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In this paper the Feynman path-integral technique is applied for superintegrable potentials on
two-dimensional spaces of nonconstant curvature: these spaces are Darboux spaces DI and DII,
respectively. On DI there are three and on DII four such potentials, respectively. We are able to
evaluate the path integral in the most of the separating coordinate systems, leading to expressions for
the Green functions, the discrete and continuous wave functions, and the discrete energy spectra. In
some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined
by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher
order polynomial equation. The solutions on DI, in particular, show that superintegrable systems are
not necessarily degenerate. We can also show how the limiting cases of �at space (constant zero
curvature) and the two-dimensional hyperboloid (constant negative curvature) emerge.
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1. INTRODUCTION

General Overview and Recent Work. In the last years, an enormous amount
of work has been archived on solving path integrals in quantum mechanics ex-
actly, and on the application of the path-integral method in various branches of
mathematical physics; many of them have been compiled in our publication [22].
In [13] one of us has discussed path-integral representations of the free motion in
two and three dimensions for Euclidean space, pseudo-Euclidean space, spheres,
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and hyperboloids. In these studies, the goal was to ˇnd all path-integral represen-
tations for the coordinate systems [24, 44Ä47] in which the Schréodinger equation
(respectively the path integral) allows separation of variables. Paper [22] was
aimed explicitly to give the best to our knowledge list of up-to-date explicitly
known path-integral solutions.

In the present work we extend our studies of superintegrable potentials to
spaces of nonconstant curvature, i.e., Darboux spaces, by means of the path-
integral method. In the following sections we discuss two Darboux spaces: we
set up the Lagrangian, the Hamiltonian, the quantum operator, and formulate and
solve (if possible) the corresponding path integral. We also discuss some of the
limiting cases of the Darboux spaces, i.e., where we obtain a space of constant
(zero or negative) curvature. In the case of DI, there is no limiting case, because
we have no free parameter in the metric to choose from.

In the recent publication one of us [15] has applied the path-integral techni-
que [7, 22, 38, 49] to the quantum motion on two-dimensional spaces of non-
constant curvature, called Darboux spaces, DIÄDIV, respectively. These spaces
have been introduced by Kalnins et al. [27, 28]. They can be embedded in three-
dimensional spaces which can be either of Euclidean or Minkowskian type, re-
spectively. Then the Darboux spaces consist of surfaces, which are also called
surfaces of revolution [4]. In two dimensions Darboux spaces of nonconstant cur-
vature can be constructed as follows. One takes, for instance, two-dimensional
Euclidean space and takes for the metric a superintegrable potential in its sim-
plest form in radial coordinates. For the Coulomb potential 1/r one obtains a
metric ∝ r, which gives the Darboux space DI, for the radial potential b − a/r2

one obtains a metric ∝ (b − a/r2), i.e., the Darboux space DII, etc. The case
of two dimensions is especially simple, because one obtains always a confor-
mally �at space. This method of constructing new spaces was ˇrst discussed by
Koenigs [40].

Superintegrable Potentials. The intention of [27, 28] was, however, not only
to construct new spaces, and to study their properties, but another equally im-
portant motivation was to ˇnd the corresponding superintegrable potentials. The
notion of superintegrable systems was introduced by Winternitz and co-workers
in [9, 52], Wojciechowski [53], and was further developed later on also by Evans
[6]. Superintegrable potentials have the property of additional constants of mo-
tion: The simplest of the cases of the only conserved quantity is the energy, gives
usually a chaotic system [22]; in order that a physical system is just integrable
it requires d constants of motion, where 2d denotes the number of degrees of
freedom. In two dimensions one obtains in total three functional independent
constants of motion and in three dimensions one has four (minimal superinte-
grable) and ˇve (maximal superintegrable) functional independent constants of
motion. Well-known examples are the Coulomb potential with its LenzÄRunge
vector and the harmonic oscillator with its quadrupole moment.
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Moreover, the existence of an additional conserved quantity in (maximally)
superintegrable potentials leads in classical mechanics to the fact that the orbits
of a particle in such a potential are closed: Kepler ellipses are stable and do
not ®rotate¯. In quantum mechanics it follows that the spectrum is usually
degenerate. A perturbation of the pure Newtonian potential causes the Kepler
ellipses to rotate (Mercury's or Moon's perihelion rotation), and in quantum
mechanics degeneration is lost, respectively.

Another feature of superintegrable potentials is that the corresponding equa-
tions in classical and quantum mechanics separate in more than one coordinate
system. (However, whereas from the separability in more than one coordinate
system the superintegrability and the existence of additional constants of motion
follow, a system with additional constants of motion may not be easily separa-
ble.) It turns out that the Coulomb potential in three dimensions separates in
spherical, conical, parabolic, and prolate-spheroidal coordinates [42]. Even the
relativistic DiracÄCoulomb possesses some of this symmetry by the conservation
of the JohnsonÄLippmann operator which reduces in the nonrelativistic limit to
the LenzÄRunge vector [37].

In the previous publications [18Ä21] we have studied superintegrable po-
tentials in two and three dimensions in Euclidean space, on spheres and on
hyperboloids. We restricted ourselves to real spaces and omitted their corre-
sponding complex extensions [25, 31, 33, 34]. Let us also note that by integrating
out ignorable coordinates (i.e., variables which have plane waves, respectively
circular waves as solutions of the Schréodinger equation) one can obtain more
complicated space interacting systems on spaces with constant curvature: the
interaction has the form of a superintegrable potential. One example is the Her-
mitian hyperbolic space [3, 14] where one can ˇnd superintegrable potentials on
the hyperboloid [29]. The connection of superintegrability and the polynomial so-
lutions was studied (e.g., in [30]) in connection with contractions of Lie algebras
(e.g., in [23, 32, 48]), where the various limiting cases from spaces of positive or
negative constant curvature to zero curvature were investigated.

In this ˇrst paper on superintegrable potentials on Darboux spaces we discuss
only the Darboux spaces DI and DII. The superintegrable potentials on the other
two Darboux spaces DIII and DIV will be discussed in a forthcoming publication.

The paper is organized as follows: In Sec. 2 Section we treat the superin-
tegrable potentials on Darboux space DI. There are three of them, the third
consisting of a constant divided by the metric term which makes the potential
almost trivial. The common feature of the ˇrst two potentials is that the en-
ergy eigenvalues are determined by a transcendental equation involving parabolic
cylinder functions. For the third (trivial) potential no bound states can be found.

In Sec. 3 the superintegrable potentials on DII are discussed. There are three
nontrivial and one trivial potentials. For the ˇrst potential we obtain a quadratic
equation for the energy levels, and they show an oscillator-like behavior. An
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exact solution can be found only in the (u, v) system. This is very similar to the
Holt potential in two-dimensional Euclidean space.

The second superintegrable potential on DII is exactly solvable in two coor-
dinate systems. Here, we also ˇnd a quadratic equation for the energy levels. V2

is similar to the singular oscillator in two-dimensional Euclidean space.
The third superintegrable potential has a relation to the Coulomb potential

in two-dimensional Euclidean space. The energy levels are determined by an
equation of eighth order in E which cannot be solved in general. For a special
case, however, we ˇnd a Coulomb-like behavior of the energy levels.

The fourth potential is a constant times the metric term, and is therefore
trivial. As for DI, this potential is included for completeness.

Section 4 contains a discussion of our results and an outlook for the remaining
two Darboux spaces DIII and DIV.

Introducing Darboux Spaces. Kalnins et al. [27, 28] denoted four types
of two-dimensional spaces of nonconstant curvature, labeled by DIÄDIV, which
are called Darboux spaces [40]. In terms of the inˇnitesimal distance they are
described by (the coordinates (u, v) will be called the (u, v) system; the (x, y)
system in turn can be called light-cone coordinates):

(I) ds2 = (x + y)dx dy,

= 2u(du2 + dv2), (x = u + iv, y = u − iv), (1.1)

(II) ds2 =
(

a

(x−y)2
+b

)
dx dy,

=
bu2 − a

u2
(du2 + dv2),

(
x =

1
2
(v+iu), y =

1
2
(v−iu)

)
, (1.2)

(III) ds2 =
(
a e−(x+y)/2 + b e−x−y

)
dxdy,

= e−2u(b + a eu)(du2 + dv2), (x = u − i v, y = u + iv), (1.3)

(IV) ds2 = −
a
(
e(x−y)/2 + e(y−x)/2

)
+ b(

e(x−y)/2 − e(y−x)/2
)2 dx dy,

=
(

a+

sin2 u
+

a−
cos2 u

)
(du2+dv2), (x = u+iv, y = u−iv),(1.4)

a and b are additional (real) parameters (a± = (a±2b)/4). Kalnins et al. [27, 28]
studied not only the solution of the free motion, but also emphasized on the super-
integrable systems in these spaces. They found appropriate coordinate systems,
and we will consider all of them. In the majority of the cases we will be able to
ˇnd a solution, however in some cases this will be impossible due to a quartic
anharmonicity of the problem in question.



PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 591

2. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE DI

We start with Darboux space DI and consider the following coordinate sys-
tems:

((u, v) system:) x = u + iv, y = u − iv (u � a), (2.1)

(Rotated (r, q) coordinates:) u = r cosϑ + q sinϑ,

v = −r sinϑ + q cosϑ (θ ∈ [0, π]), (2.2)

(Displaced parabolic:) u =
1
2
(ξ2 − η2) + c, v = ξη

(ξ ∈ �, η > 0, c > 0). (2.3)

The inˇnitesimal distance, i.e., the metric is given by

ds2 = 2u(du2 + dv2), (2.4)

(Rotated (r, q) coordinates:) = 2(r cosϑ + q sin ϑ)(dr2 + dq2), (2.5)

(Displaced parabolic:) = (ξ2 − η2 + 2c)(ξ2 + η2)(dξ2 + dη2). (2.6)

The Gaussian curvature in a space with metric ds2 = g(u, v)(du2 + dv2) is given
by (g = det g(u, v))

G = − 1
2g

(
∂2

∂u2
+

∂2

∂v2

)
ln g. (2.7)

Equation (2.7) will be used to discuss shortly the curvature properties of the
Darboux spaces, including their limiting cases of constant curvature.

We ˇnd, e.g., in the (u, v) system for the Gaussian curvature

G =
1
u4

. (2.8)

There is no further parameter in the metric, therefore this space is of noncon-
stant curvature throughout for all u > a with a being some real constant a > 0.
However, DI can be embedded in a three-dimensional Euclidean space. It can
then be visualized as an inˇnite surface (similar to one sheet of a double-sheeted
hyberboloid) with a circular hole at the bottom∗. The constant a may be taken as
a = 1/2. In order to set up the path integral formulation we follow our canonical
procedure as presented in [22]. The free Lagrangian and Hamiltonian are given
by, respectively:

L(u, u̇, v, v̇) = mu(u̇2+v̇2)−V (u, v), H(u, pu, v, pv) =
1

4mu
(p2

u+p2
v)+V (u, v),

(2.9)

∗Kalnins E. Private communication.
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and we must require u > a for some a > 0, and ϕ ∈ [0, 2π] can be considered as
a cyclic variable [28]. The canonical momenta are

pu =
�

i

(
∂

∂u
+

1
2u

)
, pv =

�

i

∂

∂v
, (2.10)

and for the quantum Hamiltonian we ˇnd

H =− �
2

2m

1
2u

(
∂2

∂u2
+

∂2

∂v2

)
+V (u, v)=

1
2m

1√
2u

(p2
u+p2

v)
1√
2u

+V (u, v). (2.11)

We formulate the path integral (ignoring the half-space constraint for the time
being):

K(u′′, u′, v′′, v′; T ) = lim
N→∞

(
m

2πiε�

)N N−1∏
j=1

∫
2ujduj dvj×

× exp

⎧⎨⎩ i

�

N∑
j=1

[
mûj(Δ2uj + Δ2vj) − V (uj , vj)

]⎫⎬⎭ = (2.12)

=

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)2u exp

⎧⎨⎩ i

�

T∫
0

[
mu(u̇2 + v̇2) − V (u, v)

]
dt

⎫⎬⎭ ,

(2.13)
where uj = u(tj), Δuj = uj − uj−1, ε = T/N , ûj = √

uj−1uj . We have
displayed the path integral in our product-lattice deˇnition, which will be used
throughout this paper [22]. Due to this lattice deˇnition of the path integral, we
have no additional �

2 potential because the dimension of the space of nonconstant
curvature equals 2, c.f. [22].

According to [27, 28] we introduce the following three integrals of motion in
DI. They are

K = pv,
X1 = pupv − v

2u(p2
u + p2

v),

X2 = pv(vpu − upv) − v2

4u(p2
u + p2

v).

⎫⎪⎬⎪⎭ (2.14)

They satisfy the relation

4H̃0X2 + X2
1 + K4 = 0. (2.15)

(Let us note that by H̃0 the classical Hamiltonian without the 1/2m factor is
meant. Keeping this factor is no problem, however, in the present form the
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algebra has a simpler showing.) These operators satisfy the Poisson algebra
relations

{K, X1} = 2H̃0, {K, X2} = −X1, {X1, X2} = 2K3. (2.16)

The quantum analogues are given by

K̂ = ∂v,

X̂1 = ∂u∂v − v
2u(∂2

u + ∂2
v),

X̂2 =
1
2
{∂v, v∂u − u∂v} −

v2

4u
(∂2

u + ∂2
v),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.17)

where {·, ·} is the anticommutator. These operators satisfy the commutation
relations

[K̂, X̂1] = −2Ĥ0, [K̂, X̂2] = X1, [X̂1, X̂2] = 2K̂3, (2.18)

with the operator relation

4Ĥ0X̂2 + X̂2
1 + K̂4 = 0. (2.19)

The operators K, X1, X2 can be used to characterize the separating coordinate
systems on DI, as indicated in Table 1.

Table 1. Constants of motion in space DI

Metric Constants of motion Coordinate system

2u(du2 + dv2) K2 (u, v) system

2(r cos ϑ + q sin ϑ)(dr2 + dq2) X1 (r, q) system

(ξ2 − η2 + 2c)(ξ2 + η2)(dξ2 + dη2) X2 Parabolic

Let us note again that we do omit here factors of i, �, and 1/2m for the
sake of simplicity. H0 therefore is the quantum Hamiltonian without the usual
−�

2/2m. However, in the tables with the constants of motion, these factors are
meant to be included. In the remaining Darboux spaces this notation, as long as
the algebra is concerned, will be used for the sake of simplicity in the same way.

For the operators which characterize separation of variables in the (r, q)
systems and parabolic coordinates, respectively, we introduce

Λ1 =
1

q sin θ + r cos θ

(
q sin θ

∂2

∂r2
− r cos θ

∂2

∂q2

)
= − sin 2θX1 − cos 2θK2,

(2.20)
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Λ2 =
1

ξ4 − η4

(
η4 ∂2

∂ξ2
+ ξ4 ∂2

∂η2

)
+

4cξ2η2

ξ2 − η2
=

= − ∂

∂u
−2v

∂

∂u

∂

∂v
+2(u−c)

∂2

∂v2
+

v2

2(u − c)

(
∂2

∂u2
+

∂2

∂v2

)
+

2cv2

(u − c)
.

(2.21)

These two operators describe the general case. Special cases for Λ1 are:
• θ = π/4, we have Λ1 = −X1 (symmetric case),
• θ = π/2, we have Λ1 = K2,
and for c = 0 we have Λ2 = −2X2.
Now we consider the following potentials on DI (following [28], an additional

fourth potential is according to [4]):

V1(u, v) =
1
2u

⎡⎢⎣m

2
ω2(4u2 + v2) + κ +

λ2 − 1
4

2mv2

⎤⎥⎦ , (2.22)

V2(u, v) =
1
2u

[
m

2
ω2(u2 + v2) + κ1 + κ2v

]
, (2.23)

V3(u, v) =
1
2u

�
2v2

0

2m
, (2.24)

V4(u, v) =
1
2u

[
a0√

u − iv
+ a1 + a2u + a3

4u − 2iv√
u − iv

]
. (2.25)

Table 2. Separation of variables for the superintegrable potentials on DI

Potential Constants of motion Separating
coordinate system

V1 R1 = X2 − m

2
ω2 v4

4u
− κ2

2

v2

u
− �

2

4m

(
λ2 − 1

4

)
4u2 + v2

uv2
(u, v) system

R2 = K2 +
m

2
ω2v2 +

�
2

m

λ2 − 1/4

v2
Parabolic

V2 R1 = X1 − κ1v

u
+

κ2(u
2 − v2)

u
+

m

2
ω2 v(u2 − v2)

u
(u, v) system

R2 = K2 + 2κ2v + mω2v2 (r, q) system

V3 R1 = X1 − �
2v2

0

2m

v

u
(u, v) system

R2 = X2 − �
2v2

0

4m

v2

u
(r, q) system

R3 = K Parabolic
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In Table 2 we have summarized some properties of three of these potentials.
Actually, V3 can be considered as a special case either of V1 or V2, respectively.
The fourth potential separates, for instance, in parabolic coordinates (c = 0) and
then has the (complex) form

V4(ξ, η) =

=
1

ξ4 − η4

[√
2a0(ξ + iη) + a1(ξ2 + η2) +

a2

2
(ξ4 − η4) + 23/2a3(ξ3 − iη3)

]
.

(2.26)

However, this is not tractable and we will not discuss this potential any further.
2.1. The Superintegrable Potential V1 on DI. We start with the potential

V1 in DI. V1 is separable in the (u, v) system and in parabolic coordinates.
However, only in the (u, v) system a closed solution can be found. We state
for V1 in the respective coordinate systems

V1(u, v) =
1
2u

⎡⎢⎣m

2
ω2(4u2 + v2) + κ +

λ2 − 1
4

2mv2

⎤⎥⎦ , (2.27)

=
1

2u(ξ2 + η2)

[
m

2
ω2(ξ6 + η6) + 2mω2(ξ4 − η4) +

+(2mω2c2 + κ)(ξ2 + η2) + �
2 λ2

2m

(
1
ξ2

+
1
η2

)]
. (2.28)

The separation procedure in the space-time transformation gives additional terms
according to −E[(ξ4 − η4)+2c(ξ2 + η2)] in the respective Lagrangian. Although
symmetric in ξ and η the involvement of quartic and sextic terms make any
further evaluation impossible in parabolic coordinates.

The same observations are valid in the case of a Coulomb-like potential on
DI, which can be put into the form (including already the proper energy term)

VE(u, v) = − 1
u

α√
u2 + v2

+ E, (2.29)

which yields after a space-time transformation, with unshifted (c = 0) parabolic
coordinates

VE(u, v) → −2α(ξ2 − η2) + E(ξ4 − η4), (2.30)

and is not tractable either. In particular, the metric term 2u spoils any further
investigation. There exist some attempts in the literature to treat such potential
systems, and these studies go with the name ®quasi-exactly solvable potentials¯
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in the sense of Turbiner [50] and Ushveridze [51]. In fact, sextic oscillators
with a centrifugal barrier and quartic hyperbolic and trigonometric ones can be
considered, and they are very similar in their structure as, for instance, in (2.28).
One can ˇnd particular solutions, provided the parameters in the quasi-exactly
solvable potentials fulˇll special conditions. Furthermore, well-deˇned expres-
sions for the wave functions and for the energy spectrum can indeed be found
if only quadratic, sextic, and particular centrifugal terms are present. The wave
functions then have the form of Ψ(x) ∝ P (x4) × e−αx4

, with a polynomial P .
However, quasi-exactly solvable potentials have the feature that only a ˇnite num-
ber of bound states can be calculated (usually the ground state and some excited
states). Another important observation is due to [35, 41]: The authors found
quasi-exactly solvable potentials that emerge from dimensional reduction from
two- and three-dimensional complex homogeneous spaces. The sextic potential
in the Hamiltonian (2.28) is exactly of that type.

This observation now opens an interpretation of two-dimensional systems
with higher anharmonic terms. Let us assume that we have a two-dimensional
superintegrable potential system. This system has additional constants of motion,
respectively observables, and there are in total three of them (including the en-
ergy). Let us assume further that we choose an example which is separable in
at least two coordinate systems, say, in Cartesian and parabolic coordinates (i.e.,
a system which is similar to that one described in (2.28), and we can omit the
metric term for simplicity).

Writing down the Schréodinger equation of potentials like this, one obtains
a coupled system of differential equations in ξ and η, respectively, which are
functionally identical. Their difference is that they are deˇned on another domain
in the complex plane [35]. If one looks now for bound state solutions, i.e.,
solutions which can be written in terms of polynomials and which are therefore
square-integrable, one ˇnds a quantization condition for the energy E. Because
the potential is assumed to be separable in Cartesian coordinates we already know
the energy levels, En. The second separation constant λ of the system of coupled
differential equations in ξ and η can then be expressed in terms of En, i.e.,
λn = f(En). The wave functions of the bound state solutions are determined by
three-term recursion relations, terminating to give polynomials. However, they
cannot be solved to give explicit formulas for the polynomials.

Now we can return to the quasi-exactly solvable potentials. We take one
of the two coupled differential equations and rename the variable ξ → x ∈
�, say. This one-dimensional quasi-exactly solvable potential ®remembers¯ its
origin from a two-dimensional superintegrable potential: The subset of wave
functions which can be explicitly found corresponds to the case where one of
the coupling constants corresponds in a simple way with the energy levels of
the superintegrable potential labeled by n, and the emerging energy levels of the
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quasi-exactly solvable potential are determined by the separation constant λn of
the coupled system of differential equations. This feature is common to all quasi-
exactly solvable potentials, and even more, one is able to construct quasi-exactly
solvable potentials from superintegrable potentials in two, three, etc., dimensions.
They are of power-like behavior, or powers of trigonometric, hyperbolic, and
elliptic functions.

However, there does not exist a theory of the corresponding wave functions,
which are determined by terminating three-term recursion relations for the bound
states and nonterminating three-term recursion relations for the scattering states.
In comparison to the (con�uent) hypergeometric functions little is known about
expansion and addition theorems (with the exception of Mathieu and spheroidal
wave functions in �at space [43]). In some few cases, an interbasis expansion
is known to switch from, say, Hermite polynomials to these new wave func-
tions [35].

Summarizing, we are not able to treat systems with the structure of (2.28),
and similar with powers of trigonometric and hyperbolic functions any further.

2.1.1. Separation of V1 in the (u, v) System. We insert V1 in (2.13) and obtain

K(V1)(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)2u×

× exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣mu(u̇2 + v̇2) − 1
2u

⎛⎜⎝m

2
ω2(4u2 + v2) + κ +

λ2 − 1
4

2mv2

⎞⎟⎠
⎤⎥⎦ dt

⎫⎪⎬⎪⎭ =

=
√

v′v′′
∞∑

n=0

Ψ(RHO,λ)
n (v′′)Ψ(RHO,λ)

n (v′)K(V1)
n (u′′, u′; T ), (2.31)

with the path integral Kn(T ) given by

K(V1)
n (u′′, u′; T ) = (4u′u′′)1/4

u(t′′)=u′′∫
u(t′)=u′

Du(t)
√

2u×

× exp

⎧⎨⎩ i

�

T∫
0

[
muu̇2 − 1

2u

(
mω2u2 + κ

)
− En

2u

]
dt

⎫⎬⎭ , (2.32)

with En = �ω(2n+λ+1) and we have inserted the path integral solution for the
radial harmonic oscillator (RHO) with parameter λ and the variable v > 0. If v is
more restricted, say, v is an angular variable, additional boundary conditions must
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be imposed. However, we continue with the case v > 0. The wave functions for

the radial harmonic oscillator V (r) =
m

2
ω2 − �

2

2m

λ2 − 1/4
r2

have the form

Ψ(RHO,λ)
n (r)=

√
2m

�

n!
Γ(n + λ + 1)

r

(
mω

�
r

)λ/2

exp
(
−mω

2�
r2

)
L(λ)

n

(
mω

�
r2

)
.

(2.33)
The L

(λ)
n (z) are Laguerre polynomials [10].

At the next step we perform a space-time transformation in (2.32) by elimi-
nating the term 2u in the metric. This gives in the usual way

G(V1)
n (u′′, u′; E) =

∞∫
0

ds′′ exp
[

i

�

(
E2

2mω2
− κ − En

)
s′′
]
K(V1)

n (u′′, u′; s′′),

(2.34)
with the transformed path integral given by

K(V1)
n (u′′, u′; s′′) =

=

u(s′′)=u′′∫
u(0)=u′

Du(s) exp

{
i

�

s′′∫
0

[
m

2
u̇2 − m

2
(2ω)2

(
u − E

mω

)2
]
ds′

}
. (2.35)

This path integral of a shifted harmonic oscillator with frequency 2ω can be
solved. The corresponding Green function has the form

G(V1)
u (E; u′′, u′; E) =

√
m

2π�3ω
Γ
(

1
2
− E

2�ω

)
D− 1

2+E/2�ω×

×
(√

4mω

�
ũ>

)
D− 1

2+E/2�ω

(
−
√

4mω

�
ũ<

)
. (2.36)

Here, the Dν(z) are parabolic cylinder functions [10] and ũ = u−E/2mω2. For
the evaluation of the s′′ integration we use the involution formula

G(u′′, u′, v′′, v′; E) =
�

2πi

∫
d EGv(E; v′′, v′; E) Gu(E; u′′, u′;−E) (2.37)
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to obtain

K(V1)(u′′, u′, v′′, v′; T ) =

=

∞∫
−∞

dE

2π�
e−iET/�

√
v′v′′

∞∑
n=0

Ψ(RHO,λ)(v′′)Ψ(RHO,λ)(v′)×

× G(V1)
u

[
E; u′′, u′;

(
E2

2mω2
− κ − En

)]
. (2.38)

Solution without Boundary Condition. Let us ˇrst solve the potential problem
V1 on DI without any boundary condition on the variables. In this case the path
integral in the variable u is just a path integral for a shifted harmonic oscillator

with wave functions given by Ψ(HO)
l (ũ) with ũ = u − E/mω2. The wave

functions for the harmonic oscillator (HO) are given by the well-known form in
terms of Hermite polynomials

Ψ(HO)
n (x) =

(
mω

π�

)1/4 1√
2nn!

Hn

(√
mω

�
x

)
exp
(
− mω

2�
x2

)
. (2.39)

Evaluating the Green function G
(V1)
u we obtain the solution

K
(V1)
discr(u

′′, u′, v′′, v′; T ) =
∞∑

n=0

∞∑
l=0

√
mω2

2Eln
v′v′′ e− i ElnT/� ×

× Ψ(RHO,λ)
n (v′′)Ψ(RHO,λ)

n (v′)Ψ(HO)
l (ũ′′)Ψ(HO)

l (ũ′), (2.40)

Eln = ±
√

m�ω3(2l + 2n + 2 + λ) + 2mω2κ. (2.41)

The spectrum is degenerate in n and l, as it is known for superintegrable po-
tentials. However, this ®solution¯ is seriously �awed. If we calculate the norm
of the wave functions, we see immediately that the norm is proportional to the
energy En, which in the negative-sign case is negative, and it follows that the
Hilbert space is not properly deˇned. In the positive-sign case the norm would
be positive, however, the corresponding conˇguration space cannot be extended
to u → −∞, and this does not make sense either.

Solution with Boundary Condition. Due to the coordinate singularity for
u = 0 we must impose some boundary condition. The simplest way to incorporate
such a boundary condition is to require that the wave functions vanish at u = 0,
or generally the motion in the variable u takes place only in the half-space u > a.
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By exploiting the Dirichlet boundary conditions [12] at u = a we therefore get

G
(V1)
(x=a)(u

′′, u′, v′′, v′; E) =
√

v′v′′
∞∑

n=0

Ψ(RHO,λ)
n (v′′)Ψ(RHO,λ)

n (v′′)×

×
{

G(V1)
n (u′′, u′; E) − G

(V1)
n (u′′, a; E)G(V1)

n (a, u′; E)

G
(V1)
n (a, a; E)

}
. (2.42)

This Green function cannot be evaluated further. However, we can determine
bound states by the poles of (2.42) and obtain the quantization condition

Dνl,n

[
2
√

mω

�

(
a − El,n

mω2

)]
= 0, (2.43)

νl,n = −1
2

+
1

2ω�

(
E2

l,n

mω2
− κ − �ω(2n + λ + 1)

)
. (2.44)

According to [28] the asymptotic behavior of the energy eigenvalues is in accor-
dance with (2.41) for high-level states. The wave functions can be obtained by
taking the residuum of the curly-bracket expression in (2.42).

Our last quantization condition, however, rises a problem. It is not obvious
for us how to determine the degeneracy of the energy values which is usually
typical for superintegrable systems. The solution (2.41) has this degeneracy but
the boundary conditions are not fulˇlled and the Hilbert space is not properly
deˇned either. For solution (2.44) it is just the other way round. In the original
paper [28] this issue was not addressed any further.

We can see from the quantization condition (2.44) that for each value of the
number n a set of energy levels El,n follows, i.e., a set El,0, El,1, . . . There is
no possibility of ˇnding that a level from the set n = 0 is equal to one level of
the set n = 1, for example, Ela,0 = Elb,1 for some numbers la, lb. Therefore, we
ˇnd that the degeneracy of the energy levels is lost. The usual lore in the study
of superintegrable systems is that the statements that a potential is superintegrable
and that the spectrum of such a potential is degenerate are equivalent. Indeed,
from the SturmÄLiouville theory for differential equations, i.e., in our case the
quantum Hamiltonian, it follows that degeneracy implies superintegrability, i.e.,
additional constants of motion. However, this statement is not valid for the other
way round, and the present examples of potentials on Darboux space DI serve as
counter examples for such an attempt.

If we look at (2.42), we see that the ®lost¯ degeneracy is due to the boundary
condition for the Green function and the wave functions, respectively, for some
u > a > 0. For u = 0 the curvature of the space becomes inˇnite and a
wave function at the coordinate origin does not make sense. Depending whether
the Darboux space DI is embedded in three-dimensional space with deˇnite or
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indeˇnite metric further determines the parameter a, c.f. [28]. For a positive-
deˇnite metric, v is an angle with v ∈ [0, 2π), the two-dimensional surface making
up DI has a deˇnite boundary and it follows a = 1/2. For a negative-deˇnite
metric the boundary turns out to be constrained by a = 0. In fact, it is impossible
to extend the surface beyond u < 0, and all values from 0 to ∞ are deˇnitely
excluded. We will see that the same property holds for the potential V2.

2.2. The Superintegrable Potential V2 on DI. Next, we consider the potential
V2 on DI. First, we state the potential in the separating coordinate systems. We
have

V2(u, v) =
1
2u

[
m

2
ω2(u2 + v2) + κ1 + κ2v

]
, (2.45)

=
1
2u

[
m

2
ω2(r2 + q2) + κ1 + κ2(q cosϑ − r sin ϑ)

]
. (2.46)

2.2.1. Separation of V2 in the (u, v) System. We proceed in a similar way
as before and obtain

K(V2)(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)2u×

× exp

⎧⎨⎩ i

�

T∫
0

[
mu(u̇2 + v̇2) − 1

2u

(m

2
ω2(u2 + v2) + κ1 + +κ2v

)]
dt

⎫⎬⎭ =

=
∞∑

n=0

Ψ(HO)
n (ṽ′′)Ψ(HO)

n (ṽ′)K(V2)
n (u′′, u′; T ), (2.47)

where Ψ(HO)
n are the wave functions of a shifted harmonic oscillator with ṽ =

v + κ2/mω. Note that we have to require v ∈ �, otherwise for v cyclic, the
complicated boundary conditions have to be imposed on the solution in v. The
remaining path integral in the variable u has the form

K(V2)
n (u′′, u′; T ) = (4u′u′′)1/4

u(t′′)=u′′∫
u(t′)=u′

Du(t)
√

2u×

× exp

⎧⎨⎩ i

�

T∫
0

[
muu̇2 − 1

2u

(
m

2
ω2u2 + κ1 + �

(
n +

1
2

)
− κ2

2

2mω2

)]
dt

⎫⎬⎭ .

(2.48)
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This gives in the usual way

G(V2)
n (u′′, u′; E) =

=

∞∫
0

ds′′ exp
[
− i

�
s′′
(

κ1 + �ω

(
n +

1
2

)
− κ2

2

2mω2

)]
K(V2)

n (u′′, u′; s′′),

(2.49)

with the transformed path integral given by (ũ = u − 2E/mω2)

K(V2)
n (u′′, u′; s′′)=

u(s′′)=u′′∫
u(0)=u′

Du(s) exp

{
i

�

s′′∫
0

[
m

2
(u̇2−ω2u2)+2Eu

]
ds′

}
=

= e2is′′E/mω2
�

u(s′′)=u′′∫
u(0)=u′

Du(s) exp

[
im

2�

s′′∫
0

m

2
( ˙̃u2 − ω2ũ2)ds′

]
. (2.50)

Solution without Boundary Condition. This is again a path integral for a
shifted harmonic oscillator, and ˇrst we ignore the boundary condition for the
wave functions in the variable u for u = 0, say, we obtain the solution:

K
(V2)
discr(u

′′, u′, v′′, v′; T ) =
∞∑

n=0

∞∑
l=0

√
mω2

4Eln
v′v′′ e−iElnT/� ×

× Ψ(HO)
n (ṽ′′)Ψ(HO)

n (ṽ′)Ψ(HO)
n (ũ′′)Ψ(HO)

n (ũ′), (2.51)

Eln = ±

√
m�ω2

2

(
l + n + 1 + κ1 −

k2
2

2mω2

)
. (2.52)

This spectrum exhibits degeneracy, however the norm is again proportional to the
energy, which is negative, and therefore the Hilbert space is not properly deˇned.

Solution with Boundary Condition. If we now take into account the boundary
condition for some u = a such that the wave function vanishes for u = a, we
obtain in a similar manner as in the previous subsection:

G
(V2)
(x=a)(u

′′, u′, v′′, v′; E) =
√

v′v′′
∞∑

n=0

Ψ(HO)
n (ṽ′′)Ψ(HO)

n (ṽ′)×

×
{

G(V2)
n (u′′, u′; E) − G

(V2)
n (u′′, a; E)G(V2)

n (a, u′; E)

G
(V2)
n (a, a; E)

}
, (2.53)
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with the Green function G
(V2)
n (E) given by

G(V2)
u (E; u′′, u′; E) =

√
m

2π�3ω
Γ
(

1
2
− E

2�ω

)
×

× D− 1
2+E/2�ω

(√
4mω

�
ũ>

)
D− 1

2+E/2�ω

(
−
√

4mω

�
ũ<

)
, (2.54)

E =
2E2 + κ2

2/2
mω2

− κ1 − �ω

(
n +

1
2

)
. (2.55)

Bound states can be determined by the quantization condition

Dνl,n

[√
2mω

�

(
a − 2El,n

mω2

)]
= 0, (2.56)

νl,n = −1
2

+
1

ω�

(
2E2

ln + κ2
2/2

mω2
− κ1 − �ω

(
n +

1
2

)
. (2.57)

Again, degeneracy in the quantum numbers n and l is lost. According to [28] the
asymptotic behavior of the energy eigenvalues (2.57) is in accordance with (2.52).
The wave functions can be obtained by taking the residuum of the curly-bracket
expression in (2.55).

2.2.2. Separation of V2 in the (r, q) System. In order to set up the path
integral formulation we follow our canonical procedure. The Lagrangian and
Hamiltonian are given by, respectively:

L(r, ṙ, q, q̇) = m(r cosϑ + q sin ϑ)(ṙ2 + q̇2) − V (r, q), (2.58)

H(r, pr, q, pq) =
1

4m(r cosϑ + q sinϑ)
(p2

r + p2
q) + V (r, q). (2.59)

The canonical momenta are

pr =
�

i

(
∂

∂r
+

cosϑ

2(r cosϑ + q sin ϑ)

)
, (2.60)

pq =
�

i

(
∂

∂q
+

sin ϑ

2(r cosϑ + q sin ϑ)

)
. (2.61)

The quantum Hamiltonian has the form

H = − �
2

2m

1
2(r cosϑ + q sin ϑ)

(
∂2

∂r2
+

∂2

∂q2

)
+ V (r, q) = (2.62)

=
1

2m

1√
2(r cosϑ+q sinϑ)

(p2
r+p2

q)
1√

2(r cosϑ+q sin ϑ)
+V (r, q). (2.63)
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Using the representation (2.46) we write down the path integral for V2 in the
rotated (r, q)-coordinate system, and obtain

K(r′′, r′, q′′, q′; T ) =

r(t′′)=r′′∫
r(t′)=r′

Dr(t)

q(t′′)=q′′∫
q(t′)=q′

Dq(t)2(r cosϑ + q sinϑ)×

× exp

{
i

�

T∫
0

[
m(r cosϑ + q sin ϑ)(ṙ2 + q̇2)−

− 1
2u

(
m

2
ω2(r2 + q2) + κ1 + κ2(q cosϑ − r sin ϑ)

)]
dt

}
. (2.64)

Performing a space-time transformation in the usual way gives

G(r′′, r′, q′′, q′; E) =

∞∫
0

ds′′ e−is′′κ1/� K(r′′, r′, q′′, q′; s′′), (2.65)

with the transformed path integral K(s′′) given by

K(r′′, r′, q′′, q′; s′′) =

r(s′′)=r′′∫
r(0)=r′

Dr(s)

q(s′′)=q′′∫
q(0)=q′

Dq(s)×

× exp

{
i

�

s′′∫
0

[
m

2

(
ṙ2 + q̇2 − ω2(r2 + q2)

)
+ 2E(r cosϑ + q sin ϑ)−

− κ2(−r sin ϑ + q cosϑ)

]
ds

}
= exp

[
i

�

(
4E2 + κ2

2

2mω2
− κ1

)
s′′

]
×

× exp

⎧⎨⎩ i

�

s′′∫
0

[m
2

(
ṙ2 + q̇2) − m

2
ω2(r̃2 + q̃2)

]
ds

⎫⎬⎭ =

= exp

[
i

�

(
4E2 + κ2

2

2mω2
− �ω

(
n +

1
2

)
− κ1

)
s′′

] ∞∑
n=0

Ψ(HO)
n (q̃′′)Ψ(HO)

n (q̃′)×

×
r(s′′)=r′′∫
r(0)=r′

Dr(s) exp

⎡⎣ im

2�

s′′∫
0

(ṙ2 − ω2r̃2)ds

⎤⎦ (2.66)
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(r̃ = r − (2E cosϑ + κ2 sin ϑ)/mω2, q̃ = q − (2E sin ϑ− κ2 cosϑ)/mω2). Here,
we have inserted the path-integral solution for the shifted harmonic oscillator in
the variable q.

Solution with Boundary Condition. For the path integral for the shifted
harmonic oscillator in the variable r we now take care that the variable u is
deˇned only in the half-space u � a. Setting, for instance, in the deˇnition of
the (r, q) system ϑ = 0 yields r = u and q = v. For ϑ = π/2 the roles of r and
q are reversed. In the view of the previous paragraph of V2 in the (u, v) system,
we impose on the Green function in r the boundary condition r � a and obtain
in this limiting case for the bound states the quantization condition

Dνl,n

[√
2mω

�

(
a − 2El,n

mω2

)]
= 0, (2.67)

νn = −1
2

+
1

ω�

(
2E2

ln + κ2
2/2

mω2
− κ1 − �ω

(
n +

1
2

))
. (2.68)

This is the result of (2.57). The quantization conditions of (2.57) and (2.68) are
identical as it should be.

2.3. The Superintegrable Potential V3 on DI. Next, we consider the po-
tential V3 on DI. First, we state the potential in the separating coordinate sys-
tems. We have

V3(u, v) =
1
2u

�
2v2

0

2m
, (2.69)

=
1

ξ2 − η2 + 2c

�
2v2

0

2m
, (2.70)

=
1

2(r cosϑ + q sin ϑ)
�

2v2
0

2m
. (2.71)

This potential can be considered as a special case either of V1 or V2, respectively.
However, it has an additional conserved quantum number, i.e., K = pv. Therefore
we will sketch only the solution in the (u, v) system. Proceeding in the usual
way, we obtain for the path integral (assuming v cyclic):

K(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)2u×

× exp

⎧⎨⎩ i

�

T∫
0

[
mu(u̇2 + v̇2) − 1

2u

�
2v2

0

2m

]
dt

⎫⎬⎭ = (2.72)
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= (4u′u′′)1/4
∞∑

l=0

eil(v′′−v′)

2π

u(t′′)=u′′∫
u(t′)=u′

Du(t)
√

2u×

× exp

⎧⎨⎩ i

�

T∫
0

[
muu̇2 − 1

2u

�
2

2m
(l2 + v2

0)
]

dt

⎫⎬⎭ . (2.73)

We observe that the only effect is the change in the quantum number l in compar-
ison to the v0 = 0 case. Using the solution of [15] we get for the corresponding
Green function

G(u′′, u′, v′′, v′; E) =
∞∑

l=−∞

eil(v′′−v′)

2π

4m

3�

[(
u′− l̃2�

2

4mE

)(
u′′− l̃2�

2

4mE

)]1/2

×

×

⎡⎢⎢⎢⎣Ĩ1/3

(
u< − l̃2�2

4mE

)
K̃1/3

(
u> − l̃2�

2

4mE

)
−

−
Ĩ1/3

(
a − l̃2�2

4mE

)
K̃1/3

(
a − l̃2�2

4mE

)K̃1/3

(
u′ − l̃2�

2

4mE

)
K̃1/3

(
u′′ − l̃2�

2

4mE

)⎤⎥⎥⎥⎦ . (2.74)

Ĩν(z) denotes

Ĩν(z) = Iν

(
4
√
−mE

3�
z3/2

)
,

with K̃ν(z) similarly, and l̃2 = l2 + v2
0 . Due to the relation satisˇed by the Airy

function [1, 10], K±1/3(ζ) = π
√

3/z Ai(z), z = (3ζ/2)2/3, and the observation
that for E < 0 the argument of Ai(z) is always greater than zero, we infer that
in this case there are no bound states. For E > 0 there is no real bound state
solution, either. This concludes the discussion.

3. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE DII

In this section we consider superintegrable potentials on the Darboux space
DII (1.2). The following four coordinate systems separate the Schréodinger equa-
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tion for the free motion:

((u, v)-system:) x =
1
2
(v + iu), y =

1
2
(v − iu), (3.1)

(Polar:) u = � cosϑ, v = � sinϑ

(
� > 0, ϑ ∈

(
− π

2
,
π

2

))
, (3.2)

(Parabolic:) u = ξη, v =
1
2
(ξ2 − η2) (ξ > 0, η > 0), (3.3)

(Elliptic:) u = d coshω cosϕ, v = d sinh ω sin ϕ(
ω > 0, ϕ ∈

(
− π

2
,
π

2

))
. (3.4)

2d is the interfocal distance in the elliptic system. For convenience we also display
in the following the special case of the parameters a = −1 and b = 1 [27]. The
inˇnitesimal distance is given in these four cases (note that the metric gives us
the additional requirement u > 0):

ds2 =
bu2 − a

u2
(du2 + dv2), (3.5)

(Polar:) =
b�2 cos2 ϑ − a

�2 cos2 ϑ
(d�2 + �2dϑ2), (3.6)

(Parabolic:) =
bξ2η2 − a

ξ2η2
(ξ2 + η2)(dξ2 + dη2) =

=
[(

bξ2 − a

ξ2

)
+
(

bη2 − a

η2

)]
(dξ2 + dη2), (3.7)

(Elliptic:) =
bd2 cosh2 ω cos2 ϕ − a

cosh2 ω cos2 ϕ
(cosh2 ω − cos2 ϕ)(dω2 + dϕ2) =

=
[(

bd2 cosh2 ω +
a

cosh2 ω

)
−

−
(

bd2 cos2 ϕ +
a

cos2 ϕ

)]
(dω2 + dϕ2). (3.8)

We can see that the case a = −1, b = 0 leads to the case of the Poincar
e upper
half-plane u > 0 endowed with the metric (3.5) [13], i.e., the two-dimensional
hyperboloid Λ(2) in horicyclic coordinates. The parabolic case corresponds to the
semicircular-parabolic system and the elliptic case to the ellipticÄparabolic system
on the two-dimensional hyperboloid. On the other hand, the case a = 0, b = 1
just gives the usual two-dimensional Euclidean plane with its four coordinate
systems which allow separation of variables of the LaplaceÄBeltrami equation,
i.e., the Cartesian, polar, parabolic, and elliptic system. Hence, the Darboux space
II contains as special cases a space of constant zero curvature (Euclidean plane)
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and a space of constant negative curvature (the hyperbolic plane). This includes
the emerging of coordinate systems in a �at space from curved spaces.

Table 3. Constants of motion and limiting cases of coordinate systems on DII

Metric Constant DII Λ(2) (a = −1, E2 (a = 0,
of motion b = 0) b = 1)

bu2 − a
u2 (du2 + dv2) K2 (u, v) Horicyclic Cartesian

system

b�2 cos2 ϑ − a
�2 cos2 ϑ

(d�2 + dϑ2) X2 Polar Equidistant Polar

bξ2η2 − a
ξ2η2 (ξ2 + η2)(dξ2 + dη2) X1 Parabolic Semicircular Parabolic

parabolic

bd2 cosh2 ω cos2 ϕ − a
cosh2 ω cos2 ϕ

×
×(cosh2 ω − cos2 ϕ)(dω2 + d2ϕ2)

X2 + d2K2 Elliptic EllipticÄparabolic Elliptic

We ˇnd for the Gaussian curvature in the (u, v) system

G =
a(a − 3bu2)
(a − 2bu2)3

. (3.9)

For b = 0 we have G = 1/a which is indeed a space of constant curvature, and
the quantity a measures the curvature. In particular, for the unit-two-dimensional
hyperboloid we have G = 1/a, with a = −1 as the special case of Λ(2). In the
following we will assume that a < 0 in order to assure the positive deˇniteness
of the metric (1.2).

The following constants of motion (see Table 3) are introduced on DII

(without potential):

K = pv, (3.10)

X1 =
2v(p2

v − u2p2
u)

bu2 − a
+ 2upupv, (3.11)

X2 =
(v2 − u4)p2

v + u2(1 − v2)p2
u

bu2 − a
+ 2uvpupv. (3.12)

They satisfy the Poisson algebra relations

{K, X1} = 2(K2 − H̃0), {K, X2} = X1, {X1, X2} = 4KX2

(3.13)
and the relation

X2
1 − 4K2X2 + 4H̃0X2 − 4H̃2

0 = 0. (3.14)
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The quantum analogues have the form (again with i, �, 2m)

K = ∂v, (3.15)

X1 =
2v

bu2 − a
(∂2

v − u2∂2
u) + 2u∂u∂v, (3.16)

X2 =
1

bu2 − a

[
(v2 − u4)∂2

v + u2(1 − v2)∂2
u

]
+

+ 2uv∂u∂v + u∂u + v∂v − 1
4

(3.17)

and satisfy the operator relation (Ĥ0 Å the Hamiltonian operator, {, } Å the
anticommutator)

X̂2
1 − 2{K̂2, X̂2} + 4Ĥ0X̂2 − 4Ĥ2

0 + 4K̂2 = 0 (3.18)

and the commutation relations

[K̂, X̂1] = 2(K̂2 − Ĥ0), [K̂, X̂2] = X̂1, [X̂1, X̂2] = 2{K̂, X̂2}. (3.19)

We consider the following potentials on DII:

V1(u, v) =
bu2 − a

u2

⎡⎢⎣m

2
ω2(u2 + 4v2) + k1v +

�
2

2m

k2
2 − 1

4
u2

⎤⎥⎦ , (3.20)

V2(u, v) =
bu2 − a

u2

⎡⎢⎣m

2
ω2(u2 + v2) +

�
2

2m

⎛⎜⎝k2
1 − 1

4
u2

+
k2
2 − 1

4
v2

⎞⎟⎠
⎤⎥⎦, (3.21)

V3(u, v) =
bu2 − a

u2

2m√
u2 + v2

⎡⎢⎣−α +
�

2

2m

⎛⎜⎝ k2
1 − 1

4√
u2 + v2 + v

+

+
k2
2 − 1

4√
u2 + v2 − v

⎞⎟⎠
⎤⎥⎦ , (3.22)

V4(u, v) =
bu2 − a

u2

�
2

2m
v2
0 . (3.23)

In Table 4 we have listed the properties of these potentials (the coordinate systems
where an explicit path-integral evaluation is possible are underlined).
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Table 4. Separation of variables for the superintegrable potentials on DII

Poten- Constants of motion Separating
tial coordinate

system

V1 R1 = X1 + mω2v

(
u2 +

u2 + 4v2

bu2 − a

)
+ (u, v)

+
k1

2

(
u2 +

4v2

bu2 − a

)
− �

2
k2
2 − 1

4
m

v

bu2 − a

system

R2 = K2 + 2mω2v2 + k1v Parabolic

V2 R1 = X2+ (u, v)

+
u2 + v2

bu2 − a

[
m

2
ω2(u2 + v2) − �

2

2m

(
k2
1 − 1

4
− (k2

2 − 1

4
)
u2

v2

)]
system

R2 = K2 +
m

2
ω2v2 +

�
2

2m

k2
2 − 1

4
v2

Polar

Elliptic

V3 R1 = X1+ Polar

+

−αξ2
(
η4 + 1

)
+

�
2

2m

(
k2
1−

1

4

)(
η4 + 1

)
− �

2

2m

(
k2
2 − 1

4

)
(ξ4 + 1)

(bξ2η2 − a) (ξ2 + η2)
Parabolic

R2 = X2− Displaced

−
α(ξ2 + η2) +

�
2

2m

(
k2
1 − 1

4

)
(ξ4 − 1) +

�
2

2m

(
k2
2 − 1

4

)
(ξ4 − 1)

4(bξ2η2 − a)

elliptic

V4 R1 = X1 +
�

2v2
0

m

v

bu2 − a
(u, v)

R2 = X2 +
�

2v2
0

2m

u2 + v2

bu2 − a
system

R3 = K = pv Polar
Parabolic
Elliptic

3.1. The Superintegrable Potential V1 on DII. We state the potential V1 in
the respective coordinate systems:

V1(u, v) =
bu2 − a

u2

⎡⎢⎣m

2
ω2(u2 + 4v2) + k1v +

�
2

2m

k2
2 − 1

4
u2

⎤⎥⎦ = (3.24)
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=
bu2−a

u2

1
ξ2+η2

⎡⎢⎣m

2
ω2(ξ6+η6)− k1

2
(ξ4 − η4)−�

2
k2
1−

1
4

2m

(
1
ξ2

+
1
η2

)⎤⎥⎦ .

(3.25)
In a �at space, the corresponding potential is known as the Holt potential [18].
It consists of a radial harmonic oscillator in one variable (here in the variable u),
and a harmonic oscillator plus a linear term in the second variable (here in the
variable v). There is an analogue of this potential on the two-dimensional hyper-
boloid [20], which separates in horicyclic and semicircular parabolic coordinates,
the limiting cases of the (u, v) system and the parabolic coordinates, respectively.

3.1.1. Separation of V1 in the (u, v) System. We start with the (u, v)-co-
ordinate system. We formulate the classical Lagrangian and Hamiltonian, respec-
tively:

L(u, u̇, v, v̇) =
m

2
bu2 − a

u2
(u̇2 + v̇2) − V (u, v), (3.26)

H(u, pu, v, pv) =
1

2m

u2

bu2 − a
(p2

u + p2
v) + V (u, v). (3.27)

The canonical momenta are

pu =
�

i

(
∂

∂u
+

bu

bu2 − a
− 1

u

)
, pv =

�

i

∂

∂v
. (3.28)

The quantum Hamiltonian has the form

H = − �
2

2m

u2

bu2 − a

(
∂2

∂u2
+

∂2

∂v2

)
+ V (u, v) = (3.29)

=
1

2m

u√
bu2 − a

(p2
u + p2

v)
u√

bu2 − a
+ V (u, v). (3.30)

Therefore the path integral for V1 in the (u, v) system has the following form:

K(V1)(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)
bu2 − a

u2
exp×

×

⎛⎜⎝ i

�

T∫
0

⎧⎪⎨⎪⎩m

2f
(u̇2 + v̇2)− f

⎡⎢⎣m

2
ω2(u2 + 4v2) + k1v +

�
2

2m

k2
2 − 1

4
u2

⎤⎥⎦
⎫⎪⎬⎪⎭ dt

⎞⎟⎠ ,

(3.31)

and we have abbreviated f = u2/(bu2 − a). First, we separate the v-path
integration according to
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v(t′′)=v′′∫
v(t′)=v′

Dv(t) exp

⎧⎨⎩ i

�

T∫
0

[
m

2
v̇2 −

(
m

2
ω2v2 + k1v

)]
dt

⎫⎬⎭ =

=
∞∑

n=0

√
2mω

π�

1
2nn!

exp
[
− mω

�
(ṽ′ 2 + ṽ′′ 2)

]
×

× Hn

(√
2mω

�
ṽ′

)
Hn

(√
2mω

�
ṽ′′

)
e−iEnT/�, (3.32)

En = �ω

(
n +

1
2

)
+

k2
1

8mω2
, (3.33)

with ṽ = v + k1/4mω, which is the solution for the shifted harmonic oscillator.

Writing for short the wave functions of the shifted harmonic oscillator by Ψ(HO)
n ,

we thus obtain:

K(V1)(u′′, u′, v′′, v′; T ) =
∞∑

n=0

Ψ(HO)
n (ṽ′)Ψ(HO)

n (ṽ′′)K(V1)
n (u′′, u′; T ), (3.34)

K(V1)
n (u′′, u′; T ) =

[
f(u′)f(u′′)]−1/4

u(t′′)=u′′∫
u(t′)=u′

Du(t)

√
bu2 − a

u2
×

× exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣m

2f
u̇2 − f

⎛⎜⎝m

2
ω2u2 +

�
2

2m

k2
2 − 1

4
u2

⎞⎟⎠+ En

⎤⎥⎦ dt

⎫⎪⎬⎪⎭ . (3.35)

We obtain in the usual way by means of a space-time transformation

G(V1)
n (u′′, u′; E) =

∞∫
0

K(V1)
n (u′′, u′; s′′) exp

[
i

�
(bE − En)s′′

]
(3.36)

with the transformed path integral given by

K(V1)
n (u′′, u′; s′′)r =

u(s′′)=u′′∫
u(0)=u′

Du(s)×

× exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(u̇2 − ω2u2) − �

2

2m

k2
2 + 2maE/�

2 − 1
4

u2

⎤⎥⎦ ds

⎫⎪⎬⎪⎭ = (3.37)
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=
mω

√
u′u′′

i� sinωs′′
exp
[
− mω

2i�
(u′2 + u′′2) cotωs′′

]
Iλ

(
mωu′u′′

i� sinωs′′

)
=

=
∞∑
l=0

Ψ(RHO,λ)
l (u′)Ψ(RHO,λ)

l (u′′) eis′′ω(2l+λ+1). (3.38)

Alternatively we have for the Green function (λ2 = k2
2 + 2maE/�

2)

G(V1)
n (u′′, u′; E) =

Γ
[
1
2

(
1 + λ − 1

�ω
(bE − En)

)]
�ω

√
u′u′′ Γ(1 + λ)

×

× W bE−En
2�ω , λ

2

(
mω

�
u2

>

)
M bE−En

2�ω , λ
2

(
mω

�
u2

<

)
. (3.39)

The Wμ,ν(z) are Whittaker functions [10]. We can either evaluate the s′′ inte-
gration or analyze the poles of the Green function. The latter gives the poles in
terms of the poles of the Γ function yielding the quantization condition for the
bound states Eln:

1
2

(
1 + λ +

En − bEln

�ω

)
= −l, (3.40)

which is equivalent to

�ω

(
2l + n +

3
2

+

√
k2
2 +

2maEln

�2

)
+

k2
1

8mω2
− bEln = 0. (3.41)

Let us analyze this equation in more detail. We obtain similar equations for
the other potentials, and the present case serves as a standard example for those
which come later. Let us note that the speciˇc form of the discrete spectrum and
the corresponding wave functions depend on the special choice of the parameters
a and b and the special space of revolution one considers. For instance, the plus
respectively the minus sign in the square-root expression below may be allowed
giving positive normed states for some cases, and for others the minus sign may
be allowed. Similarly, the radicand of the square root can become negative and
we may obtain semibound states.

The quadratic equation in Eln gives (εln = (2l + n + 3/2))

Eln =
�ωεln

b
+

k2
1

8mbω2
+

+
amω2

b
± 1

b2

√
a2m2ω4 + b2ω2�2k2

2 + 2abm�ω3εln +
ab

4
k2
1 , (3.42)
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(l, n → ∞) � �ω

b

(
2l + n +

3
2

)
+

k2
1

8mbω2
+

a

b
mω2 + O(

√
εln), (3.43)

(a = −1, b = 1) =

= �ωεln +
k2
1

8mω2
− mω2 ±

√
m2ω4 + ω2�2k2

2 − 2m�ω3εln − k2
1

4
. (3.44)

In the latter (special) case this gives bound states for m2ω4 + �
2ω2

�
2k2

2 −
2m�ω3εln − k2

1/4 � 0, i.e., the number of levels is determined by

2l + n � �k2
2

2mω
+

mω

2�
− k2

1

8m�ω3
− 3

2
, (3.45)

otherwise we may have semibound states, that is, bound states with energy �(Eln)
and with a decay width 	(Eln). They are located in the continuous spectrum. In
particular, we have a ground state

E00 =
3�ω

2b
+

k2
1

8mbω2
+

amω2

b
± 1

b2

√
a2m2ω4 + b2ω2�2k2

2 + 3abm�ω3 +
ab

4
k2
1 .

(3.46)
Note that if the radicand of the square root equals the upper bound of the energy
levels, for the case ab < 1 we get

Eupper-bound =
b�2k2

2

2|ab|m +
maω2

|ab|

(
1
2b

− 1
)

= (3.47)

=
�

2k2
2

2m
− m

2
ω2 (a = −1, b = 1). (3.48)

The spectrum is similar to the spectrum of the Holt potential: Flat Euclidean
space corresponds to a = 0, then (3.42) is identical with the result of [18].

Note that different energy spectra emerge depending on the signs of the
parameters a and b. For both parameters positive, the discrete spectrum cannot be
simultaneously located in the continuous spectrum. For b negative, the properties
of the space DII must be further analyzed if a discrete spectrum with negative
inˇnite values is allowed (which is the case for the single-sheeted hyperboloid).

In order to extract the continuous spectrum we consider the dispersion rela-
tion [11]

Iλ(z) =
2
π2

∞∫
0

dp sinh πp

p2 − λ2
Kip(z). (3.49)
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This gives

G(V1)
n (u′′, u′; E) =

√
u′u′′

∞∫
0

ωds′′

i� sinωs′′
×

× exp
[

i

�
s′′(bE − EN ) − mω

2i�
(u′2 + u′′2) cotωs′′

]
Iλ

(
mωu′u′′

i� sinωs′′

)
=

=
�

2

π2

1
2mω

√
u′u′′

∞∫
0

dp sinhπp

�
2

2m|a| (p
2 + k2

2) − E

×

×
∣∣∣∣Γ [1

2
(1 + ip− bE − En

�ω
)
]∣∣∣∣2 W bE−En

2�ω , ip
2

(
mω

�
u′′2
)

W bE−En
2�ω , ip

2

(
mω

�
u′2
)

.

(3.50)

The continuous spectrum has the form

Ep =
�

2

2m|a|(p
2 + k2

2), (3.51)

and the wave functions are

Ψpn(u)=
�

π

√
p sinhπp

2mωu
Γ
[
1
2

(
1+ip− bE−En

�ω

)]
W bE−En

2�ω , ip
2

(
mω

�
u2

)
. (3.52)

Note that for k2 = ±1/2, i.e., the radial potential equals zero, we obtain the case
from the free motion on DII.

Finally, we state the kernel K(V1)(T ) and the Green function G(V1)(E) which
have the form

K(V1)(u′′, u′, v′′, v′; T ) =
∞∑

n=0

Ψ(HO)
n (ṽ′)Ψ(HO)

n (ṽ′′)×

×
{ ∞∑

l=0

N2
lnΨ(RHO,λ)

l (u′)Ψ(RHO,λ)
l (u′′) e−iTEln/� +

+

∞∫
0

dpΨ∗
pn(u′′)Ψpn(u′) e−iTEp/�

}
, (3.53)
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G(V1)(u′′, u′, v′′, v′; E) =
∞∑

n,l=0

Ψ(HO)
n (ṽ′)Ψ(HO)

n (ṽ′′)×

×
Γ
[
1
2

(
1 + λ − 1

�ω
(bE − En)

)]
�ω

√
u′u′′ Γ(1 + λ)

W bE−En
2�ω , λ

2

(
mω

�
u2

>

)
M bE−En

2�ω , λ
2

(
mω

�
u2

<

)
.

(3.54)

The normalization constant Nln emerges form evaluating the residuum of the
Green function (3.39) at the energy Eln as given in (3.42).

3.1.2. Separation of V1 in Parabolic Coordinates on DII. The classical
Lagrangian and Hamiltonian are given by

L(ξ, ξ̇, η, η̇) =
m

2
bξ2η2 − a

ξ2η2
(ξ2 + η2)(ξ̇2 + η̇2) − V (ξ, η), (3.55)

H(ξ, pξ, η, pη) =
m

2
ξ2η2

bξ2η2 − a

p2
ξ + p2

η

ξ2 + η2
+ V (ξ, η). (3.56)

The canonical momenta are given by

pξ =
�

i

(
∂

∂ξ
+

bξ + a/ξ3

√
g

)
, (3.57)

pη =
�

i

(
∂

∂η
+

bη + a/η3

√
g

)
. (3.58)

The quantum Hamiltonian has the form

H = − �
2

2m

(
bξ2 + bη2 − a

ξ2
− a

η2

)−1(
∂2

∂ξ2
+

∂2

∂η2

)
+ V (ξ, η) = (3.59)

=
1

2m

(
bξ2+bη2− a

ξ2
− a

η2

)−1/2

(p2
ξ +p2

η)
(

bξ2+bη2− a

ξ2
− a

η2

)−1/2

+V (ξ, η).

(3.60)
We obtain for the path integral in parabolic coordinates, c.f. (3.25), (1/f(ξ, η) =
(bξ2η2 − a)/ξ2η2):
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K(V1)(ξ′′, ξ′, η′′, η′; T ) =

ξ(t′′)=ξ′′∫
ξ(t′)=ξ′

Dξ(t)

η(t′′)=η′′∫
η(t′)=η′

Dη(t)
bξ2η2 − a

ξ2η2
(ξ2 + η2)×

× exp

⎧⎨⎩ i

�

T∫
0

[
m

2f
(ξ2 + η2)(ξ̇2 + η̇2)−

−f

⎛⎜⎝m

2
ω2(u2 + 4v2) + k1v +

�
2

2m

k2
2 − 1

4
u2

⎞⎟⎠
⎤⎥⎦ dt

⎫⎪⎬⎪⎭ . (3.61)

Performing the space-time transformation yields

G(V1)(ξ′′, ξ′, η′′, η′; E) =

∞∫
0

ds′′K(V1)(ξ′′, ξ′, η′′, η′; s′′) (3.62)

with the transformed path integral given by

K(V1)(ξ′′, ξ′, η′′, η′; s′′) =

ξ(s′′)=ξ′′∫
ξ(0)=ξ′

Dξ(s)×

× exp

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
(ξ̇2−ω2ξ6) − k1

2
ξ4 − Ebξ2 − �

2

2m

k2
1 + 2maE/�

2 − 1
4

ξ2

⎞⎟⎠ ds

⎤⎥⎦×

×
η(s′′)=η′′∫
η(0)=η′

Dη(s)×

× exp

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
(η̇2−ω2η6) +

k1

2
η4−Ebη2 − �

2

2m

k2
1+2maE/�

2 − 1
4

η2

⎞⎟⎠ ds

⎤⎥⎦.

(3.63)

These path integrals are due to the anharmonic terms in ξ and η not tractable, a
well-known fact due to its relation to the Holt potential.

3.2. The Superintegrable Potential V2 on DII. We consider the potential
V2. The corresponding quantum mechanical problem is separable in the (u, v)
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system, in polar and elliptic coordinates. First, we state the potential V2 in the
respective coordinate systems:

V2(u, v) =
u2

bu2 − a

⎡⎢⎣m

2
ω2(u2 + v2) +

�
2

2m

⎛⎜⎝k2
1 − 1

4
u2

+
k2
2 − 1

4
v2

⎞⎟⎠
⎤⎥⎦= (3.64)

=
�2 cos2 ϑ

b�2 cos2 ϑ − a

⎡⎢⎣m

2
ω2�2 +

�
2

2m�2

⎛⎜⎝k2
1−

1
4

cos2 ϑ
+

k2
2−

1
4

sin2 ϑ

⎞⎟⎠
⎤⎥⎦= (3.65)

=
f

cosh2 ω − cos2 ϕ

[m
2

d2ω2(cosh2 ω sinh2 ω + sin2 ϕ cos2 ϕ)+

+
�

2

2md2

⎛⎜⎝k2
1 − 1

4
cos2 ϕ

+
k2
2 − 1

4
sin2 ϕ

−
k2
1 − 1

4
cosh2 ω

+
k2
2 − 1

4
sinh2 ω

⎞⎟⎠
⎤⎥⎦ . (3.66)

The potential V2 can be interpreted as a two-dimensional oscillator with radial
term similarly as its analogue in �at space. Note that a Higgs-like harmonic
oscillator on DII could have a form according to (with the limiting case the
Higgs oscillator on the hyperboloid)

VHiggs =
m

2
ω2 u2

bu2 − a

(
1 − 4u2

(1 + u2 + v2)2

)
=

m

2
ω2 �2 cos2 ϑ

b�2 cos2 ϑ − a
×

×
(

1 − 4�2 cos2 ϑ

(1 + �2)2

)
=

m

2
ω2

(
b e2τ2

cosh2 τ1

− a

)−1(
1 − 1

cosh2 τ1 cosh2 τ2

)
,

(3.67)

with � = eτ2 , cosϑ = 1/ cosh τ1, τ1,2 being equidistant coordinates. The corre-
sponding path integral cannot be solved, and VHiggs is not superintegrable in DII

either.
3.2.1. Separation of V2 in the (u, v) System. We start with the consideration

in the (u, v) system, and the path integral has the form

K(V2)(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)
bu2 − a

u2
×

×exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣m

2f
(u̇2+v̇2)−f

m

2
ω2(u2+v2)−f

�
2

2m

⎛⎜⎝k2
1 − 1

4
u2

+
k2
2−

1
4

v2

⎞⎟⎠
⎤⎥⎦dt

⎫⎪⎬⎪⎭ =

(3.68)
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=
∞∑

n=0

Ψ(RHO,k2)
n (v′′)Ψ(RHO,k2)

n (v′)
[
f(u′)f(u′′)]−1/4

u(t′′)=u′′∫
u(t′)=u′

Du(t)

√
bu2 − a

u2
×

× exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣m

2f
u̇2 − f

⎛⎜⎝m

2
u2 +

�
2

2m

k2
1 − 1

4
u2

+ En

⎞⎟⎠
⎤⎥⎦ dt

⎫⎪⎬⎪⎭ , (3.69)

where En = �ω(2n + |k2| + 1). Performing a space-time transformation in the
usual way yields:

G(V2)
n (u′′, u′; E) =

∞∫
0

ds′′ eis′′(bE−En)/� K(V2)
n (u′′, u′; s′′) (3.70)

with the transformed path integral given by

K(V2)
n (u′′, u′; s′′) =

=

u(s′′)=u′′∫
u(0)=u′

Du(s) exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(u̇2 − ω2u2) − �

2

2m

λ2
1 −

1
4

u2

⎤⎥⎦ ds

⎫⎪⎬⎪⎭ , (3.71)

where λ2
1 = k2

1 + 2maE/�
2. This path integral has almost the same form as the

path integral (3.37), the only difference being another En. Thus we can write the
solution as follows:

K(V2)
n (u′′, u′; s′′)=

mω
√

u′u′′

i� sinωs′′
exp
[
−mω

2i�
(u′2+u′′2) cotωs′′

]
Iλ1

(
mωu′u′′

i� sinωs′′

)
=

=
∞∑
l=0

Ψ(RHO,λ1)
l (u′)Ψ(RHO,λ1)

l (u′′) eis′′ω(2l+λ1+1)], (3.72)

and alternatively we have for the Green function

G(V2)
n (u′′, u′; E)=

Γ
[
1
2

(
1 + λ1 −

1
�ω

(bE − En)
)]

�ω
√

u′u′′ Γ(1 + λ1)
×

× W bE−En
2�ω ,

λ1
2

(
mω

�
u2

>

)
M bE−En

2�ω ,
λ1
2

(
mω

�
u2

<

)
. (3.73)

We can either evaluate the s′′ integration or analyze the poles of the Green
function. The latter gives the poles in terms of the poles of the Γ function
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yielding the quantization condition for the bound states Eln:

1
2

(
1 + λ1 +

En − bEln

�ω

)
= −l, (3.74)

which is equivalent to

�ω

(
2l + 2n + 2 + |k2| +

√
k2
1 +

2maEln

�

)
− bEln = 0. (3.75)

The quadratic equation in Eln gives (εln = (2l + 2n + 2 + |k2|))

Eln =
�ωεln

b
+

a

b
mω2 − 1

b2

√
a2m2ω4 + b2�2ω2k2

1 + 2abm�ω3εln, (3.76)

(a=−1, b=1) = �ωεln − mω2 −
√

m2ω4 + �2ω2k2
1 − 2mω2εln, (3.77)

(l, n → ∞) � �ωεln − mω2. (3.78)

This gives for the special case the bound states for m2ω4+�
2ω2k2

1−2mω2εln � 0,
otherwise we can infer for semibound states, that is, bound states with energy
�(Eln) and with a decay width 	(Eln). They are located in the continuous
spectrum. Again, the limiting case of �at space emerges from a = 0, b = 1

Eln = �ω(2l + 2n + |k1| + |k2| + 2). (3.79)

Finally, we state the kernel K(V2)(T ) and the Green function G(V2)(E) which
have the form

K
(V2)
disc (u′′, u′, v′′, v′; T ) =

∞∑
n,l=0

N2
ln×

× Ψ(RHO,k2)
n (v′)Ψ(RHO,k2)

n (v′′)Ψ(RHO,λ1)
l (u′)Ψ(RHO,λ1)

l (u′′) e−iTEln/�,
(3.80)

G(V2)(u′′, u′, v′′, v′; E) =
∞∑

n=0

Ψ(RHO,k2)
n (v′)Ψ(RHO,k2)

n (v′′)×

×
Γ
[
1
2

(
1+λ1−

1
�ω

(bE−En)
)]

�ω
√

u′u′′ Γ(1+λ1)
W bE−En

2�ω ,
λ1
2

(
mω

�
u2

>

)
×

× M bE−En
2�ω ,

λ1
2

(
mω

�
u2

<

)
. (3.81)
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The normalization constant Nln emerges from evaluating the residuum of the
Green function (3.73) at the energy Eln as given in (3.76). We omit the contin-
uous part of K(V2) due to its similarity to the case of V1.

3.2.2. Separation of V2 in Polar Coordinates. The potential V2 is also sep-
arable in polar coordinates on DII. In polar coordinates the classical Lagrangian
and Hamiltonian are given by

L(r, ṙ, ϑ, ϑ̇) =
m

2

(
b − a

�2 cos2 ϑ

)
(�̇2 + �2ϑ̇2) − V (�, ϑ), (3.82)

H(�, p
, ϑ, pϑ) =
1

2m

(
b − a

�2 cos2 ϑ

)−1(
p2


 +
1
�2

p2
ϑ

)
+ V (�, ϑ). (3.83)

The momentum operators are

p
 =
�

i

[
∂

∂�
+
(

b� cos2 ϑ

b cos2 ϑ�2 − a
− 1

2�

)]
, (3.84)

pϑ =
�

i

[
∂

∂ϑ
+
(

tan ϑ − b�2 sin ϑ cosϑ

b�2 cos2 ϑ − a

)]
, (3.85)

and the quantum Hamiltonian is given by

H = − �
2

2m

(
b − a

�2 cos2 ϑ

)−1(
∂2

∂�2
+

1
�

∂

∂�
+

1
�2

∂2

∂ϑ2

)
+V (�, ϑ)= (3.86)

=
1

2m
f1/2

(
p2


 +
1
�2

p2
ϑ

)
f1/2 + V (�, ϑ) − f

�
2

8m�2
(3.87)

with the abbreviation 1/f = b − a/�2 cos2 ϑ. Hence, we get for the path integral

K(V2)(�′′, �′, ϑ′′, ϑ′; T ) =


(t′′)=
′′∫

(t′)=
′

D�(t)�

ϑ(t′′)=ϑ′′∫
ϑ(t′)=ϑ′

Dϑ(t)
(

b − a

�2 cos2 ϑ

)
×

× exp

⎛⎜⎝ i

�

T∫
0

⎧⎪⎨⎪⎩m

2f
(�̇2 + �2ϑ̇2)−

−f

⎡⎢⎣m

2
ω2�2 +

�
2

2m�2

⎛⎜⎝k2
1 − 1

4
cos2 ϑ

+
k2
2 − 1

4
sin2 ϑ

+
1
4

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭ dt

⎞⎟⎠ . (3.88)

Performing the space time transformation with the function f yields

G(V2)(�′′, �′, ϑ′′, ϑ′; E) =

∞∫
0

ds′′ eis′′bE/� K(V2)(�′′, �′, ϑ′′, ϑ′; s′′) (3.89)
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and the transformed path integral given by (λ2
1 = k2

1 + 2maE/�
2)

K(V2)(�′′, �′, ϑ′′, ϑ′; s′′) =


(s′′)=
′′∫

(0)=
′

D�(s)

ϑ(s′′)=ϑ′′∫
ϑ(0)=ϑ′

Dϑ(s)�×

× exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(�̇2 + �2ϑ̇2) − m

2
ω2�2−

− �
2

2m�2

⎛⎜⎝λ2
1 −

1
4

cos2 ϑ
+

k2
2 − 1

4
sin2 ϑ

+
1
4

⎞⎟⎠
⎤⎥⎦ ds

⎫⎪⎬⎪⎭ = (3.90)

=
1√
�′�′′

∞∑
n=0

Φ(λ1,k2)
n (ϑ′′)Φ(λ1,k2)

n (ϑ′)×

×
ρ(s′′)=ρ′′∫
ρ(0)=ρ′

Dρ(s) exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(�̇2 − ω2�2) − �

2

2m

λ2
2 −

1
4

�2

⎤⎥⎦ ds

⎫⎪⎬⎪⎭ = (3.91)

=
1√
�′�′′

∞∑
n=0

Φ(λ1,k2)
n (ϑ′′)Φ(λ1,k2)

n (ϑ′)×

×
∞∑

l=0

Ψ(RHO,λ2)
l (�′′)Ψ(RHO,λ2)

l (�′) e−is′′El/� . (3.92)

Here we denote El = �ω(2l + λ2 + 1), and the quantity λ2 is deˇned by means
of the energy spectrum of the PéoschlÄTeller spectrum

�
2

2m
(2n + 1 + λ1 + |k2|) =

�
2

2m
λ2

2. (3.93)

The Φ(k1,k2)
n (β) are the wave functions of the PéoschlÄTeller potential, which are

given by [2, 5, 8, 39]

V (x) =
�

2

2m

⎛⎜⎝α2 − 1
4

sin2 x
+

β2 − 1
4

cos2 x

⎞⎟⎠ , (3.94)

Φ(α,β)
n (x) =

[
2(α + β + 2l + 1)

l!Γ(α + β + l + 1)
Γ(α + l + 1)Γ(β + l + 1)

]1/2

×

×(sin x)α+1/2(cosx)β+1/2P (α,β)
n (cos 2x). (3.95)
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The P
(α,β)
n (z) are Gegenbauer polynomials [10]. Performing the s′′ integration

gives poles in the Green function for

�ω(2l + 2n + 2 + λ1 + |k2|) − bEln = 0. (3.96)

This is identical to (3.75), as it should be. Concerning the discrete spectrum we
can state the kernel as follows:

K
(V2)
disc (�′′, �′, ϑ′′, ϑ′; T ) =

1√
�′�′′

∞∑
n=0

Φ(λ1,k2)
n (ϑ′′)Φ(λ1,k2)

n (ϑ′)×

×
∞∑

l=0

N2
lnΨ(RHO,λ2)

l (�′′)Ψ(RHO,λ2)
l (�′) e−is′′Eln/�, (3.97)

with Nln deˇned by the residuum of the Green function at the energy Eln as
given in (3.76).

3.2.3. Separation of V2 in Elliptic Coordinates on DII. The free classical
Lagrangian and Hamiltonian are given by

L(ω, ω̇, ϕ, ϕ̇) =
m

2
bd2 cosh2 ω cos2 ϕ − a

cosh2 ω cos2 ϕ
(cosh2 ω − cos2 ϕ)(ω̇2 + ϕ̇2) =

=
m

2

[(
bd2 cosh2 ω +

a

cosh2 ω

)
−
(

bd2 cos2 ϕ +
a

cos2 ϕ

)]
(ω̇2 + ϕ̇2),

(3.98)

H(ω, pω, ϕ, pϕ) =
1

2m

cosh2 ω cos2 ϕ

(bd2 cosh2 ω cos2 ϕ − a)(cosh2 ω − cos2 ϕ)
(p2

ω + p2
ϕ).

(3.99)
In the following we use

√
g =

bd2 cosh2 ω cos2 ϕ − a

cosh2 ω cos2 ϕ
(cosh2 ω − cos2 ϕ).

For the momentum operators we obtain

pω =
�

i

[
∂

∂ω
+

tanhω
√

g

(
bd2 cosh2 ω − a

cosh2 ω

)]
, (3.100)

pϕ =
�

i

[
∂

∂ϕ
+

tan ϕ
√

g

(
bd2 cos2 ϕ − a

cos2 ϕ

)]
. (3.101)

This gives for the quantum Hamiltonian

H = − �
2

2m

cosh2 ω cos2 ϕ

(bd2 cosh2 ω cos2 ϕ − a)(cosh2 ω − cos2 ϕ)

(
∂2

∂ω2
+

∂2

∂ϕ2

)
=

=
1

2m

1
4
√

g
(p2

ω + p2
φ)

1
4
√

g
. (3.102)
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Therefore we obtain for the path integral (1/f = (bd2 cosh2 ω cos2 ϕ− a)/ cosh2

ω cos2 ϕ)

K(V2)(ω′′, ω′, ϕ′′, ϕ′; T )=

ω(t′′)=ω′′∫
ω(t′)=ω′

Dω(t)

ϕ(t′′)=ϕ′′∫
ϕ(t′)=ϕ′

Dϕ(t)
(cosh2 ω−cos2 ϕ)

f
×

× exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣m

2f
(cosh2 ω − cos2 ϕ)(ω̇2 + ϕ̇2)−

−f
m

2
ω2(u2 + v2) − f

�
2

2m

⎛⎜⎝k2
1 − 1

4
u2

+
k2
2 − 1

4
v2

⎞⎟⎠
⎤⎥⎦ dt

⎫⎪⎬⎪⎭ =

=

∞∫
−∞

dE

2π�
e−iET/�

∞∫
0

ds′′K(V2)(ω′′, ω′, ϕ′′, ϕ′; s′′), (3.103)

with the transformed path integral K(V2)(ω′′, ω′, ϕ′′, ϕ′; s′′) given by (a < 0)

K(V2)(ω′′, ω′, ϕ′′, ϕ′; s′′) =

ω(s′′)=ω′′∫
ω(0)=ω′

Dω(s) exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(ω̇2−

−d2ω2 cosh2 ω sinh2 ω) − �
2

2m

⎛⎜⎝−k2
1 − 2m|a|E/�

2 − 1
4

cosh2 ω
+

k2
2 − 1

4
sinh2 ω

⎞⎟⎠+

+Ebd2 cosh2 ω

⎤⎥⎦ ds

⎫⎪⎬⎪⎭
ϕ(s′′)=ϕ′′∫
ϕ(0)=ϕ′

Dϕ(s) exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(ϕ̇2 − d2ω2 sin2 ϕ cos2 ϕ)−

− �
2

2m

⎛⎜⎝k2
1 − 2m|a|E/�

2 − 1
4

cos2 ϕ
+

k2
2 − 1

4
sin2 ϕ

⎞⎟⎠− Ebd2 cos2 ϕ

⎤⎥⎦ ds

⎫⎪⎬⎪⎭ . (3.104)

We leave these path integrals as they are, because they are not tractable.
3.3. The Superintegrable Potential V3 on DII. We consider the potential V3

and start by expressing V3 in the respective coordinate systems. We have

V3(u, v) =
f√

u2 + v2

⎡⎢⎣−α +
�

2

2m

⎛⎜⎝ k2
1 − 1

4√
u2 + v2 + v

+
k2
2 − 1

4√
u2 + v2 − v

⎞⎟⎠
⎤⎥⎦ =
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(Polar coordinates:) =
2f

�

⎡⎢⎣−α +
�

2

2m�

⎛⎜⎝ k2
1 − 1

4
1 + sin ϑ

+
k2
2 − 1

4
1 − sin ϑ

⎞⎟⎠
⎤⎥⎦ ,

(Transformation: cosϑ = sin 2φ, sin ϑ = cos 2φ, � = r2/2)

=
f

r2

⎡⎢⎣−α +
�

2

2mr2

⎛⎜⎝k2
1 − 1

4
cos2 ϕ

+
k2
2 − 1

4
cos2 ϕ

⎞⎟⎠
⎤⎥⎦ , (3.105)

(Parabolic coordinates:) =
2f

ξ2 + η2

⎡⎢⎣−α+
�

2

2m

⎛⎜⎝k2
1−

1
4

ξ2
+

k2
2 − 1

4
η2

⎞⎟⎠
⎤⎥⎦ , (3.106)

(Rotated elliptic coordinates:) =
f√

u2 + v2

1
cosh2 ω′ − cos2 ϕ′×

×

⎡⎢⎣− b′
2
α(cosh2 ω′ − cos2 ϕ′)+

+
�

2

2m

⎛⎜⎝k2
1 − 1

4
cos2 ϕ′ +

k2
2 − 1

4
sin2 ϕ′ −

k2
1 − 1

4
cosh2 ω′

+
k2
2 − 1

4
sinh2 ω′

⎞⎟⎠
⎤⎥⎦ . (3.107)

In the last case the rotated elliptic coordinates are given by

u =
b′

2

4
sinh 2ω′ sin 2ϕ′, v =

b′
2

4
(cosh 2ω′ cos 2ϕ′ + 1). (3.108)

Due to the complicated structure of the path integral in rotated elliptic coordinates
no closed solution can be stated. We will omit a path integral discussion of
V3 in these coordinates. The potential V3 can be interpreted as an analogue
of the Coulomb potential. Similarly as in �at space and on the two-dimensional
hyperboloid it is separable in three coordinate systems, i.e., in spherical, parabolic,
and rotated elliptic coordinates (there are no conical coordinates in DII).
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3.3.1. Separation of V3 in Polar Coordinates. We start with the investigation
of V3 in polar coordinates and we immediately switch from the (ρ, ϑ) system to
the (r, ϕ) system. This gives for the path integral:

K(V3)(r′′, r′, ϕ′′, ϕ′; T ) =

r(t′′)=r′′∫
r(t′)=r′

Dr(t)

ϕ(t′′)=ϕ′′∫
ϕ(t′)=ϕ′

Dϕ(t)×

×
(

br2 − a

r2 sin2 ϕ cos2 ϕ

)
r exp

⎛⎜⎝ i

�

T∫
0

⎧⎪⎨⎪⎩m

2f
(ṙ2 + r2ϕ̇2)−

−f

⎡⎢⎣−α +
�

2

2mr2

⎛⎜⎝k2
1 − 1

4
cos2 ϕ

+
k2
2 − 1

4
cos2 ϕ

− 1
4

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭ dt

⎞⎟⎠ , (3.109)

with 1/f = br2 − a/r2 sin2 ϕ cos2 ϕ. Proceeding in the usual way by means of a
space time transformation gives

G(V3)(r′′, r′, ϕ′′, ϕ′; E) =

∞∫
0

ds′′ eis′′α/� K(V3)(r′′, r′, ϕ′′, ϕ′; s′′) (3.110)

and the path integral K(V3)(s′′) given by

K(V3)(r′′, r′, ϕ′′, ϕ′; s′′) =

r(s′′)=r′′∫
r(0)=r′

Dr(s)

ϕ(s′′)=ϕ′′∫
ϕ(0)=ϕ′

Dϕ(s)r×

×exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(ṙ2 + r2ϕ̇2)+Ebr2 − �

2

2mr2

⎛⎜⎝λ2
2 −

1
4

sin2 ϕ
+

λ2
1−

1
4

cos2 ϕ
− 1

4

⎞⎟⎠
⎤⎥⎦ ds

⎫⎪⎬⎪⎭ =

=
∞∑

n=0

Φ(λ1,λ2)
n (ϕ′′)Φ(λ1,λ2)

n (ϕ′)K(V3)
n (r′′, r′, s′′), (3.111)

with λ2
1,2 = k2

1,2 + 2maE/�
2. The path integral K

(V3)
n (s′′) has the form
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K(V3)
n (r′′, r′; s′′) =

1√
r′r′′

r(s′′)=r′′∫
r(0)=r′

Dr(s) exp×

×

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
ṙ2 + Ebr2 − �

2

2m

Λ2 − 1
4

r2

⎞⎟⎠ ds

⎤⎥⎦ =

=
mω

i� sinωs′′
exp
[
−mω

2i�
(r′2 + r′′

2) cotωs′′
]
IΛ

(
mωr′r′′

i� sinωs′′

)
=

=
√
− m

2Eb

Γ
[
1
2

(
1 + Λ − α

�

√
− m

2Eb

)]
Γ(1 + Λ)

√
r′r′′

×

× M α
2�

√
− m

2Eb , Λ
2

(
m

�

√
−2Eb

m
r2
<

)
W α

2�

√
− m

2Eb , Λ
2

(
m

�

√
−2Eb

m
r2
>

)
, (3.112)

K
(V3)
n,disc(r

′′, r′; s′′) =
1√
r′r′′

∞∑
l=0

Ψ(RHO,Λ)
l (r′′)Ψ(RHO,Λ)

l (r′) e−iω(2l+Λ+1)s′′
.

(3.113)
This is the usual radial harmonic oscillator solution, and we have set Λ = 2n +
λ1 +λ2 +1, ω2 = −2Eb/m. The bound states are determined by the quantization
condition

2�ω(l + n + 1) +
�

2k2
1

2m
+ �ω(λ2 + λ3) = 0, (3.114)

or alternatively

2(l + n + 1) − α

�

√
− m

2Eb
+

√
k2
1 +

2maE

�2
+

√
k2
2 +

2maE

�2
= 0. (3.115)

For a = 0, b = 1 we recover the two-dimensional �at space Coulomb spectrum.
In general, this is an equation of eighth order in E, where no closed solution can
be stated. However, we can study the special case k1 = k2 = 0, which gives the
quantization condition (we also take a < 0, b > 0)

2(l + n + 1) − α

�

√
m

2b

1√
−E

+
2
�

√
2m|a|

√
−E = 0. (3.116)

This is a quadratic equation in E with solution (only one solution is physical, set
N = l + n + 1)
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Eln = − �
2N2

8m|a|

⎛⎝√1 +
2mα

�2N2

√
|a|
b

− 1

⎞⎠2

� (3.117)

� − mα2

8b�2N2
(N → ∞) (3.118)

showing a Coulomb behavior.
In order to extract the continuous spectrum we use (3.49) and obtain for the

entire kernel

G(V3)(r′′, r′, ϕ′′, ϕ′; E) =
�√
r′r′′

∞∑
n=0

Φ(λ1,λ2)
n (ϕ′′)Φ(λ1,λ2)

n (ϕ′)×

×
{ ∞∑

l=0

N2
ln

Eln − E
Ψ(RHO,Λ)

l (r′′)Ψ(RHO,Λ)
l (r′) +

∞∫
−∞

×

× 1
Ep − E

Ψ(RHO,Λ) ∗
p (r′′)Ψ(RHO,Λ)

p (r′)

}
(3.119)

with the discrete energy spectrum as determined by (3.115) and the normalization
constant Nln resulting from the residuum in (3.113). The continuous spectrum is
given by (k< denotes the smaller of k1, k2)

Ψ(RHO)
p (r) =

eπp/2

√
π

Γ
[1
2
(1+Λ)+ip

]
Γ(1+Λ)

Mip/2,Λ/2

(
−
√
−2mbE

�
r

)
, (3.120)

Ep =
�

2

2m
(p2 + k2

<). (3.121)

3.3.2. Separation of V3 in Parabolic Coordinates. Finally, we consider V3 in
parabolic coordinates. The formulation of the path integral for a potential on DII

we know already from V1. We therefore have (f = b − a/ξ2η2)

K(V3)(ξ′′, ξ′, η′′, η′; T ) =

ξ(t′′)=ξ′′∫
ξ(t′)=ξ′

Dξ(t)

η(t′′)=η′′∫
η(t′)=η′

Dη(t)
(

b− a

ξ2η2

)
(ξ2 +η2)×

× exp

⎛⎜⎝ i

�

∞∫
0

⎧⎪⎨⎪⎩m

2
f(ξ2 + η2)(ξ̇2 + η̇2) − 1

f(ξ2 + η2)
×

×

⎡⎢⎣−α +
�

2

2m

⎛⎜⎝k2
1 − 1

4
ξ2

+
k2
2 − 1

4
η2

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭ dt

⎞⎟⎠ , (3.122)
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G(V3)(ξ′′, ξ′, η′′, η′; E) =

∞∫
0

ds′′ eiαs′′/� K(V3)(ξ′′, ξ′, η′′, η′; s′′), (3.123)

with the transformed path integral K(s′′) given by

K(V3)(ξ′′, ξ′, η′′, η′; s′′) =

ξ(s′′)=ξ′′∫
ξ(0)=ξ′

Dξ(s)×

× exp

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
ξ̇2 + Ebξ2 − �

2

2m

λ2
1 −

1
4

ξ2

⎞⎟⎠ ds

⎤⎥⎦×

×
η(s′′)=η′′∫
η(0)=η′

Dη(s) exp

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
η̇2 + Ebη2 − �

2

2m

λ2
2 −

1
4

η2

⎞⎟⎠ ds

⎤⎥⎦ r×

× K
(V3)
disc (ξ′′, ξ′, η′′, η′; s′′) =

=
∞∑

nξnη=0

Ψ(RHO,λ1)
nξ

(ξ′′)Ψ(RHO,λ1)
nξ

(ξ′)Ψ(RHO,λ2)
nη

(η′′)Ψ(RHO,λ2)
nη

(η′)×

× exp
[
− i

�
s′′(2nξ + 2nη + λ1 + λ2 + 2)�ω)

]
. (3.124)

We have inserted for the discrete spectrum the solution of the radial harmonic
oscillator in the usual way. Performing the s′′ integration gives the same spectrum
as in (3.115), as it should be.

The continuous spectrum is extracted in the usual way by means of (3.49)
and we obtain:

G(V3)(ξ′′, ξ′, η′′, η′; E) =

=
∞∑

nξnη=0

�N2
ln

Eln − E
Ψ(RHO,λ1)

nξ
(ξ′′)Ψ(RHO,λ1)

nξ
(ξ′)Ψ(RHO,λ2)

nη
(η′′)Ψ(RHO,λ2)

nη
(η′)+

+ �(ξ′ξ′′η′η′′)−1/2

∫
dE

∞∫
0

×

× dp p sinhπp

�
2

2m|a|(p
2 + k2

<) − E

∣∣∣∣Γ [1
2
(1 + ip1 − E)

]∣∣∣∣2 ∣∣∣∣Γ [1
2
(1 + ip2 − E)

]∣∣∣∣2
2πp̃2

×



630 GROSCHEC., POGOSYANG. S., SISSAKIANA.N.

×WE/2,ip/2

(
ip̃1ξ

′′2
)
W ∗

E/2,ip/2

(
ip̃1ξ

′2
)
WE/2,ip/2

(
ip̃2ξ

′′2
)
W ∗

E/2,ip/2

(
ip̃2η

′2
)

(3.125)

(p̃1,2 ≡
√

b(p2 + k2
1,2)/|a|), with the discrete energy spectrum as determined

by (3.115) and the normalization constant Nln resulting from the residuum in
(3.124).

3.4. The Superintegrable Potential V4 on DII. We consider the potential V4

in the respective coordinate systems

V4(u, v) =
u2

bu2 − a

�
2

2m
v2
0 = (3.126)

=
(

b e2τ2

cosh2 τ1

− a

)−1
�

2v2
0

2m

e2τ2

cosh2 τ1

= (3.127)

=
(

bξ2η2 − a

ξ2η2

)−1 1
ξ2 + η2

�
2v2

0

2m
(ξ2 + η2) = (3.128)

=
(

bd2 cosh2 ω cos2 ϕ − a

cosh2 ω cos2 ϕ

)−1

×

× 1
cosh2 ω − cos2 ϕ

�
2v2

0

2m
(cosh2 ω − cos2 ϕ). (3.129)

We have displayed the potential in a somewhat more complicated way to demon-
strate the effect of the separation procedures. The quantity v0 enters the formulas
in a way that only the respective quantum numbers are altered. We will not
go into details, and consider the potential V4 only in the (u, v) system. For the
remaining systems we refer to [15]. Let us note that the separability of V4 in
all the four coordinate systems on DII shows that a quantum system of a three-
dimensional analogue of DII is also separable in three-dimensional ®cylindrical¯
versions of the (u, v) system, spherical, parabolic, and elliptic coordinates [16].
The additional quantum number associated with the third coordinate can be iden-
tiˇed with v0.

Inserting V4 into the path integral in the (u, v) systems yields

K(V4)(u′′, u′, v′′, v′; T ) =

u(t′′)=u′′∫
u(t′)=u′

Du(t)

v(t′′)=v′′∫
v(t′)=v′

Dv(t)
bu2 − a

u2
×
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× exp

⎧⎪⎨⎪⎩ i

�

T∫
0

⎡⎢⎣m

2
bu2 − a

u2
(u̇2 + v̇2) − u2

bu2 − a

�
2v2

0

2m

⎤⎥⎦ dt

⎫⎪⎬⎪⎭ =

=

∞∫
−∞

dE

2π�
e−iET/�

∫ ∞

0

ds′′×

×
u(s′′)=u′′∫
u(0)=u′

Du(s)

v(s′′)=v′′∫
v(0)=v′

Dv(s) exp

⎧⎪⎨⎪⎩ i

�

s′′∫
0

⎡⎢⎣m

2
(u̇2 + v̇2) − aE

u2

⎤⎥⎦ ds +

+
i

�
s′′
(

bE − �
2v2

0

2m

)⎫⎪⎬⎪⎭ =

=

∞∫
−∞

dE

2π�
e−iET/�

∞∫
0

ds′′

2π

∞∫
−∞

dk eik(v′′−v′) exp
(

i

�
bEs′′− i

�

�
2

2m
(k2+v2

0)s′′
)
×

×
u(s′′)=u′′∫
u(0)=u′

Du(s) exp

⎡⎢⎣ i

�

s′′∫
0

⎛⎜⎝m

2
u̇2 − �

2
λ2 − 1

4
2mu2

⎞⎟⎠ ds

⎤⎥⎦ =

=

∞∫
−∞

dE

2π�
e−iET/�

∞∫
0

ds′′
∞∫

−∞

dk eik(v′′−v′) m
√

u′u′′

i�s′′
×

× exp
[

i

�

(
bE − �

2

2m
(k2 + v2

0)
)

s′′ +
i

�

m

2s′′
(u′2 + u′′2)

]
Iλ

(
mu′u′′

i�s′′

)
(3.130)

(λ2 − 1/4 = 2maE/�
2). We observe that the principal effect of the introduction

of V4 consists in a change in the quantum number k which can be formulated
as k̃2 = k2 + v2

0 . We can therefore write down the solution by referring to [15]
and get

G(V4)(u′′, u′, v′′, v′; E) =
2m

√
u′u′′

i�

∞∫
−∞

dk eik(v′′−v′) Iλ×

×
(√

k̃2 − 2mbE

�2
u<

)
Kλ

(√
k̃2 − 2mbE

�2
u>

)
= (3.131)
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=
�

π2

∞∫
−∞

dk
eik(v′′−v′)

2π
×

×
∞∫
0

2p sinhπpdp

�
2

2m|a|

(
p2 +

1
4

)
− E

Kip

(√
k̃2− 2mbE

�2
u′

)
Kip

(√
k̃2− 2mbE

�2
u′′

)
,

(3.132)

with

λ =

√
1
4
− 2m|a|E

�2
≡ ip. (3.133)

The wave functions and the energy spectrum are read off:

Ψ(V4)
pk (u, v) =

eikv

√
2π

√
2p sinhπp

π
Kip

(√
k̃2 − 2mbE

�2
u

)
, (3.134)

E =
�

2

2m|a|

(
p2 +

1
4

)
. (3.135)

4. SUMMARY AND DISCUSSION

In this paper we have discussed superintegrable potentials on spaces of non-
constant curvature. The results are very satisfactory. According to [4, 27, 28],
there are three potentials on DI, four potentials on DII, ˇve potentials on DIII,
and four potentials on DIV, respectively. We could solve many of the emerging
quantum mechanical problems. To give an overview, we summarize our results
in Table 5. We list for each space the corresponding potentials including the
general form of the solution (if explicitly possible). We omit the trivial potentials
here, because they are separable in all corresponding coordinate systems.

We were able to solve the various path-integral representations, because we
have now to our disposal not only the basic path integrals for the harmonic
oscillator, the linear oscillator, the radial harmonic oscillator, and the PéoschlÄ
Teller potential, but also path-integral identities derived from path integration
on harmonic spaces like the elliptic and spheroidal path-integral representations
with their more complicated special functions [13, 17, 22]. This includes also
numerous transformation techniques to ˇnd a particular solution based on one of
the basic solutions. Various analysis techniques can be applied to ˇnd not only an
expression for the Green function but also for the wave functions and the energy
spectrum.

We also observe a new feature of superintegrable potentials. We learned from
our investigation of potential problems on DI that degeneracy for superintegrable
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Table 5. Solutions of the path integration for superintegrable potentials in Darboux
spaces

Space and potential Solution in terms of the wave functions
DI

V1: (u, v) Hermite polynomials × Parabolic cylinder functions
Parabolic No explicit solution

V2: (u, v) Hermite polynomials × Parabolic cylinder functions
(r, q) Hermite polynomials × Parabolic cylinder functions

V3: (u, v) Product of Airy functions
(r, q) Product of Airy functions
Parabolic Product of Airy functions

DII

V1: (u, v) Hermite polynomial × Whittaker functions∗

Parabolic No explicit solution
V2: (u, v) Laguerre polynomial × Whittaker functions∗

Polar Gegenbauer polynomial × Whittaker functions∗

Elliptic No explicit solution
V3: Polar Gegenbauer polynomial × Whittaker functions∗

Parabolic Gegenbauer polynomial × Whittaker functions∗

Displaced Elliptic No explicit solution
V4: (u, v) Product of Bessel functions

Polar Bessel functions × Legendre functions
Parabolic Product of Whittaker functions∗

Elliptic Spheroidal wave functions
∗ The notion Whittaker functions means in all cases for a discrete spectrum Laguerre
polynomials and for a continuous spectrum Whittaker functions Wμ,ν(z), respectively
Mμ,ν(z).

potentials does not follow automatically. In fact, our (counter-)examples show that
the usually accepted opinion that superintegrability and degeneracy of a quantum
system are equivalent statements is not true in general. It would be interesting to
formulate the precise additional mathematical requirements that these statements
are actually true in general. In our case the nonequivalence of these two notions
comes from the boundary conditions which had to be imposed on DI in order to
guarantee a well-deˇned Hilbert space.

We found in all cases a discrete and a continuous spectrum for the super-
integrable potentials. We also could compare some limiting cases, e.g., for the
Darboux space DII, where we could recover the corresponding solutions for the
two-dimensional Euclidean space and the two-dimensional hyperboloid. On DI

the energy spectra are only determined by a transcendental equation due to the
boundary condition for the coordinate u. On DII we found analogues of the sin-
gular oscillator, the Holt potential and the Coulomb potential in two-dimensional
Euclidean space. We could recover these limiting cases in the equations for the
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energy spectra. The equations for the energy spectra were on DII algebraic equa-
tions in the second and fourth orders in the energy. This allows several solutions
depending on the speciˇc values of the parameters a and b and possible further
boundary conditions. Also semibound states may be possible.

In the forthcoming publications we will treat the two remaining Darboux
spaces DIII and DIV, respectively. In particular, on DIII there is already a
discrete spectrum possible for the free motion, which has the form

Enl = − �
2

2m

b

a2
(2n + 2l + 1)2 (4.1)

yielding for b > 0 an inˇnite number of bound states. This is similar to the motion
on the SU(1, 1) hyperboloid, where continuous and discrete spectra exist [2].
On DIII there are ˇve superintegrable potentials and on DIV there are four
superintegrable potentials.

Let us ˇnally discuss the following issue: Let us consider a three-dimensional
generalization of the Darboux space DII with a line element

ds2 =
bu2 − a

u2
(du2 + dv2 + dw2), (4.2)

and w is the new variable. DII has the property that for a = 0, b = 1, we recover
the two-dimensional Euclidean plane, and all four coordinate systems on the two-
dimensional Euclidean plane are also separable coordinate systems on DII for the
Schréodinger, respectively the Helmholtz equation. However, in order to set up a
well-deˇned quantum theory, a curvature term (�2/2m)(R/8) must be introduced
in the quantum Hamiltonian [16, 26]. In the present case of (4.2), which we might
call three-dimensional Darboux space II, for short D 3d−II, it is easy to check that
all eleven systems for the three-dimensional Euclidean plane which separate the
Schréodinger, respectively the Helmholtz equation, also separate the Schréodinger,
respectively the Helmholtz equation on D 3d−II. As has been shown in [16], the
corresponding quantum motion can be explicitly evaluated by means of the path
integral with the energy spectrum

E =
�

2

2m|a|(p
2 + 1). (4.3)

As is well known, there are four minimally superintegrable potentials in three-
dimensional Euclidean space and ˇve maximally superintegrable potentials, and
it is obvious how to construct maximally superintegrable potentials on D 3d−II.
In the forthcoming publication the details will be worked out.
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