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ISOSPIN DEPENDENCE OF THE SPINÄORBIT
SPLITTING IN NUCLEI

V. I. Isakov∗

Petersburg Nuclear Physics Institute, Gatchina, Russia

An analysis has been made of experimental data on level spectra, single-nucleon transfer reactions
near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between
isoanalogous states of nuclei with even A. The analysis makes it possible to conclude that there is
a signiˇcant difference between the spinÄorbit splittings of neutrons and protons in identical orbitals.
This conclusion is conˇrmed in the framework of different theoretical approaches.
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INTRODUCTION

The energy spectrum of mean-ˇeld single-particle states and, in particular,
their spinÄorbit splittings are among the most important features of nuclei that
underlie all microscopic descriptions of nuclear structure. In particular, spinÄ
orbit splittings determine, among the other things, the shell properties of nuclei
both near and far from the closed shells. While the global characteristics of
the spinÄorbit splittings are well known, this cannot be said about the isotopical
dependence of the splitting.

The best way to determine such a dependence from the experiment is to
intercompare proton and neutron spinÄorbit splittings of the same (with similar
values of the n,l quantum numbers) spinÄorbit doublets in the neighbouring odd-
neutron (N ± 1, Z) and odd-proton (N, Z ± 1) nuclei, where both N and Z are
even, while N �= Z. The last condition is necessary as in the case of N = Z
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both the aforementioned splittings are equal due to the isobaric symmetry of
nuclear forces.

When determining the values of single-particle energies from the experiment,
one must take into account the problem that, in actual nuclei, single-particle mode
is mixed with the more complicated excitation modes, with the result that there
occurs a redistribution of the single-particle strength (the so-called conˇguration
mixing). This effect is rather small in nuclei of the magic nucleus ± nucleon
type if the single-particle gap is large as in the case for ®good¯ magic nuclei like
132Sn and 208Pb, but the spreading of single-particle states over levels belonging
to the quasiparticle plus phonon type may occur here as well. In the case
of a small energy gap, conˇguration mixing may become very strong. Here,
stripping (pick-up) reactions characterized by a seazable cross section excite not
only single-particle states peculiar to, for example, nuclei of the magic nucleus ±
nucleon type but also levels with quantum numbers Jπ that correspond to single-
particle states on the other side of the Fermi level. In any case, an additional
averaging procedure is required for extracting true single-particle levels from
experimental data.

Below we give a consistent validation [1] of the procedure for determining
single-particle energies that is based on the precise formulas and on the experi-
mental data concerning one-nucleon pick-up and stripping reactions and the values
of one-nucleon separation energies. By using this procedure we determine the
®true¯ single-particle proton energies in the regions of magicity close to 48Ca,
208Pb, and 132Sn. The obtained values of spinÄorbit splittings show the isotopic
dependence of spinÄorbit splitting in nuclei. The existence of this splitting is
conˇrmed [2] by the theoretical analysis performed in the framework of different
approaches. In conclusion we present additional arguments [3] in favour of such
a dependence, that is based on the data concerning the (p, n) charge-exchange
reactions with excitation of the isoanalogous states in the ˇnal nuclei.

1. GENERAL RELATIONS FOR DETERMINING SINGLE-PARTICLE
MEAN-FIELD ENERGIES FROM EXPERIMENTAL DATA ON

DIRECT REACTIONS OF ONE-NUCLEON TRANSFER

Here we describe the procedure for determining single-particle energies from
experimental data on the basis of, for example, the Hamiltonian for two-body
forces in the second-quantization representation. We have

Ĥ =
∑
i,k

〈i|t̂|k〉a+
i ak +

1
4

∑
i,k,�,m

a〈ik|ϑ̂|�m〉aa+
i a+

k ama�, (1)

where a〈ik|ϑ̂|�m〉a = 〈ik|ϑ̂|�m〉− 〈ik|ϑ̂|m�〉 is the antisymmetric matrix element
for the pair interaction ϑ̂(x1x2) = ϑ̂ (r1, σ̂1, τ̂ 1, r2, σ̂2, τ̂ 2), while t̂ is the single-
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particle kinetic-energy operator. We further introduce the auxiliary quantity

Q̂α =
{
aα, [Ĥ, a+

α ]
}
≡ aαĤ · a+

α − aα · a+
α H + Ha+

α · aα − a+
α H · aα, (2)

where [Ĝ, F̂ ] and {Ĝ, F̂} are, respectively, the commutator and anticommutator
of the operators Ĝ and F̂ . On the one hand, we average Q̂α taken in the form
(2) over the ground state |A; (0)〉 of evenÄeven nucleus containing A particles,
expanding intermediate states in a complete set of wave functions for the systems
of (A + 1) and (A − 1) particles. On the other hand, we directly calculated Q̂α

by means of (1) with a subsequent averaging. As a result, we arrive at the exact
relation

∑
a∈(A+1)

[BA(gr. st.) − BA+1(gr. st.) + Eexc
a ] s(+)

aα +

+
∑

a′∈(A−1)

[BA−1(gr. st.) − BA(gr. st.) − Eexc
a′ ] s(−)

a′α =

= 〈α|t̂|α〉 + 〈A; (0)|
∑
i,k

a〈αi|ϑ̂|αk〉aa+
i ak|A; (0)〉, (3)

where
s
(+)
aα = |〈A + 1; (a)|a+

α |A; (0)〉|2,

s
(−)
a′α = |〈A − 1; (a′)|aα|A; (0)〉|2.

(4)

Here, |A; (0)〉 is the vector of the ground state of an initial evenÄeven nucleus;
|A + 1; (a)〉 and |A − 1; (a′)〉 are, respectively, the vectors of {a} and {a′}
states of the nuclei containing (A + 1) and (A − 1) nucleons with allowance for
fragmentation effects; Eexc

a,a′ are the corresponding excitation energies (Eexc
a,a′ = 0

for the ground states); and BA,A±1 are the binding energies in the ground states
of the corresponding nuclei. In (3) and (4), the values of Jπ for the {a} and {a′}
states are identical to those for the single-particle state {α}.

The quantities s
(+)
aα and s

(−)
a′α represent the spectroscopic factors of states,

specifying the fraction of the single-particle state {α} in the complex states {a}
or {a′}. They are normalized by the relation∑

a∈(A+1)

s(+)
aα +

∑
a′∈(A−1)

s
(−)
a′α = 1, (5)

which is exact and follows from the anticommutation relation for the single-
particle fermion operators,

a+
α aβ + aβa+

α = δαβ . (6)
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It should be noted that, in the literature, use is often made of the spectroscopic

factors s̃
(±)
a(a′)α = (2jα + 1)s(±)

a(a′)α normalized to (2jα + 1). In the present study,
we everywhere employ the normalization condition (5).

Now we consider the expression on the right-hand side of Eq. (3). This
expression has the meaning of a single-particle energy. We will discuss this

issue in more detail. We introduce the ˇeld operators Ψ+ =
∑

β

ϕ∗
β(x)a+

β , where

ϕβ(x) are functions of a complete single-particle set, which is considered to be
arbitrary for the time being. The second term in the expression on the right-hand
side of Eq. (3) can then be recast into the form∫ ∫

dx1dx2[ρα(x1x1)ρ(x2x2) − ρα(x1x2)ρ(x2x1)]ϑ̂(x1x2), (7)

where
ρα(x1x2) = ϕ∗

α(x1)ϕα(x2),

ρ(x1x2) = 〈A; (0)|Ψ+(x1)Ψ(x2)|A; (0)〉.
(8)

Here the quantities ρα and ρ, which are diagonal in the indices x1 and x2, are,
respectively, the density of the single-particle state {α} and the exact matter
density of the core nucleus. It can easily be seen that, in terms of a diagram
technique, expression (7) represents the diagonal matrix element of the ®single-
particle¯ mass operator Σ̂s.p for the single-particle Green function G, that in the
(x, t) representation has the form

G(x, t; x′, t′) = −i〈A; (0)|T̂{Ψ(x, t), Ψ+(x′, t′)}|A; (0)〉, (9)

where Ψ(x, t) are ˇeld operators Ψ(x) in the Heisenberg representation and T̂ is
the chronological-ordering operator. The mass operator corresponding to (7) can
be represented as a sum of two diagrams in Fig. 1, having the form similar to that

Fig. 1. Mass operator corre-
sponding to expression (7)

of the mass operator in the HartreeÄFock approx-
imation. However, the single-particle Green func-
tion G(ε), which is the Fourier transform of (9)
with respect to the variable (t − t′) and which is
depicted by a thick line in Fig. 1, is exact since the
quantity ρ(x1x2) is deˇned as an average over the
true ground state of the system containing A par-
ticles. Actually, this means that the deˇnition of
ρ(x1x2) according to (8) involves, in addition to
diagrams similar to those in Fig. 2, a and b (appear-
ing in the HartreeÄFock approximation), diagrams
belonging to the types in Fig. 2, c and d, corresponding to certain effects beyond
the approximation in question, and re	ecting the contribution of ground-state cor-
relations. It is appropriate to mention here the study of Birbrair and Ryazanov [4],
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who derived relation (3) from Dyson's equation and the spectral expansion of the
single-particle Green function. Here, it is important that the single-particle energy
corresponding to the mass operator independent of the input energy of the Green
function Gα(ε) appeared on the right-hand side of the formula analogous to (3)
in [4]. It can easily be shown that the mass operator corresponding to expressions
(7) and (8), which is displayed in Fig. 1, does not depend on ε, so that it does
not involve fragmentation effects and corresponds to ®true¯ single-particle states
{α} diagonalizing the operator t̂ + Σ̂s.p.

Fig. 2. Contributions to the mass operator independent of ε that are taken into account
(a, b) and disregarded (c, d) in the HartreeÄFock approximation

Fig. 3. Particle distribution nα in the absence (a) and in the presence (b) of the ground-state
correlations

If, instead of the true ground state |A; (0)〉 of nucleus A, we use the ground-
state vector of the HartreeÄFock approximation (that is, the Slater determinant)
|A; (0)〉HF Å it corresponds to a Fermi step of height equal to unity in the space
of occupation numbers nα =HF 〈A; (0)|a+

α aα|A; (0)〉HF (see Fig. 3, a) Å and if,
for {α}, we use the HartreeÄFock eigenfunctions, then a+

i |A; (0)〉HF = 0 for
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εi < εF and ak|A; (0)〉HF = 0 for εk > εF . The right-hand side of Eq. (3) will
then take the form

〈α|t̂|α〉 +
∑

i; εi<εF

a〈αi|ϑ̂|αi〉a ≡ εα(HF). (10)

However, the left-hand sides of Eqs. (3) and (5) will involve only s(+) or s(−)

components.
It should be noted that the actual ground state involves correlations; even

in the absence of super	uidity, the respective particle distribution nα, which is
displayed in Fig. 3, b, has a jump at ε = εF , this jump R < 1 being equal
to the residue of the Green function G (Migdal's theorem, [5]). As a result,
a+

i |A; (0)〉 �= 0 for εi < εF and ak|A; (0)〉 �= 0 for εk > εF , while expressions
(3) and (5) involve both s(+) and s(−) terms.

In treating experimental data, the single-particle factors s are determined
by analyzing direct reactions of single-particle stripping and pick-up. Now we
consider this point in more detail. Suppose that the target nucleus is an evenÄeven

nucleus featuring the quantum numbers Jπ = 0+ and T = TZ = T0 =
N − Z

2
.

Summation in (3) and (5) covers all possible states (complete set) Å in particular,
all possible isospin states. By explicitly including isospin variables, we can reduce
expressions (4) to the form

s(+)
aα =

∣∣∣〈A + 1; (a, Tf , Tzf)|a+
α,t= 1

2 tz
|A; (gr. st., T0, Tz = T0)〉

∣∣∣2 =

=
[
C

Tf Tzf
1
2 tz,T0T0

]2

S(a, α, Tf , T0), (11)

s
(−)
a′α =

∣∣∣〈A − 1; (a′, Tf , Tzf)|aα,t= 1
2 tz|A; (gr. st., T0, Tz = T0)〉

∣∣∣2 =

=
[
C

Tf Tzf
1
2 −tz,T0T0

]2

S(a′, α, Tf , T0), (12)

where the quantities S are independent of the isospin projection.

2. DETERMINATION OF THE ENERGIES OF SINGLE-PARTICLE
STATES IN THE VICINITY OF THE 48Ca, 208Pb, AND 132Sn NUCLEI

The diagram describing the excitation of the levels of interest in the vicinity
of the 48Ca nucleus can be represented in the form displayed in Fig. 4, where
T< = T0 − 1/2 and T> = T0 + 1/2. This ˇgure shows that, in order to
determine the energies of single-particle orbitals, it is necessary, in analyzing data
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Fig. 4. Diagram of the excitation of levels in the vicinity of the 48Ca nucleus in single-
particle transfer reactions

on reactions of proton stripping and neutron pick-up, to take into account in (3)
highly excited analogous states of T = T>, for which experimental information is
not always available. By employing isobaric symmetry, one can borrow, however,
the corresponding isospin-reduced spectroscopic factors S(a, α, T>, T0) from the
reactions involving neutron stripping and proton pick-up and leading to low-lying
states of the neighbouring isobaric nuclei. At the same time, it should be borne
in mind that the contribution of transition to the analogous states of ˇnal nuclei is
suppressed by the factor 1/(2T0+1), which is equal to 1/45 for the target nucleus
208Pb, but which increases considerably for light nuclei (1/9 for 48Ca). Another
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distinction of the region around A ∼ 48 from the regions around A ∼ 208 and
A ∼ 132 is that, in the 48Ca nucleus, the shells are relatively weak, which is
manifested in that direct reactions of one-nucleon transfer excite, in odd nuclei,
low-lying states with quantum numbers Jπ which are typical of single-particle
states belonging to ®alien¯ shells on the other side of the Fermi surface. The
aforementioned indicates that both the T> states of odd nuclei and ground-state
correlations must be taken into account in determining εα in the vicinity of the
48Ca nucleus.

Since we are interested primarily in spinÄorbit splitting, we will consider in
detail the procedure for determining the energies of {1d} levels, clarifying one
important point in advance.

The quantities s(±) appearing in expressions (3) and (5) are determined by
analyzing experimental data on direct nuclear reactions. In doing this, there
arises a natural uncertainty associated both with experimental errors and with
the accuracy of a theoretical description (usually, within the distorted-wave Born
approximation) of stripping (pick-up) processes; as a result, the right-hand side
of (5) may become different from unity even in a complete experiment. In actual
calculations, we therefore modiˇed expression (3) by means of the substitution

s
(±)
i(i′) → s

(±)
i(i′)/

(∑
k

s
(+)
k +

∑
k′

s
(−)
k′

)
, going over to normalized s factors. It

should be noted that the electronic database from [6] and references therein (if
necessary) were used as a main source of experimental data in determining the
spectroscopic factors. The nuclear binding energies were borrowed from [7].

Now we consider the neutron hole state {ν1d5/2}. Figure 4 shows that a
correct determination of single-particle energies here requires taking into account
not only low-lying but also highly excited isobaric analogous states in 47Ca at
excitation energies higher than 12 MeV (in the 47Ca nucleus, the lowest T> state,
which is the isoanalog of the 1/2+ ground state of the 47K nucleus, has the
energy of 12.73 MeV). From experiments, it follows that the {ν1d5/2} state of
the 47Ca nucleus is strongly fragmented. Up to the excitation energy of 11 MeV,
the respective (3He,α) reaction exhibits 46 5/2+ (T = T<) levels characterized

by
∑
i′

s
(−)
i′ = 0.607 and

∑
i′

s
(−)
i′ Ei′ = 4.798 MeV. The lowest 5/2+ isoanalog

of the 47K nucleus has E = 16.12 MeV and s(−) = 0.06 and corresponds to 5/2+

level of 47K at E = 3.43 MeV. At the same time, the reaction 48Ca(d, 3He) 47K
exhibits a variety of other low-lying (E < 9 MeV) 5/2+ states that are hardly
seen, because of a small cross section (in particular, due to the isotopic factor of
= 1/9), as higher 5/2+ isoanalogous states of the 47Ca nucleus. We can rescale
the energies of low-lying 5/2+ states of the 47K nucleus to those of the 5/2+

isoanalogous states in the 47Ca nucleus, assuming that the relative values of s(−)

for various isoanalogs in 47Ca are identical to those for low-lying 5/2+ states in
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47K. After the normalization to the well-known experimental value of s(−) for
the 5/2+ state at E = 16.12 MeV, we then obtain the following values for the

T> levels in the 47Ca nucleus:
∑
k′

s
(−)
k′ = 0.231 and

∑
k′

s
(−)
k′ Ek′ = 4.272 MeV.

As a result, we arrive at εν1d5/2 = −20.76 MeV, with the contribution of high-
lying isoanalogous state being quite signiˇcant, so that its inclusion is necessary
(this shifts the level down by about 3 MeV). We will now clarify the role of
ground-state correlations (term involving s(+) in (3) for the case of hole nuclei).
By way of example, we indicate that the reaction 48Ca(d, p)49Ca proceeding
via the excitation of a ®particle¯ nucleus reveals three 5/2+ states peculiar to a

neutron ®hole¯ shell; for them,
∑

i

s
(+)
i = 0.129 and

∑
i

s
(+)
i Ei = 0.691 MeV.

Upon the inclusion of these states, the energy of the {ν1d5/2} single-particle state
becomes higher: εν1d5/2 = −17.97 MeV. This demonstrates that even a rather
small contribution from ground-state correlations leads to a signiˇcant shift of
single-particle energies, always toward the energy gap between the shells. It is
worth noting that, upon the inclusion of the T = T> states and of ground-state

correlations, we obtain
∑

i

s
(+)
i +

∑
i′

s
(−)
i′ = 0.967, which is very close to unity.

Therefore, the value of εν1d5/2 = −17.97 MeV seems quite reasonable.

Now we proceed to determine the energy of the {ν1d3/2} neutron orbital.
In contrast to the 5/2+ levels, the {ν1d3/2} state in 47Ca is fragmented rather
weakly. The neutron pick-up reaction exhibits only one 3/2+ level at E =
2.58 MeV in the low-lying part of the spectrum (s(−) = 0.90) and one isoanal-
ogous level at 13.09 MeV (s = 0.045); this is the isoanalog of the 3/2+ state at
0.36 MeV in 47K). At the same time, yet another 3/2+ state at 3.93 MeV (s =
0.18) is observed among low-lying levels of 47K. Upon rescaling to the 47Ca nu-
cleus with respect to isofactors and energy, this corresponds to s = 0.02 and E =
16.66 MeV. Thus, we arrive at

∑
i′

s
(−)
i′ = 0.965 and

∑
i′

s
(−)
i′ Ei′ = 3.244 MeV.

As a result, we obtain εν1d3/2 = −13.31 MeV without considering for ground-
state correlations. Now we consider the contribution of these correlations. In
the reaction 48Ca(p, x)49Sc, a 3/2+ resonance at 15.876 MeV is observed ac-
cording to data reported in [6, 8, 9]; this resonance is treated as the isoanalog
of the 3/2+ level of the 49Ca nucleus. Considering that a close excited 3/2−

state in 49Sc at E = 11.56 MeV is an isoanalog of the ground state of the 49Ca
nucleus, we can easily determine the energy of the 3/2+ level in 49Ca under
consideration; it appears to be about 4.32 MeV, which is close to the value of
E = 4.282 MeV obtained for the 3/2+ level of the 49Ca nucleus (the spectro-
scopic factor being 0.017) in [10] from an analysis of the reaction 48Ca(d, p)49Ca.
At a similar energy, this level appears in the compilation of Burrows [9], but not
in [6] or in [8]. For the {ν1d3/2} state, we eventually obtained the values of
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i′

s
(−)
i′ +

∑
i

s
(+)
i = 0.982 and εν1d3/2 = −13.09 MeV. Thus, the magnitude of

spinÄorbit splitting for the {1d} neutron orbital in 48Ca is Δν
ls(1d) = 4.88 MeV,

which is much larger than the estimate (3.6 MeV) presented in [11].

Now we consider the {π1d3/2} proton state. Experimental data (see, for
example, [12]) indicate the excitation of only two low-lying 3/2+ states at E =
0.36 (s = 0.97) and 3.93 MeV (s = 0.185) in the proton pick-up reaction on
48Ca, this corresponding to

∑
i′

s
(−)
i′ = 1.155 and

∑
i′

s
(−)
i′ Ei′ = 1.076 MeV. At

the same time, the proton stripping reaction on 48Ca results in the excitation of a
set of low-lying 3/2+ levels among the T< states of the 49Sc nucleus; for them∑

i

s
(+)
i = 0.0525 and

∑
i

s
(+)
i Ei = 0.262 MeV. Taking additionally into account

the existence of the 3/2+ level at 4.272 MeV in the 49Ca nucleus (see above), for
which s = 0.017 in the neutron stripping reaction, we reveal the corresponding
isoanalogous level 3/2+ in 49Sc at E = 15.88 MeV (s(+) = 0.017/9 = 0.0019).
Thus, the total contribution of ground-state correlations corresponds to

∑
i

s
(+)
i =

0.0544 and
∑

i

s
(+)
i Ei = 0.292 MeV, while the energy of the proton {1d3/2} level

is −16.18 MeV (−16.73 MeV without considering for ground-state correlations).
It should be noted that, for the proton {1d3/2} orbital, the experimental value

of
∑

i

s
(+)
i +

∑
i′

s
(−)
i′ is 1.209; that is, it exceeds unity. We will discuss this

issue below.

The proton {1d5/2} orbital is the last {1d} orbital. Here, the proton pick-up

reaction excites nine T = T< 5/2+ states, for which
∑
i′

s
(−)
i′ = 0.663 and

∑
i′

s
(−)
i′ Ei′ = 3.933 MeV (the corresponding isobaric analogs were taken into

account in considering 5/2+ states in 47Ca). The contribution of ground-state
correlations is controlled by six T = T< 5/2+ levels in 49Sc at energies lower

than 12 MeV; for these levels,
∑

i

s
(+)
i = 0.0233 and

∑
i

s
(+)
i Ei = 0.209 MeV.

In addition, it should be borne in mind that the neutron stripping reaction excites
three low-lying 5/2+ states of 49Ca that have already been taken into account
in analyzing the contribution of ground-state correlations to the energy of the
{ν1d5/2} neutron orbital in 47Ca. The counterparts of these levels in 49Sc are
three high-lying isoanalogous levels whose energies after rescaling are 16.03,
16.23, and 17.68 MeV, with the ˇrst and the last one being observed in the 49Sc
spectrum at very close energies; however, their s factors were not measured in the
proton stripping reaction on 48Ca because of the smallness of the corresponding
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isofactor. Rescaling, according to isotopic relations, the s factors of the 49Ca

to those of the 49Sc nucleus, we obtain
∑

i

s
(+)
i = 0.0143 and

∑
i

s
(+)
i Ei =

0.240 MeV for these levels. As a result, we have επ1d5/2 = −20.43 MeV, while
the spinÄorbit Δπ

ls(1d) splitting of the {1d} proton orbital is 4.25 MeV, which is
considerably smaller than corresponding neutron spinÄorbit splitting.

The energies of other single-particle orbitals in the vicinity of the 48Ca
nucleus were determined in a similar way. The corresponding values are presented
in Table 1.

Table 1. Single-particle states of 48Ca

(ν, π)n�j εexp εth(WS1) εth(WS2) εth(WS3)

ν1g9/2 ∼0.6 0.32 0.18 0.39
ν1f5/2 Ä1.20 Ä1.97 Ä1.84 Ä2.23
ν2p1/2 Ä2.86 Ä2.90 Ä2.85 Ä2.77
ν2p3/2 Ä4.64 Ä5.07 Ä5.09 Ä5.01
ν1f7/2 Ä10.23 Ä9.22 Ä9.32 Ä9.64
ν1d3/2 Ä13.09 Ä14.03 Ä13.94 Ä14.51
ν2s1/2 Ä13.28 Ä14.48 Ä14.48 Ä14.68
ν1d5/2 Ä17.97 Ä18.56 Ä18.62 Ä19.02

π1g7/2 Å 9.18 9.00 9.19
π2d5/2 Å 3.78 3.82 3.44
π1g9/2 Å 0.52 0.66 1.05
π2p1/2 Ä2.4 Ä3.07 Ä3.12 Ä3.10
π1f5/2 Ä3.20 Ä3.58 Ä3.70 Ä2.99
π2p3/2 Ä3.4 Ä5.22 Ä5.19 Ä5.18
π1f7/2 Ä9.40 Ä10.09 Ä9.99 Ä9.35
π2s1/2 Ä14.92 Ä15.87 Ä15.87 Ä15.45
π1d3/2 Ä16.18 Ä16.32 Ä16.39 Ä15.46
π1d5/2 Ä20.43 Ä20.28 Ä20.22 Ä19.46

Note. In calculations the mean-ˇeld potential (16) with the parameters V0 = −51.5 MeV,
Vls = 33.2 MeV · fm2, r0 = 1.27 fm, rc0 = 1.25 fm, and β = 1.39 was used. The
designation WS1 corresponds to a = 0.6 fm and βls = −0.6; WS2 Å to a = 0.6 fm,
βls = −1.0; WS3 Å to diffusenesses a(ν) = 0.55 fm, a(π) = 0.67 fm, and βls = −0.6.

In all of the cases, with the exception of that of the {π2p1/2} and {π2p3/2}
proton orbitals, the total experimental strength of single-particle states, which is
determined by formulas (4), (11), and (12), is about unity, the spinÄorbit splitting
of the 1f proton orbital being much smaller than the neutron one. The {π2p}
orbital also deserves a dedicated discussion. The compilation of experimental
data concerning the proton stripping reaction on 48Ca in [6] suggests an extremely
strong fragmentation of the {π2p1/2} state: up to an excitation energy of about
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12 MeV, there are 55 (T = T< = 7/2) 1/2− states with the total strength∑
i

s
(+)
i = 2.04, which is twice as great as the value following from the sum

rule. In addition, three very close (T = T> = 9/2) 1/2− levels at an energy of

13.5 MeV are observed with the total value of
∑

i

s
(+)
i ∼ 0.1, which correspond to

the components of the energy-split isoanalog of the excited 1/2− state of the 49Ca
nucleus at E = 2.02 MeV, where s(+) = 0.91. Upon rescaling in the isofactor to
the 49Sc nucleus, this leads precisely to a value of about 0.1 for s(+). At the same
time, the total strength of transitions to the {π2p3/2} level Å this strength receives
contributions predominantly from low-lying 3/2− components Å is less than
unity (0.682) according to [6]. Concurrently, we have επ2p1/2 = −2.00 MeV and
επ2p3/2 = −4.55 MeV, while the proton spinÄorbit splitting Δπ

ls(2p) = 2.55 MeV
is larger than that for neutrons (Δν

ls(2p) = 1.78 MeV).

It should be borne in mind, however, that, in the original study of Fortier
et al. [13], {π2p} states were identiˇed by the angular distribution alone, so that
those authors actually determined only the value of � = 1 but not the spin of
the level. It is worth noting that the � = 1 proton states in the 49Sc nucleus are
distributed within the interval of width about 10 MeV, which is much larger than
the spinÄorbit splitting of the {π2p} level. Therefore, it is reasonable to assume
that 1/2− and 3/2− states Å apart from those that are reliably identiˇed by Jπ

values and which are rather low-lying and include the main components of the
single-particle strength and apart from isoanalogs whose spins were determined

reliably Å are distributed uniformly over the spectrum. In this case
∑

s = 1.062

and ε ≈ −3.4 MeV for the {π2p3/2} state and
∑

s = 1.38, and ε ≈ −2.4 MeV

for the {π2p1/2} level. Thus, the sum rule (3) holds to a much higher accuracy,
while the proton spinÄorbit splitting

(
Δπ

ls(2p) ≈ 1 MeV
)

is smaller than the
spinÄorbit splitting for neutrons.

Yet another comment is in order here. As can be seen from the above, the
{π1d5/2} proton orbital is characterized by

∑
i

s
(+)
i +

∑
i′

s
(−)
i′ = 0.701, which

is also smaller than unity. It could be assumed in this connection that the 3/2+

level at 3.93 MeV in the 47K nucleus is in fact the 5/2+ state characterized by
s(−) = 0.185 · 4/6 = 0.122. This would lead, on the one hand, to a decrease in
the total strength of the {π1d3/2} state to a value of 1.024 and, on the other hand,
to an increase in the strength for the {π1d5/2} orbital to 0.823. Concurrently,
the spinÄorbit splitting of the {1d} proton orbital would increase somewhat (up
to 4.80 MeV), but it would still remain smaller than that for neutrons. However,
there are no sufˇciently strong experimental arguments in favor of this assumption
since the level in question was identiˇed not only by the angular distribution of
the cross section but also by the angular distribution of the analyzing power [14].
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Therefore, the problem of the excess of the strength for the {π1d3/2} state and
its deˇcit for {π1d5/2} remains open at present. Probably, it is related to the
theoretical description of nucleon-transfer reactions and the possible contribution
of multistep mechanisms of such reactions [12].

Summarizing all that was said in this section earlier, we would like to em-
phasize that an analysis of available experimental data concerning direct reactions
furnishes compelling arguments in favor of the statement of the 48Ca nucleus, the
spinÄorbit splitting of the {1f}, {1d}, and {2p} neutron orbitals is larger than that
of the analogous proton orbitals. However, it should be noted that this statement
is fully valid only for f5/2 − f7/2 splitting. In the case of the {1d} orbital, we
additionally invoked data on T> states, employing the (quite reliable) concept of
isobaric symmetry, while, in determining the splitting of the {2p} proton orbital,
we assumed that the distribution of 1/2− and 3/2− levels over the ®statistical¯
part of the spectrum is uniform.

Now we pass to the classical doubly-magic nucleus 208Pb. Here, due to a
strong rigidity of the core, the fragmentation of single-particle states is very weak,
almost all of them have spectroscopic factors very close to unity. The exceptions
are the {ν1j15/2}, {ν2f7/2}, {π2d5/2}, {π1g7/2}, and {π3p1/2} levels, that have
rather strong admixtures of the multiplet (phononÄquasiparticle) nature. The frag-
mentation of single-particle states at 208Pb is mainly in	uenced by the presence of
a low-lying and highly-collective 3−1 phonon state at 2.62 MeV. The effects caused
by the 2+

1 state are less since the collectivization of quadrupole phonon, and the
corresponding nucleonÄphonon vertexes are small in heavy nuclei near doubly
closed shells. For example, in the neutron ®hole¯ 207Pb nuclei, the main part of
energy shift of the 7/2− level is caused by mixing with the higher-lying (3−1 ⊗
ν1i−1

13/2)7/2− state. Numerical evaluation performed by using the quasiparticleÄ

phonon model with the coupling constant extracted from the B(E3; 3−1 → ground
state) value shows that the 7/2− level corresponding to the ®pure¯ ν2f−1

7/2 state
moves down by the amount of ∼ 0.4 MeV, thus approaching the experimental
value of 2.34 MeV. This large shift is due to rather strong coupling constant and
non-spin-	ip nature of the matrix element. The value of the true (after the proce-
dure of averaging) energy of the 7/2− state in 207Pb is 10.07−7.37 = 2.7 MeV
(see Table 2). Thus, the magnitude of the predicted shift is very close to the
experimental value of 2.70 − 2.34 = 0.36 MeV mentioned above.

At the same time, the (3−1 ⊗ ν1i−1
13/2) conˇguration has no 5/2− component

and thus one does not observe experimentally the fragmentation of the lower
lying 5/2− level at 0.57 MeV. We note here that the 7/2− and the 5/2− states
in the proton ®particle¯ 209Bi nucleus have the opposite ordering, 7/2− being
the lower one. Due to mixing with the (3−1 ⊗ π1i13/2) conˇguration, the ®pure¯
π2f7/2 level is also pushed down, but only by about 0.2 MeV due to larger
energy difference. Thus, after taking account of conˇguration mixing, not only
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the neutron Δ(ν)
ls (2f) splitting between the pure states increased as compared to

1.77 MeV, but also the proton Δ(π)
ls (2f) splitting decreased to a smaller value.

The values of the ®true¯ single-particle energies in 208Pb obtained by employ-
ing the procedure of averaging over the spectroscopic factors are listed in Table 2.

Table 2. Single-particle states of 208Pb

(ν, π)n�j εexp Stnd Set 1 Set 2 Set 3 Set 4 SIII-1 SIII-2

ν3d3/2 Ä1.40 Ä0.32 Ä0.02 Ä0.23 Ä0.96 Ä0.99 0.38 0.42
ν2g7/2 Ä1.44 Ä0.79 Ä0.18 Ä0.65 Ä0.89 Ä1.14 0.01 0.14
ν4s1/2 Ä1.90 Ä0.80 Ä0.70 Ä0.74 Ä1.63 Ä1.51 Ä0.08 Ä0.06
ν1j15/2 Ä2.09∗ Ä2.42 Ä3.05 Ä2.31 Ä2.23 Ä1.55 Ä1.41 Ä1.93
ν3d5/2 Ä2.37 Ä1.50 Ä1.45 Ä1.40 Ä2.35 Ä2.13 Ä0.39 Ä0.38
ν1i11/2 Ä3.16 Ä4.24 Ä3.37 Ä4.05 Ä2.71 Ä3.33 Ä3.37 Ä2.77
ν2g9/2 Ä3.94 Ä3.71 Ä3.82 Ä3.59 Ä4.24 Ä3.88 Ä2.91 Ä2.97
ν3p1/2 Ä7.37 Ä7.32 Ä6.94 Ä7.17 Ä7.59 Ä7.61 Ä7.21 Ä7.13
ν2f5/2 Ä7.94 Ä8.42 Ä7.87 Ä8.25 Ä8.17 Ä8.38 Ä8.59 Ä8.44
ν3p3/2 Ä8.27 Ä8.18 Ä8.03 Ä8.04 Ä8.59 Ä8.43 Ä8.18 Ä8.15
ν1i13/2 Ä9.00 Ä9.21 Ä9.62 Ä9.08 Ä8.84 Ä8.31 Ä9.73 Ä10.21
ν2f7/2 Ä10.07∗ Ä10.57 Ä10.57 Ä10.43 Ä10.72 Ä10.46 Ä11.21 Ä11.24
ν1h9/2 Ä10.78 Ä12.06 Ä11.35 Ä11.87 Ä10.60 Ä11.09 Ä13.16 Ä12.67

π3p1/2 0.17∗ 0.63 0.43 0.72 0.29 0.47 2.79 2.88
π3p3/2 Ä0.68 Ä0.45 Ä0.46 Ä0.35 Ä0.58 Ä0.69 1.99 2.03
π2f5/2 Ä0.97 Ä0.68 Ä1.03 Ä0.60 Ä1.03 Ä0.61 0.60 0.74
π1i13/2 Ä2.19 Ä2.86 Ä2.37 Ä2.71 Ä1.94 Ä2.78 Ä1.20 Ä1.53
π2f7/2 Ä2.90 Ä3.38 Ä3.24 Ä3.26 Ä3.21 Ä3.53 Ä1.64 Ä1.66
π1h9/2 Ä3.80 Ä4.60 Ä5.11 Ä4.53 Ä4.71 Ä4.01 Ä4.68 Ä4.24
π3s1/2 Ä8.01 Ä7.76 Ä7.86 Ä7.67 Ä7.87 Ä7.87 Ä7.39 Ä7.33
π2d3/2 Ä8.36 Ä8.41 Ä8.66 Ä8.32 Ä8.59 Ä8.30 Ä8.64 Ä8.51
π1h11/2 Ä9.36 Ä9.33 Ä8.99 Ä9.18 Ä8.60 Ä9.21 Ä9.35 Ä9.65
π2d5/2 Ä10.04∗ Ä10.10 Ä10.05 Ä9.98 Ä9.96 Ä10.15 Ä10.29 Ä10.28
π1g7/2 Ä12.18∗ Ä12.07 Ä12.45 Ä11.99 Ä12.08 Ä11.58 Ä13.94 Ä13.59

Note. The ®standard¯ set of parameters corresponds to V0 = −51.50 MeV, Vls =
33.2 MeV · fm2, β = βls = +1.39, a(π) = 0.67 fm, a(ν) = 0.55 fm, and δ = 0.604 MeV.

®Set 1¯ corresponds to V0 = −51.39 MeV, Vls = 33.1 MeV · fm2, β = 1.43 with
βls = −0.6, a(π) = 0.67 fm, a(ν) = 0.55 fm ˇxed; δ = 0.654 MeV.

®Set 2¯ corresponds to V0 = −51.34 MeV, Vls = 33.1 MeV · fm2, β = 1.40, βls = 1.26
with a(π) = 0.67 fm, a(ν) = 0.55 fm ˇxed; δ = 0.593 MeV.

®Set 3¯ corresponds to V0 = −51.99 MeV, Vls = 32.7 MeV · fm2, β = 1.36, a(π) =
0.73 fm, a(ν) = 0.72 fm with δ = 0.369 MeV; βls = −0.6 is ˇxed.

®Set 4¯ corresponds to V0 = −51.93 MeV, Vls = 35.2 MeV · fm2, β = 1.38, βls = 1.76,
a(π) = 0.73 fm, a(ν) = 0.72 fm; δ = 0.366 MeV.

Experimental single-particle energy marked by an asterisk (∗) represents a mean value
weighted by the spectroscopic factors.
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One can see that the spinÄorbit splittings of the {ν2f} and {ν3p} orbitals in the
doubly-magic 208Pb nucleus that have a large neutron excess, N − Z = 44, are
more than the splittings of the analogous proton orbitals.

Recently there appeared detailed experimental information on the neutron
excess nucleus 132Sn that testiˇes to its strong magicity. In particular, in the
papers [15Ä17] the information on the single-particle spectra of levels in odd
nuclei close to 132Sn was obtained. Here the important comment is necessary.
The 132Sn nucleus is unstable. So, by now only the data concerning the main
components of the single-particle strength, found from the (β, γ) spectroscopy, are
available. Though the existing and proposed facilities for production of beams of
radioactive ions (see, for example, [18Ä20]) open the perspectives for measuring
the spectroscopic factors ®s¯; in this region of a nuclidic chart, the corresponding
experimental data on fragmentation are not available yet. Nevertheless, we are
able to make an authentic conclusion on the relative magnitudes of the {ν2d} and
{π2d} spinÄorbit splittings in 132Sn.

To this aim, we can use the resemblance of single-particle structures at 132Sn
and 208Pb, as well as the theoretical evaluations. Really, as was pointed out by
Blomqvist [21], the 132Sn and 208Pb nuclei are in some respect twins, having
similar shell structures with the correspondence of l → l + 1, j → j + 1 for most
of the orbitals in these regions. Therefore, all the arguments presented above
for splitting of the {2f} levels at 208Pb are completely valid also for the {2d}
states at 132Sn, with replacement of 1i13/2 by 1h11/2. So far, there is no direct
experimental data on the B(E3; 3−1 → ground state) value in 132Sn. However,
the core has much higher rigidity here in comparison with 208Pb and the energy
of the 3−1 state is substantially higher at 4.35 MeV. Thus, from accounting for

conˇguration mixing one expects some further increase of the Δ(ν)
ls (2d) splitting

and a decrease of Δ(π)
ls (2d), but these changes should be smaller than for the

{2f} levels at 208Pb. Estimates based on an indirect evaluation of the B(E3)
value from the magnitude of the octupole effective charge in 134Te [22] conˇrm

the pattern of changes of the Δ(π,ν)
ls (2d) values presented above. However, in

the absence of experimental data on direct reactions we demonstrate in Table 3
the values of energies at 132Sn that do not include averaging over spectroscopic
factors. We see that the spinÄorbit splitting of the neutron {2d} orbital is also
more than that for protons.

The magnitudes of spinÄorbit splittings in the 48Ca, 208Pb, and 132Sn nuclei,
considered by us before, are shown in Table 4. One can see, that based on
six cases described above, it is evident that the neutron spinÄorbit splittings in
these neutron-rich doubly closed shells nuclei are systematically larger than the
corresponding proton splittings. Note that splittings are practically identical for
protons and neutrons in the N = Z nuclei, see [2], these cases are not included
in Table 4.
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Table 3. Single-particle states of 132Sn

(ν, π)n�j εexp Stnd Set 1 Set 2 Set 3 Set 4 SIII-1 SIII-2

ν2f5/2 Ä0.58 0.36 0.73 0.46 0.22 Ä0.01 0.67 0.79
ν3p1/2 (Ä0.92) Ä0.13 Ä0.48 Ä0.09 Ä0.55 Ä0.61 0.16 0.20
ν1h9/2 Ä1.02 Ä1.61 Ä0.84 Ä1.38 Ä0.47 Ä0.97 Ä0.72 Ä0.02
ν3p3/2 Ä1.73 Ä0.78 Ä0.88 Ä0.77 Ä1.42 Ä1.32 Ä0.16 Ä0.14
ν2f7/2 Ä2.58 Ä2.18 Ä2.55 Ä2.21 Ä2.84 Ä2.52 Ä1.67 Ä1.71
ν2d3/2 Ä7.31 Ä7.74 Ä7.45 Ä7.62 Ä7.63 Ä7.77 Ä8.42 Ä8.26
ν1h11/2 Ä7.55 Ä7.11 Ä7.96 Ä7.23 Ä7.33 Ä6.60 Ä7.69 Ä8.23
ν3s1/2 Ä7.64 Ä7.68 Ä7.73 Ä7.64 Ä8.03 Ä7.93 Ä8.26 Ä8.21
ν2d5/2 Ä8.96 Ä9.66 Ä9.94 Ä9.66 Ä9.98 Ä9.69 Ä10.71 Ä10.71
ν1g7/2 Ä9.74 Ä10.56 Ä10.04 Ä10.39 Ä9.51 Ä9.81 Ä11.92 Ä11.32

π3s1/2 (Ä6.83) Ä6.84 Ä6.87 Ä6.80 Ä6.64 Ä6.70 Ä4.97 Ä4.90
π1h11/2 Ä6.84 Ä7.32 Ä6.66 Ä7.46 Ä6.77 Ä7.48 Ä5.64 Ä6.01
π2d3/2 Ä7.19 Ä6.86 Ä7.20 Ä6.74 Ä7.07 Ä6.72 Ä5.93 Ä5.77
π2d5/2 Ä8.67 Ä9.36 Ä9.20 Ä9.37 Ä9.04 Ä9.30 Ä7.88 Ä7.88
π1g7/2 Ä9.63 Ä9.84 Ä10.41 Ä9.66 Ä10.60 Ä9.81 Ä10.08 Ä9.56
π1g9/2 Ä15.71 Ä14.91 Ä14.46 Ä15.00 Ä14.57 Ä15.02 Ä15.03 Ä15.36
π2p1/2 Ä16.07 Ä16.01 Ä16.22 Ä15.92 Ä16.14 Ä15.91 Ä16.68 Ä16.55

Note. ®Stnd¯: δ = 0.589 MeV.

®Set 1¯: V0 = −51.56 MeV, Vls = 33.3 MeV · fm2, β = 1.39, δ = 0.638 MeV.

®Set 2¯: V0 = −51.44 MeV, Vls = 34.8 MeV · fm2, β = 1.39, βls = 1.35, δ = 0.575 MeV.

®Set 3¯: V0 = −51.55 MeV, Vls = 32.4 MeV · fm2, β = 1.31, a(π) = 0.63 fm, a(ν) =
0.66 fm, δ = 0.546 MeV.

®Set 4¯: V0 = −51.56 MeV, Vls = 34.1 MeV · fm2, β = 1.34, βls = 1.33, a(π) = 0.65 fm,
a(ν) = 0.66 fm, δ = 0.478 MeV.

Table 4. Magnitudes in MeV of neutron and proton spinÄorbit splittings

Nucleus n� Δexp(n�), MeV βls Nucleus n� Δexp(n�), MeV βls

48Ca ν1f 9.02 Ä2.22 208Pb ν2f 2.13 Ä0.47
π1f 6.20 π2f 1.93
ν1d 4.88 Ä0.83 ν3p 0.90 Ä0.27
π1d 4.25 π3p 0.85

ν2p 1.78 Ä3.3 132Sn ν2d 1.65 Ä0.45
π2p ∼ 1.0 π2d 1.48

It is thus of substantial interest to evaluate to what extent the isotopic depen-
dence of the spinÄorbit splittings is reproduced by standard model calculations.
Three different approaches were made as described below.
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3. THEORETICAL APPROACH

3.1. General Considerations. Turning to the theoretical interpretation [2] of
the experimental values of the spinÄorbit splitting discussed above, we shall ˇrst
recall that from the point of view of many-body theory, the average spinÄorbit
potential has its origin in the pair spinÄorbit interaction between nucleons (with
tensor forces providing a minor contribution as well). On the level of qualitative
arguments, it was noted by Bohr and Mottelson [23] that due to the symmetry
properties one should expect the neutron spinÄorbit splitting to be somewhat larger
than that for protons in heavier nuclei, simply due to a higher number of like
particles in the neutron case. However, at that time the absence of experimental
data did not permit a meaningful comparison with measurements. With the
presently available data we can ˇll this gap, providing also some quantitative
considerations.

The two-body spinÄorbit interaction differs from zero only in the states with
a total spin S = 1. The neutronÄneutron and protonÄproton systems have the total
isospin T = 1 and thus due to the Pauli principle have odd values of the relative
orbital momentum L (in fact, L = 1). At the same time, the neutronÄproton
system is composed from the T = 0 and T = 1 states with equal weights, having
L = 0 and L = 1, correspondingly. Due to the absence of spinÄorbit interaction
in states with L = 0, the pair spinÄorbit np interaction is half as strong as that in
pp or nn systems.

If Uls(ν) and Uls(π) represent the magnitudes of the mean spinÄorbit ˇeld
for neutrons and protons and ϑ(T = 1, S = 1, L = 1) is a quantity representing
the strength of the pair spinÄorbit interaction in a state with T = 1, S = 1, L = 1,
then the above discourse leads to

Uls(ν) ∼ ϑ(1, 1, 1)
(

N +
1
2
Z

)
≡ ϑ

(
A − Z

2

)

and

Uls(π) ∼ ϑ(1, 1, 1)
(

1
2
N + Z

)
≡ ϑ

(
A − N

2

)
. (13)

To characterize the isotopic dependence of spinÄorbit splitting we introduce
the relative difference ®ε¯ of the neutron and proton spinÄorbit splittings

ε =
Δ(ν)

ls − Δ(π)
ls(

Δ(ν)
ls + Δ(π)

ls

) /
2
. (14)

In the closure approximation Δ(ν,π)
�s ∼ Uls(ν, π). Then by using formulas (13)

we obtain

ε =
2
3

N − Z

A
. (15)
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On the other side, the phenomenological average potential that generates
the spectra of single-particle levels, including the spinÄorbit splittings, may be
represented as

U(r, σ, τ3) = U0(τ3)f(r) + Uls(τ3)
1
r

df(r)
dr

l̂ · ŝ +
(1 + τ3)

2
UCoul,

f(r) =
[
1 + exp

(
r − R

a

)]−1

, R = r0A
1/3, RCoul = rcA

1/3,

(16)

with the isotopic dependences of U0 and Uls represented in the form

U = V0

(
1 +

1
2
β

N − Z

A
τ3

)

and

Uls = Vls

(
1 +

1
2
βls

N − Z

A
τ3

)
. (17)

Here τ3 = +1 for protons (π) and τ3 = −1 for neutrons (ν).
By now, the values of parameters entering the central part of the potential

(16) are well known: V0 ∼ −(50−52) MeV, β ∼ 1.4, and a ∼ 0.6 fm. At the
same time, from the global description of spinÄorbit splitting in nuclei we know
the value of a spinÄorbit parameter Vls to be Vls ∼ +30 MeV · fm2, while the
magnitude of the parameter βls, that shows the isospin dependence of spinÄorbit
splitting, is under the question, and may be deˇned from the symmetry relations
and from the experimental data on splittings deduced by us before.

In terms of a potential Uls in the form (17), the magnitude of the relative
difference of neutron and proton spinÄorbit splittings is

ε = −βls
N − Z

A
. (18)

It follows from a comparison of Eqs. (15) and (18) that βls = −2/3.
Strictly speaking, this derivation was performed for the two-body spinÄorbit

interaction. However, as mentioned above, tensor forces provide also some
contribution to the spinÄorbit splitting. This noncentral interaction is proportional
to Ŝ12 with

Ŝ12 = 3(σ̂1n)(σ̂2n) − σ̂1σ̂2 =
√

24π[[σ̂1 ⊗ σ̂2]2 ⊗ Y2(n)]00. (19)

One can easily see from (19) that the diagonal matrix elements of this inter-
action are different from zero only for states with S = 1 and L � 1, of which
the S = T = L = 1 one is of the main importance. It is just the state which
was already considered in this subsection in the case of spinÄorbit interaction.
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Consequently, the diagonal part of tensor forces also provides contribution to Uls

with βls = −2/3, and thus it leads only to a renormalization of the Vls value.
However, as the spatial part of tensor operator is proportional to Y2(n) and due
to the spin structure of Ŝ12, this renormalization equals zero in cases of spin
saturated spherical nuclei. Thus, in 16O and 40Ca tensor forces give a contri-
bution to the isoscalar part of the spinÄorbit splitting, that is mediated by their
nondiagonal part and caused by admixtures, that are out of the HartreeÄFock type
ground state. As was shown in [24], tensor forces may really lead to a substantial
contribution to the isoscalar part of spinÄorbit splitting. At the same time, in
nuclei that are not spin saturated, such as 48Ca, tensor forces can contribute to
the spinÄorbit splitting even in the ®diagonal¯ scheme (i. e., a scheme without
admixtures), if the, antisymmetrization is properly included. Our numerical cal-
culations for seniority one states of 47Ca and 47K both having one neutron or
proton hole and performed in the framework of the multiparticle shell model with
tensor forces taken from our previous works [25Ä29], have demonstrated that
the inclusion of a tensor component of the interaction leads to energy shifts that
correspond to some variation of the spinÄorbit splittings Δls, such that in 48Ca

Δ(ν)
ls (1d)−Δ(π)

ls (1d) = 0.34 MeV and Δ(ν)
ls (1p)−Δ(π)

ls (1p) = 0.24 MeV. These
shifts arise from neutrons ˇlling the ν1f7/2 subshell and are mainly due to charge
exchange two-body matrix elements of the np interaction mediated by the isovec-
tor part of the tensor force (∼ τ̂ 1τ̂ 2). Thus, the inclusion of tensor forces does
not change the pattern of spinÄorbit splitting, which also leads to negative values
of βls ranging from about −0.4 to −0.7. These results qualitatively agree with
those presented in [30], where in the framework of the BruecknerÄHartreeÄFock
method with Reid potential (containing both the spinÄorbit and tensor compo-
nents), a substantially larger neutron than proton splitting was obtained for the 1p
and 1d orbitals in 48Ca with βls in the range from about −0.5 to −1.8. We note
that if we omit the case of spinÄorbit splitting of the π2p level in 48Ca, where
the experimental data on the Δπ

ls are rather indeˇnite, the average magnitude of
the parameter βls as deˇned by formulas (14) and (18), is equal to βls ∼ −0.85,
this value is in good agreement with the prediction βls = −2/3, based on the
symmetry relations (13).

3.2. Walecka Model. Here we make an evaluation of the βls parameter in
the Hartree approximation starting from the Dirac phenomenology with mesonÄ
nucleon interactions according to the Walecka model [31]. It is known, that
this approach enabled to explain the global magnitude of spinÄorbit splitting in
nuclei. Here, and mainly for heavier nuclei, we concentrate only on the difference
between the proton and neutron splittings of spinÄorbit partners in the same nuclei,
and on its dependence on the value of the neutron excess in nuclei, i.e., on the
isotopic dependence of splitting. In this model one obtains (see, for example, [32Ä
39] and references therein) a Skyrme-type single-particle equation for a nucleon
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having the effective mass m∗
N and subjected to the effect of a potential with the

spinÄorbit term having the form (see, for example, [35Ä38]):

Ûls =
λ2

N

2
1
r

{(
mN

m∗
N

)2
d

dr

[
(V 0

ω − S0
σ,σ0

) − (V 1
ρ − S1

δ,σ,σ0
) · τ3

]
−

− 2k

(
mN

m∗
N

)
d

dr
V 1

ρ · τ3

}
l̂ · ŝ, (20)

where V = V 0 − τ3 · V 1 and S = S0 − τ3 · S1 are the vector and scalar ˇelds

related to corresponding mesons, m∗
N = mN +

1
2
(S − V ), while k is the ratio of

tensor-to-vector coupling constants of ρ meson. Various approaches have been
used to determine the coupling constants. In [38] the mesonÄnucleon coupling
constants, deˇning the V and S ˇelds, were taken from the Bonn NN -boson
exchange potential [40], where σ and σ0 are scalar mesons imitating the 2π
exchange in the NN systems with T = 1 and T = 0, correspondingly. In
other works (see, for example, [35Ä37]), the constants were deˇned from the
description of global nuclear properties, with inclusion of the σ3 and σ4 terms in
the Lagrangian density (one σ meson with the same characteristics for T = 1 and
T = 0 channels was used, which leads to zero contribution of this meson to S1

in formula (20); note also that the tensor term was not included in the ρ-meson
vertex in [35Ä37]).

We calculate the V and S magnitudes in the center of nuclei at the values
of vector and scalar densities ρv = 0.17, ρs = 0.16, ρ−v = 0.17(N − Z)/A,
and ρ−s = 0.16(N − Z)/A (all in fm−3). Taking into account that the radial
dependence of the (mN/m∗

N) is much weaker than that of V and S, which
are considered to be proportional to the density in the form of Fermi function,
formula (20) may be approximately represented in the form (16). By using the
coupling parameters from [38, 40] and taking into account the isotopic dependence
of mN/m∗

N , we obtain Vls ≈ 34 MeV · fm2 and βls ≈ −0.40. If we use the NL2
set of parameters from [36,37], then we have Vls ≈ 31 MeV · fm2, βls ≈ −0.43.
At the same time, the set NL1 from [35, 37], giving small values of effective
masses, leads to Vls ∼ 50 MeV · fm2 and βls ∼ −1.3. As the V 1, S1 magnitudes
are proportional to ρ−v and ρ−s , formula (20) gives equal spinÄorbit splittings for
protons and neutrons in the N = Z nuclei. It should be noted, that the value
of βls is always negative and is determined mainly, or entirely, by the ρ-meson
conribution.

We note in summary that the magnitudes of the empirical effective values of
βls at 48Ca, 132Sn, and 208Pb, listed in our previous discussion, are quite well
reproduced by the calculations in this subsection, made in the framework of the
Walecka model.
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It is worth mentioning that a study of the neutron spinÄorbit splitting in light
nuclei as a function of A at given Z was recently performed in the framework
of the Walecka model by Lalazissis et al. [41]. However, the intercomparison
between the splittings of both proton and neutron ®similar¯ spinÄorbit doublets
in the same nuclei was not performed there. At the same time, the calculations
of single-particle spectra for magic nuclei with N > Z performed by Rutz et
al. [42] in the framework of the relativistic mean-ˇeld theory, which in principle
represents the generalization of the Walecka model, lead to an inadequate result.
Here, on the one hand, the calculations lead to the greater spinÄorbit splittings
for protons, than for neutrons, for similar orbitals. On the other hand, the
nonauthentic experimental data on spinÄorbit splittings were used in comparison
with the experiment. It is evident (see also the result of [11]) that the isospin
dependence of spinÄorbit splitting offers the problem for the relativistic mean-ˇeld
approach.

3.3. WoodsÄSaxon and Skyrme Models. In our previous works [25Ä29],
calculations were made using the V0 = −51.5 MeV, r0 = 1.27 fm, Vls =
33.2 MeV · fm2, a(π) = 0.67 fm, a(ν) = 0.55 fm, and βls = β = 1.39, which,
on the average, described the spectra of single-particle states in nuclei from 16O
to 208Pb. This set of parameters is denoted here as the ®standard¯ one. With the
appearance of new experimental data on the single-particle levels, we performed
a new determination of parameter values through the NelderÄMead method [43]
by minimizing the root-mean square deviation

δ =

√√√√ 1
n

n∑
k=1

(εth
k − εexp

k )2. (21)

The computation demonstrated a very small sensitivity of results to the value
of rc, which was adopted to be the same as before: rc = 1.25 fm. The mini-
mization of δ performed for all nuclei close to 16O, 40Ca, 132Sn, and 208Pb with
rc = 1.25 fm and different values of r0, showed that the minimum in all cases
corresponds to r0 ≈ 1.27 fm, that also coincides with the value adopted by us
before. The values rc = 1.25 fm and r0 = 1.27 fm were thus ˇxed in further
calculations.

As was noted above, the optimal relation of proton-to-neutron spinÄorbit
splitting corresponds to βls ∼ −0.6. The fourth column, ®Set 1¯, of Tables 2
and 3 presents the values of theoretical energy levels obtained in the optimization
with ˇxed values of βls = −0.6, a(π) = 0.67 fm and a(ν) = 0.55 fm.

The ˇfth column, ®Set 2¯, of Tables 2 and 3 presents the results of optimiza-
tion with only two ˇxed parameters: a(π) = 0.67 fm and a(ν) = 0.55 fm.

The values of ®Set 3¯ correspond to an optimization at ˇxed βls = −0.6,
while ®Set 4¯ are the results with no parameters ˇxed.



550 ISAKOV V. I.

We see that the optimized values of V0, Vls, and β (see formula (16)) are
very close to the ®standard¯ ones, with small variations from nucleus to nucleus.
The magnitudes of the diffusinesses ®a¯ vary more strongly, differing by about
10 to 15% from their ®standard¯ values. A comparison of the ®Stnd¯ with ®Set
1¯ and of ®Set 3¯ with ®Set 4¯ results shows that the contribution of βls to the
root-mean square deviation δ is small. It is thus more reasonable to deˇne βls not
from a minimization of δ, but rather by using the experimental and theoretical
arguments mentioned above. This conclusion is conˇrmed by the results of Koura
and Yamada [44], who made a number of different ˇts of WS parameters to the
same set of experimental data, obtaining diverse (in magnitude and sign) values
of the parameter that deˇnes the contribution to the spinÄorbit term, which is
linear in (N − Z)/A. A global adjustment of WS parameters simply appears to
be only weakly sensitive to details of the spinÄorbit splitting.

The results of the calculations presented in Tables 1 to 3 include some levels
having positive energies, i.e., unbound but sub-barrier states. In such cases we
present here the real part of the single-particle energies only for those states
having very small decay widths.

To summarize this evaluation, we have determined the parameters of the WS
potential using a global mean square-root optimization, except for the isospin-
dependent spinÄorbit term, where the parameter value was found to be insensitive
to the adjustment. Hence the value of βls ∼ −0.6 was deduced from physical
considerations based on experimental spinÄorbit splittings.

One should point out that the sign of the isospin spinÄorbit term in the
WoodsÄSaxon potential is in agreement with the sign of an analogous term present
in the expression for the central nuclear potential in the Walecka model. While
the spinÄorbit term in this model is deˇned, very approximately, by the (V − S)
combination of the entering ˇelds, the central nuclear potential is proportional
to the (V + S) combination. The main, isoscalar, part of the (V − S) term is
positive and the addition of an isovector contribution, arising from V 1, leads, for
the N > Z nuclei, as was shown above by us, to an additional term (positive for
neutrons and negative for protons), its magnitude growing with (N −Z), together
with the ratio of neutron-to-proton splittings. At the same time, the isoscalar part
of the central (V + S) term is negative. The addition of a V 1 term leads here,
for neutrons in (N > Z) nuclei, to reduction of the absolute value of (V + S).
So, with increasing N at a given Z, the depth of the central nuclear potential for
neutrons decreases and they become less bound, while the protons become more
bound. All this is re	ected in the WS model (see Eq. (16) above) by the fact that
βls is negative, while β is positive. The two models are thus fully consistent in
this respect.

As another model approach, which complements the aforementioned eval-
uations, we have consider the HartreeÄFock calculations with the Skyrme SIII
interaction. The results of these self-consistent calculations, listed in the last two
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columns of Tables 2 and 3, were obtained by considering the contribution of
a single-particle part of the center-of-mass energy and taking into account the
Coulomb exchange term in the Slater approximation. The SIII-1 results corre-
spond to calculations which take into account all terms of the energy functional
contributing to spinÄorbit splitting, while the SIII-2 results have been obtained
by omitting the spin density terms in the spinÄorbit potential. In the last case
our results are close to those from the study by Leander et al. [45] performed
for 208Pb and 132Sn nuclei. We see that the results obtained in the framework of
the HartreeÄFock method also demonstrate that the calculated neutron spinÄorbit
splittings of the 2d orbit in 132Sn as well as of the 2f and 3p orbits in 208Pb
are larger than for protons and they correspond to effective βls in the interval
from −0.9 to −0.6. We note that the difference between the neutron and proton
spinÄorbit splittings is reproduced here by using a simple parameterization of
the Skyrme forces. Our calculated results differ from those of Noble [33] who
declared that the isotopic dependence of the spinÄorbit potential in the Hartree
scheme is cancelled through the contribution of exchange terms, but agree with
that of [30]. We mention here that the SIII parameterization contains density-
dependent terms that imitate in some sense the three-body interaction.

4. POLARIZATION EFFECTS IN (p, n) REACTIONS
PROCEEDING BETWEEN THE ISOBARICAL NUCLEAR STATES

In this section we shall corraborate our conclusions on the isotopic depen-
dence of spinÄorbit splitting by attracting another set of experimental data, this
time on charge-exchange (p, n) reactions and by using the concept of the isobaric
invariance of the mean nuclear potential.

For this aim we generalize expressions (17) for the central and spinÄorbit
terms of the mean nuclear potential by introducing the quantities t3 = −τ3/2,
T3 = (N−Z)/2 and making in the spirit of [46] substitution T3 ·t3 → T̂· t̂, where
T̂ and t̂ are isospin vector operators for the core and the nucleon. Thus, we obtain
the nuclear part of potential (16) in the isobaric-invariant form (Lane potential),
suitable for description of both the diagonal in t3 (single-particle spectra and
elastic scattering) and nondiagonal ((p, n) reactions leading to isobaric analogous
states) processes:

Û = V0

(
1 − 2β

T̂ · t̂
A

)
f(r) + Vls

(
1 − 2βls

T̂ · t̂
A

)
1
r

df

dr
l̂ · ŝ. (22)

A spinÄorbit term in a potential leads to polarization effects in scattering. We see
from (22) that while the polarization in elastic scattering depends on the para-

meter combination of the form Vls

(
1 − βls

(N − Z)
A

t3

)
≈ Vls, similar effects in
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charge-exchange reactions with excitation of isoanalogous states are proportional
to βls · Vls, and are thus deˇned by the isovector mean spinÄorbit ˇeld parameter
βls, as the Vls parameter is well known. Thus, we can check our previous conclu-
sions concerning the βls value and based on nuclear spectra using the data from
(p, n) quasi-elastic scattering. Exactly, we consider the charge-exchange (p, n)
process happening between the ground state

(
T (i) = T

(i)
z = (N − Z)/2

)
of the

initial nucleus and the excited isoanalogous state
(
T (f) = T (i) = (N − Z)/2 ,

T
(f)
z = (N − Z)/2 − 1

)
of the ˇnal nucleus; this nondiagonal in t3 process is

just described by the potential (22).
Before we carefully studied the splitting of the proton and the neutron spinÄ

orbit doublets in 48Ca. The experimental information on the polarization effects
in the 48Ca region is available in [47], where the 48Ca(p, n) 48Sc reaction with
polarized protons leading to the 0+ (6.67 MeV) isoanalogous state was studied.

For checking the isobaric structure of the 6.67 MeV excited state in 48Sc we
performed the RPA calculations [1] in the charged particleÄhole channel. This
approximation was successfully used by us before in describing the particleÄhole
nuclei 208Bi, 208Tl, 132Sb, and 132In (see [25, 48], where all of the required
formulas can be found). We started from the two-body effective interaction

ϑ̂ = exp
(
− r2

r2
00

) (
V + Vσσ̂1σ̂2 + VT Ŝ12 + Vτ τ̂ 1τ̂ 2+

+ Vτσσ̂1σ̂2 · τ̂ 1τ̂ 2 + VτT Ŝ12τ̂ 1τ̂ 2

)
, (23)

which was introduced in our previous papers [25Ä29]. The parameters in (23)
were set to V = −9.95, Vσ = 2.88, VT = −1.47, Vτ = 5.90, Vτσ = 4.91,
VτT = 1.51 (all of these values are given in MeV), and r00 = 1.8 fm (interac-
tion version 1). We also used a basis consisting of 13 proton and 11 neutron
orbitals closest to the Fermi surface (and involving a set of quasi-stationary
states), with the energies of the orbitals corresponding to the WS1 parameter set,
see Table 1. The calculated energies of levels in the 48Sc nucleus are given
in Table 5, along with relevant experimental data. For all of the levels pre-
sented in Table 5 (with the exception of the 1+

2 state), the leading conˇguration is
{π1f7/2 ν1f7/2}. As far as the 1+

2 state is concerned, it corresponds to a GamowÄ
Teller resonance that manifests itself as a rather wide peak in the energy range of
5Ä14 MeV, with its maximum being at about 10 MeV; its leading conˇguration is
0.97{π1f5/2 ν1f7/2}+0.22{π1f7/2 ν1f7/2} with B(GT; 0+

1 → 1+
2 ) ∼ 19. At the

same time, the 1+
1 level is characterized by the structure 0.97 {π1f7/2 ν1f7/2} Ä

0.22 {π1f5/2 ν1f7/2} and by a value of B(GT; 0+
1 → 1+

1 ) ∼ 5. For the 0+
1 state,

the calculated value of the reduced probability is B(F ; 0+
1 → 0+

1 ) � 7.99, which
saturates almost completely the sum rule for a transition of the Fermi type, this
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state thus indeed offers the isoanalog of the ground state of the core nucleus 48Ca.
In Table 5, we also present the results of calculations that employ a somewhat
modiˇed interaction (version 2), where (as compared to (23)) Vτ = 7.9 MeV
and Vτσ = 5.9 MeV. In this case, the agreement with experimental data on ener-
gies becomes better, while the values of B(F ) and B(GT) undergo virtuality no
changes. It should be noted that, while the calculated energies of the levels are
by and large in good agreement with the experimental data, the calculated energy
of the 7+

1 state proves to be rather low, but it is close to the energy 0.39 MeV of
a low-lying level which spin is not identiˇed. It should be emphasized, however,
that experimental data cast some doubt on the existence of this level, while the
7+
1 state at 1.10 MeV was observed in a few independent studies.

Table 5. Experimental and theoretical energy levels of 48Sc

Jπ Eexp Eth (Var.1) Eth (Var.2)

6+
1 gr. st. gr. st. gr. st.

5+
1 0.13 0.18 0.20

4+
1 0.25 0.18 0.22

3+
1 0.62 0.56 0.65

7+
1 1.10 0.42 0.44

2+
1 1.14 0.89 1.07

1+
1 2.52 2.04 2.36

0+
1 6.67 4.88 6.41

1+
2 5Ä14 9.44 9.95

It should also be noted that the calculated energies of other levels in 48Sc,
which are not quoted in Table 5 and which are associated with high-lying
(for example, {π1f5/2 ν1f7/2}) particleÄhole conˇgurations, appear to be above
3.5 MeV. In addition to the possible level at 0.39 MeV, other states manifest
themselves in experiments from an energy value as low as some 1.5 MeV. Evi-
dently, they are of more complicated nature and are caused by a weak magicity
of the core nucleus 48Ca, as was mentioned above in discussing the spectroscopic
factors of odd nuclei in the vicinity of the 48Ca. These levels can be explained
in terms of pairing correlations in the ground state of the 48Ca nucleus.

In [47], the theoretical analysis of the 48Ca(p, n)48Sc reaction was based on
the microscopic approach for description of nuclear structure and in terms of the
®free¯ nucleonÄnucleon amplitudes (DWIA). Here we proceed in terms of the
Lane model basing on spinÄorbit parameters deˇned in [2] and using the Born
approximation for description of scattering. Similar effects but for other target
nuclei were also studied in this approach in [49].

It is well known that in the Born approximation polarization effects arising
from the spinÄorbit potential disappear [50]. Thus for description of them one
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needs to introduce imaginary part (absorption) into the optical potential, that
really means the account of effects out of the Born approach. We must also
include in real and imaginary parts of potential the dependence on the incident
energy, that was rather high (T = 134 MeV) in [47]. In [23, 51], the following
proposition in the case of volume absorption is presented for the V0 parameter:
V0 = V ′

0(1 − 0.0058T ) with V ′
0 = −52 MeV, that is rather close to the value

of −51.5 MeV obtained by us in [2]. In this case the corresponding absorption
term in the optical potential was proposed in [51] in the form of i · WV f(r)
with WV (MeV)= −3.3(1 + 0.03T ). Surface absorption is usually presented as
i ·WS(df/dr). For small values of transferred momentum (small angles), both the
variants of absorption must result in similar description of the scattering process.
In the case of a � R this leads to WS ≈ −(R/3)WV . So, as an absorption term
we use the combination of the form

i · WV

[
α − (1 − α)

R

3
d

dr

]
f(r) (24)

with 0 � α � 1, that leads to polarization effects, independent of α at small
scattering angles, but strongly dependent on α at large values of transferred
momentum. Thus, for description of polarization effects we use the optical
potential of the form (22), but with

V0 → −51.5(1− 0.0058T )− i · 3.3(1 + 0.03T )
[
α − (1 − α)

R

3
d

dr

]
, (25)

adopting similar energy dependences for isoscalar and isovector terms of central
nuclear potential.

In Fig. 5, one can see the results of our calculations for the analyzing power A,

Ath =
dσ↑↑/dω − dσ↑↓/dω

dσ↑↑/dω + dσ↑↓/dω
; |A| � 1 (26)

together with experimental data and results of microscopical calculations from
[47]. In formula (26), σ↑↑ and σ↑↓ are cross sections with the polarization vector
ε of the incident protons parallel or antiparallel to [ki × kf ]. We see that in the
case of surface absorption (α = 0) our calculations that use the corresponding
spinÄorbit parameters from [2] demonstrate good agreement with the experiment
up to the high values of the scattering angle. In any case, the obtained re-
sults unanimously point to the considerable contribution of the surface absorption
((1 − α) �∼ 0.5) in nuclei. At the same time, introduction of the energy depen-
dence into the spinÄorbit parameter Vls, analogous to that for the central nuclear
ˇeld, leads to poor agreement with the experiment on the analyzing power. Satis-
factory description of the cross section for the (p, n) reaction leading to isoanal-
ogous state manifests the correct parameterization of the energy dependence of
isovector terms in the central nuclear potential used by us.



ISOSPIN DEPENDENCE OF THE SPINÄORBIT SPLITTING IN NUCLEI 555

Fig. 5. Experimental data on analyzing power [47] together with results of different cal-
culations: 1 Å DWIA microscopical calculation [47]; 2 Å our calculation with α = 1
(volume absorption), Vls = 33.2 MeV · fm2, βls = −0.6; 3 Å our calculation with α = 0
(surface absorption), Vls = 33.2 MeV · fm2, βls = −0.6; 4 Å our calculation with α = 0,
βls = −0.6, and energy-dependent parameter Vls; 5 Å the same as 2, 3, but with α = 0.5;
• Å experiment

Our calculations with α = 0 give the magnitude of differential cross section
for the 48Ca(p, n) 48Sc∗ (I.A.S.) reaction on unpolarized protons at zero angle
equal to ∼ 7.7 mb/sr, very weakly increasing with the increase of the parameter
®α¯, this cross section sharply diminishes with the increase of the scattering
angle and has some structure at θc.m ≈ 20◦. The value presented above may
be compared with the magnitude of cross section at zero angle measured in [52]
(∼ 7 mb/sr), as well as with theoretical prediction [52] based on microscopical
theory (∼ 7.5 mb/sr).

5. SUMMARY AND CONCLUSIONS

The aforesaid results allow us to make the following conclusions:
• Using theoretical analysis and systematics of available experimental data,

we have derived formula (17) that describes the difference between the neutron
and proton spinÄorbit splittings, i.e., the isotopic dependence of the mean-ˇeld
spinÄorbit splitting. The splitting becomes larger for neutrons than for protons
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in nuclei having N > Z. The general arguments presented initially (based on
the properties of the two-body spinÄorbit and tensor interactions) gave a result
in fair agreement with the empirical observations. A further microscopic study
within the Walecka model supports this initial result, while it was found that a
global ˇt of WoodsÄSaxon model parameters appears to be rather insensitive to
the isotopic dependence of the spinÄorbit splitting. A self-consistent calculation
using the SIII interaction gave results in general agreement with the experiment
and prediction by Eq. (17) with negative values of βls ∼ −0.6.

• Experimental data on the isotopical dependence of spinÄorbit splitting in
nuclei are consistent with the data on the (p, n) quasi-elastic scattering. The mean-
ˇeld parameters βls, that describe the proton and neutron spinÄorbit splittings at
132Sn, 208Pb, and 48Ca, well reproduce experimental data on polarization effects
in the (p, n) quasi-elastic scattering with excitation of the isoanalogous states.
Good description of analyzing power at high energy of incident protons with the
spinÄorbit parameters borrowed from low energy spectroscopy is consistent with
supposition about the weak energy dependence of the aforementioned parameters
that enter the optical model.

The isotopic dependence of the spinÄorbit splitting has also been studied
with methods somewhat different than those used here. In the work of Mairle
[53], the average spinÄorbit potential was obtained as a convolution with proton
and neutron densities taken in the ratio deˇned by the short-range two-body
spinÄorbit interaction. However, the isotopic dependence of the average spinÄ
orbit potential was not derived here in an explicit form. This point has some
importance, since our analysis, based on the existing empirical data and different
theoretical approaches, resulting in a simple expression, immediately shows that
the difference between the neutron and proton splittings becomes saturated at
large N , which precludes very large differences. The rather modest difference
with a magnitude of about 10% seen in the 132Sn region is already about 25% of
the saturation value, suggesting that the isospin dependence in itself is unlikely to
lead to dramatic structural changes. However, in cases of extreme neutron excess,
when the difference between neutron and proton spinÄorbit splittings approaches
the maximum value of about 40% (corresponding to several hundreds of keV), a
rather signiˇcant effect on the ordering of levels can be expected.

The author is grateful to K. I. Erokhina, B. Fogelberg, and H.Mach for the
collaboration as well as to B. L. Birbrair, V. E. Bunakov, and V.R. Shaginyan for
numerous and useful discussions concerning the problems of spinÄorbit splitting
in nuclei.
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