive Noise in Back-Propagation Training // IEEE Trans.
on Neural Networks. 1992. V. 3. P. 24Ä38.

22. Abbott B. et al. (D0 Collab.). Measurement of the Top Quark Pair Production Cross Section in
the All-Jets Decay Channel // Phys. Rev. Lett. 1999. V. 83. P. 1908; hep-ex/9901023.

23. Abachi S. et al. (D0 Collab.). Direct Measurement of the Top Quark Mass // Phys. Rev. Lett.
1997. V. 79. P. 1197; hep-ex/9703008.

24. Acosta D. et al. (CDF Collab.). Measurement of the Cross Section for t anti-t Production in p
Anti-p Collisions Using the Kinematics of Lepton + Jets Events // Phys. Rev. D. 2005. V. 72.
P. 052003; hep-ex/0504053.

25. Abazov V. M. et al. (D0 Collab.). Search for Single Top Quark Production in p Anti-p Collisions
at s∗∗(1/2) = 1.96 TeV // Phys. Lett. B. 2005. V. 622. P. 265; hep-ex/0505063.

26. Wolter M. Measurement of Physical Quantities in the Bayesian Framework Using Neural Net-
works. Prepared for Conf. on Advanced Statistical Techniques in Particle Physics, Durham,
England, March 18Ä22, 2002.

27. Denby H. et al. Performance of the CDF Neural Network Electron Isolation Trigger // Nucl. Instr.
Meth. A. 1995. V. 356. P. 485.

28. Leimgruber F. R. et al. Hardware Realization of a Fast Neural Network Algorithm for Real Time
Tracking in HEP Experiments // Ibid. V. 365. P. 198.

29. Kokkas P. et al. The Neural Network First Level Trigger for the DIRAC Experiment // Nucl.
Instr. Meth. A. 2001. V. 471. P. 358.

30. Kohne J. K. et al. Realization of a Second Level Neural Network Trigger for the H1 Experiment
at HERA // Nucl. Instr. Meth. A. 1997. V. 389. P. 128.

31. Hopˇeld J. J. Neural Networks and Physical Systems with Emergent Collective Computational
Abilities // Proc. of Nat. Acad. of Sci. 1982. V. 79, No. 8. P. 2554Ä2558.

32. Mankel R. Pattern Recognition and Event Reconstruction in Particle Physics Experiments // Rep.
Prog. Phys. 2004. V. 67. P. 553; physics/0402039.

33. Denby H. Neural Networks and Cellular Automata in Experimental High-Energy Physics // Comp.
Phys. Commun. 1988. V. 49. P. 429.

34. Peterson C. Track Finding with Neural Networks // Nucl. Instr. Meth. A. 1989. V. 279. P. 537.

35. Ohlsson M., Peterson C., Yuille A. L. Track Finding with Deformable Templates: The Elastic
Arms Approach // Comp. Phys. Commun. 1992. V. 71. P. 77.

36. Stimp�-Abele G., Garrido L. Fast Track Finding with Neural Nets // Comp. Phys. Commun. 1991.
V. 64. P. 46.

37. Bui D. L., Greenshaw T. J., Schmidt G. A Combination of an Elastic Net and a Hopˇeld Net to
Solve the Segment Linking Problem in the Forward Tracker of the H1 Detector at HERA // Nucl.
Instr. Meth. A. 1997. V. 389. P. 184.

38. Lindstrom M. Track Reconstruction in the ATLAS Detector Using Elastic Arms // Nucl. Instr.
Meth. A. 1995. V. 357. P. 129.

528 WOLTER M.

39. Bourlard H., Kamp Y. Auto-Association by Multilayer Perceptrons and Singular Value Decom-
position // Biol. Cybernetics. 1988. V. 59. P. 291Ä294.

40. Kohonen T. Self-organized Formation of Topologically Correct Feature Maps // Biol. Cybernetics.
1982. V. 43. P. 59Ä69.

41. Kohonen T. Self-Organizing Maps // Springer Series in Inform. Sci. Berlin; Heidelberg; N.Y.:
Springer, 1995; 1997; 2001. 3rd extended ed. V. 30. 501 p.

42. Brett D. R., West R. G., Wheatley P. J. The Automated Classiˇcation of Astronomical Lightcurves
Using Kohonen Self-Organizing Maps. astro-ph/0408118.

43. Parzen E. Estimation of a Probability Density Function and Its Mode // Ann. Math. Statistics.
1962. V. 33. P. 1065Ä1076.

44. Knuteson B., Miettinen H., Holmstrom L. alphaPDE: A New Multivariate Technique for Parameter
Estimation // Comp. Phys. Commun. 2002. V. 145. P. 351; physics/0108002.

45. Towers S. Kernel Probability Density Estimation Methods. Prepared for Conf. on Advanced
Statistical Techniques in Particle Physics, Durham, England, March 18Ä22, 2002.

46. Abazov V. M. et al. (D0 Collab.). Search for New Physics Using QUAERO: A general Interface
to D0 Event Data // Phys. Rev. Lett. 2001. V. 87. P. 231801; hep-ex/0106039.

47. Carli T., Koblitz B. A Multivariate Discrimination Technique Based on Range-Searching // Nucl.
Instr. Meth. A. 2003. V. 501. P. 576; hep-ex/0211019.

48. Chekanov S. et al. (ZEUS Collab.). Search for Lepton-Flavor Violation at HERA // Eur. Phys. J.
C. 2005. V. 44. P. 463; hep-ex/0501070.

49. Janyst L., Richter-Was E. Hadronic Tau Identiˇcation with Track Based Approach: Optimization
with Multivariate Method. ATL-COM-PHYS-2005-028. Geneva: CERN, 2005.

50. Vapnik V., Lerner A. Pattern Recognition Using Generalized Portrait Method // Automation and
Remote Control. 1963. V. 24.

51. Vapnik V., Chervonenkis A. A Note on One Class of Perceptrons // Automation and Remote
Control. 1964. V. 25.

52. Boser B. E., Guyon I. M., Vapnik V. N. A Training Algorithm for Optimal Margin Classiˇers //
Proc. of the 5th Annual ACM Workshop on Comp. Learning Theory. ACM Press, 1992. P. 144Ä
152.

53. Cortes C., Vapnik V. Support Vector Networks // Machine Learning. 1995. V. 20. P. 273Ä297.

54. Vapnik V. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

55. Burges C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition // Data Mining
and Knowledge Discovery. 1998. V. 2(2). P. 1Ä47.

56. Vapnik V., Golowich S., Smola A. Support Vector Method for Function Approximation, Regression
Estimation, and Signal Processing // Adv. Neural Inform. Processing Syst. 1997. V. 9. P. 281Ä287.

57. Vannerem P. et al. Classifying LEP Data with Support Vector Algorithms. hep-ex/9905027.

58. Vaiciulis A. Support Vector Machines in Analysis of Top Quark Production // Nucl. Instr. Meth.
A. 2003. V. 502. P. 492; hep-ex/0205069.

59. Prosper H. B. Multivariate Methods: A Uniˇed Perspective. Prepared for Conf. on Advanced
Statistical Techniques in Particle Physics, Durham, England, March 18Ä22, 2002.

