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The exact analytical solutions of a variety of statistical models recently obtained for ˇnite systems
are thoroughly discussed. Among them are a constrained version of the statistical multifragmentation
model, the Gas of Bags Model and the Hills and Dales Model of surface partition. The ˇnite volume
analytical solutions of these models were obtained by a novel powerful mathematical method Å the
LaplaceÄFourier transform. Thus, the LaplaceÄFourier transform allows one to study the nuclear
matter equation of state, the equation of state of hadronic and quarkÄgluon plasma and the surface
entropy of large clusters on the same footing. A complete analysis of the isobaric partition singularities
of these models is done for ˇnite systems. The developed formalism allows us, for the ˇrst time, to
exactly deˇne the ˇnite volume analogs of gaseous, liquid and mixed phases of these models from
the ˇrst principles of statistical mechanics and demonstrates the pitfalls of earlier works. The found
solutions may be used for building up a new theoretical apparatus to rigorously study phase transitions
in ˇnite systems. The strategic directions of future research opened by these exact results are also
discussed.
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1. THEORETICAL DESCRIPTION
OF PHASE TRANSITIONS IN FINITE SYSTEMS

Investigation of the properties of strongly interacting matter under extreme
conditions is one of the most important subjects of modern physics. Over the last
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20 years, rich data on two phase transitions (PTs) existing in strongly interacting
matter, the nuclear liquidÄgas PT [1Ä3] and the deconˇnement PT between the
hadronic matter and quarkÄgluon plasma (QGP) [4], were collected by many
experiments. However, despite this progress, the theoretical understanding of
these PTs is far from being perfect. In part, this is because these PTs can be
studied only in the collisions of ˇnite nuclear systems at ˇnite colliding energies.
Under such conditions only a ˇnite number of particles can be produced in the
collision and, therefore, the traditional methods of statistical mechanics cannot be
used for successful identiˇcation of these PTs, since a rigorous theory of critical
phenomena in ˇnite systems was not built up to now.

However, the experimental studies of PTs in nuclear systems demand the
formulation of such a theory. In particular, the investigations of the above-
mentioned nuclear liquidÄgas PT [1Ä3] require the development of theoretical
approaches which would allow us to study the critical phenomena without going
into the thermodynamic limit V → ∞ (V is the volume of the system), because
such a limit does not exist due to the long range Coulomb interaction. Although
at ˇrst glance the situation with the deconˇnement PT looks better because the
Coulomb interaction seems to be less important for it, the reality may prepare a
few unpleasant surprises for us, when the well-established signals of the decon-
ˇnement PT [5, 6] will be studied in the collisions of small nuclei. Therefore,
there is a great need in the theoretical approaches which may shed light on the
®internal mechanism¯ of how the PTs happen in ˇnite systems.

The general situation in the theory of critical phenomena for ˇnite (small)
systems is not very optimistic at the moment because theoretical progress in this
ˇeld has been slow. It is well known that the mathematical theory of phase
transitions was worked out by T. D. Lee and C.N.Yang [7]. Unfortunately, there
is no direct generic relation between the physical observables and zeros of the
grand canonical partition in a complex fugacity plane. Therefore, we know very
well what are the gaseous and liquid phases at inˇnite volumes: mixture of
fragments of all sizes and ocean, respectively. This is known both for pure
phases and for their mixture, but, despite some limited success [8], this general
approach is not useful for the speciˇc problems of critical phenomena in ˇnite
systems (see Sec. 8 below).

The tremendous complexity of critical phenomena in ˇnite systems prevented
their systematic and rigorous theoretical study. For instance, even the best for-
mulation of the statistical mechanics and thermodynamics of ˇnite systems by
Hill [9] is not rigorous while discussing PTs. As a result, the absence of a well-
established deˇnition of the liquid and mixed phases for ˇnite volumes delays
the progress of several related ˇelds, including the theoretical and experimental
searches for the reliable signals of several PTs which are expected to exist in
strongly interacting matter. Therefore, the task of the highest priority of the the-
ory of critical phenomena is to deˇne the ˇnite volume analogs of phases from
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the ˇrst principles of statistical mechanics. At present, it is unclear whether such
deˇnitions can be made for a general case, but it turns out that such ˇnite volume
deˇnitions can be formulated for a variety of realistic nonclassical (= non mean-
ˇeld) statistical models which are successfully used in nuclear multifragmentation
and in relativistic nuclear collisions. Although there is a great similarity between
the statistical models employed in nuclear multifragmentation and in relativistic
heavy-ion collisions, the present work will be mainly devoted to the discussion
of the nuclear liquidÄgas PT because it is simpler and because, we hope, it can
directly be used to verify the theoretical ideas and concepts on how to rigorously
introduce the ˇnite volume analogs of phases.

About 25 years ago, when the theoretical foundations of nuclear multifrag-
mentation were established, there was an illusion that the theoretical basis is
simple and clear, and, therefore, we need only the data and models which will
describe them. The analysis of ˇnite volume systems has proven to be very difˇ-
cult. However, there was a clear way out of troubles by making numerical codes
that are able to describe the data. This is, of course, a common way to handle
such problems and there were many successes achieved in this way [1Ä3, 10].
However, there is another side of the coin which tells us that our understanding
did not change much since then. This is so because the numerical simulations
of this level do not provide us with any proof. At best, they just demonstrate
something. With time the number of codes increased, but the common theoretical
approach was not developed. This led to a bitter result Å there are many good
guesses in the nuclear multifragmentation community, but, unfortunately, little
analytical work to back up these expectations. As a result, the absence of a ˇrm
theoretical ground led to formulation of such highly speculative ®signals¯ of the
nuclear liquid-vapor PT as negative heat capacity [11,12], bimodality [13], which
later on were disproved in Refs. [14] and [15], respectively.

Thus, there is a paradoxic situation: there are many experimental data and
facts, but there is no a single theoretical approach which is able to describe them.
Similar to the searches for quarkÄgluon plasma (QGP) [16] there is lack of a ˇrm
and rigorous theoretical approach to describe phase transitions in ˇnite systems.

However, our understanding of the multifragmentation phenomenon [1Ä3]
was improved recently, when an exact analytical solution of a simpliˇed version
of the statistical multifragmentation model (SMM) [17,18] was found in [19,20].
These analytical results not only allowed us to understand the important role of
the Fisher exponent τ on the phase structure of the nuclear liquidÄgas PT and
the properties of its (tri)critical point, but also to calculate the critical indices
α′, β, γ′, δ of the SMM [21] as functions of index τ . The determination of the
simpliˇed SMM exponents allowed us to show explicitly [21] that, in contrast
to expectations, the scaling relations for critical indices of the SMM differ from
the corresponding relations of a well-known Fisher droplet model (FDM) [22].
This exact analytical solution allowed us to predict a narrow range of values,
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1.799 < τ < 1.846, which, in contrast to FDM value τFDM ≈ 2.16, is consistent
with ISiS Collaboration data [23] and EOS Collaboration data [24]. This ˇnding
is not only of a principal theoretical importance, since it allows one to ˇnd out
the universality class of the nuclear liquidÄgas phase transition, if τ index can be
determined from experimental mass distribution of fragments, but also it enhanced
a great activity in extracting the value of τ exponent from the data [25,26].

It is necessary to stress that such results in principle cannot be obtained
either within the widely used mean-ˇled approach or numerically. This is the
reason why exactly solvable models with phase transitions play a special role
in statistical mechanics Å they are the benchmarks of our understanding of
critical phenomena that occur in more complicated substances. They are our
theoretical laboratories, where we can study the most fundamental problems of
critical phenomena which cannot be studied elsewhere. Their great advantage
compared to other methods is that they provide us with the information obtained
directly from the ˇrst principles of statistical mechanics being unspoiled by mean-
ˇeld or other simplifying approximations without which the analytical analysis
is usually impossible. On the other hand, an exact analytical solution gives
the physical picture of PT, which cannot be obtained by numerical evaluation.
Therefore, one can expect that an extension of the exact analytical solutions to
ˇnite systems may provide us with the ultimate and reliable experimental signals
of the nuclear liquidÄvapor PT which are established on a ˇrm theoretical ground
of statistical mechanics. This, however, is a very difˇcult general task of the
critical-phenomena theory in ˇnite systems.

Fortunately, we do not need to solve this very general task, but to ˇnd its so-
lution for a speciˇc problem of nuclear liquidÄgas PT, which is less complicated
and more realistic. In this case the straightforward way is to start from a few
statistical models, like FDM and/or SMM, which are successful in describing the
most of the experimental data. A systematic study of the various modiˇcations
of the FDM for ˇnite volumes was performed by Moretto and collaborators [27],
and it led to a discovery of thermal reducibility of the fragment charge spectra [3],
to a determination of a quantitative liquidÄvapor phase diagram containing the
coexistence line up to critical temperature for small systems [28,29], to the gen-
eralization of the FDM for ˇnite systems and to a formulation of the complement
concept [30, 31] which allows one to account for ˇnite size effects of (small)
liquid drop on the properties of its vapor. However, such a systematic analysis
for the SMM was not possible until recently, when its ˇnite volume analytical
solution was found in [32].

An invention of a new powerful mathematical method [32], the LaplaceÄ
Fourier transform, is a major theoretical breakthrough in the statistical mechanics
of ˇnite systems of the last decade because it allowed us to solve exactly not
only the simpliˇed SMM for ˇnite volumes [32], but also a variety of statistical
surface partitions for ˇnite clusters [33, 34] and to ˇnd out their surface entropy
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and to shed light on a source of the Fisher exponent τ . It was shown [32] that
for ˇnite volumes the analysis of the grand canonical partition (GCP) of the sim-
pliˇed SMM is reduced to the analysis of the simple poles of the corresponding
isobaric partition, obtained as a LaplaceÄFourier transform of the GCP. Such a
representation of the GCP allows one not only to show from the ˇrst principles
that for ˇnite systems there exist the complex values of the effective chemical
potential, but also to deˇne the ˇnite volume analogs of phases straightforwardly.
Moreover, this method allows one to include into consideration all complicated
features of the interaction (including the Coulomb one) which have been neglected
in the simpliˇed SMM because it was originally formulated for inˇnite nuclear
matter. Consequently, the LaplaceÄFourier transform method opens a principally
new possibility of studying the nuclear liquidÄgas phase transition directly from
the partition of ˇnite system without taking its thermodynamic limit. Now this
method is also applied [35] to the ˇnite volume formulation of the Gas of Bags
Model (GBM) [36] which is used to describe the PT between the hadronic matter
and QGP. Thus, the LaplaceÄFourier transform method not only gives an analyti-
cal solution for a variety of statistical models with PTs in ˇnite volumes, but also
provides us with a common framework for several critical phenomena in strongly
interacting matter. Therefore, it turns out that further applications and develop-
ments of this method are very promising and important not only for the nuclear
multifragmentation community, but also for several communities studying PTs in
ˇnite systems because this method may provide them with the ˇrm theoretical
foundations and a common theoretical language.

It is necessary to remember that further progress of this approach and its
extension to other communities cannot be successfully achieved without new
theoretical ideas about formalism itself and its applications to the data measured
in low and high energy nuclear collisions. Both of these require essential and
coherent efforts of a few theoretical groups working on the theory of PTs in ˇnite
systems, which, according to our best knowledge, do not exist at the moment
either in multifragmentation community or elsewhere. Therefore, the second
task of the highest priority is to attract young and promising theoretical students
to these theoretical problems and create the necessary manpower to solve the up
coming problems. Otherwise the negative consequences of a complete dominance
of experimental groups and numerical codes will never be overcome and a good
chance to build up a common theoretical apparatus for a few PTs will be lost
forever. If this will be the case, then an essential part of the nuclear physics
associated with nuclear multifragmentation will have no chance to survive in the
next years.

Therefore, the ˇrst necessary step to resolve these two tasks of the highest
priority is to formulate the up-to-date achievements of the exactly solvable models
and to discuss the strategy for their further developments and improvements along
with their possible impact on transport and hydrodynamic approaches. For these
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reasons the paper is organized as follows: In Sec. 2 we formulate the simpliˇed
SMM and present its analytical solution in thermodynamic limit; in Sec. 3 we
discuss the necessary conditions for PT of the given order and their relation to
the singularities of the isobaric partition and apply these ˇndings to the simpliˇed
SMM; Sec. 4 is devoted to the SMM critical indices as the functions of the Fisher
exponent τ and their scaling relations; the LaplaceÄFourier transform method is
presented in Sec. 5 along with an exact analytical solution of the simpliˇed SMM
which has a constraint on the size of the largest fragment, whereas the analysis of
its isobaric partition singularities and the meaning of the complex values of free
energy are given in Sec. 6; Secs. 7 and 8 are devoted to the discussion of the case
without PT and with it, respectively; at the end of Sec. 8 there is a discussion
of the Chomaz and Gulminelli approach to bimodality [8]; in Sec. 9 we discuss
the ˇnite volume modiˇcations of the Gas of Bags, i.e., the statistical model
describing the PT between hadrons and QGP, whereas in Sec. 10 we formulate
the Hills and Dales Model for the surface partition and present the limit of the
vanishing amplitudes of deformations; and, ˇnally, in Sec. 11 we discuss the
strategy of future research which is necessary to build up a truly microscopic
kinetics of phase transitions in ˇnite systems.

2. STATISTICAL MULTIFRAGMENTATION
IN THERMODYNAMIC LIMIT

The system states in the SMM are speciˇed by the multiplicity sets {nk}
(nk = 0, 1, 2, . . .) of k-nucleon fragments. The partition function of a single
fragment with k nucleons is [1]: V φk(T ) = V (mTk/2π)3/2zk, where k =
1, 2, . . . , A (A is the total number of nucleons in the system), V and T are,
respectively, the volume and the temperature of the system, m is the nucleon
mass. The ˇrst two factors on the right-hand side (r.h.s.) of the single fragment
partition originate from the nonrelativistic thermal motion and the last factor, zk,
represents the intrinsic partition function of the k-nucleon fragment. Therefore,
the function φk(T ) is a phase space density of the k-nucleon fragment. For k = 1
(nucleon) we take z1 = 4 (4 internal spin-isospin states) and for fragments with
k > 1 we use the expression motivated by the liquid-drop model (see details
in [1]): zk = exp (−fk/T ), with fragment free energy

fk = −W (T )k + σ(T )k2/3 + (τ + 3/2)T ln k, (1)

with W (T ) = W0 + T 2/ε0. Here W0 = 16 MeV is the bulk binding energy
per nucleon. T 2/ε0 is the contribution of the excited states taken in the Fermi-
gas approximation (ε0 = 16 MeV); σ(T ) is the temperature-dependent surface
tension parameterized in the following relation: σ(T ) = σ(T )|SMM ≡ σ0[(T 2

c −
T 2)/(T 2

c +T 2)]5/4, with σ0 = 18 MeV and Tc = 18 MeV (σ = 0 at T � Tc). The
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last contribution in Eq. (1) involves the famous Fisher term with dimensionless
parameter τ . As will be shown later, at the critical (tricritical) point, the fragment
mass distribution will lose its exponential form and will become a power law k−τ .

It is necessary to stress that the SMM parameterization of the surface tension
coefˇcient is not a unique one. For instance, the FDM successfully employs
another one σ(T )|FDM = σ0[1−T/Tc]. As we shall see in Sec. 4, the temperature
dependence of the surface tension coefˇcient in the vicinity of the critical point
will deˇne the critical indices of the model, but the following mathematical
analysis of the SMM is general and is valid for an arbitrary σ(T ) function.

The canonical partition function (CPF) of nuclear fragments in the SMM has
the following form:

Z id
A (V, T ) =

∑
{nk}

[
A∏

k=1

[V φk(T )]nk

nk!

]
δ(A −

∑
k

knk). (2)

In Eq. (2), the nuclear fragments are treated as point-like objects. However,
these fragments have nonzero proper volumes and they should not overlap in the
coordinate space. In the excluded volume (Van der Waals) approximation this
is achieved by substituting the total volume V in Eq. (2) by the free (available)

volume Vf ≡ V − b
∑

k

knk, where b = 1/ρ0 (ρ0 = 0.16 fm−3 is the normal

nuclear density). Therefore, the corrected CPF becomes: ZA(V, T ) = Z id
A (V −

bA, T ). The SMM deˇned by Eq. (2) was studied numerically in [17,18]. This is
a simpliˇed version of the SMM, since the symmetry and Coulomb contributions
are neglected. However, its investigation appears to be of principal importance
for studies of the nuclear liquidÄgas phase transition.

The calculation of ZA(V, T ) is difˇcult due to the constraint
∑

k

knk = A.

This difˇculty can be partly avoided by evaluating the grand canonical partition
(GCP)

Z(V, T, μ) ≡
∞∑

A=0

exp
(

μA

T

)
ZA(V, T )Θ(V − bA), (3)

where μ denotes a chemical potential. The calculation of Z is still rather difˇcult.
The summation over {nk} sets in ZA cannot be performed analytically because
of additional A dependence in the free volume Vf and the restriction Vf > 0. The
presence of the theta function in the GCP (3) guarantees that only conˇgurations
with positive value of the free volume are counted. However, similarly to the
delta-function restriction in Eq. (2), it makes again the calculation of Z(V, T, μ)
(3) to be rather difˇcult. This problem was resolved [19, 20] by performing
the Laplace transformation of Z(V, T, μ). This introduces the so-called isobaric
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partition function (IP) [36]:

Ẑ(s, T, μ) ≡
∞∫
0

dV e−sV Z(V, T, μ) =

=

∞∫
0

dV ′ e−sV ′ ∑
{nk}

∏
k

1
nk!

{
V ′φk(T ) exp

[
(μ − sbT )k

T

]}nk

=

=

∞∫
0

dV ′ e−sV ′
exp

{
V ′

∞∑
k=1

φk exp
[
(μ − sbT )k

T

]}
. (4)

After changing the integration variable V → V ′, the constraint of Θ function has
disappeared. Then all nk were summed independently leading to the exponential
function. Now the integration over V ′ in Eq. (4) can be done resulting in

Ẑ(s, T, μ) =
1

s −F(s, T, μ)
, (5)

where

F(s, T, μ) =
∞∑

k=1

φk exp
[
(μ − sbT )k

T

]
=

=
(

mT

2π

)3/2
[
z1 exp

(
μ − sbT

T

)
+

∞∑
k=2

k−τ exp
(

(μ̃ − sbT )k − σk2/3

T

)]
. (6)

Here we have introduced the shifted chemical potential μ̃ ≡ μ + W (T ). From
the deˇnition of pressure in the grand canonical ensemble it follows that, in the
thermodynamic limit, the GCP of the system behaves as

p(T, μ) ≡ T lim
V →∞

ln Z(V, T, μ)
V

⇒ Z(V, T, μ)
∣∣
V →∞∼ exp

[
p(T, μ)V

T

]
. (7)

An exponentially over V increasing part of Z(V, T, μ) on the right-hand side of
Eq. (7) generates the rightmost singularity s∗ of the function Ẑ(s, T, μ), because
for s < p(T, μ)/T the V integral for Ẑ(s, T, μ) (4) diverges at its upper limit.
Therefore, in the thermodynamic limit, V → ∞, the system pressure is deˇned
by this rightmost singularity, s∗(T, μ), of IP Ẑ(s, T, μ) (4):

p(T, μ) = Ts∗(T, μ). (8)

Note that this simple connection of the rightmost s singularity of Ẑ, Eq. (4),
to the asymptotic, V → ∞, behavior of Z , Eq. (7), is a general mathematical
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property of the Laplace transform. Due to this property, the study of the system
behavior in the thermodynamic limit V → ∞ can be reduced to the investigation
of the singularities of Ẑ .

3. SINGULARITIES OF ISOBARIC PARTITION
AND PHASE TRANSITIONS

The IP, Eq. (4), has two types of singularities: 1) the simple pole singularity
deˇned by the equation

sg(T, μ) = F(sg, T, μ), (9)

2) the singularity of the function F(s, T, μ) itself at the point sl, where the
coefˇcient in linear over k terms in the exponent is equal to zero,

sl(T, μ) =
μ̃

T b
. (10)

The simple pole singularity corresponds to the gaseous phase, where pressure
is determined by the equation

pg(T, μ) =
(

mT

2π

)3/2

T

[
z1 exp

(
μ − bpg

T

)
+

+
∞∑

k=2

k−τ exp
(

(μ̃ − bpg)k − σk2/3

T

)]
. (11)

The singularity sl(T, μ) of the function F(s, T, μ) (6) deˇnes the liquid pressure

pl(T, μ) ≡ Tsl(T, μ) =
μ̃

b
. (12)

In the considered model the liquid phase is represented by an inˇnite frag-
ment, i.e., it corresponds to the macroscopic population of the single mode k = ∞.
Here one can see the analogy with the Bose condensation, where the macroscopic
population of a single mode occurs in the momentum space.

In the (T, μ) regions, where μ̃ < bpg(T, μ), the gas phase dominates
(pg > pl), while the liquid phase corresponds to μ̃ > bpg(T, μ). The liquidÄgas
phase transition occurs when two singularities coincide, i.e., sg(T, μ) = sl(T, μ).
A schematic view of singular points is shown in Fig. 1, a for T < Tc, i.e., when
σ > 0. The two-phase coexistence region is therefore deˇned by the equation

pl(T, μ) = pg(T, μ), i.e., μ̃ = bpg(T, μ). (13)
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Fig. 1. Schematic view of singular points of the isobaric partition, Eq. (5), at T < Tc (a)
and T > Tc (b). Solid lines show F(s, T, μ) as a function of s at ˇxed T and μ,
μ1 < μ2 < μ3 < μ4. Dots and asterisks indicate the simple poles (sg) and the singularity
of function F itself (sl), respectively. At μ3 = μ∗(T ) the two singular points coincide
signaling a phase transition

One can easily see that F(s, T, μ) is monotonously decreasing function of s. The
necessary condition for the phase transition is that this function remains ˇnite in
its singular point sl = μ̃/T b:

F(sl, T, μ) < ∞. (14)

The convergence of F is determined by τ and σ. At τ = 0, the condition (14)
requires σ(T ) > 0. Otherwise, F(sl, T, μ) = ∞ and the simple pole singularity
sg(T, μ) (9) is always the rightmost s singularity of Ẑ (4) (see Fig. 1, b). At
T > Tc, where σ(T )|SMM = 0, the considered system can exist only in the
one-phase state. It will be shown below that for τ > 1 the condition (14) can be
satisˇed even at σ(T ) = 0.

At T < Tc the system undergoes the 1st order phase transition across the line
μ∗ = μ∗(T ) deˇned by Eq. (13). Its explicit form is given by the expression:

μ∗(T ) = −W (T ) +
(

mT

2π

)3/2

×

× Tb

[
z1 exp

(
−W (T )

T

)
+

∞∑
k=2

k−τ exp
(
−σk2/3

T

)]
. (15)

The points on the line μ∗(T ) correspond to the mixed phase states. First we
consider the case τ = −1.5 because it is the standard SMM choice.

The baryonic density is found as (∂p/∂μ)T and is given by the following
formulae in the liquid and gas phases:

ρl ≡
(

∂pl

∂μ

)
T

=
1
b
, ρg ≡

(
∂pg

∂μ

)
T

=
ρid

1 + b ρid
, (16)
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respectively. Here the function ρid is deˇned as

ρid(T, μ) =
(

mT

2π

)3/2
[
z1 exp

(
μ − bpg

T

)
+

+
∞∑

k=2

k1−τ exp
(

(μ̃ − bpg)k − σk2/3

T

)]
. (17)

Due to the condition (13) this expression is simpliˇed in the mixed phase:

ρmix
id (T ) ≡ ρid(T, μ∗(T )) =

=
(

mT

2π

)3/2
[
z1 exp

(
−W (T )

T

)
+

∞∑
k=2

k1−τ exp
(
−σk2/3

T

)]
. (18)

This formula clearly shows that the bulk (free) energy acts in favor of the com-
posite fragments, but the surface term favors single nucleons.

Fig. 2. Phase diagram in T − ρ plane for τ = −1.5 (a), τ = 1.1 (b), and τ = 2.1 (c).
The mixed phase is represented by the extended region. Liquid phase (shown by crosses)
exists at density ρ = ρ0. Point C in a is the critical point, whereas in b it is the tricritical
point. For τ > 2 (c) the PT exists for all temperatures T � 0

Since at σ > 0 the sum in Eq. (18) converges at any τ , ρid is ˇnite and ac-
cording to Eq. (16) ρg < 1/b. Therefore, the baryonic density has a discontinuity
Δρ = ρl − ρg > 0 across the line μ∗(T ) (15) for any τ . The discontinuities take
place also for the energy and entropy densities. The phase diagram of the system
in the (T, ρ) plane is shown in Fig. 2, a. The line μ∗(T ) (15) corresponding to
the mixed phase states is transformed into the ˇnite region in the (T, ρ) plane.
As usual, in this mixed phase region of the phase diagram the baryonic density ρ
and the energy density are superpositions of the corresponding densities of liquid
and gas:

ρ = λρl + (1 − λ)ρg, ε = λ εl + (1 − λ)εg. (19)
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Here λ (0 < λ < 1) is a fraction of the system volume occupied by the liquid
inside the mixed phase, and the partial energy densities for (i = l, g) can be found
from the thermodynamic identity [19]:

εi ≡ T
∂pi

∂T
+ μ

∂pi

∂μ
− pi. (20)

Inside the mixed phase at constant density ρ the parameter λ has a speciˇc
temperature dependence shown in the upper panel of Fig. 3, a: from an approx-
imately constant value ρ/ρ0 at small T the function λ(T ) drops to zero in a
narrow vicinity of the boundary separating the mixed phase and the pure gaseous
phase. This corresponds to a fast change of the conˇgurations from the state
which is dominated by one inˇnite liquid fragment to the gaseous multifragment
conˇgurations. It happens inside the mixed phase without discontinuities in the
thermodynamical functions.

Fig. 3. a) Volume fraction λ(T ) of the liquid inside the mixed phase is shown as a function
of temperature for ˇxed nucleon densities ρ/ρ0 = 1/6, 1/3, 1/2, 2/3, 5/6 and τ = −1.5.
b) Temperature as a function of energy density per nucleon (caloric curve) is shown for
ˇxed nucleon densities ρ/ρ0 = 1/6, 1/3, 1/2, 2/3 and τ = −1.5. Note that the shape
of the model caloric curves is very similar to the experimental ˇnding [37], although our
estimates for the excitation energy are somewhat larger due to oversimpliˇed interaction.
For a quantitative comparison between the simpliˇed SMM, the full SMM interaction
should be accounted for. c) Speciˇc heat per nucleon as a function of temperature at ˇxed
nucleon density ρ/ρ0 = 1/3. The dashed line shows the ˇnite discontinuity of cρ(T ) at
the boundary of the mixed and gaseous phases for τ = −1.5

An abrupt decrease of λ(T ) near this boundary causes a strong increase of
the energy density as a function of temperature. This is evident from Fig. 3, b
which shows the caloric curves at different baryonic densities. One can clearly
see a leveling of temperature at energies per nucleon between 10 and 20 MeV.
As a consequence this leads to a sharp peak in the speciˇc heat per nucleon at
constant density, cρ(T ) ≡ (∂ε/∂T )ρ/ρ , presented in Fig. 3. A ˇnite discontinuity
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of cρ(T ) arises at the boundary between the mixed phase and the gaseous phase.
This ˇnite discontinuity is caused by the fact that λ(T ) = 0, but (∂λ/∂T )ρ �= 0
at this boundary (see Fig. 3).

It should be emphasized that the energy density is continuous at the boundary
of the mixed phase and the gaseous phase, hence the sharpness of the peak in cρ

is entirely due to the strong temperature dependence of λ(T ) near this boundary.
Moreover, at any ρ < ρ0 the maximum value of cρ remains ˇnite and the peak
width in cρ(T ) is nonzero in the thermodynamic limit considered in our study.
This is in contradiction with the expectation of [17, 18] that an inˇnite peak of
zero width will appear in cρ(T ) in this limit. Also a comment about the so-called
®boiling point¯ is appropriate here. This is a discontinuity in the energy density
ε(T ) or, equivalently, a plateau in the temperature as a function of the excitation
energy. Our analysis shows that this type of behavior indeed happens at constant
pressure, but not at constant density! This is similar to the usual picture of a
liquidÄgas phase transition. In [17, 18] a rapid increase of the energy density as
a function of temperature at ˇxed ρ near the boundary of the mixed and gaseous
phases (see Fig. 3, c) was misinterpreted as a manifestation of the ®boiling point¯.

New possibilities appear at nonzero values of the parameter τ . At 0 < τ � 1,
the qualitative picture remains the same as discussed above, although there are
some quantitative changes. For τ > 1, the condition (14) is also satisˇed at
T > Tc, where σ(T )|SMM = 0. Therefore, the liquidÄgas phase transition
extends now to all temperatures. Its properties are, however, different for τ > 2
and for τ � 2 (see Fig. 2). If τ > 2, the gas density is always lower than 1/b
as ρid is ˇnite. Therefore, the liquidÄgas transition at T > Tc remains the 1st
order phase transition with discontinuities of baryonic density, entropy and energy
densities (Fig. 2, c).

4. THE CRITICAL INDICES AND SCALING RELATIONS OF THE SMM

The above results allow one to ˇnd the critical exponents α′, β, and γ′ of
the simpliˇed SMM. These exponents describe the temperature dependence of the
system near the critical point on the coexistence curve μ∗ = μ∗(T ) (13), where
the effective chemical potential ν ≡ μ∗(T )+ W (T )− bp(T, μ∗(T )) = 0 vanishes

cρ ∼
{

| ε |−α, for ε < 0,

ε−α′
, for ε � 0,

(21)

Δρ ∼ εβ , for ε � 0, (22)

κT ∼ ε−γ′
, for ε � 0, (23)
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where Δρ ≡ ρl − ρg deˇnes the order parameter, cρ ≡ T

ρ

(
∂s

∂T

)
ρ

denotes the

speciˇc heat at ˇxed particle density and κT ≡ 1
ρ

(
∂ρ

∂p

)
T

is the isothermal

compressibility. The shape of the critical isotherm for ρ � ρc is given by the
critical index δ (the tilde indicates ε = 0 hereafter)

pc − p̃ ∼ (ρc − ρ̃)δ for ε = 0. (24)

The calculation of α and α′ requires the speciˇc heat cρ. With formula [39]

cρ(T, μ)
T

=
1
ρ

(
∂2p

∂T 2

)
ρ

−
(

∂2μ

∂T 2

)
ρ

(25)

one obtains the speciˇc heat on the PT curve by replacing the partial derivatives by
the total ones [40]. The latter can be done for every state inside or on the boundary
of the mixed phase region. For the chemical potential μ∗(T ) = bp∗(T ) − W (T )

one gets
c∗ρ(T )

T
=

(
1
ρ
− b

)
d2p∗(T )

dT 2
+

d2W (T )
dT 2

. Here the asterisk indicates

the condensation line (ν = 0) hereafter. Fixing ρ = ρc = ρl = 1/b, one ˇnds

c∗ρl
(T ) = T

d2W (T )
dT 2

and, hence, obtains α = α′ = 0. To calculate β, γ′, and δ

the behavior of the series

Σq(ε, ν) ≡
∞∑

k=2

kq−τ exp
(

ν

Tc
k − Aεζkσ

)
(26)

should be analyzed for small positive values of ε and −ν (A ≡ a0/Tc). In the limit
ε → 0 the function Σq(ε, 0) remains ˇnite, if τ > q + 1, and diverges otherwise.
For τ = q + 1 this divergence is logarithmic. The case τ < q + 1 is analyzed in
some detail, since even in Fisher's papers it was performed incorrectly.

With the substitution zk ≡ k
[
Aεζ

]1/σ
one can prove [21] that in the limit

ε → 0 the series on the r. h. s. of (26) converges to an integral

Σq(ε, 0) =
[
Aεζ

] τ−q
σ

∞∑
k=2

zq−τ
k e−zσ

k →
[
Aεζ

] τ−q−1
σ

∞∫
2[Aεζ ]1/σ

dzzq−τ e−zσ

. (27)

The assumption q − τ > −1 is sufˇcient to guarantee the convergence of the
integral at its lower limit. Using this representation, one ˇnds the following
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general results [21]

Σq(ε, 0) ∼

⎧⎨
⎩

ε
ζ
σ (τ−q−1), if τ < q + 1,

ln | ε |, if τ = q + 1,
ε 0, if τ > q + 1,

and (28)

Σq(0, ν̃) ∼

⎧⎨
⎩

ν̃τ−q−1, if τ < q + 1,
ln | ν̃ |, if τ = q + 1,
ν̃ 0, if τ > q + 1,

which allowed us to ˇnd out the critical indices of the SMM (see Table 1).

Table 1. Critical exponents of the SMM and FDM as functions of the Fisher index τ
for the general parameterization of the surface energy σ(T )k2/3 → εζkσ with ε =
(Tc − T )/Tc

Models α′ α′
s β γ′ δ

SMM for τ < 1 + σ 0 2 − ζ

σ

ζ

σ
(2 − τ )

2ζ

σ

(
τ − 3

2

)
τ − 1

2 − τ

SMM for τ � 1 + σ 0 2 − ζ

σ
(σ + 2 − τ )

ζ

σ
(2 − τ )

2ζ

σ

(
τ − 3

2

)
τ − 1

2 − τ

FDM 2 − ζ

σ
(τ − 1) N/A

ζ

σ
(τ − 2)

ζ

σ
(3 − τ )

1

τ − 2

In the special case ζ = 2σ, the well-known exponent inequalities proven for
real gases by

Fisher [36]: α′ + 2β + γ′ � 2, (29)

Grifˇths [37]: α′ + β(1 + δ) � 2, (30)

Liberman [38]: γ′ + β(1 − δ) � 0 (31)

are fulˇlled exactly for any τ . (The corresponding exponent inequalities for mag-
netic systems are often called Rushbrooke's, Grifˇths', and Widom's inequalities,
respectively.) For ζ > 2σ, Fisher's and Grifˇths' exponent inequalities are ful-
ˇlled as inequalities and for ζ < 2σ they are not fulˇlled. The contradiction to
Fisher's and Grifˇths' exponent inequalities in this last case is not surprising.
This is due to the fact that in the present version of the SMM the critical isochore
ρ = ρc = ρl lies on the boundary of the mixed phase to the liquid. Therefore,
in expression (2.13) in [41] for the speciˇc heat only the liquid phase contributes
and, therefore, Fisher's proof of [41] following (2.13) cannot be applied for the
SMM. Thus, the exponent inequalities (29) and (30) have to be modiˇed for the
SMM. Using results of Table 1, one ˇnds the following scaling relations:

α′ + 2β + γ′ =
ζ

σ
and α′ + β(1 + δ) =

ζ

σ
. (32)

Liberman's exponent inequality (31) is fulˇlled exactly for any choice of ζ and σ.
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Since the coexistence curve of the SMM is not symmetric with respect to
ρ = ρc, it is interesting with regard to the speciˇc heat to consider the difference
Δcρ(T ) ≡ c∗ρg

(T )− c∗ρl
(T ), following the suggestion of [40]. Using Eq. (25) for

gas and liquid and noting that 1/ρ∗g − b = 1/ρ∗id, one obtains a specially deˇned
index α′

s from the most divergent term for ζ > 1

Δcρ(T ) =
T

ρ∗id(T )
d2p∗(T )

dT 2
⇒ α′

s =

⎧⎪⎪⎨
⎪⎪⎩

2 − ζ

σ
, if τ < σ + 1,

2 − ζ

σ
(σ + 2 − τ), if τ � σ + 1.

(33)

Then it is α′
s > 0 for ζ/σ < 2. Thus, approaching the critical point along any

isochore within the mixed phase region except for ρ = ρc = 1/b, the speciˇc
heat diverges for ζ/σ < 2 as deˇned by α′

s and remains ˇnite for the isochore
ρ = ρc = 1/b. This demonstrates the exceptional character of the critical isochore
in this model.

In the special case that ζ = 1 one ˇnds α′
s = 2 − 1/σ for τ � 1 + 2σ

and α′
s = −β for τ > 1 + 2σ. Therefore, using α′

s instead of α′, the exponent
inequalities (29) and (30) are fulˇlled exactly if ζ > 1 and τ � σ + 1 or if ζ = 1
and τ � 2σ + 1. In all other cases (29) and (30) are fulˇlled as inequalities.
Moreover, it can be shown that the SMM belongs to the universality class of real
gases for ζ > 1 and τ � σ + 1.

The comparison of the above-derived formulae for the critical exponents of
the SMM for ζ = 1 with those obtained within the FDM (Eqs. (51)Ä(56) in [22])
shows that these models belong to different universality classes (except for the
singular case τ = 2).

Furthermore, one has to note that for ζ = 1, σ � 1/2, and 1+σ < τ � 1+2σ
the critical exponents of the SMM coincide with those of the exactly solved one-
dimensional FDM with nonzero droplet-volumes [40].

For the usual parameterization of the SMM [1] one obtains with ζ = 5/4 and
σ = 2/3 the exponents

α′
s =

⎧⎪⎨
⎪⎩

1
8
, if τ <

5
3

15
8

τ − 3, if τ � 5
3
,

(34)

β =
15
8

(2 − τ), γ′ =
15
4

(
τ − 3

2

)
, δ =

τ − 1
2 − τ

.

Thus, Fisher's suggestion to use α′
s instead of α′ allows one to ®save¯ the

exponential inequalities, however, it is not a ˇnal solution of the problem.
The critical indices of the nuclear liquidÄgas PT were determined from the

multifragmentation of gold nuclei [44] and found to be close to those ones of real
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gases. The method used to extract the critical exponents β and γ′ in [44] was,
however, found to have large uncertainties of about 25 per cent [45]. Nevertheless,
those results allow us to estimate the value of τ from the experimental values of
the critical exponents of real gases taken with large error bars. Using the above
results we generalized [21] the exponent relations of [40]

τ = 2 − β

γ′ + 2β
and τ = 2 − 1

1 + δ
(35)

for arbitrary σ and ζ. Then, one obtains with [46] β = 0.32−0.39, γ′ =
1.3−1.4, and δ = 4−5 the estimate τ = 1.799−1.846. This demonstrates also
that the value of τ is rather insensitive to the special choice of β, γ′, and
δ, which leads to α′

s
∼= 0.373−0.461 for the SMM. Theoretical values for β,

γ′, and δ for Ising-like systems within the renormalized φ4 theory [47] lead
to the narrow range τ = 1.828 ± 0.001. The values of β, γ′, and δ indices
for nuclear matter and percolation of two- and three-dimensional clusters are
reviewed in [27].

There was a decent try to study the critical indices of the SMM numeri-
cally [48]. The version V2 of [48] corresponds precisely to our model with
τ = 0, ζ = 5/4, and σ = 2/3, but their results contradict to our analysis.
Their results for version V3 of [48] are in contradiction with our proof presented
in [19]. There it was shown that for nonvanishing surface energy (as in ver-
sion V3) the critical point does not exist at all. The latter was found in [48]
for the ˇnite system, and the critical indices were analyzed. Such a strange
result, on the one hand, indicates that the numerical methods used in [48] are
not self-consistent, and, on the other hand, it shows an indispensable value of
the analytical calculations, which can be used as a test problem for numerical
algorithms.

It is widely believed that the effective value of τ deˇned as τeff ≡
−∂ ln nk(ε)/∂ ln k attains its minimum at the critical point (see references
in [24]). This can be easily shown for the SMM. Indeed, taking the SMM

fragment distribution nk(ε) = g(T )k−τ exp
[

ν

T
k − a(ε)

T
kσ

]
∼ k−τeff one ˇnds

τeff = τ − ν

T
k +

σa(ε)
T

kσ ⇒ τ = min(τeff), (36)

where the last step follows from the fact that the inequalities a(ε) � 0, ν � 0
become equalities at the critical point ν = a(0) = 0. Therefore, the SMM predicts
that the minimal value of τeff corresponds to the critical point, where, as we see
now, the mass distribution of fragments is power-like.

In the E900 π−+ Au multifragmentation experiment [23] the ISiS Collabo-
ration measured the dependence of τeff upon the excitation energy and found the
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minimum value min (τeff) ∼= 1.9 (Fig. 5 of [23]). Also the EOS Collaboration [24]
performed an analysis of the minimum of τeff on Au+ C multifragmentation data.
The ˇtted τeff , plotted in Fig. 11, b of [24] versus the fragment multiplicity, ex-
hibits a minimum in the range min (τeff) ∼= 1.8−1.9. Both results contradict the
original FDM [22], but agree well with the above estimate of τ for real gases and
for Ising-like systems in general.

5. CONSTRAINED SMM IN FINITE VOLUMES

Despite the great success, the application of the exact solution [19Ä21] to
the description of experimental data is limited because this solution corresponds
to an inˇnite system and due to that it cannot account for a more complicated
interaction between nuclear fragments. Therefore, it was necessary to extend the
exact solution [19Ä21] to ˇnite volumes. It is clear that for the ˇnite volume
extension it is necessary to account for the ˇnite size and geometrical shape of
the largest fragments, when they are comparable with the system volume. For
this one has to abandon the arbitrary size of the largest fragment and to consider
the constrained SMM (CSMM) in which the largest fragment size is explicitly
related to the volume V of the system.

Thus, the CSMM assumes a more strict constraint

K(V )∑
k

knk = A, where the

size of the largest fragment K(V ) = αV/b cannot exceed the total volume of
the system (the parameter α � 1 is introduced for convenience). The case of
the ˇxed size of the largest fragment, i.e., K(V ) = const, analyzed numerically
in [49] is also included in our treatment. A similar restriction should be also
applied to the upper limit of the product in all partitions Z id

A (V, T ), ZA(V, T ),
and Z(V, T, μ) introduced above (how to deal with the real values of K(V ), see
later). Then the model with this constraint, the CSMM, cannot be solved by the
Laplace transform method, because the volume integrals cannot be evaluated due
to a complicated functional V dependence. However, the CSMM can be solved
analytically with the help of the following identity [32]:

G(V ) =

+∞∫
−∞

dξ

+∞∫
−∞

dη

2π
eiη(V −ξ)G(ξ), (37)

which is based on the Fourier representation of the Dirac δ function. The rep-
resentation (37) allows us to decouple the additional volume dependence and
to reduce it to the exponential one, which can be dealt by the usual Laplace
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transformation in the following sequence of steps:

Ẑ(λ, T, μ) ≡
∞∫
0

dV e−λV Z(V, T, μ) =

∞∫
0

dV ′
+∞∫

−∞

dξ

+∞∫
−∞

dη

2π
eiη(V ′−ξ)−λV ′×

×
∑
{nk}

⎡
⎣K(ξ)∏

k=1

1
nk!

{
V ′φk(T ) e

(
(μ − (λ − iη)bT )k

T

)}nk

⎤
⎦Θ(V ′) =

=

∞∫
0

dV ′
+∞∫

−∞

dξ

+∞∫
−∞

dη

2π
eiη(V ′−ξ)−λV ′+V ′F(ξ,λ−iη). (38)

After changing the integration variable V → V ′ = V − b

K(ξ)∑
k

k nk, the constraint

of Θ function has disappeared. Then all nk were summed independently leading
to the exponential function. Now the integration over V ′ in Eq. (38) can be
straightforwardly done resulting in

Ẑ(λ, T, μ) =

+∞∫
−∞

dξ

+∞∫
−∞

dη

2π

e−iηξ

λ − iη −F(ξ, λ − iη)
, (39)

where the function F(ξ, λ̃) is deˇned as follows:

F(ξ, λ̃) =
K(ξ)∑
k=1

φk(T ) exp

(
(μ − λ̃bT )k

T

)
=

(
mT

2π

)3/2

×

×

⎡
⎣z1 exp

(
μ − λ̃bT

T

)
+

K(ξ)∑
k=2

k−τ exp

(
(μ + W − λ̃bT )k − σk2/3

T

)⎤
⎦ . (40)

As usual, in order to ˇnd the GCP by the inverse Laplace transformation, it
is necessary to study the structure of singularities of the isobaric partition (40).

6. ISOBARIC PARTITION SINGULARITIES AT FINITE VOLUMES

The isobaric partition (40) of the CSMM is, of course, more complicated than
its SMM analog [19,20] because for ˇnite volumes the structure of singularities in
the CSMM is much richer than in the SMM, and they match in the limit V → ∞



870 BUGAEV K.A.

only. To see this let us ˇrst make the inverse Laplace transform:

Z(V, T, μ) =

χ+i∞∫
χ−i∞

dλ

2πi
Ẑ(λ, T, μ) eλV =

=

+∞∫
−∞

dξ

+∞∫
−∞

dη

2π

χ+i∞∫
χ−i∞

dλ

2πi

eλV −iηξ

λ − iη −F(ξ, λ − iη)
=

=

+∞∫
−∞

dξ

+∞∫
−∞

dη

2π
eiη(V −ξ)

∑
{λn}

eλnV

[
1 − ∂F(ξ, λn)

∂λn

]−1

, (41)

nonindependent where the contour λ integral is reduced to the sum over the
residues of all singular points λ = λn + iη with n = 1, 2, . . ., since this contour
in the complex λ plane obeys the inequality χ > max (Re {λn}). Now both
remaining integrations in (41) can be done, and the GCP becomes

Z(V, T, μ) =
∑
{λn}

eλnV

[
1 − ∂F(V, λn)

∂λn

]−1

, (42)

i.e., the double integral in (41) simply reduces to the substitution ξ → V in the
sum over singularities. This is a remarkable result which was formulated in [32]
as the following theorem: if the LaplaceÄFourier image of the excluded volume
GCP exists, then for any additional V dependence of F(V, λn) or φk(T ) the GCP
can be identically represented by Eq. (42).

The simple poles in (41) are deˇned by the equation

λn = F(V, λn). (43)

In contrast to the usual SMM [19,20] the singularities λn are (i) volume-dependent
functions, if K(V ) is not constant, and (ii) they can have a nonzero imaginary
part, but in this case there exist pairs of complex conjugate roots of (43) because
the GCP is real.

Introducing the real Rn and imaginary In parts of λn = Rn + iIn, we can
rewrite Eq. (43) as a system of coupled transcendental equations

Rn =
K(V )∑
k=1

φ̃k(T ) exp
(

Re (νn)k
T

)
cos (Inbk), (44)

In = −
K(V )∑
k=1

φ̃k(T ) exp
(

Re (νn) k

T

)
sin (Inbk), (45)
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where we have introduced the set of the effective chemical potentials
νn ≡ ν(λn) with ν(λ) = μ + W (T ) − λbT , and the reduced distribution func-

tions φ̃1(T ) =
(

mT

2π

)3/2

z1 exp (−W (T )/T ) and φ̃k>1(T ) =
(

mT

2π

)3/2

k−τ×

exp (−σ(T )k2/3/T ) for convenience.
Consider the real root (R0 > 0, I0 = 0), ˇrst. For In = I0 = 0 the real

root R0 exists for any T and μ. Comparing of R0 with the expression for
vapor pressure of the analytical SMM solution [19, 20] shows that TR0 is a
constrained grand canonical pressure of the gas. As usual, for ˇnite volumes the
total mechanical pressure [9, 32] differs from TR0. Equation (45) shows that
for In>0 �= 0 the inequality cos (Inbk) � 1 never becomes the equality for all k
values simultaneously. Then from Eq. (44) one obtains (n > 0)

Rn <

K(V )∑
k=1

φ̃k(T ) exp
(

Re (νn)k
T

)
⇒ Rn < R0, (46)

where the second inequality (46) immediately follows from the ˇrst one. In other
words, the gas singularity is always the rightmost one. This fact plays a decisive
role in the thermodynamic limit V → ∞.

The interpretation of the complex roots λn>0 is less straightforward. Ac-
cording to Eq. (42), the GCP is a superposition of the states of different free
energies −λnV T . (Strictly speaking, −λnV T has a meaning of the change of
free energy, but we will use the traditional term for it.) For n > 0 the free
energies are complex. Therefore, −λn>0T is the density of free energy. The
real part of the free energy density, −RnT , deˇnes the signiˇcance of the state's
contribution to the partition: due to (46) the largest contribution always comes
from the gaseous state and has the smallest real part of free energy density. As
usual, the states which do not have the smallest value of the (real part of) free
energy, i.e., −Rn>0T , are thermodynamically metastable. For inˇnite volume
they should not contribute unless they are inˇnitesimally close to −R0T , but for
ˇnite volumes their contribution to the GCP may be important.

As one sees from (44) and (45), the states of different free energies have
different values of the effective chemical potential νn, which is not the case
for inˇnite volume [19, 20], where there exists a single value for the effective
chemical potential. Thus, for ˇnite V the states which contribute to the GCP (42)
are not in a true chemical equilibrium.

The meaning of the imaginary part of the free energy density becomes clear
from (44) and (45) [50]: As one can see from (44) the imaginary part In>0

effectively changes the number of degrees of freedom of each k-nucleon fragment
(k � K(V )) contribution to the free energy density −Rn>0T . It is clear, that the
change of the effective number of degrees of freedom can occur virtually only
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and if λn>0 state is accompanied by some kind of equilibration process. Both of
these statements become clear, if we recall that the statistical operator in statistical
mechanics and the quantum mechanical convolution operator are related by the
Wick rotation [51]. In other words, the inverse temperature can be considered as
an imaginary time. Therefore, depending on the sign, the quantity InbT ≡ τ−1

n ,
that appears in the trigonometric functions of equations (44) and (45) in front of
the imaginary time 1/T , can be regarded as the inverse decay/formation time τn

of the metastable state which corresponds to the pole λn>0 (for more details see
the next sections).

This interpretation of τn naturally explains the thermodynamic metastability
of all states except the gaseous one: the metastable states can exist in the system
only virtually because of their ˇnite decay/formation time, whereas the gaseous
state is stable because it has an inˇnite decay/formation time.

7. NO PHASE TRANSITION CASE

It is instructive to treat the effective chemical potential ν(λ) as an independent
variable instead of μ. In contrast to the inˇnite V , where the upper limit ν � 0
deˇnes the liquid phase singularity of the isobaric partition and gives the pressure
of a liquid phase pl(T, μ) = TR0|V →∞ = (μ + W (T ))/b [19, 20], for ˇnite
volumes and ˇnite K(V ) the effective chemical potential can be complex (with
either sign for its real part) and its value deˇnes the number and position of the
imaginary roots {λn>0} in the complex plane. Positive and negative values of
the effective chemical potential for ˇnite systems were considered [38] within
the Fisher droplet model, but, to our knowledge, its complex values have never
been discussed. From the deˇnition of the effective chemical potential ν(λ) it
is evident that its complex values for ˇnite systems exist only because of the
excluded volume interaction, which is not taken into account in the Fisher droplet
model [22]. However, a recent study of clusters of the d = 2 Ising model
within the framework of FDM (see the corresponding section in [27]) shows
that the excluded volume correction improves essentially the description of the
thermodynamic functions. Therefore, the next step is to consider the complex
values of the effective chemical potential and free energy for the excluded volume
correction of the Ising clusters on ˇnite lattices.

As is seen from Fig. 4, a, the r.h.s. of Eq. (45) is the amplitude and fre-
quency modulated sine-like function of dimensionless parameter In b. Therefore,
depending on T and Re (ν) values, there may exist no complex roots {λn>0}, a
ˇnite number of them, or an inˇnite number of them. In Fig. 4, b, we showed a
special case which corresponds to exactly three roots of Eq. (43) for each value
of K(V ): the real root (I0 = 0) and two complex conjugate roots (±I1). Since
the r.h.s. of (45) is monotonously increasing function of Re (ν), when the former
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is positive, it is possible to map the T − Re (ν) plane into regions of a ˇxed
number of roots of Eq. (43). Each curve in Fig. 4, b divides the T −Re (ν) plane
into three parts: for Re (ν) values below the curve there is only one real root
(gaseous phase), for points on the curve there exist three roots, and above the
curve there are four or more roots of Eq. (43).

Fig. 4. a) A graphical solution of Eq. (45) for T = 10 MeV and τ = 1.825. The l.h.s.
(straight line) and r.h.s. of Eq. (45) (all dashed curves) are shown as the function of
dimensionless parameter I2 b for the three values of the largest fragment size K(V ). The
intersection point at (0; 0) corresponds to a real root of Eq. (43). Each tangent point
with the straight line generates two complex roots of (43). b) Each curve separates the
T −Re (νn) region of one real root of Eq. (43) (below the curve), three complex roots (at
the curve) and four and more roots (above the curve) for three values of K(V ) and the
same parameters as in a

For constant values of K(V ) ≡ K the number of terms in the r.h.s. of
(45) does not depend on the volume and, consequently, in thermodynamic limit
V → ∞ only the rightmost simple pole in the complex λ plane survives out of
a ˇnite number of simple poles. According to the inequality (46), the real root
λ0 is the rightmost singularity of isobaric partition (39). However, there is a
possibility that the real parts of other roots λn>0 become inˇnitesimally close to
R0, when there is an inˇnite number of terms which contribute to the GCP (42).

Let us show now that even for an inˇnite number of simple poles in (42)
only the real root λ0 survives in the limit V → ∞. For this purpose consider the
limit Re (νn) 	 T . In this limit the distance between the imaginary parts of the
nearest roots remains ˇnite even for inˇnite volume. Indeed, for Re (νn) 	 T
the leading contribution to the r.h.s. of (45) corresponds to the harmonic with
k = K , and, consequently, an exponentially large amplitude of this term can be
only compensated by a vanishing value of sin (In bK), i.e., In bK = πn + δn
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with |δn| 
 π (hereafter we will analyze only the branch In > 0), and, therefore,
the corresponding decay/formation time τn ≈ K[πnT ]−1 is volume independent.

Keeping the leading term on the r.h.s. of (45) and solving for δn, one ˇnds

In ≈ (−1)n+1φ̃K(T ) exp
(

Re (νn)K

T

)
δn,

(47)

with δn ≈ (−1)n+1πn

Kb φ̃K(T )
exp

(
−Re (νn)K

T

)
,

Rn ≈ (−1)nφ̃K(T ) exp
(

Re (νn)K

T

)
, (48)

where in the last step we used Eq. (44) and condition |δn| 
 π. Since for V → ∞
all negative values of Rn cannot contribute to the GCP (42), it is sufˇcient to
analyze even values of n which, according to (48), generate Rn > 0.

Since the inequality (46) cannot be broken, a single possibility, when λn>0

pole can contribute to the partition (42), corresponds to the case Rn → R0 − 0+

for some ˇnite n. Assuming this, we ˇnd Re (ν(λn)) → Re (ν(λ0)) for the same
value of μ. Substituting these results into equation (44), one gets

Rn ≈
K∑

k=1

φ̃k(T ) exp
(

Re (ν(λ0)) k

T

)
cos

[
πnk

K

]

 R0. (49)

The inequality (49) follows from the equation for R0 and the fact that, even for
equal leading terms in the sums above (with k = K and even n), the difference
between R0 and Rn is large due to the next-to-leading term k = K − 1, which is

proportional to exp
(

Re (ν(λ0)) (K − 1)
T

)
	 1. Thus, we arrive at a contradic-

tion with our assumption R0 − Rn → 0+, and, consequently, it cannot be true.
Therefore, for large volumes the real root λ0 always gives the main contribution
to the GCP (42), and this is the only root that survives in the limit V → ∞.
Thus, we showed that the model with the ˇxed size of the largest fragment has
no phase transition because there is a single singularity of the isobaric partition
(39), which exists in thermodynamic limit.

8. FINITE VOLUME ANALOGS OF PHASES

If K(V ) monotonically grows with the volume, the situation is different. In
this case for positive value of Re (ν) 	 T the leading exponent in the r.h.s.
of (45) also corresponds to the largest fragment, i.e., to k = K(V ). Therefore,
we can apply the same arguments which were used above for the case K(V ) =
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K = const and derive similarly equations (47), (48) for In and Rn. From

In ≈ πn

b K(V )
it follows that, when V increases, the number of simple poles

in (41) also increases and the imaginary part of the closest to the real λ-axis
poles becomes very small, i.e., In → 0 for n 
 K(V ), and, consequently, the
associated decay/formation time τn ≈ K(V )[πnT ]−1 grows with the volume of
the system. Due to In → 0, the inequality (49) cannot be established for the poles
with n 
 K(V ). Therefore, in contrast to the previous case, for large K(V ) the
simple poles with n 
 K(V ) will be inˇnitesimally close to the real axis of the
complex λ plane.

From Eq. (48) it follows that

Rn ≈ pl(T, μ)
T

− 1
K(V )b

ln
∣∣∣∣ Rn

φ̃K(T )

∣∣∣∣ → pl(T, μ)
T

(50)

for |μ| 	 T and K(V ) → ∞. Thus, we proved that for inˇnite volume the inˇnite
number of simple poles moves toward the real λ axis to the vicinity of liquid
phase singularity λl = pl(T, μ)/T of the isobaric partition [19,20] and generates
an essential singularity of function F(V, pl/T ) in (40) irrespective of the sign
of the chemical potential μ. In addition, as we showed above, the states with
Re (ν) 	 T become stable because they acquire inˇnitely large decay/formation
time τn in the limit V → ∞. Therefore, these states should be identiˇed as a
liquid phase for ˇnite volumes as well.

Now it is clear that each curve in the lower panel of Fig. 4, b is the ˇnite
volume analog of the phase boundary T − μ for a given value of K(V ): below
the phase boundary there exists a gaseous phase, but at and above each curve
there are states which can be identiˇed with a ˇnite volume analog of the mixed
phase, and, ˇnally, at Re (ν) 	 T there exists a liquid phase. When there is
no phase transition, i.e., K(V ) = K = const, the structure of simple poles is
similar, but, ˇrst, the line which separates the gaseous states from the metastable
states does not change with the volume, and, second, as is shown above, the
metastable states will never become stable. Therefore, a systematic study of the
volume dependence of free energy (or pressure for very large V ) along with
the formation and decay times may be of a crucial importance for experimental
studies of the nuclear liquid gas phase transition.

The above results demonstrate that, in contrast to Hill's expectations [9], the
ˇnite volume analog of the mixed phase does not consist just of two pure phases.
The mixed phase for ˇnite volumes consists of a stable gaseous phase and the
set of metastable states which differ by the free energy. Moreover, the difference
between the free energies of these states is not surface-like, as Hill assumed in
his treatment [9], but volume-like. Furthermore, according to Eqs. (44) and (45),
each of these states consists of the same fragments, but with different weights. As
is seen from above for the case Re (ν) 	 T , some fragments that belong to the
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states, in which the largest fragment is dominant, may, in principle, have negative
weights (effective number of degrees of freedom) in the expression for Rn>0 (44).
This can be understood easily because higher concentrations of large fragments
can be achieved at the expense of the smaller fragments and is re	ected in the
corresponding change of the real part of the free energy −Rn>0V T . Therefore,
the actual structure of the mixed phase at ˇnite volumes is more complicated than
was expected in earlier works.

The Hills ideas were developed further in [8], where the authors claimed
to establish the one-to-one correspondence between the bimodal structure of the
partition of measurable quantity B known on average and the properties of the
LeeÄYang zeros of this partition in the complex g plane. The starting point of [8]
is to postulate the partition Zg and the probability Pg(B) of the following form:

Zg ≡
∫

dB W (B) e−Bg ⇒ Pg(B) ≡ W (B) e−Bg

Zg
, (51)

where W (B) is the partition sum of the ensemble of ˇxed values of the observable
{B}, and g is the corresponding Lagrange multiplier. Then the authors of [8]
assume the existence of two maxima of the probability Pg(B) (≡ bimodality) and
discuss their relation to the LeeÄYang zeros of Zg in the complex g plane.

The CSMM gives us a unique opportunity to verify the Chomaz and Gul-
minelli idea on the bimodality behavior of Pg(B) using the ˇrst principle re-
sults. Let us use Eq. (38) identifying the intensive variable g with λ and
extensive one B with the available volume V ′ → Ṽ . The evaluation of the
r.h.s. of (38) is very difˇcult in general, but for a special case, when the
eigen volume b is small this can be done analytically. Thus, approximating
F(ξ, λ − iη) ≈ F(ξ, λ) − iη∂F(ξ, λ)/∂λ, we obtain the CSMM analog of the
probability (51)

Pλ(Ṽ )Ẑ(λ, T, μ) ≡
+∞∫

−∞

dξ

+∞∫
−∞

dη

2π
eiη(Ṽ −ξ)−λṼ +Ṽ F(ξ,λ−iη) ≈

≈
+∞∫

−∞

dξ eṼ [F(ξ,λ)−λ]δ

[
Ṽ − ξ − ∂F(ξ, λ)

∂λ

]
, (52)

where we made the η integration after applying the approximation for F(ξ, λ−iη).
Further evaluation of (52) requires to know all possible solutions of the average
volume of the system ξ∗α(Ṽ ) = Ṽ − ∂F(ξ∗α, λ)/∂λ (α = {1, 2, . . .}). It can be
shown [50] that for the gaseous domain ν = Re (ν) < −2T (see Fig. 4, b) there
exists a single solution α = 1, whereas for the domain ν = Re (ν) > 0, which
corresponds to a ˇnite volume analog of the mixed phase, there are two solutions
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α = 1, 2. In contrast to the expectations of [8], the probability (52)

Pλ(Ṽ ) Ẑ(λ, T, μ) ≈

≈
∑
α

1∣∣∣∣1 +
∂2F(ξ∗α, λ)

∂λξ∗α

∣∣∣∣
eṼ [F(ξ,λ)−λ] ⇒ ∂ ln Pλ(Ṽ )

∂Ṽ
� 0 (53)

has negative derivative for the whole domain of existence of the isobaric partition
Ẑ(λ, T, μ) [50]. This is true even for the domain in which, as we proved, there
exists a ˇnite analog of the mixed phase, i.e., for ν = Re (ν) > 0. Moreover,

irrespective of the sign of the derivative
∂ ln Pλ(Ṽ )

∂Ṽ
, the probability (52) cannot

be measured experimentally. Above it was rigorously proven that for any real ξ
the IP Ẑ(λ, T, μ) is deˇned on the real λ axis only for F(ξ, λ) − λ > 0, i.e., on
the right-hand side of the gaseous singularity λ0: λ > λ0. However, as one can
see from equation (41), the ®experimental¯ λn values belong to the other region
of the complex λ plane: Re (λn>0) < λ0.

Thus, it turns out that the suggestion of [8] to analyze the probability (51)
does not make any sense because, as we showed explicitly for the CSMM, it
cannot be measured. It seems that the starting point of the [8] approach, i.e., the
assumption that the left equation (51) gives the most general form of the partition
of ˇnite system, is problematic. Indeed, comparing (50) with the analytical result
(53), we see that for ˇnite systems, in contrast to the major assumption of [8],
the probability W of the CSMM depends not only on the extensive variable
Ṽ , but also on the intensive variable λ, which makes unmeasurable the whole
construct of [8]. Consequently, the conclusions of [8] on the relation between the
bimodality and the phase transition existence are not general and have a limited
range of validity. In addition, the absence of two maxima of the probability (53)
automatically means the absence of back-banding of the equation of state [8].

9. GAS OF BAGS IN FINITE VOLUMES

Now we will apply the formalism of the preceding sections to the analysis
of the Gas of Bags Model (GBM) [36, 52] in ˇnite volumes. In the low and
high temperature domains the GBM reduces to two well-known and successful
models: the hadron gas model [53] and the bag model of QGP [54]. Both
of these models are surprisingly successful in describing the bulk properties of
hadron production in high energy nuclear collisions, and, therefore, one may hope
that their generalization, the GBM, may re	ect basic features of the nature in the
phase transition region.
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The Van der Waals gas consisting of n hadronic species, which are called
bags in what follows, has the following GCP [36]:

Z(V, T ) =
∑
{Nk}

[
n∏

k=1

[(V − v1N1 − . . . − vnNn)φk(T )]Nk

Nk!

]
×

× θ(V − v1N1 − . . . − vnNn), (54)

where φk(T ) ≡ gkφ(T, mk) ≡ gk

2π2

∞∫
0

p2dp exp
[
− (p2 + m2

k)1/2

T

]
= gk

m2
kT

2π2
×

K2

(mk

T

)
is the particle density of bags of mass mk, eigen volume vk and

degeneracy gk. This expression differs slightly form the GCP of the simpliˇed
SMM (3), where μ = 0 and the eigen volume of k-nucleon fragment kb is
changed to the eigen volume of the bag vk. Therefore, as for the simpliˇed SMM
the Laplace transformation (4) with respect to volume of Eq. (54) gives

Ẑ(s, T ) =

⎡
⎣ s −

n∑
j=1

exp (−vjs)gjφ(T, mj)

⎤
⎦
−1

. (55)

In preceding sections we showed that as long as the number of bags, n, is ˇnite,
the only possible singularities of Ẑ(s, T ) (55) are simple poles. However, in
the case of an inˇnite number of bags an essential singularity of Ẑ(s, T ) may
appear. This property is used in the GBM: the sum over different bag states in

(54) can be replaced by the integral,
∞∑

j=1

gj . . . =

∞∫
0

dm dv . . . ρ(m, v), if the bag

mass-volume spectrum, ρ(m, v), which deˇnes the number of bag states in the
mass-volume region [m, v; m+dm, v+dv], is given. Then, the Laplace transform
of Z(V, T ) reads [36]

IẐGB(s, T ) ≡
∞∫
0

dV e−sV Z(V, T ) = [s − f(T, s)]−1,

(56)

where f(T, s) =

∞∫
0

dm dvρ(m, v) e−vsφ(T, m).

Like in the simpliˇed SMM, the pressure of inˇnite system is again given by the
rightmost singularity: p(T ) = Ts∗(T ) = T · max {sH(T ), sQ(T )}. Similarly to
the simpliˇed SMM considered in Secs. 2 and 3, the rightmost singularity s∗(T )
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of Ẑ(s, T ) (56) can be either the simple pole singularity sH(T ) = f(T, sH(T ))
of the isobaric partition (56) or the sQ(T ) singularity of the function f(T, s) (56)
itself.

The major mathematical difference between the simpliˇed SMM and the
GBM is that the latter employs the two-parameter mass-volume spectrum. Thus,
the mass-volume spectrum of the GBM consists of the discrete mass-volume spec-
trum of light hadrons and the continuum contribution of heavy resonances [55]

ρ(m, v) =
Jm∑
j=1

gjδ(m − mj) δ(v − vj) + Θ(v − V0)Θ(m − M0 − Bv)×

× Cvγ(m − Bv)δ exp
[
4
3
σ

1/4
Q v1/4(m − Bv)3/4

]
, (57)

respectively. Here mj < M0, vj < V0, M0 ≈ 2 GeV, V0 ≈ 1 fm3, C, γ, δ, and
B (the so-called bag constant, B ≈ 400 MeV/fm3) are the model parameters and

σQ =
π2

30

(
gg +

7
8
gqq̄

)
=

π2

30

(
2 · 8 +

7
8
· 2 · 2 · 3 · 3

)
=

π2

30
95
2

(58)

is the StefanÄBoltzmann constant counting gluons (spin, color) and (anti)quarks
(spin, color and u, d, s 	avor) degrees of freedom.

Recently the grand canonical ensemble has been heavily criticized [56, 57],
when it is used for the exponential mass spectrum. This critique, however, cannot
be applied to the mass-volume spectrum (57) because it grows less fast than the
Hagedorn mass spectrum discussed in [56, 57], and because in the GBM there
is an additional suppression of large and heavy bags due to the Van der Waals
repulsion. Therefore, the spectrum (57) can be safely used in the grand canonical
ensemble.

It can be shown [52] that the spectrum (57) generates the sQ(T ) =
σQ

3
T 3−B

T
singularity, which reproduces the bag model pressure p(T ) = TsQ(T ) [54] for
high temperature phase, and sH(T ) singularity, which gives the pressure of the
hadron gas model [53] for low temperature phase. The transition between them
can be of the ˇrst order or second order or cross-over, depending on the model
parameters.

However, for ˇnite systems the volume of bags and their masses should be
ˇnite. The simplest ˇnite volume modiˇcation of the GBM is to introduce the
volume-dependent size of the largest bag n = n(V ) in the partition (54). As we
discussed earlier such a modiˇcation cannot be handled by the traditional Laplace
transform technique used in [52,55], but this modiˇcation can be easily accounted
for by the LaplaceÄFourier method [32]. Repeating all the steps of Secs. 5 and
6, we shall obtain the equations (40)Ä(43), in which the function F(ξ, λ̃) should
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be replaced by its GBM analog f(λ, VB) ≡ fH(λ) + fQ(λ, VB) deˇned via

fH(λ) ≡
Jm∑
j=1

gjφ(T, mj) e−vjs,

and (59)

fQ(λ, VB) ≡V0

VB/V0∫
1

dka(T, V0k) eV0(sQ(T )−λ)k.

In evaluating (59) we used the mass-volume spectrum (57) with the maximal
volume of the bag VB and changed integration to a dimensionless variable
k = v/V0. Here the function a(T, v) = u(T )v2+γ+δ is deˇned by u(T ) =
Cπ−1σ

δ+1/2
Q T 4+4δ(σQT 4 + B)3/4.

The above representation (59) generates equations for the real and imaginary
parts of λn ≡ Rn + iIn, which are very similar to the corresponding expressions
of the CSMM (44) and (45). Comparing (59) with (43), one sees that their
main difference is that the sum over k in (43) is replaced by the integral over
k in (59). Therefore, equations (44) and (45) remain valid for Rn and In of
the GBM, respectively if we replace the k sum by the integral for K(V ) =
VB/V0, b = V0, ν(λ) = V0(sQ(T ) − λ), and φ̃k>1(T ) = V0a(T, V0k). Thus,
the results and conclusions of our analysis of the Rn and In properties of the
CSMM should be valid for the GBM as well. In particular, for large values of
K(V ) = VB/V0 and Rn < sQ(T ), one can immediately ˇnd out In ≈ πn/VB

and the GBM formation/decay time τn = VB [πnTV0]−1. These equations show
that the metastable λn>0 states can become stable in thermodynamic limit if and
only if VB ∼ V .

The ˇnite volume modiˇcation of the GBM equation of state should be used
for the quantities which have V λ0 ∼ 1. This may be important for the early stage
of the relativistic nuclear collisons when the volume of the system is small, or for
the systems that have small pressures. The latter can be the case for the pressure
of strange or charm hadrons.

10. HILLS AND DALES MODEL
AND THE SOURCE OF SURFACE ENTROPY

During last forty years the Fisher droplet model (FDM) [22] has been suc-
cessfully used to analyze the condensation of a gaseous phase (droplets or clusters
of all sizes) into a liquid. The systems analyzed with the FDM are many and
varied, but up to now the source of the surface entropy is not absolutely clear. In
his original work Fisher postulated that the surface free-energy FA of a cluster
of A constituents consists of surface (A2/3) and logarithmic (ln A) parts, i.e.,
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FA = σ(T )A2/3 + τT ln A. Its surface part σ(T )A2/3 ≡ σ0[1−T/Tc]A2/3 con-
sists of the surface energy, i.e., σ0A

2/3, and surface entropy −σ0/TcA
2/3. From

the study of the combinatorics of lattice gas clusters in two dimensions, Fisher
postulated the speciˇc temperature dependence of the surface tension σ(T )|FDM

which gives naturally an estimate for the critical temperature Tc. Surprisingly
Fisher's estimate works for the 3D Ising model [58], nucleation of real 	u-
ids [59,60], percolation clusters [61] and nuclear multifragmentation [3].

To understand why the surface entropy has such a form we formulated a
statistical model of surface deformations of the cluster of A constituents, the
Hills and Dales Model (HDM) [33]. For simplicity we consider cylindrical
deformations of positive height hk > 0 (hills) and negative height −hk (dales),
with k constituents at the base. It is assumed that cylindrical deformations of
positive height hk > 0 (hills) and negative height −hk (dales), with k constituents
at the base, and the top (bottom) of the hill (dale) has the same shape as the surface
of the original cluster of A constituents. We also assume that: (i) the statistical
weight of deformations exp (−σ0|ΔSk|/s1/T ) is given by the Boltzmann factor
due to the change of the surface |ΔSk| in units of the surface per constituent s1;
(ii) all hills of heights hk � Hk (Hk is the maximal height of a hill with a base
of k constituents) have the same probability dhk/Hk besides the statistical one;
(iii) assumptions (i) and (ii) are valid for the dales.

The HDM grand canonical surface partition (GCSP)

Zgc(SA) =
∞∑

{n±
k =0}

⎡
⎣Kmax∏

k=1

[
z+

k Ggc

]n+
k

n+
k !

[
z−k Ggc

]n−
k

n−
k !

⎤
⎦Θ(s1Ggc) (60)

corresponds to the conserved (on average) volume of the cluster because the prob-
abilities of hill z+

k and dale z−k of the same k-constituent base are identical [33]

z±k ≡
±Hk∫
0

dhk

±Hk
exp

(
−σ0Pk|hk|

Ts1

)
=

Ts1

σ0PkHk

[
1 − exp

(
−σ0PkHk

Ts1

)]
.

(61)
Here Pk is the perimeter of the cylinder base.

The geometrical partition (degeneracy factor) of the HDM or the number of
ways to place the center of a given deformation on the surface of the A-constituent
cluster which is occupied by the set of {n±

l = 0, 1, 2, . . .} deformations of the
l-constituent base are assumed to be given in the Van der Waals approxima-
tion [33]:

Ggc =

[
SA −

Kmax∑
k=1

k(n+
k + n−

k )s1

]
s−1
1 , (62)
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where s1k is the area occupied by the deformation of k-constituent base (k =
1, 2, . . .); SA is the full surface of the cluster, and Kmax(SA) is the A-dependent
size of the maximal allowed base on the cluster.

The Θ(s1Ggc) function in (1) ensures that only conˇgurations with positive
value of the free surface of cluster are taken into account, but makes the analytical
evaluation of the GCSP (1) very difˇcult. However, we were able to solve this
GCSP exactly for any surface dependence of Kmax(SA) using identity (37) of the
LaplaceÄFourier transform technique [32]:

Zgc(SA) =
∑
{λn}

eλnSA

[
1 − ∂Fgc(SA, λn)

∂λn

]−1

. (63)

The poles λn of the isochoric partition are deˇned by

λn = Fgc(SA, λn) ≡
Kmax(SA)∑

k=1

[
z+

k

s1
+

z−k
s1

]
e−k s1λn . (64)

Our analysis shows that Eq. (5) has exactly one real root Rgc
0 = λ0, Im (λ0) = 0,

which is the rightmost singularity, i.e., Rgc
0 > Re (λn>0). As proved in [33], the

real root Rgc
0 dominates completely for clusters with A � 10.

Also we showed that there is an absolute supremum for the real root Rgc
0 ,

which corresponds to the limit of inˇnitesimally small amplitudes of deformations,

Hk → 0, of large clusters: ωgc ≡ sup(Rgc
0 ) = 1.06009 ≡ Rgc

0 = 2
[
eRgc

0 − 1
]−1

.

It is remarkable that the last result is, ˇrst, model independent because in the limit
of vanishing amplitude of deformations all model speciˇc parameters vanish; and,
second, it is valid for any self-nonintersecting surfaces.

For large spherical clusters the GCSP becomes Z(SA) ≈ 0.3814 e1.06009A2/3
,

which, combined with the Boltzmann factor of the surface energy e−σ0A2/3/T ,
generates the following temperature-dependent surface tension of the large cluster

σ(T ) = σ0

[
1 − 1.06009

T

σ0

]
. This result means that the actual critical temper-

ature of the FDM should be Tc = σ0/1.06009, i.e., 6.009% smaller in σ0 units
than Fisher originally supposed.

Similarly one can introduce the surface partitions for the other ensembles [34].
The canonically constrained surface partition (CCSP) is built up to obey the
volume conservation more strictly than it is done in the GCSP. This is ensemble
of pairs of deformations: the number of the hills n+

k of the k-constituent base
is always identical to the number of corresponding dales, i.e., n−

k ≡ n+
k ≡ nk.

Then the canonical geometrical partition can be cast as

Gc =

[
SA − 2

Kmax∑
k=1

knks1

]
(2s1)−1, (65)
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where the factor two in the denominator of the right-hand side (r.h.s.) of (65)
accounts for the fact that it is necessary to place simultaneously the centers of
two k-constituent base deformations (hill and dale) out of 2nk on the surface
of cluster. Using the geometrical partition (65), one can obtain the partition
function of canonical ensemble by formally replacing Ggc → Gc and inserting the
Kronecker δn+

k ,n−
k

for each k multiplier in (60). We, however, consider each pair

of hills and dales of the same base as a single degree of freedom. Therefore, the
number of ways to place each pair out of nk distinguishable pairs is still given
by the canonical geometrical partition Gc. Multiplying it with the probability of a
pair of deformations z+

k z−k and repeating this for nk pairs, we obtain the CCSP
as follows:

Zcc(SA) =
∞∑

{nk=0}

[
Kmax∏
k=1

[
z+

k z−k Gc

]nk

nk!

]
Θ(2s1Gc). (66)

Applying the LaplaceÄFourier transform technique to this partition, one can
ˇnd that the CCSP has the same form as the GCSP (63), but the function Fgc in
(64) must be replaced with Fcc:

λn = Fcc(SA, λn) =
Kmax(SA)∑

k=1

z+
k z−k
2 s1

e−2ks1λn . (67)

For the limit of the vanishing amplitudes of deformations it is possible to
introduce one more ensemble for the surface deformations [34] which hereafter
will be called as the semigrand canonical surface partition (SGCSP). This en-
semble occupies an intermediate position between the constrained canonical and
grand canonical formulations. It corresponds to the case, when the hills and dales
of the same base are considered to be indistinguishable. For that we would like
to explore the fact that according to (61) the statistical probabilities of hills and
dales of the same base are equal. Then for the inˇnitesimally small amplitudes
of deformations the volume conservation constraint is fulˇlled trivially. In the
present work this ensemble will be used for the deformations of vanishing am-
plitude only, but it may be used also for ˇnite amplitudes of deformations if the
volume is not conserved. Then the SGCSP and its geometrical factor read as

Zsg(SA) =
∞∑

{nk=0}

[
Kmax∏
k=1

[
z+

k Gsg

]nk

nk!

]
Θ(s1Gsg),

(68)

Gsg =

[
SA −

Kmax∑
k=1

knks1

]
s−1
1 .
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Again, like in the case of the CCSP, only the equation for the simple poles of the
isochoric partition should be modiˇed

λn = Fsg(SA, λn) =
Kmax(SA)∑

k=1

z+
k

s1
e−ks1λn . (69)

It can be shown that for all surface partitions discussed in this section the
properties of singularities λn of the isochoric partitions are the same [34]. There
is only a quantitative difference for the rightmost singularities Rα

0 ≡ s1L
αλα

0

(α ∈ {gc, sg, cc}), where Lα are deˇned as Lgc = Lsg = 1 and Lcc = 2.
Therefore, in the limit of the vanishing amplitudes of deformations for an inˇnite
base of the largest deformation Kmax(SA → ∞) → ∞ each of these surface
partitions will reach an upper limit deˇned by the corresponding value of the
surface entropy coefˇcient ωα

U

max {Zα(SA)} → gα exp
(

ωα
U

SA

s1

)
(70)

with ωα
U =

⎧⎪⎨
⎪⎩

ωgc
U = max {Rgc

0 } ≈ 1.060090, α = gc,
ωcc

U = max {Rcc
0 /2} ≈ 0.403233, α = cc,

ωsg
U = max {Rsg

0 } ≈ 0.806466, α = sg,

where the degeneracy factor gα is deˇned as follows: ggc ≈ 0.38139 and gcc =
gsg ≈ 0.407025.

For large, but ˇnite clusters it is necessary to take into account not only
the rightmost singularity λα

0 of the corresponding surface partition, but all other
singularities λα

n>0 with positive real part Rα
n>0 > 0. However, the analysis

presented in [34] shows that for the clusters of a few constituents the right-
most singularity of the isochoric partition completely dominates. This can be
seen in Fig. 5, which depicts a few roots λα

n for the vanishing amplitudes of
deformations.

The obtained surface tension coefˇcients can be compared with the corre-
sponding value of the ω-coefˇcient of the d-dimensional Ising model. The latter
is deˇned as the energy 2J required to 	ip a given spin interacting with its q
neighbors to opposite direction per (d − 1)-dimensional surface divided by the
value of critical temperature

ωLat =
qJ

Tcd
. (71)

Here q is the coordination number for the lattice, and J denotes the coupling
constant of the model. A comparison of ωα

U values in (70) with Tables 1 and 3
shows that all lattice ωlat-coefˇcients, indeed, lie between the upper estimates for



EXACTLY SOLVABLE MODELS: THE WAY TOWARDS A RIGOROUS TREATMENT 885

the constrained canonical and grand canonical surface partitions

0.403233 = ωcc
U < ωlat < ωgc

U = 1.060090, (72)

i.e., ωcc
U and ωgc

U are the inˇmum and supremum for 2- and 3-dimensional Ising
models, respectively.

Fig. 5. The ˇrst quadrant of the complex
plane (Rα

n + iIα
n ) ≡ s1λ

α
nLα shows the

location of simple poles of the isochoric
partitions for n = 1, 2, 3, 4. The symbols
represent the two branches I−

n and I+
n of

the roots for the upper estimate of three
surface partitions. The curves are deˇned
by the approximation suggested in [34]

Table 2. The values of the ωlat coefˇcient
for various 2-dimensional Ising models.
For more details see the text

Lattice type ωlat = σ/Tc

Honeycomb 0.987718

Kagome 0.933132

Square 0.881374

Triangular 0.823960

Diamond 0.739640

Table 3. The values of the ωlat co-
efˇcient for various 3-dimensional Ising
models

Lattice type ωlat = σ/Tc

Simple cubic 0.44342

Body-centered
cubic 0.41989

Face-centered
cubic 0.40840

It is remarkable that such a simple model of surface partition discussed above
gives the upper and lower bounds of ω coefˇcients for all 2- and 3-dimensional
Ising models. While further intriguing facts can be found in the original work [34],
here we mention only that the surface tension plays a very important role in the
SMM and CSMM, but its in	uence on the properties of the phase diagram of the
GBM is not understood yet. Another interesting problem of surface partition is to
consider the fractal deformations within the HDM in order to elucidate the source
of Fisher's power law. We believe that these problems are of great importance.
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11. STRATEGY OF SUCCESS

Here we discuss exact analytical solutions of a variety of statistical models
which are obtained by a new powerful mathematical method, the LaplaceÄFourier
transform. Using this method we solved the constrained SMM and Gas of Bags
Model for ˇnite volumes, and found the surface partition of large clusters. Since
in the thermodynamic limit the CSMM has the nuclear liquidÄgas PT and the
GBM describes the PT between the hadron gas and QGP, it was interesting
and important to study them for ˇnite volumes. As we have shown, for ˇnite
volumes their GCP functions can be identically rewritten in terms of the simple
poles λn�0 of the isobaric partition (39). We proved that the real pole λ0

exists always and the quantity Tλ0 is the constrained grand canonical pressure
of the gaseous phase. The complex roots λn>0 appear as pairs of complex
conjugate solutions of equation (43). Their most straightforward interpretation
is as follows: −T Re (λn) has a meaning of the free energy density, whereas
bT Im (λn), depending on its sign, gives the inverse decay/formation time of such
a state. Therefore, the gaseous state is always stable because its decay/formation
time is inˇnite and because it has the smallest value of free energy, whereas the
complex poles describe the metastable states for Re (λn>0) � 0 and mechanically
unstable states for Re (λn>0) < 0.

We studied the volume dependence of the simple poles and found a dramatic
difference in their behavior for the case with phase transition and without it.
For the case with phase transition this formalism allows one to deˇne the ˇnite
volume analogs of phases unambiguously and to establish the ˇnite volume analog
of the T − μ phase diagram (see Fig. 4). At ˇnite volumes the gaseous phase is
described by a simple pole λ0, the mixed phase corresponds to a ˇnite number
of simple poles (three and more), whereas the liquid is represented by an inˇnite
amount of simple poles at |μ| → ∞ which describe the states of a highest possible
particle density.

As we showed for the CSMM and GBM, at ˇnite volumes the λn states of
the same partition with given T and μ are not in a true chemical equilibrium
because the interaction between the constituents generates complex values of the
effective chemical potential. This feature cannot be obtained within the Fisher
droplet model due to the lack of the hard core repulsion between the constituents.
We showed that, in contrast to Hill's expectations [9], the mixed phase at ˇnite
volumes is not just a composition of two states which are the pure phases. As
was shown, a ˇnite volume analog of the mixed phase is a superposition of three
and more collective states, and each of them is characterized by its own value of
λn, and, consequently, the difference between the free energies of these states is
not a surface-like, as Hill argued [9], but volume-like.

Also the exact analytical formulas gave us a unique opportunity to verify the
Chomaz and Gulminelli ideas [8] about the connection between bimodality and the
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phase transition existence for ˇnite volumes. The CSMM exact analytical solution
not only provided us with a counterexample for which there is no bimodality in
case of ˇnite volume phase transition, but it gave us an explicit example to
illustrate that the probability which, according to [8] is supposed to signal the
bimodal behavior of the system, cannot be measured experimentally.

All this clearly demonstrates that the exactly solvable models are very useful
theoretical tools and they open the new possibilities to study the critical phe-
nomena at ˇnite volumes rigorously. The short range perspectives (SRP) of this
direction of research are evident:

1. Study the isobaric ensemble and the excluded volume correction for the
clusters of the 2- and 3-dimensional Ising models, and ˇnd out the reliable signals
of phase transition on ˇnite lattices.

2. Widen or reˇne the CSMM, GMB, and HDM analytical solutions for
more realistic interaction between the constituents. In particular, a more realis-
tic Coulomb interaction between nuclear fragments (not the WignerÄSeitz one!)
can be readily included now into the CSMM and may be studied rigorously
without taking thermodynamic limit. Also the relativistic Lorentz contraction of
the hadronic and bag eigen volumes discussed recently in [62, 63] for a single
hadronic specie should be accounted for and studied in the GBM for the tem-
peratures above these of cross-over to QGP. The HDM has to be formulated for
fractal deformations, that, hopefully, will shed light on the source of Fisher's
power law.

3. Deepen or extend the CSMM and GMB models to the canonical and
microcanonical formulations, and work out the reliable signals of the ˇnite system
phase transitions for this class of models.

The major goals for the SRP are (I) to get the reliable experimental sig-
nals obtained not with the ad hoc theoretical constructs which are very popular
nowadays, but directly from the ˇrst principles of statistical mechanics; (II) to
work out a common and useful theoretical language for a few nuclear physics
communities.

However, even the present (very limited!) amount of exact results can be
used as a good starting point to build up a truly microscopic theory of phase
transitions in ˇnite systems. In fact, the exact analytical solution, which we
found for ˇnite volumes, is one of the key elements that are necessary to create a
microscopic kinetics of PTs in ˇnite systems. The formulation of such a theory
for nuclear physics is demanded by the reality of the experimental measurements:
both of the phase transitions which are studied in nuclear laboratories, the liquidÄ
gas and hadron gasÄQGP, are accessible only via the violent nuclear collisions.
As a result, in these collisions we are dealing with the PTs which occur not only
in ˇnite system, but in addition these PTs happen dynamically. It is known that
during the course of collision the system experiences a complicated evolution from
a highly excited (on the ordinary level) state which is far from local equilibrium,
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to the collective expansion of the locally thermalized state and to a (nearly)
free-streaming stage of corresponding constituents.

A tremendous complexity of the nuclear collision process makes it extremely
difˇcult for theoretical modeling. This is, in part, one of the reasons why, despite
a great amount of experimental data collected during last 25 years and numer-
ous theoretical attempts, neither the liquidÄgas nor the hadron gasÄQGP phase
transitions are well established experimentally and well understood theoretically.
It turns out that the major problem of modeling both of these PTs in dynamic
situations is the absence of the suitable theoretical apparatus.

For example, it is widely believed in the Relativistic Heavy Ion community
(RHIc) that relativistic hydrodynamics is the best theoretical tool to model the PT
between QGP and hadron gas because it employs only the equilibrium equation
of state [64]. Up to now this is just a wishful illusion because besides the
incorrect boundary conditions, known as ®freeze-out procedure¯ [65, 66], which
are typically used in the actual hydro calculations [64], the employed equation
of state does not ˇt into the ˇnite (and sometimes small!) size of the system
because it corresponds to an inˇnite system. On the other hand, it is known [67]
that hydrodynamic description is limited by the weak (small) gradients of the
hydro variables, which deˇne a characteristic scale not only for collective hydro
properties, but also a typical volume for the equation of state.

Above we showed that for ˇnite systems the equation of state inevitably
includes the volume dependence of such thermodynamic variables as pressure
and energy density which are directly involved into hydrodynamic equations.
This simple fact is not realized yet in the RHIc, but, probably, the chemical
nonequilibrium (which is usually implemented into equation of state by hand) is,
in part, generated by the ˇnite volume corrections of the GCP. If this is the case,
then, according to our analysis of the ˇnite volume GCP functions, it is necessary
to insert the complex values of the chemical potential into hydro calculations.

Unfortunately, at present there is no safe recipe on how to include the ˇnite
volume equation of state in the hydrodynamic description. A partial success of
the hybrid hydro-cascade models [68, 69], which might be considered as a good
alternative to hydrodynamics, is compensated by the fact that none of the existing
hydro-cascade models was able to resolve the so-called HBT puzzles [16] found
in the energy range of the Relativistic Heavy Ion Collider. Moreover, despite
the rigorous derivation [70,71] of the hydro-cascade equations, the hydrodynamic
part of this approach is suffering the very same problems of the inˇnite matter
equation of state which we discussed above. Therefore, further reˇnements of
the hydro-cascade models will not be able to lift up the theoretical apparatus of
modeling the dynamics of the ˇnite volume PTs to new heights, and we have to
search for a more elaborate approach.

It turns out that the recently derived ˇnite domain kinetic equations [70, 71]
can provide us with another starting point to develop the ˇrst principle microscopic
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theory of the critical phenomena in ˇnite systems. These equations generalize
the relativistic Boltzmann equation to ˇnite domains and, on the one hand, allow
one to conjugate two (different!) kinetics which exist in two domains separated
by the evolving boundary, and, on the other hand, to account exactly for the
exchange of particles between these domains. (For instance, one can easily
imagine the situation when on one side of the boundary separating the domains
there may exist one phase of the system which interacts with the other phase
located on the other side of the boundary.) But, ˇrst, the ˇnite domain kinetic
equations should be generalized to the two-particle distribution functions and
then they should be adapted to the framework of nuclear multifragmentation
and the Gas of Bags Model. In doing this, the exact analytical results we
discussed will be indispensable because they provide us with the equilibrium
state of the ˇnite system and tell us to what ˇnite volume analog of phases this
state belongs.

Therefore, a future success in building up a microscopic kinetics of PTs
in ˇnite systems can be achieved if we combine the exact results obtained for
equilibrated ˇnite systems with the rigorous kinetic equations suited for ˇnite
systems. There is a good chance for the nuclear multifragmentation community to
play a very special role in the development of such a theory, namely it may act as
a perfect and reliable test site to work out and verify the whole concept. This is so
because besides some theoretical advances and experience in studying the PTs in
ˇnite systems, the experiments at intermediate energies, compared to the searches
for QGP, are easier and cheaper to perform, and the PT signals are cleaner and
unspoiled by a strong 	ow. Moreover, once the concept is developed and veriˇed,
it can be modiˇed and applied to study other PTs in ˇnite systems, including the
transitions to/from high temperature QCD and dense hadronic matter planned to
be studied at CERN LHC, at GSI FAIR and, hopefully, at JINR Nuclotron. Thus,
after some readjustment, the manpower and experimental facilities of nuclear
multifragmentation community can be used for a new strategic aim, which is at
the frontier line of modern physics.

Such a programme, however, requires the coherent efforts of, at least, two
strong and competing theoretical groups, an access to the collected experimental
data and an advanced computer facility. Organizationally it will require a very
close collaboration with experimental groups. At the moment it is not clear what
kind of experimental set-up will be required. Also it turns out that such resources
can be provided by the national or international laboratories only. Therefore,
nuclear multfragmentation community has to ˇnd out an appropriate form of
national and international cooperation right now. Because in a couple of years it
will be too late.
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