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Character formulae for the positive-energy unitary irreducible representations of the N -extended
D = 4 conformal superalgebras su(2,2/N) are given. Using them we also derive decompositions of
long superˇelds as they descend to the unitarity threshold. These results are also applicable to irreps
of the complex Lie superalgebras sl(4/N). Our derivations use the results from the representation
theory of su(2,2/N) developed already in the 1980s.
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INTRODUCTION

Recently, superconformal ˇeld theories in various dimensions are attracting
more interest, cf. [1Ä96] and references therein. Particularly important are those
for D � 6 since in these cases the relevant superconformal algebras satisfy [97]
the HaagÄLopuszanskiÄSohnius theorem [98]. This makes the classiˇcation of
the UIRs of these superalgebras very important. Until recently such classiˇcation
was known only for the D = 4 superconformal algebras su(2, 2/1) [99] and
su(2, 2/N) [100Ä103] (for arbitrary N ). Recently, the classiˇcation for D = 3
(for even N ), D = 5, and D = 6 (for N = 1, 2) was given in [104] (some
results being conjectural), and then the D = 6 case (for arbitrary N ) was ˇnalized
in [105].

Once we know the UIRs of a (super-)algebra, the next question is to ˇnd their
characters, since these give the spectrum which is important for the applications.
Some results on the spectrum were given in the early papers [106Ä108, 102], but
it is necessary to have systematic results for which the character formulae are
needed. This is the question we address in this paper for the UIRs of D = 4
conformal superalgebras su(2, 2/N). From the mathematical point of view this
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question is clear only for representations with conformal dimension above the
unitarity threshold viewed as irreps of the corresponding complex superalgebra
sl(4/N). But for su(2, 2/N) even the UIRs above the unitarity threshold are
truncated for small values of spin and isospin. And what is more, in the appli-
cations the most important role is played by the representations with ®quantized¯
conformal dimensions at the unitarity threshold and at discrete points below. In
the quantum ˇeld or string theory framework some of these correspond to opera-
tors with ®protected¯ scaling dimension and therefore imply ®nonrenormalization
theorems¯ at the quantum level, cf., e.g., [22, 23].

Thus, we need detailed knowledge about the structure of the UIRs from
the representation-theoretical point of view. Fortunately, such information is
contained in [100Ä103]. Following these papers in Sec. 1 we recall the basic
ingredients of the representation theory of the D = 4 superconformal algebras.
In particular, we recall the structure of Verma modules and UIRs. Using this
information we are able to derive character formulae, some of which are very
explicit, cf. Sec. 2. We also pin-point the difference between character formulae
for sl(4/N) and su(2, 2/N) since for the latter we need to introduce and use the
notion of counter-terms in the character formulae. The general formulae are valid
for arbitrary N . For illustration we give more explicit formulae for N = 1, 2,
but we leave the example N = 4 for a follow-up paper, since that would take too
many pages, and the present paper is long enough. In Sec. 3 we summarize our
results on the decompositions of long superˇelds as they descend to the unitarity
threshold. These results may be applied to the problem of operators with protected
dimensions.

1. REPRESENTATIONS OF D = 4 CONFORMAL SUPERSYMMETRY

1.1. The Setting. The superconformal algebras in D = 4 are G = su(2, 2/N).
The even subalgebra of G is the algebra G0 = su(2, 2)⊕u(1)⊕ su(N). We label
their physically relevant representations of G by the signature:

χ = [ d ; j1 , j2 ; z ; r1 , . . . , rN−1 ], (1.1)

where d is the conformal weight; j1, j2 are non-negative (half-)integers which are
Dynkin labels of the ˇnite-dimensional irreps of the D = 4 Lorentz subalgebra
so(3, 1) of dimension (2j1 + 1)(2j2 + 1); z represents the u(1) subalgebra which
is central for G0 (and for N = 4 is central for G itself), and r1, . . . , rN−1 are
non-negative integers which are Dynkin labels of the ˇnite-dimensional irreps of
the internal (or R) symmetry algebra su(N).

We recall that the algebraic approach to D = 4 conformal supersymme-
try developed in [100Ä103] involves two related constructions Å on function
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spaces and as Verma modules. The ˇrst realization employs the explicit con-
struction of induced representations of G (and of the corresponding supergroup
G = SU(2, 2/N)) in spaces of functions (superˇelds) over superspace which are
called elementary representations (ER). The UIRs of G are realized as irreducible
components of ERs, and then they coincide with the usually used superˇelds in in-
dexless notation. The Verma module realization is also very useful as it provides
simpler and more intuitive picture for the relation between reducible ERs, for the
construction of the irreps, in particular, of the UIRs. For the latter the main tool
is an adaptation of the Shapovalov form [109] to the Verma modules [102, 103].
Here we shall need only the second Å Verma module Å construction.

1.2. Verma Modules. To introduce Verma modules one needs the standard
triangular decomposition:

GCI = G+ ⊕H⊕ G−, (1.2)

where GCI = sl(4/N) is the complexiˇcation of G; G+, G− are the subalgebras
corresponding to the positive, negative roots of GCI , resp.; and H denotes the
Cartan subalgebra of GCI .

We consider the lowest weight Verma modules, so that V Λ ∼= U(G+) ⊗ v0 ,
where U(G+) is the universal enveloping algebra of G+, Λ ∈ H∗ is the lowest
weight, and v0 is the lowest weight vector v0 such that:

Xv0 = 0, X ∈ G−, (1.3)

Hv0 = Λ(H)v0, H ∈ H.

Further, for simplicity we omit the sign ⊗, i.e., we write P v0 ∈ V Λ with
P ∈ U(G+).

The lowest weight Λ is characterized by its values on the Cartan subalgebra
H, or, equivalently, by its products with the simple roots (given explicitly below).
In general, these would be 3 + N complex numbers, however, in order to be
useful for the representations of the real form G these values would be restricted
to be real and furthermore to correspond to the signatures χ , and we shall write
Λ = Λ(χ) or χ = χ(Λ). Note, however, that there are Verma modules to which
correspond no ERs, cf. [101] and below.

If a Verma module V Λ is irreducible, then it gives the lowest weight irrep
LΛ with the same weight. If a Verma module V Λ is reducible, then it contains a
maximal invariant submodule IΛ, and the lowest weight irrep LΛ with the same
weight is given by factorization: LΛ = V Λ / IΛ [110Ä112].

Thus, we need ˇrst to know which Verma modules are reducible. The
reducibility conditions for the highest weight Verma modules over basic classical
Lie superalgebra were given by Kac [112]. Translating his conditions to the
lowest weight Verma modules we have [101]: A lowest weight Verma module
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V Λ is reducible only if at least one of the following conditions is true∗:

(ρ − Λ, β) =m(β, β)/2, β ∈ Δ+, (β, β) �= 0, m ∈ IN, (1.4a)

(ρ − Λ, β) =0, β ∈ Δ+, (β, β) = 0, (1.4b)

where Δ+ is the positive root system of GCI ; ρ ∈ H∗ is the very important in
representation theory element given by ρ = ρ0̄ − ρ1̄, where ρ0̄ , ρ1̄ are the half-
sums of the even, odd, resp., positive roots; (·, ·) is the standard bilinear product
in H∗.

If a condition from (1.4a) is fulˇlled then V Λ contains a submodule which is
a Verma module V Λ′

with shifted weight given by the pair m, β: Λ′ = Λ + mβ.
The embedding of V Λ′

in V Λ is provided by mapping the lowest weight vector
v′0 of V Λ′

to the singular vector vm,β
s in V Λ which is completely determined by

the conditions

Xvm,β
s =0, X ∈ G−, (1.5)

Hvm,β
s =Λ′(H) v0, H ∈ H, Λ′ = Λ + mβ.

Explicitly, vm,β
s is given by an even polynomial in the positive root generators

vm,β
s = Pm,β v0, Pm,β ∈ U(G+). (1.6)

Thus, the submodule of V Λ which is isomorphic to V Λ′
is given by

U(G+)Pm,βv0. (More information on the even case, following the same ap-
proach, may be seen in, e.g., [113, 114].)

If a condition from (1.4b) is fulˇlled, then V Λ contains a submodule Iβ

obtained from the Verma module V Λ′
with shifted weight Λ′ = Λ+β as follows.

In this situation V Λ contains a singular vector

Xvβ
s = 0, X ∈ G−, (1.7)

Hvβ
s = Λ′(H) v0, H ∈ H, Λ′ = Λ + β.

Explicitly, vβ
s is given by an odd polynomial in the positive root generators

vβ
s = P β v0, P β ∈ U(G+). (1.8)

Then we have
Iβ = U(G+)P β v0 (1.9)

∗Many statements below are true for any basic classical Lie superalgebra and would require
changes only for the superalgebras osp(1/2N).
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which is smaller than V Λ′
= U(G+) v′0 since this polynomial is Grassmannian:

(P β)2 = 0. (1.10)

To describe this situation we say that V Λ′
is oddly embedded in V Λ.

Note, however, that the above formulae describe also more general situations
when the difference Λ′ − Λ = β is not a root, as used in [101] and below.

The weight shifts Λ′ = Λ+β, when β is an odd root, are called odd re�ections
in [101] (see also [115]) and for future reference will be denoted as

ŝβ · Λ ≡ Λ + β, (β, β) = 0, (Λ, β) �= 0. (1.11)

Each such odd re	ection generates an inˇnite discrete Abelian group

W̃β ≡ {(ŝβ)n|n ∈ ZZ}, �((ŝβ)n) = n, (1.12)

where the unit element is obviously obtained for n = 0, and (ŝβ)−n is the inverse
of (ŝβ)n, and for future use we have also deˇned the length function �(·) on the
elements of W̃β . This group acts on the weights Λ extending (1.11):

(ŝβ)n · Λ = Λ + nβ, n ∈ ZZ, (β, β) = 0, (Λ, β) �= 0. (1.13)

This is related to the fact that there is a doubly-inˇnite chain of oddly embedded
Verma modules whenever a Verma module is reducible w.r.t. an odd root. This is
explained in detail and used for the classiˇcation of the Verma modules in [100]
and shall be used below.

Further, to be more explicit we need to recall the root system of GCI Å for
deˇniteness Å as used in [101]. The positive root system Δ+ is comprised from
αij , 1 � i < j � 4 + N . The even positive root system Δ+

0̄
is comprised from

αij , with i, j � 4 and i, j � 5; the odd positive root system Δ+
1̄

is comprised
from αij , with i � 4, j � 5. The simple roots are chosen as in (1.4) of [101]:

γ1 = α12, γ2 = α34, γ3 = α25, γ4 = α4,4+N , γk = αk,k+1, 5 � k � 3 + N.
(1.14)

Thus, the Dynkin diagram is

©
1
−−−

⊗
3
−−−©

5
−−− · · · −−− ©

3+N
−−−

⊗
4
−−−©

2
(1.15)

This is a nondistinguished simple root system with two odd simple roots (for the
various root systems of the basic classical superalgebras we refer to [116]).
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Let Λ = Λ(χ). The products of Λ with the simple roots are [101]:

(Λ, γa) = − 2ja, a = 1, 2, (1.16a)

(Λ, γ3) =
1
2
(d + z′) + j1 −

m

N
+ 1, (1.16b)

(Λ, γ4) =
1
2
(d − z′) + j2 − m1 +

m

N
+ 1, (1.16c)

z′ ≡ z(1 − δN4),
(Λ, γj) = rN+4−j , 5 � j � 3 + N. (1.16d)

These formulae give the correspondence between signatures χ and the lowest
weights Λ(χ)∗.

In the case of even roots β ∈ Δ+
0̄

there are six roots αij , j � 4, coming from
the sl(4) factor (which is complexiˇcation of su(2, 2)) and N(N − 1)/2 roots
αij , 5 � i, coming form the sl(N) factor (complexiˇcation of su(N)).

The reducibility conditions, w.r.t. the positive roots coming from
sl(4)(su(2, 2)), coming from (1.4) (denoting m → nij for β → αij) are

n12 = 1 + 2j1 ≡ n1, (1.17a)

n23 = 1 − d − j1 − j2 ≡ n2, (1.17b)

n34 = 1 + 2j2 ≡ n3, (1.17c)

n13 = 2 − d + j1 − j2 = n1 + n2, (1.17d)

n24 = 2 − d − j1 + j2 = n2 + n3, (1.17e)

n14 = 3 − d + j1 + j2 = n1 + n2 + n3. (1.17f)

Thus, reducibility conditions (1.17a), (1.17c) are fulˇlled automatically for Λ(χ)
with χ from (1.1) since we always have: n1, n3 ∈ IN . There are no such
conditions for the ERs since they are induced from the ˇnite-dimensional irreps
of the Lorentz subalgebra (parameterized by j1, j2 ). However, to these two
conditions there correspond differential operators of order 1 + 2j1 and 1 + 2j2
(as we mentioned above) and these annihilate all functions of the ERs with
signature χ.

The reducibility conditions w.r.t. the positive roots coming from sl(N)
(su(N)) are all fulˇlled for Λ(χ) with χ from (1.1). In particular, for the
simple roots from those condition (1.4) is fulˇlled with β → γj , m = 1+rN+4−j ,

∗For N = 4 the factor u(1) in G0 becomes central in G and GCI . Consequently, the representation
parameter z cannot come from the products of Λ with the simple roots, as indicated in (1.16). In
that case the lowest weight is actually given by the sum Λ + Λ̃, where Λ̃ carries the representation
parameter z. This is explained in detail in [101] and further we shall not comment more on it, but
the peculiarities for N = 4 will be evident in the formulae.
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for every j = 5, 6, . . . , N + 3. There are no such conditions for the ERs since
they are induced from the ˇnite-dimensional UIRs of su(N). However, to these
N − 1 conditions there correspond N − 1 differential operators of orders 1 + rk

(as we mentioned), and the functions of our ERs are annihilated by all these
operators [101]∗.

For future use we note also the following decompositions:

Λ =
N+3∑
j=1

λjαj,j+1 = Λs + Λz + Λu, (1.18a)

Λs ≡
3∑

j=1

λjαj,j+1, Λz ≡ λ4α45, Λu ≡
N+3∑
j=5

λjαj,j+1, (1.18b)

which actually employ the distinguished root system with one odd root α45.
The reducibility conditions for the 4N odd positive roots of G are [102, 101]:

d = d1
Nk − zδN4, d1

Nk ≡ 4 − 2k + 2j2 + z + 2mk − 2m/N, (1.19a.k)

d = d2
Nk − zδN4, d2

Nk ≡ 2 − 2k − 2j2 + z + 2mk − 2m/N, (1.19b.k)

d = d3
Nk + zδN4, d3

Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N, (1.19c.k)

d = d4
Nk + zδN4, d4

Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N, (1.19d.k)

where in all four cases of (1.19) k = 1, . . . , N , mN ≡ 0, and

mk ≡
N−1∑
i=k

ri, m ≡
N−1∑
k=1

mk =
N−1∑
k=1

krk, (1.20)

mk is the number of cells of the kth row of the standard Young tableau; m is
the total number of cells. Condition (1.19a.k) corresponds to the root α3,N+5−k,
(1.19b.k) corresponds to the root a4,N+5−k, (1.19c.k) corresponds to the root
a1,N+5−k, (1.19d.k) corresponds to the root a2,N+5−k.

Note that for a ˇxed module and ˇxed i = 1, 2, 3, 4 only one of the odd N
conditions involving di

Nk may be satisˇed. Thus, no more than four (two, for
N = 1) of the conditions (1.19) may hold for a given Verma module.

R e m a r k. Note that for n2 ∈ IN (cf. (1.17)) the corresponding irreps of
su(2,2) are ˇnite-dimensional (the necessary and sufˇcient condition for this is:
n1, n2, n3 ∈ IN ). Then the irreducible LWM LΛ of su(2,2/N) are also ˇnite-
dimensional (and nonunitary) independently of whether the corresponding Verma

∗Note that there are actually as many operators as positive roots of sl(N) but all are expressed
in terms of the N − 1 above corresponding to the simple roots [101].
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module VΛ is reducible w.r.t. any odd root. If VΛ is not reducible w.r.t. any odd
root, then these ˇnite-dimensional irreps are called ®typical¯ [112], otherwise,
the irreps are called ®atypical¯ [112]. In our considerations n2 /∈ IN in all cases,
except the trivial 1-dimensional UIR (for which n2 = 1, cf. below). ♦

We shall consider quotients of Verma modules factoring out the even sub-
modules for which the reducibility conditions are always fulˇlled. Before this we
recall the root vectors following [101]. The positive (negative) root vectors cor-
responding to αij , (−αij ) are denoted by X+

ij , (X−
ij ). In the su(2, 2/N) matrix

notation the convention of [101], (1.7), is

X+
ij =

{
eji for (i, j) = (3, 4), (3, j), (4, j), 5 � j � N + 4,
eij otherwise (1.21)

X−
ij =t (X+

ij ),

where eij are (N + 4) × (N + 4) matrices with all elements zero except the
element equal to 1 on the intersection of the ith row and jth column. The simple
root vectors X+

i follow the notation of the simple roots γi (1.14):

X+
1 ≡ X+

12, X+
2 ≡ X+

34, X+
3 ≡ X+

25, X+
4 ≡ X+

4,4+N , X+
k ≡ X+

k,k+1,

5 � k � 3 + N. (1.22)

The mentioned submodules are generated by the singular vectors related to
the even simple roots γ1, γ2, γ5, . . . , γN+3 [101]:

v1
s =(X+

1 )1+2j1 v0, (1.23a)

v2
s =(X+

2 )1+2j2 v0, (1.23b)

vj
s =(X+

j )1+rN+4−j v0, j = 5, . . . , N + 3 (1.23c)

(for N = 1 (1.23c) being empty). The corresponding submodules are IΛ
k =

U(G+) vk
s , and the invariant submodule to be factored out is

IΛ
c =

⋃
k

IΛ
k . (1.24)

Thus, instead of V Λ we shall consider the factor-modules

Ṽ Λ = V Λ / IΛ
c (1.25)

which are closer to the structure of the ERs. In the factorized modules the
singular vectors (1.23) become null conditions, i.e., denoting by |̃Λ〉 the lowest
weight vector of Ṽ Λ, we have

(X+
1 )1+2j1 |̃Λ〉 = 0, (1.26a)

(X+
2 )1+2j2 |̃Λ〉 = 0, (1.26b)

(X+
j )1+rN+4−j |̃Λ〉 = 0, j = 5, . . . , N + 3. (1.26c)
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1.3. Singular Vectors and Invariant Submodules at the Unitary Reduction
Points. We ˇrst recall the result of [102] (cf. part (i) of the Theorem there) that
the following is the complete list of the lowest weight (positive energy) UIRs of
su(2, 2/N):

d � dmax = max(d1
N1, d

3
NN ), (1.27a)

d = d4
NN � d1

N1, j1 = 0, (1.27b)

d = d2
N1 � d3

NN , j2 = 0, (1.27c)

d = d2
N1 = d4

NN , j1 = j2 = 0, (1.27d)

where dmax is the threshold of the continuous unitary spectrum∗. Note that in
case (d) we have d = m1, z = 2m/N −m1, and that it is trivial for N = 1 since
then the internal symmetry algebra su(N) is trivial and by deˇnition m1 = m = 0
(the resulting irrep is 1-dimensional with d = z = j1 = j2 = 0). The UIRs for
N = 1 were ˇrst given in [99].

Next we note that if d > dmax, the factorized Verma modules are irre-
ducible and coincide with the UIRs LΛ . These UIRs are called long in the
modern literature, cf., e.g., [8, 17, 23, 32Ä35]. Analogously, we shall use for the
cases when d = dmax, i.e., (1.27a), the terminology of semishort UIRs, intro-
duced in [8, 23], while the cases (1.27b)Ä(1.27d) are also called short UIRs, cf.,
e.g., [17, 23, 32Ä35].

Next consider in more detail the UIRs at the four distinguished reduction
points determining the list above:

d1
N1 = 2 + 2j2 + z + 2m1 − 2m/N,

d2
N1 = z + 2m1 − 2m/N (j2 = 0), (1.28)

d3
NN = 2 + 2j1 − z + 2m/N,

d4
NN = −z + 2m/N (j1 = 0).

∗Note that from (1.27a) follows:

dmax � 2 + j1 + j2 + m1,

the equality being achieved only when d1
N1 = d3

NN , while from (1.27b), (1.27c) follows:

d � 1 + j1 + j2 + m1, j1j2 = 0,

the equality being achieved only when d4
NN = d1

N1, or d2
N1 = d3

NN , for (1.27b), (1.27c), resp.
Recalling the unitarity conditions [117] for the conformal algebra su(2,2):

d � 2 + j1 + j2, j1j2 > 0,

d � 1 + j1 + j2, j1j2 = 0,

we see that the superconformal unitarity conditions are more stringent than the conformal ones.
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First, we recall the singular vectors corresponding to these points. The above
reducibilities occur for the following odd roots, resp.:

α3,4+N , α4,4+N , α15, α25. (1.29)

The second and the fourth are the two odd simple roots:

γ3 = α25, γ4 = α4,4+N , (1.30)

and the other two are simply related to these:

α15 = α12 + α25 = γ1 + γ3, α3,4+N = α34 + α4,4+N = γ2 + γ4. (1.31)

Thus, the corresponding singular vectors are

v1
odd =P3,4+N v0 =

(
X+

4 X+
2 (h2 − 1) − X+

2 X+
4 h2

)
v0 = (1.32a)

=
(
2j2X

+
2 X+

4 − (2j2 + 1)X+
4 X+

2

)
v0 =

=
(
2j2X

+
3,4+N − X+

4 X+
2

)
v0, d = d1

N1, (1.32a′)

v2
odd =X+

4 v0, d = d2
N1, (1.32b)

v3
odd =P15 v0 =

(
X+

3 X+
1 (h1 − 1) − X+

1 X+
3 h1

)
v0 = (1.32c)

=
(
2j1X

+
1 X+

3 − (2j1 + 1)X+
3 X+

1

)
v0 =

=
(
2j1X

+
15 − X+

3 X+
1

)
v0, d = d3

NN , (1.32c′)

v4
odd =X+

3 v0, d = d4
NN , (1.32d)

where X+
3,4+N = [X+

2 , X+
4 ] is the odd-root vector corresponding to the root

α3,4+N , X+
15 = [X+

1 , X+
3 ] is the odd-root vector corresponding to the root α15,

h1, h2 ∈ H are Cartan generators corresponding to the roots γ1, γ2, (cf. [101]),
and passing from the (1.32a), (1.32c) to the next line we have used the fact that
h2 v0 = −2j2 v0 (h1 v0 = −2j1 v0), consistently with (1.16b), (1.16a). These
vectors are given in (8.9a), (8.7b), (8.8a), (8.7a), resp., of [101].

These singular vectors carry over for the factorized Verma modules Ṽ Λ:

ṽ1
odd =P3,4+N |̃Λ〉 =

(
X+

4 X+
2 (h2 − 1) − X+

2 X+
4 h2

)
|̃Λ〉 = (1.33a)

=
(
2j2X

+
3,4+N − X+

4 X+
2

)
|̃Λ〉, d = d1

N1, (1.33a′)

ṽ2
odd =X+

4 |̃Λ〉, d = d2
N1, (1.33b)

ṽ3
odd =P15 |̃Λ〉 =

(
X+

3 X+
1 (h1 − 1) − X+

1 X+
3 h1

)
|̃Λ〉 = (1.33c)

=
(
2j1X

+
15 − X+

3 X+
1

)
|̃Λ〉, d = d3

NN , (1.33c′)

ṽ4
odd =X+

3 |̃Λ〉, d = d4
NN . (1.33d)
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For j1 = 0, j2 = 0, resp., the vector v3
odd, v1

odd, resp., is a descendant of the
singular vector v1

s , v2
s , resp., cf. (1.23a), (1.23b), resp. In the same situations the

tilde counterparts ṽ1
s , ṽ2

s are just zero Å cf. (1.26a), (1.26b), resp. However, then
there is another independent singular vector of Ṽ Λ in both cases. For j1 = 0, it
corresponds to the sum of two roots: α15 + α25 (which sum is not a root!) and
is given by formula (D.1) of [101]:

ṽ34 = X+
3 X+

1 X+
3 |̃Λ〉 = X+

3 X+
15 |̃Λ〉, d = d3

NN , j1 = 0. (1.34)

Checking singularity we see at once that X−
k ṽ34 = 0 for k �= 3. It remains to

calculate the action of X−
3 :

X−
3 ṽ34 = h3 X+

1 X+
3 |̃Λ〉 − X+

3 X+
1 h3 |̃Λ〉 =

= X+
1 X+

3 (h3 − 1) |̃Λ〉 − X+
3 X+

1 h3 |̃Λ〉 = 0,

h3 , h4 ∈ H are Cartan generators corresponding to the roots γ3 , γ4, (cf. [101]),

the ˇrst term is zero since Λ(h3) − 1 =
1
2
(d − d3

NN ) = 0, while the second term

is zero due to (1.26a) for j1 = 0.
For j2 = 0, there is a singular vector corresponding to the sum of two roots:

α3,4+N +α4,4+N (which sum is not a root) and is given in [101] (cf. the formula
before (D.4) there):

ṽ12 = X+
4 X+

2 X+
4 |̃Λ〉 = X+

4 X+
3,4+N |̃Λ〉, d = d1

N1, j2 = 0. (1.35)

As above, one checks that X−
k v12 = 0 for k �= 4 and then calculates:

X−
4 ṽ12 = h4 X+

2 X+
4 |̃Λ〉 − X+

4 X+
2 h4 |̃Λ〉 =

= X+
2 X+

4 (h4 − 1) |̃Λ〉 − X+
4 X+

2 h4 |̃Λ〉 = 0

using Λ(h4) − 1 =
1
2
(d − d1

N1) = 0, and (1.26b) for j2 = 0.
To the above two singular vectors in the ER picture there correspond second-

order superdifferential operators given explicitly in formulae (11a), (11b) of [102]
and in formulae (D3), (D5) of [105]∗.

∗Note that w.r.t. V Λ the analogues of the vectors ṽ34 and ṽ12 are not singular, but subsingular
vectors. Indeed, consider the vector in V Λ given by the same U(G+) monomial as ṽ34: v34 =
X+

3 X+
1 X+

3 . Clearly, X−
k v34 = 0 for k �= 3. It remains to calculate the action of X−

3 :

X−
3 v34 = h3 X+

1 X+
3 v0−X+

3 X+
1 h3 v0 = X+

1 X+
3 (h3−1) v0−X+

3 X+
1 h3 v0 = −X+

3 X+
1 v0,

where the ˇrst term is zero as above, while the second term is a descendant of the singular vector
v1

s = X+
1 v0 (cf. (1.23a) for j1 = 0), which fulˇlls the deˇnition of subsingular vector. Analogously,

for the vector v12 = X+
4 X+

2 X+
4 we have X−

k v12 = 0 for k �= 4, and

X−
4 v12 = X−

4 X+
4 X+

2 X+
4 = −X+

4 X+
2 v0,

(using Λ(h4)−1), which is a descendant of the singular vector v2
s = X+

2 v0, cf. (1.23b) for j2 = 0.
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From the expressions of the singular vectors follow, using (1.9), the explicit
formulae for the corresponding invariant submodules Iβ of the modules Ṽ Λ as
follows:

I1 = U(G+)P3,4+N |̃Λ〉 = U(G+)
(
X+

4 X+
2 (h2 − 1) − X+

2 X+
4 h2

)
|̃Λ〉 =

(1.36a)

= U(G+)
(
2j2X

+
3,4+N − X+

4 X+
2

)
|̃Λ〉, d = d1

N1, j2 > 0, (1.36a′)

I2 = U(G+)X+
4 |̃Λ〉, d = d2

N1, (1.36b)

I3 = U(G+)P15 |̃Λ〉 = U(G+)
(
X+

3 X+
1 (h1 − 1) − X+

1 X+
3 h1

)
|̃Λ〉 = (1.36c)

= U(G+)
(
2j1X

+
15 − X+

3 X+
1

)
|̃Λ〉, d = d3

NN , j1 > 0, (1.36c′)

I4 = U(G+)X+
3 |̃Λ〉, d = d4

NN , (1.36d)

I12 = U(G+) ṽ12 = X+
4 X+

2 X+
4 |̃Λ〉, d = d1

N1, j2 = 0, (1.36e)

I34 = U(G+) ṽ34 = X+
3 X+

1 X+
3 |̃Λ〉, d = d3

NN , j1 = 0. (1.36f)

Sometimes we shall indicate the signature χ(Λ), writing, e.g., I1(χ); sometimes
we shall indicate also the resulting signature, writing, e.g., I1(χ, χ′) Å this is a
redundancy since it is determined by what is displayed already: χ′ = χ(Λ + β),
but will be useful to see immediately in the concrete situations without calculation.

The invariant submodules were used in [102] in the construction of the UIRs,
as we shall recall below.

1.4. Structure of Single-Reducibility-Condition Verma Modules and UIRs.
We discuss now the reducibility of Verma modules at the four distinguished
points (1.28). We note a partial ordering of these four points:

d1
N1 > d2

N1, d3
NN > d4

NN , (1.37)

or more precisely:

d1
N1 = d2

N1 + 2 (j2 = 0); d3
NN = d4

NN + 2 (j1 = 0). (1.38)

Due to this ordering at most two of these four points may coincide. Thus, we
have two possible situations: of Verma modules (or ERs) reducible at one and at
two reduction points from (1.28).

In this Subsection we deal with the situations in which no two of the points
in (1.28) coincide. According to [102] (Theorem) there are four such situations
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involving UIRs:

d = dmax = d1
N1 > d3

NN , (1.39a)

d = d2
N1 > d3

NN , j2 = 0, (1.39b)

d = dmax = d3
NN > d1

N1, (1.39c)

d = d4
NN > d1

N1, j1 = 0. (1.39d)

We shall call these cases single-reducibility-condition (SRC) Verma modules
or UIRs, depending on the context. In addition, as already stated, we use for the
cases when d = dmax , i.e., (1.39a), (1.39c), the terminology of semishort UIRs
[8, 23], while the cases (1.39b), (1.39d) are also called short UIRs [17, 23, 32Ä35].

As we see, the SRC cases have supplementary conditions as speciˇed. And
due to the inequalities there are the following additional restrictions which are
correspondingly given as

z >j1 − j2 − m1 + 2m/N, (1.39a′)

z >j1 + 1 − m1 + 2m/N, (1.39b′)

z <j1 − j2 − m1 + 2m/N, (1.39c′)

z < − 1 − j2 − m1 + 2m/N. (1.39d′)

Using these inequalities, the unitarity conditions (1.39) may be rewritten more
explicitly:

d = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > 2 + j1 + j2 + m1, (1.39a′′)

d = d2
N1 = z + 2m1 − 2m/N > j1 + 1 + m1, j2 = 0, (1.39b′′)

d = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > 2 + j1 + j2 + m1, (1.39c′′)

d = d4
NN = −z + 2m/N > 1 + j2 + m1, j2 = 0, (1.39d′′)

where we have introduced notation da, dc to designate two of the SRC cases.
To ˇnalize the structure we should check the even reducibility conditions

(1.17b), (1.17d)Ä(1.17f). It is enough to note that the conditions on d in (1.39a′′),
(1.39c′′):

d > 2 + j1 + j2 + m1

and in (1.39b′′), (1.39d′′):

d > 1 + j1 + j2 + m1(j1j2 = 0)

are incompatible with (1.17b), (1.17d)Ä(1.17f), except in two cases. The excep-
tions are in cases (1.39b′′), (1.39d′′) when d = 2 + j1 + j2 = z and j1j2 = 0.
In these cases we have n14 = 1 in (1.17f) and there exists a Verma sub-
module V Λ+α14 . However, the su(2, 2) signature χ0(Λ + α14) is unphysical:
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[j1−1/2,−1/2; 3+ j1] for j2 = 0, and [−1/2, j2−1/2; 3+ j1] for j1 = 0. Thus,
there is no such submodule of Ṽ Λ.

Thus, the factorized Verma modules Ṽ Λ with the unitary signatures from
(1.39) have only one invariant (odd) submodule which has to be factorized in
order to obtain the UIRs. These odd embeddings are given explicitly as

Ṽ Λ → Ṽ Λ+β , (1.40)

where we use the convention [100] that arrows point to the oddly embedded
module, and there are the following cases for β:

β = α3,4+N , for (1.39a), j2 > 0, (1.41a)

= α4,4+N , for (1.39b), (1.41b)

= α15, for (1.39c), j1 > 0, (1.41c)

= α25, for (1.39d), (1.41d)

= α3,4+N + α4,4+N , for (1.39a), j2 = 0, (1.41e)

= α15 + α25, for (1.39c), j1 = 0. (1.41f)

This diagram gives the UIR LΛ contained in Ṽ Λ as follows:

LΛ = Ṽ Λ/Iβ, (1.42)

where Iβ is given by I1, I2, I3, I4, I12, I34, resp. (cf. (1.36), in the cases
(1.41a), (1.41b), (1.41c), (1.41d), (1.41e), (1.41f), resp.

It is useful to record the signatures of the shifted lowest weights, i.e., χ′ =
χ(Λ+β). In fact, for future use we give the signature changes for arbitrary roots.
The explicit formulae are [100, 101]:

β = α3,N+5−k :χ′ =

=
[
d +

1
2
; j1,j2 −

1
2
; z + εN ; r1, . . . , rk−1 − 1, rk + 1, . . . , rN−1

]
, (1.43a)

j2 > 0, rk−1 > 0, (1.43a′)

β = α4,N+5−k :χ′ =

=
[
d +

1
2
; j1,j2 +

1
2
; z + εN ; r1, . . . , rk−1 − 1, rk + 1, . . . , rN−1

]
, (1.43b)

rk−1 > 0, (1.43b′)
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β = α1,N+5−k :χ′ =

=
[
d +

1
2
; j1 −

1
2
, j2; z − εN ; r1, . . . , rk−1 + 1, rk − 1, . . . , rN−1

]
, (1.43c)

j1 > 0, rk > 0, (1.43c′)

β = α2,N+5−k :χ′ =

=
[
d +

1
2
; j1 +

1
2
, j2; z − εN ; r1, . . . , rk−1 + 1, rk − 1, . . . , rN−1

]
, (1.43d)

rk > 0, (1.43d′)

k = 1, . . . , N, εN ≡ 2
N

− 1
2
. (1.44)

For each ˇxed χ the lowest weight Λ(χ′) fulˇlls the same odd reducibility con-
dition as Λ(χ′). We need also the special cases used in (1.41e), (1.41f):

β12 = α3,4+N + α4,4+N :χ′
12 = [d + 1; j1, 0; z + 2εN ; r1 + 2, r2, . . . , rN−1],

(1.43e)

j2 = 0, d = d1
N1,

β34 = α15 + α25 : χ′
34 = [d + 1; 0, j2; z − 2εN ; r1, . . . , rN−2, rN−1 + 2],

(1.43f)

j1 = 0, d = d3
NN .

The lowest weight Λ(χ′
12) fulˇls (1.39b), while the lowest weight Λ(χ′

34) ful-
ˇls (1.39d).

The embedding diagram (1.40) is a piece of a much richer picture [100].
Indeed, notice that if (1.4b) is fulˇlled for some odd root β, then it is fulˇlled
also for an inˇnite number of Verma modules V� = V Λ+�β for all � ∈ ZZ. These
modules form an inˇnite chain complex of oddly embedded modules:

· · · −→ V−1 −→ V0 −→ V1 −→ · · · (1.45)

Because of (1.10) this is an exact sequence with one nilpotent operator involved
in the whole chain. Of course, once we restrict to the factorized modules Ṽ Λ, the
diagram will be shortened Å this is evident from the signature changes (1.43a)Ä
(1.43d). In fact, there are only a ˇnite number of factorized modules for N > 1,
while for N = 1 the diagram continues to be inˇnite to the left. Furthermore,
when β = β12, β34, from the end of the restricted chain one transmutes Å via
the embeddings (1.36e) (1.36f), resp. Å to the chain with β = α4,N+4, α25, resp.
More explicitly, when β = β12, β34, then the module V1 plays the role of V0 with
β = α4,N+4, α25. All this is explained in detail in [100]. Furthermore, when a
factorized Verma module Ṽ Λ = Ṽ Λ

0 contains an UIR, then not all modules Ṽ Λ
�
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would contain an UIR [101, 102]. From all this, all which is important from the
view of modern applications can be summarized as follows:

• The semishort SRC UIRs (cf. (1.39a), (1.39c)) are obtained by factorizing
a Verma submodule Ṽ Λ+β containing either another semishort SRC UIR of the
same type (cf. (1.41a), (1.41c)) or containing a short SRC UIR of a different
type (cf. (1.41e), (1.41f)). In contrast, short SRC UIRs (cf. (1.39b), (1.39d))
are obtained by factorizing a Verma submodule Ṽ Λ+β whose irreducible factor-
module is not unitary (cf. (1.41b), (1.41d)).

1.5. Structure of Double-Reducibility-Condition Verma Modules and UIRs.
We consider now the situations in which two of the points in (1.28) coincide.
According to [102] (Theorem) there are four such situations involving UIRs:

d = dmax = dac ≡ d1
N1 = d3

NN , (1.46a)

d = d1
N1 = d4

NN , j1 = 0, (1.46b)

d = d2
N1 = d3

NN , j2 = 0, (1.46c)

d = d2
N1 = d4

NN , j1 = j2 = 0. (1.46d)

We shall call these double-reducibility-condition (DRC) Verma modules or
UIRs. As in the previous Subsection we shall use for the cases when d = dmax,
i.e., (1.46a), also the terminology of semishort UIRs [8, 23], while the cases
(1.46b)Ä(1.46d) shall also be called short UIRs [17, 23, 32Ä35].

For later use we list more explicitly the values of d and z:

d = dac = d1
N1 = d3

NN = 2 + j1 + j2 + m1,

z = j1 − j2 + 2m/N − m1; (1.46a′)

d = d1
N1 = d4

NN = 1 + j2 + m1, j1 = 0,

z = −1 − j2 + 2m/N − m1; (1.46b′)

d = d2
N1 = d3

NN = 1 + j1 + m1, j2 = 0,

z = 1 + j1 + 2m/N − m1; (1.46c′)

d = d2
N1 = d4

NN = m1, j1 = j2 = 0,

z = 2m/N − m1. (1.46d′)

We noted already that for N = 1 the last case (1.46d), (1.46d′), is trivial. Note
also that for N = 2 we have: 2m/N − m1 = m − m1 = 0.

To ˇnalize the structure we should check the even reducibility conditions
(1.17b), (1.17d), (1.17e), (1.17f). It is enough to note that the values of d in
(1.46) are incompatible with (1.17b), (1.17d), (1.17e), (1.17f), except in a few
cases. The exceptions are:
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d = d1
N1 = d3

NN = 2 + j1 + j2, m1 = 0, (1.47a)

d = d1
N1 = d4

NN = 1 + j2 + m1, j1 = 0, m1 = 0, 1, (1.47b)

d = d2
N1 = d3

NN = 1 + j1 + m1, j2 = 0, m1 = 0, 1, (1.47c)

d = d2
N1 = d4

NN = m1, j1 = j2 = 0, m1 = 0, 1, 2, (1.47d)

• In case (1.47a) we have n14 = 1 in (1.17f) and there exists a Verma
submodule V Λ+α14 with su(2, 2) signature χ0(Λ+α14) = [j1−1/2, j2−1/2; 3+
j1 + j2]. As we can see this signature is unphysical for j1j2 = 0. Thus, there is
the even submodule Ṽ Λ+α14 of Ṽ Λ only if j1j2 �= 0.

• In case (1.47b) there are three subcases:
m1 = 0, j2 = 1/2; then d = 3/2, n24 = 1, n14 = 2. The signa-

tures of the embedded submodules of V Λ are: χ0(Λ + α24) = [1/2, 0; 5/2],
χ0(Λ + 2α14) = [−1,−1/2; 7/2]. Thus, there is only the even submodule
Ṽ Λ+α24 of Ṽ .

m1 = 0, j2 = 0; then d = 1, n13 = 1, n24 = 1, n14 = 2. The signa-
tures of the embedded submodules of V Λ are: χ0(Λ + α13) = [−1/2, 1/2; 2],
χ0(Λ + α24) = [1/2,−1/2; 2], χ0(Λ + 2α14) = [−1,−1; 3], and all are un-
physical. However, the Verma module V Λ has a subsingular vector of weight
α23 +α14, cf. [118], and thus, the factorized Verma module Ṽ Λ has the submod-
ule Ṽ Λ+α23+α14 .

m1 = 1; then n14 = 1, but as above there is no nontrivial even submod-
ule of Ṽ Λ.

• The case (1.47c) is dual to (1.47b) so we list shortly the three subcases:
m1 = 0, j1 = 1/2; then d = 3/2, n13 = 1, n14 = 2. There is only the

even submodule Ṽ Λ+α13 of Ṽ .
m1 = 0, j1 = 0; then d = 1, n13 = 1, n24 = 1, n14 = 2. This subcase

coincides with the second subcase of (1.47b).
m1 = 1; then n14 = 1 and as above there is no nontrivial submodule of Ṽ Λ.

• In case (1.47d) there are again three subcases:
m1 = 0; then all quantum numbers in the signature are zero and the UIR

is the one-dimensional trivial irrep.
m1 = 1; then d = 1, n13 = 1, n24 = 1, n14 = 2. Though this subcase

has nontrivial isospin from su(2, 2) point of view, it has the same structure as
the second subcase of (1.47b) and the factorized Verma module Ṽ Λ has the
submodule Ṽ Λ+α23+α14 .

m1 = 2; then d = 2, n14 = 1 and as above there is no nontrivial even
submodule of Ṽ Λ.

The embedding diagrams for the corresponding modules Ṽ Λ when there are
no even embeddings are:
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Ṽ Λ+β′

↑
Ṽ Λ →Ṽ Λ+β , (1.48)

where

(β, β′) = (α15, α3,4+N ), for (1.46a), m1j1j2 > 0, (1.49a)

= (α15, α3,4+N + α3,4+N ), for (1.46a), j1 > 0, j2 = 0, (1.49b)

= (α15 + α25, α3,4+N ), for (1.46a), j1 = 0, j2 > 0, (1.49c)

= (α15 + α25, α3,4+N + α3,4+N ), for (1.46a), j1 = j2 = 0, (1.49d)

= (α25, α3,4+N ), for (1.46b), j2 > 0, 2j2 + m1 � 2, (1.49e)

= (α25, α3,4+N + α4,4+N ), for (1.46b), j2 = 0, m1 > 0, (1.49f)

= (α15, α4,4+N ), for (1.46c), j1 > 0, 2j1 + m1 � 2, (1.49g)

= (α15 + α25, α4,4+N ), for (1.46c), j1 = 0, m1 > 0, (1.49h)

= (α25, α4,4+N ), for (1.46d), m1 �= 1. (1.49i)

This diagram gives the UIR LΛ contained in Ṽ Λ as follows:

LΛ = Ṽ Λ/Iβ,β′
, Iβ,β′

= Iβ ∪ Iβ′
, (1.50)

where Iβ , Iβ′
are given in (1.36), according to the cases in (1.49).

The embedding diagrams for the corresponding modules Ṽ Λ, when there are
even embeddings are:

Ṽ Λ+β′

↑
Ṽ Λ+βe ← Ṽ Λ → Ṽ Λ+β , (1.51)

where

(β, β′, βe) = (α15, α3,4+N , α14), for (1.46a), j1j2 > 0, m1 = 0, (1.52a)

= (α25, α3,4+N , α24), for (1.46b), j2 = 1/2, m1 = 0, (1.52b)

= (α25, α3,4+N + α4,4+N , α23 + α14), for (1.46b), j2 = m1 = 0,
(1.52c)

= (α15, α4,4+N , α13), for (1.46c), j1 = 1/2, m1 = 0, (1.52d)

= (α15 + α25, α4,4+N , α23 + α14), for (1.46c), j1 = m1 = 0,
(1.52e)

= (α25, α4,4+N , α23 + α14), for (1.46d), m1 = 1. (1.52f)
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This diagram gives the UIR LΛ contained in Ṽ Λ as follows:

LΛ = Ṽ Λ/Iβ,β′,βe , Iβ,β′
= Iβ ∪ Iβ′

∪ Ṽ Λ+βe . (1.53)

Naturally, the two odd embeddings in (1.48) or (1.51) are the combination of
the different cases of (1.40). Similarly, like (1.40) is a piece of the richer picture
(1.45), here we have the following analogues of (1.45) [100]∗

...
↑

V01

↑ N = 1,

· · · → V00 → V10 → · · ·
↑
...

(1.54)

where Vk� ≡ V Λ+kβ+�β′
, and β, β′ are the roots appearing in (1.49a), (1.49e),

(1.49g), (1.49i) (or (1.52a), (1.52b), (1.52d), (1.52f))

...
...

↑ ↑
· · · →V10 → V11 → · · ·

↑ ↑ N > 1,

· · · →V00 → V01 → · · ·
↑ ↑
...

...

(1.55)

The difference between the cases N = 1 and N > 1 is due to the fact that
if (1.4b) is fulˇlled for V00 w.r.t. two odd roots β, β′, then for N > 1 it is
fulˇlled also for all Verma modules Vk� again w.r.t. these odd roots β, β′, while
for N = 1 it is fulˇlled only for Vk0 w.r.t. the odd root β and only for V0� w.r.t.
the odd root β′.

In the cases (1.49b), (1.49c), (1.49d), (1.49f), (1.49h) (or (1.52c), (1.52e))
we have the same diagrams though their parameterization is more involved [100]
(cf. also what we said about transmutation for the single chains after (1.45)).

∗These diagrams are essential parts of much richer diagrams (which we do not need since we
consider only UIRs-related modules) which are explicitly described for any N in [100], and shown
there in Fig. 1 (for N = 1) and Fig. 2 (for N = 2).
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However, for the modules with 0 � k, � � 1 (which we use) we have simply as
before Vk� = V Λ+kβ+�β′

for the appropriate β, β′.
The richer structure for N > 1 has practical consequences for the calculation

of the character formulae, cf. the next Section.

2. CHARACTER FORMULAE OF POSITIVE-ENERGY UIRs

2.1. Character Formulae: Generalities. In the beginning of this Subsection
we follow [110]. Let Ĝ be a simple Lie algebra of rank � with Cartan subalgebra
Ĥ, root system Δ̂, simple root system π̂. Let Γ (resp. Γ+) be the set of
all integral, (resp. integral dominant), elements of Ĥ∗, i.e., λ ∈ Ĥ∗ such that
(λ, α∨

i ) ∈ ZZ, (resp. ZZ+), for all simple roots αi, (α∨
i ≡ 2αi/(αi, αi)). Let V be

the lowest weight module with the lowest weight Λ and the lowest weight vector
v0. It has the following decomposition:

V = ⊕
μ∈Γ+

Vμ, Vμ = {u ∈ V |Hu = (λ + μ)(H)u, ∀H ∈ H}. (2.1)

(Note that V0 = CIv0.) Let E(H∗) be the associative Abelian algebra consisting
of the series

∑
μ∈H∗ cμe(μ), where cμ ∈ CI, cμ = 0 for μ outside the union of a

ˇnite number of sets of the form D(λ) = {μ ∈ H∗|μ � λ}, using some ordering
of H∗, e.g., the lexicographic one; the formal exponents e(μ) have the properties:
e(0) = 1, e(μ)e(ν) = e(μ + ν).

Then the (formal) character of V is deˇned by

ch0 V =
∑

μ∈Γ+

(dim Vμ)e(Λ + μ) = e(Λ)
∑

μ∈Γ+

(dimVμ)e(μ) (2.2)

(we shall use subscript ®0¯ for the even case).
For a Verma module, i.e., V = V Λ, one has dimVμ = P (μ), where P (μ)

is a generalized partition function, P (μ) = # of ways μ can be presented as a
sum of positive roots β, each root taken with its multiplicity dim Cβ (= 1 here),
P (0) ≡ 1. Thus, the character formula for Verma modules is

ch0 V Λ = e(Λ)
∑

μ∈Γ+

P (μ)e(μ) = e(Λ)
∏

α∈Δ+

(1 − e(α))−1. (2.3)

Further we recall the standard re	ections in Ĥ∗:

sα(λ) = λ − (λ, α∨)α, λ ∈ Ĥ∗, α ∈ Δ̂. (2.4)

The Weyl group W is generated by the simple re	ections si ≡ sαi , αi ∈ π̂. Thus
every element w ∈ W can be written as the product of simple re	ections. It is
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said that w is written in a reduced form if it is written with the minimal possible
number of simple re	ections; the number of re	ections of a reduced form of w
is called the length of w, denoted by �(w).

The Weyl character formula for the ˇnite-dimensional irreducible LWM LΛ

over Ĝ, i.e., when Λ ∈ −Γ+, has the form∗:

ch0 LΛ =
∑

w∈W

(−1)�(w)ch0 V w·Λ, Λ ∈ −Γ+, (2.5)

where the dot · action is deˇned by w · λ = w(λ − ρ) + ρ. For future reference
we note:

sα · Λ = Λ + nαα, (2.6)

where

nα = nα(Λ) .= (ρ − Λ, α∨) = (ρ − Λ)(Hα), α ∈ Δ+. (2.7)

In the case of basic classical Lie superalgebras the ˇrst character formulae
were given by Kac [112, 120]∗∗. For all such superalgebras (except osp(1/2N))
the character formula for Verma modules is [112, 120]:

chV Λ = e(Λ)

⎛⎜⎝ ∏
α∈Δ+

0̄

(1 − e(α))−1

⎞⎟⎠
⎛⎜⎝ ∏

α∈Δ+
1̄

(1 + e(α))

⎞⎟⎠ . (2.8)

Note that the factor
∏

α∈Δ+
0̄

(1 − e(α))−1 represents the states of the even sector:

V Λ
0 ≡ U((GCI

+)(0)) v0 (as above in the even case), while
∏

α∈Δ+
1̄

(1+e(α)) represents

the states of the odd sector: V̂ Λ ≡
(
U(GCI

+)/U((GCI
+)(0))

)
v0. Thus, we may

introduce a character for V̂ Λ as follows:

ch V̂ Λ ≡
∏

α∈Δ+
1̄

(1 + e(α)). (2.9)

In our case, V̂ Λ may be viewed as a result of all possible applications of the
4N odd generators X+

a,4+k on v0, i.e., V̂ Λ has 24N states (including the vacuum).

∗A more general character formula involves the KazhdanÄLusztig polynomials Py,w(u),
y, w ∈ W [119].

∗∗ Kac considers the highest weight modules, but his results are immediately transferable to the
lowest weight modules.
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Explicitly, the basis of V̂ Λ may be chosen as in [103]:

Ψε̄ =

(
1∏

k=N

(X+
1,4+k)ε1,4+k

) (
1∏

k=N

(X+
2,4+k)ε2,4+k

)
×

×
(

N∏
k=1

(X+
3,4+k)ε3,4+k

) (
N∏

k=1

(X+
4,4+k)ε4,4+k

)
v0, εaj = 0, 1, (2.10)

where ε̄ denotes the set of all εij
∗. Thus, the character of V̂ Λ may be written as

ch V̂ Λ =
∑

ε̄

e(Ψε̄) = (2.11a)

=
∑

ε̄

(
N∏

k=1

e(α1,4+k)ε1,4+k

) (
N∏

k=1

e(α2,4+k)ε2,4+k

)
×

×
(

N∏
k=1

e(α3,4+k)ε3,4+k

) (
N∏

k=1

e(α4,4+k)ε4,4+k

)
= (2.11b)

=
∑

ε̄

e

(
N∑

k=1

4∑
a=1

εa,4+k αa,4+k

)
(2.11c)

(note that in the above formula there is no actual dependence on Λ.)
We shall use the above to write for the character of V Λ:

ch V Λ = ch V̂ Λ · ch0 V Λ
0 =

=
∑

ε̄

e

(
N∑

k=1

4∑
a=1

εa,4+k αa,4+k

)
e(Λ)

⎛⎜⎝ ∏
α∈Δ+

0̄

(1 − e(α))−1

⎞⎟⎠ =

=
∑

ε̄

e

(
Λ +

N∑
k=1

4∑
a=1

εa,4+k αa,4+k

) ⎛⎜⎝ ∏
α∈Δ+

0̄

(1 − e(α))−1

⎞⎟⎠ =

=
∑

ε̄

ch0 V
Λ+

N∑

k=1

4∑

a=1
εa,4+k αa,4+k

0 , (2.12)

∗The order chosen in (2.10) was important in the proof of unitarity in [102, 103] and for that
purposes one may choose also an order in which the vectors on the ˇrst row are exchanged with the
vectors on the second row. For our purposes the order is important as far as to avoid impossible
states Å this is much of the analysis done in the next Subsections.
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where ch0 V Λ
0 is the character obtained by restriction of V Λ to V Λ

0 :

ch0 V Λ
0 = e(Λz) ch0 V Λs

· ch0 V Λu

, (2.13)

where we use the decomposition Λ = Λs +Λz +Λu from (1.18a); and V Λs

, V Λu

,
resp., are Verma modules over the complexiˇcations of su(2, 2), su(N), resp.,
cf. Appendix C.

Analogously, for the factorized Verma modules Ṽ Λ the character formula is

ch Ṽ Λ = ch V̂ Λ · ch0 Ṽ Λ
0 =

∑
ε̄

ch0 Ṽ
Λ+

N∑

k=1

4∑

a=1
εa,4+k αa,4+k

0 , (2.14)

where ch0 Ṽ Λ
0 is the character obtained by restriction of Ṽ Λ to Ṽ Λ

0 ≡ U((GCI
+)(0))

|̃Λ〉, or more explicitly:

ch0 Ṽ Λ
0 = e(Λz)ch0 LΛs · ch0 LΛu , (2.15)

where we use the decomposition Λ = Λs + Λz + Λu from (1.18a) and character
formulae (C.2)Ä(C.4) for the irreps of the even subalgebra (from Appendix C).

Formula (2.14) represents the expansion of the corresponding superˇeld in
components, and each component has its own even character. We see that this
expansion is given exactly by the expansion of the odd character (2.11).

We have already displayed how the UIRs LΛ are obtained as factor-modules
of the (even-submodules-factorized) Verma modules Ṽ Λ. Of course, this factor-
ization means that the odd singular vectors of Ṽ Λ from (1.33) are becoming null
conditions in LΛ. However, this is not enough to determine the character formu-
lae even when considering our UIRs as irreps of the complexiˇcation sl(4/N).
The latter is a well known feature even in the bosonic case. Here the situation is
much more complicated and much more reˇned analysis is necessary.

The most important aspect of this analysis is the determination of the su-
perˇeld content. (This analysis was used in [102, 103] but was not explicated
enough.) This is given by the positive norm states L̂Λ among all states in the
odd sector V̂ Λ. Of course, L̂Λ may have less than 24N states.

For future use we introduce notation for the levels of the different chiralities
εi and the overall level ε

εi =
N∑

k=1

εi,4+k, i = 1, 2, 3, 4, ε = ε1 + ε2 + ε3 + ε4. (2.16)

The odd null conditions entwine with the even null conditions as we shall
see. The even null conditions follow from the even singular vectors in (1.23)
(alternatively, one may say that they carry over from the even null conditions
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(1.26) of Ṽ Λ). We write down the even null conditions ˇrst since they hold for
any positive energy UIR:

(X+
1 )1+2j1 |Λ〉 = 0, (2.17a)

(X+
2 )1+2j2 |Λ〉 = 0, (2.17b)

(X+
j )1+rN+4−j |Λ〉 = 0, j = 5, . . . , N + 3 (2.17c)

((2.17c) being empty for N = 1), where by |Λ〉 we shall denote the lowest weight
vector of the UIR LΛ.

2.2. Character Formulae for the Long UIRs. As we mentioned if d > dmax,
there are no further reducibilities, and the UIRs LΛ = Ṽ Λ are called long since
L̂Λ may have the maximally possible number of states 24N (including the vacuum
state).

However, the actual number of states may be less than 24N states due to the
fact that Å depending on the values of ja and rk Å not all actions of the odd
generators on the vacuum would be allowed. The latter is obvious from formulae
(1.43). Using the latter we can give the resulting signature of the state Ψε̄:

χ (Ψε̄) =
[
d +

1
2
ε; j1 +

1
2
(ε2 − ε1), j2 +

1
2
(ε4 − ε3); z+

+ εN (ε3 + ε4 − ε1 − ε2); . . . , ri + ε1,N+4−i − ε1,N+5−i + ε2,N+4−i−

− ε2,N+5−i − ε3,N+4−i + ε3,N+5−i − ε4,N+4−i + ε4,N+5−i, . . .

]
. (2.18)

Thus, only if j1, j2 � N/2 and ri � 4 (for all i), the number of states is
24N [102], and the character formula for the irreducible lowest weight module
is (2.14):

ch LΛ = ch Ṽ Λ = ch V̂ Λ · ch0 Ṽ Λ
0 , d > dmax, (2.19a)

j1, j2 � N/2, ri � 4, i = 1, . . . , N − 1. (2.20a)

The general formula for ch LΛ shall be written in a similar fashion:

ch LΛ = ch L̂Λ · ch0 Ṽ Λ
0 . (2.21)

Moreover, from now on we shall write only the formulae for ch L̂Λ. Thus,
formula (2.19) shall be written equivalently as

ch L̂Λ = ch V̂ Λ, j1, j2 � N/2, ri � 4, ∀ i. (2.22)

As we have noted after (2.14) we do not lose information using this factorized
form which has the advantage of brevity.
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If the auxiliary conditions (2.19b) are not fulˇlled, then a careful analysis
is necessary. To simplify the exposition we classify the states by the following
quantities:

εc
j ≡ ε1 − ε2,

εa
j ≡ ε3 − ε4, (2.22)

εi
r ≡ ε1,5+i + ε2,5+i + ε3,4+i + ε4,4+i − ε1,4+i − ε2,4+i − ε3,5+i − ε4,5+i,

i = 1, . . . , N − 1.

This gives the following necessary conditions on εij for a state to be allowed:

εc
j � 2j1, (2.23a)

εa
j � 2j2, (2.23b)

εi
r � rN−i, i = 1, . . . , N − 1. (2.23c)

These conditions are also sufˇcient only for N = 1 (when (2.23c) is absent).
The exact conditions are:

Criterion. The necessary and sufˇcient conditions for the state Ψε̄ of level
ε to be allowed are that conditions (2.23) are fulˇlled and that the state is a
descendant of an allowed state of level ε − 1. ♦

The second part of the Criterion will take care ˇrst of all of chiral (or
antichiral) states when some εaj contribute to opposing sides of the inequalities
in (2.23a) and (2.23c) (or (2.23b) and (2.23c)). This phenomenon happens for
j1 = ri = 0 (or j2 = ri = 0).

We shall give now the most important such occurrences. Take ˇrst chiral
states, i.e., all ε3,4+k = ε3,4+k = 0. Fix i = 1, . . . , N − 1. It is easy to see that
the following states are not allowed:

ψij = φij |Λ〉 = X+
1,i+4 X+

2,i+5 X+
a1,i+6 . . . X+

aj−1,i+4+j |Λ〉, an = 1, 2, (2.24)

j = 1, . . . , N − i, j1 = rN−i = . . . = rN−i−j+1 = 0,

in addition, for N > 2, i > 1 holds rN−i+1 �= 0.

De mon s t r a t i o n. Naturally, this statement is nontrivial only when these
states are allowed by condition (2.23a) (i.e., the number of an being equal
to 2 is not less than the number of an being equal to 1), thus we restrict
to those. By design these states fulˇl also (2.23c) ((2.23b) is not relevant)
however, they are not descendants of allowed states. First, all states ψ̂ij =
X+

2,i+5 X+
a1,i+6 . . . X+

aj−1,i+4+j |Λ〉 violate (2.23c) with rN−i = 0. Next, the

state ψi1 is not allowed since in addition to ψ̂11 also the state X+
1,i+4 |Λ〉 is

not allowed (it violates (2.23a) with j1 = 0). Due to this, the state ψi2 is not
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descendant of any allowed states, and so on, for all ψij . Note that the last part
of the proof trivializes unless all an = 2. �

Re ma r k. The additional condition on the last line of (2.24) is there, since
if rN−i+1 = 0, the states ψij |Λ〉 (for i > 1) violate (2.23c) with rN−i+1 = 0 and
are excluded without use of the Criterion. ♦

Consider now antichiral states, i.e., such that ε1,4+k = ε2,4+k = 0, for all
k = 1, . . . , N . Fix i = 1, . . . , N − 1. Then the following antichiral states are not
allowed:

ψ′
ij = φ′

ij |Λ〉 = X+
3,i+5 X+

4,i+4 X+
b1,i+3 · · · X+

bj−1,i+5−j |Λ〉, bn = 3, 4, (2.25)

j = 1, . . . , i, j2 = rN−i = . . . = rN−i+j−1 = 0,

in addition, for N > 2, i > 1 holds rN−i−1 �= 0.

Furthermore, any combinations of φij and φ′
i′j′ are not allowed.

Note that for N � 4 the states in (2.24), (2.25) do not exhaust the states
forbidden by our Criterion. For example, for N = 4 there are the following
forbidden states:

ψ4 = φ4 |Λ〉 =X+
28 X+

17 X+
16 X+

25 |Λ〉, j1 = r1 = r2 = r3 = 0, (2.24′)

ψ′
4 = φ′

4 |Λ〉 =X+
45 X+

36 X+
37 X+

48 |Λ〉, j2 = r1 = r2 = r3 = 0. (2.25′)

Summarizing the discussion so far, the general character formula may be
written as follows:

ch L̂Λ = ch V̂ Λ −Rlong, d > dmax, (2.26)

R = e(V̂ Λ
excl) =

∑
excluded
states

e(Ψε̄),

where the counter-terms denoted by R are determined by V̂ Λ
excl which is the

collection of all states (i.e., collection of εjk) which violate the conditions (2.23),
or are impossible in the sense of (2.24) and/or (2.25). Of course, each excluded
state is accounted for only once even if it is not allowed for several reasons∗.

Finally, we consider two important conjugate special cases.
First, the chiral sector of R-symmetry scalars with j1 = 0. Taking into

account (2.23a), (2.23c) ((2.23b) is trivially satisˇed for chiral states) and our

∗We should stress that the necessity of the counter-terms above is related to the fact that our
representations of su(2, 2/N) have physical meaning and the states of L̂Λ represent components of
a superˇeld. There are no counter-terms when we consider these UIRs as irreps of sl(4/N). Thus,
formula (2.26) and almost all character formulae derived further in this Section are character formulae
of sl(4/N) by just dropping the counter-term R, cf. the next Section.
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Criterion, it is easy to see that the appearance of the generators X+
1,4+k is restricted

as follows. The generator X+
15 may appear only in the state

X+
15 X+

25 |Λ〉 (2.27)

and its descendants. The generator X+
16 may only appear either in states descen-

dant to the state (2.27) or in the state

X+
16 X+

25 |Λ〉 (2.28)

and its descendants including only generators X+
a,5+�, a = 1, 2, � > 1. Further,

the restrictions are described recursively, namely, ˇx � such that 1 < � � N − 1.
The generator X+

1,5+� may only appear either in states containing generators

X+
1,5+j , where 0 � j < �, or in the state

X+
1,5+� X+

2,4+� X+
2,3+� · · · X+

2,5 |Λ〉 (2.29)

and its descendants including only generators X+
a,5+�′ , a = 1, 2, �′ > �.

The chiral part of the basis is further restricted. Namely, there are only N
chiral states that can be built from the generators X+

2,4+k alone, given as follows:

X+
2,4+k · · · X+

25 |Λ〉, k = 1, . . .N, j1 = ri = 0, ∀ i. (2.30)

This follows from (2.23c) which in this case is reduced to ε1i � ε1,i+1 for
i = 1, . . . , N − 1.

Second, the antichiral sector of R-symmetry scalars with j2 = 0. Taking
into account (2.23b), (2.23c) ((2.23a) is trivially satisˇed for antichiral states) and
our Criterion, it is easy to see that the appearance of the generators X+

3,4+k is

restricted as follows. The generator X+
3,4+N may only appear in the state

X+
3,4+N X+

4,4+N |Λ〉 (2.31)

and its descendants. The generator X+
3,3+N may only appear either in states

descendant to the state (2.31) or in the state

X+
3,3+N X+

4,4+N |Λ〉 (2.32)

and its descendants including only generators X+
a,4+N−�, a = 3, 4, � > 1. Further,

ˇx � such that 1 < � � N − 1. The generator X+
3,4+N−� may only appear either

in states containing generators X+
3,4+N−j , where 0 � j < �, or in the state

X+
3,4+N−� X+

4,5+N−� X+
4,6+N−� · · · X+

4,4+N |Λ〉 (2.33)

and its descendants including only generators X+
a,4+N−�′ , a = 3, 4, �′ > �.
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The antichiral part of the basis is further restricted. Namely, there are only
N antichiral states that can be built from the generators X+

4,4+k alone, given as
follows:

X+
4,5+N−k X+

4,6+N−k · · · X+
4,4+N |Λ〉, k = 1, . . .N, j2 = ri = 0, ∀ i. (2.34)

This follows from (2.23c) which for such states becomes ε4,4+N−i � ε4,5+N−i

for i = 1, . . . , N − 1.
2.3. Character Formulae of SRC UIRs. Here we consider the four SRC

cases.
a) d = d1

N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3
NN .

• Let ˇrst j2 > 0. In these semishort SRC cases there holds the odd null
condition (following from the singular vector (8.9a) of [101], cf. also (1.32a′),
(1.33a′), (1.36a)):

P3,4+N |Λ〉 =
(
X+

4 X+
2 (h2 − 1) − X+

2 X+
4 h2

)
|Λ〉 =

=
(
2j2X

+
3,4+N − X+

4 X+
2

)
|Λ〉 = 0, (2.35)

where X+
3,4+N = [X+

2 , X+
4 ]. Clearly, condition (2.35) means that the generator

X+
3,4+N is eliminated from the basis that is built on the lowest weight vector |Λ〉.

Thus, for N = 1 and if r1 > 0 for N > 1, the character formula is

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α3,4+N

(1 + e(α)) −R,

(2.36)

d = dmax = d1
N1 > d3

NN , j2r1 > 0.

There are no counter-terms when j1 � N/2, j2 � (N − 1)/2 and ri � 4 (for
all i), and then the number of states is 24N−1. The change of statement (as
compared to the long superˇelds) w.r.t. j2 comes because of the elimination of
the generator X+

3,4+N .
R e m a r k. For the ˇnite-dimensional irreps of sl(4/N) (in fact, of all basic

classical Lie superalgebras) such situations are called ®singly atypical¯ and the
character formulae look exactly as (2.36) with R = 0, cf. [121Ä123]∗. ♦

When there are no counter-terms (also for the complex sl(4/N) case) this
formula follows easily from (1.42). Indeed, in the case at hand Iβ = I1 (cf.
(1.36a)); then from LΛ = Ṽ Λ/I1 follows:

chLΛ = ch Ṽ Λ − ch I1, or equivalently, ch L̂Λ = ch V̂ Λ − ch Î1, (2.37)

∗For character formulae of ˇnite-dimensional irreps beyond the ®singly atypical¯ case cf. [124Ä
127] and references therein.
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where Î1 is the projection of I1 to the odd sector. Naively, the character of
Î1 should be given by the character of V̂ Λ+α3,4+N , however, as discussed in
general (cf. (1.9)), I1 is smaller than V̂ Λ+α3,4+N and its character is given with
a prefactor∗:

ch Î1 =
1

1 + e(α3,4+N )
ch V̂ Λ+α3,4+N =

e(α3,4+N )
1 + e(α3,4+N )

ch V̂ Λ. (2.38)

Now (2.36) (with R = 0) follows from the combination of (2.37) and (2.38).
Formula (2.36) may also be described by using the odd re	ection (1.11) with

β = α3,4+N :

ch L̂Λ = ch V̂ Λ − 1
1 + e(α3,4+N )

ch V̂ ŝα3,4+N
·Λ −R = (2.39a)

= ch V̂ Λ − ŝα3,4+N · ch V̂ Λ −R = (2.39b)

=
∑

ŝ∈Ŵα3,4+N

(−1)�(ŝ)ŝ · ch V̂ Λ −R, (2.39c)

where Ŵβ ≡ {1, ŝβ} is a two-element semigroup restriction of W̃β , and we have
formalized further by introducing notation for the action of an odd re	ection on
characters:

ŝβ · ch V Λ =
1

1 + e(β)
ch V ŝβ ·Λ =

1
1 + e(β)

chV Λ+β =
e(β)

1 + e(β)
chV Λ.

(2.40)
It is natural to introduce the restriction Ŵβ since only the identity element of
W̃β and the generator ŝβ act nontrivially because the action ŝβ on characters is
nilpotent:

(ŝβ)2 · ch V Λ = 0. (2.41)

(This is because the odd embeddings are nilpotent, cf. (1.9), and the action of
(ŝβ)n, n < 0 on the characters is also trivial, since the embeddings are in the
opposite direction, e.g., VΛ is oddly embedded in VΛ−β , cf. [100] and (1.45).)

In fact, we shall need more general formula for the action of odd re	ections
on polynomials P from E(H∗). Thus, instead of (2.40) we shall deˇne the action
of ŝβ on P as a homogeneity operator treating e(β) as a variable

ŝβ · P ≡ e(β)
∂

∂e(β)
P , (2.42)

∗This technique was applied ˇrst when deriving the characters of the N = 2 super-Virasoro
algebras, cf. [128].
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where β may be a root or the sum of roots. Obviously, if P is a monomial which
contains a multiplicative factor 1 + e(β), this action is equivalent to the action in
(2.40), but it is more general since it acts on arbitrary polynomials P which we
need to describe our results below.

In particular, we shall show that in many cases character formulae (2.36),
(2.39) may be written as follows:

ch L̂Λ =
∑

ŝ∈Ŵβ

(−1)�(ŝ)ŝ
(
ch V̂ Λ −Rlong

)
, (2.43)

where Rlong represents the counter-terms for the long superˇelds for the same
values of j1 and ri as Λ, while the value of j2 is zero when j2 from Λ is zero,
otherwise it has to be the generic value j2 � N/2. (As we know, restriction
(2.23b) trivializes for j2 � N/2 and thus the structure of the irrep is the same for
any such generic value.)

Writing (2.36) as (2.39) (or (2.43)) may look as a complicated way to describe
the cancellation of a factor from the character formula for V̂ Λ, however, ˇrst of
all it is related to the structure of Ṽ Λ given by (1.42) and furthermore may be
interpreted Å when there are no counter-terms Å as the following decomposition:

V̂ Λ = L̂Λ ⊕ L̂Λ+β, (2.44)

for β = α3,4+N . Indeed, for generic signatures L̂Λ+β is isomorphic to L̂Λ as
a vector space (this is due to the fact that V Λ+β has the same reducibilities as
V Λ, cf. Sec. 1), they differ only by the vacuum state. Thus, when there are no
counter-terms, both L̂Λ and L̂Λ+β have the same 24N−1 states. If we describe
them for shortness as

Φi |Λ〉, Φi |Λ + β〉, (2.45)

where none of Φi contains X+
3,4+N and recall that the embedding of V̂ Λ+β into

V̂ Λ is given essentially by the generator X+
3,4+N (cf. (1.36a)), then we see that

after the embedding the states in (2.45) restore all 24N states in V̂ Λ:

Φi |̃Λ〉, X+
3,4+N Φi |̃Λ〉. (2.46)

It is more important that there is a similar decomposition valid for many cases
beyond the generic, i.e., we have(

L̂long

) ∣∣∣
d=da

= L̂Λ ⊕ L̂Λ+α3,4+N , N = 1 or r1 > 0 for N > 1, (2.47)

where L̂long is a long superˇeld with the same values of j1 and ri as Λ, while
the value of j2 has to be speciˇed as above for Rlong, and equality is as vector
spaces.
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For N > 1, there are possible additional truncations of the basis. To make
the exposition easier we need additional notation. Let i0 be an integer such that
0 � i0 � N − 1 , and ri = 0 for i � i0, and if i0 < N − 1, then ri0+1 > 0∗.

Let now N > 1 and i0 > 0; then the generators X+
3,4+N−i, i = 1, . . . , i0, are

eliminated from the basis.
D e mon s t r a t i o n. First, we consider the vector

P3,3+N v0 =
(
2j2X

+
3,3+N − X+

4,3+N X+
2

)
v0 =

= 2j2

(
X+

3,4+NX+
3+N − X+

3+NX+
3,4+N

)
v0−

−
(
X+

4 X+
3+N − X+

3+NX+
4

)
X+

2 v0 =
(
P3,4+N X+

3+N − X+
3+N P3,4+N

)
v0.

(2.48)

For r1 = 0, it is descendant of (1.23c) and (1.32) and leads to the null condition

P3,3+N |Λ〉 =
(
2j2X

+
3,3+N − X+

4,3+N X+
2

)
|Λ〉 = 0, (2.49)

which naturally follows from (2.17c) and (2.35), and which means that the gen-
erator X+

3,3+N is eliminated from the basis. Analogously, we deˇne the vectors

P3,4+N−i v0 =
(
2j2X

+
3,4+N−i − X+

4,4+N−iX
+
2

)
v0, (2.50)

which are recursively related:

P3,4+N−i v0 = 2j2

(
X+

3,5+N−iX
+
4+N−i − X+

4+N−iX
+
3,5+N−i

)
v0−

−
(
X+

4,5+N−iX
+
4+N−i − X+

4+N−iX
+
4,5+N−i

)
X+

2 v0 =

=
(
P3,5+N−iX

+
4+N−i − X+

4+N−i P3,5+N−i

)
v0. (2.51)

Thus, in the situation: ri = 0, i = 1, . . . , i0, there are the following null condi-
tions:

P3,4+N−i |Λ〉=
(
2j2X

+
3,4+N−i−X+

4,4+N−i X+
2

)
|Λ〉=0, rj = 0, 1 � j � i � i0.

(2.52)
These are recursively descendant null conditions, which means that a condition
for ˇxed i is a descendant of the one for i − 1 (since X+

4+N−i |Λ〉 = 0 due to
(2.17c)). Conditions (2.52) mean that the generators X+

3,4+N−i, i = 1, . . . , i0,
are eliminated from the basis. �

∗This is formally valid for N = 1 with i0 = 0 since r0 ≡ 0 by convention. This shall be used
to make certain statements valid for general N .
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From the above follows that for i0 > 0 the decomposition (2.47) cannot hold.
Indeed, the generators X+

3,4+N−i, i = 1, . . . , i0, are eliminated from the irrep L̂Λ

due to the fact that we are at a reducibility point, but there is no reason for them
to be eliminated from the long superˇeld. Certainly, some of these generators
are present in the second term L̂Λ+α3,4+N in (2.47), but that would be only
those which in the long superˇeld were in states of the kind: Φ X+

3,4+N |Λ〉, and,
certainly, such states do not exhaust the occurrence of the discussed generators in
the long superˇeld. Symbolically, instead of the decomposition (2.47) we shall
write:(

L̂long

) ∣∣∣
d=da

= L̂Λ ⊕ L̂Λ+α3,4+N ⊕ L̂′
Λ, N > 1, i0 > 0, (2.53)

where we have represented the excess states by the last term with prime. With
the prime we stress that this is not a genuine irrep, but just a book-keeping
device. Formulae as (2.53) in which not all terms are genuine irreps shall be
called quasi-decompositions.

The corresponding character formula is

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α3,5+N−k
k=1,...,1+i0

(1 + e(α)) −R = (2.54a)

=
∑

ŝ∈Ŵ a
i0

(−1)�(ŝ) ŝ · chV Λ −R = (2.54b)

=
∑

ŝ∈Ŵ a
i0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.54c)

Ŵ a
i0 ≡ Ŵα3,N+4 × Ŵα3,N+3 × · · · × Ŵα3,N+4−i0

, (2.54d)

d = dmax = d1
N1 > d3

NN , j2 > 0, ri = 0, i � i0.

The restrictions (2.23) used to determine the counter-terms are, of course, with
ε3,5+N−k = 0, k = 1, . . . , 1 + i0. Formulae (2.36), (2.39), (2.43) are special

cases of (2.54a)Ä(2.54c), resp., for i0 = 0. The maximal number of states in L̂Λ

is 24N−1−i0 . This is the number of states that is obtained from the action of the
Weyl group Ŵ a

i0
on ch V̂ Λ, while the actual counter-term is obtained from the

action of the Weyl group on Rlong.
In the extreme case of R-symmetry scalars: i0 = N − 1, i.e., ri = 0,

i = 1, . . . , N − 1, or, equivalently, m1 = 0 = m, all the N generators X+
3,4+k

are eliminated. The character formula is again (2.54) taken with i0 = N − 1.
• Let now j2 = 0. Then all null conditions above (valid for j2 > 0) follow

from (1.26b), so these conditions do not mean elimination of the mentioned
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vectors. As we know in this situation we have the singular vector (1.35) which
leads to the following null condition:

X+
3,4+N X+

4,4+N |Λ〉 = X+
4 X+

2 X+
4 |Λ〉 = 0. (2.55)

The state in (2.55) and all of its 24N−2 descendants are zero for any N . Thus,
the character formula is similar to (2.39), but with α3,4+N is replaced by β12 =
α3,4+N + α4,4+N , (cf. (1.43e)):

ch L̂Λ =
∑

ŝ∈Ŵβ12

(−1)�(ŝ) ŝ ch V̂ Λ −R = (2.56a)

=
∑

ŝ∈Ŵβ12

(−1)�(ŝ) ŝ
(
ch V̂ Λ −Rlong

)
, N = 1 or r1 > 0, (2.56b)

where Ŵβ12 ≡ {1, β12}.
Note that for N = 1 formula (2.56) is equivalent to (2.36) since due to

(2.23b) the generator X+
3,4+N could appear only together with X+

4,4+N but the
resulting state (2.55) is zero.

Here holds a decomposition similar to (2.47):(
L̂long

) ∣∣∣
d=da

= L̂Λ ⊕ L̂Λ+β12 , N = 1 or r1 > 0 for N > 1, (2.57)

where L̂long is with the same values of j1, j2(= 0), ri as Λ. Note, however, that
the UIR L̂Λ+β12 belongs to type b) below.

There are more eliminations for N > 1 when i0 > 0. For instance, we can
show that all states as in (2.33) considered for � = 1, . . . , i0 are not allowed.

D e mon s t r a t i o n. We show this by induction. Consider ˇrst the case
� = 1:

X+
3,3+N X+

4,4+N |Λ〉 =
(
X+

3+NX+
3,4+N − X+

3,4+NX+
3+N

)
X+

4,4+N |Λ〉 =

= −X+
3,4+N X+

3+N X+
4,4+N |Λ〉 = −X+

3,4+N X+
4,3+N |Λ〉, (2.58)

where the ˇrst term is zero due to (2.55), and the second term is transformed by
pulling X+

3+N to the right, where it annihilates the vacuum (due to (2.17c) with
j = N + 3 for r1 = 0), and the resulting state is the forbidden ψ′

N−1,1 from
(2.25). Thus, the above state is not allowed.

Now ˇx k such that 1 < k � i0 and suppose that we have already shown that
all states in (2.33) for � < k are not allowed, and we shall show this for � = k.
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Indeed, this state is not allowed:

X+
3,4+N−k X+

4,5+N−k X+
4,6+N−k · · · X+

4,4+N |Λ〉 =

= −X+
4,5+N−k X+

3,4+N−k X+
4,6+N−k · · · X+

4,4+N |Λ〉 =

= −X+
4,5+N−k

(
X+

4+N−kX+
3,5+N−k − X+

3,5+N−kX+
4+N−k

)
×

× X+
4,6+N−k · · · X+

4,4+N |Λ〉, (2.59)

where the ˇrst term on the last line is a state descendant of (2.33) with k → k−1,
which is not allowed by the induction hypothesis and the second term is zero due
to pulling X+

4+N−k to the right, where it annihilates the vacuum (due to (2.17c)
with j = N + 4 − k for rk = 0). �

From the above follows that if i0 > 0 the decomposition (2.57) does not
hold. Instead, there is a quasi-decomposition similar to (2.53).

We can be more explicit in the case when all ri = 0. In that case all the
vectors X+

3,5+N−k are eliminated from all antichiral states.

D e mon s t r a t i o n. We show this by induction in k starting with k = 1, 2.
Take ˇrst the generator X+

3,4+N . As we know, when j2 = ri = 0, ∀ i, the
only antichiral state containing it in a long superˇeld is the state (2.31) and its
descendants. However, here all these possible states are zero due to (2.55). Thus,
there are no antichiral states containing X+

3,4+N .

Take next the vector X+
3,3+N . As we know, the only antichiral states con-

taining it in a long superˇeld are the states (2.31), (2.32), and their descendants.
The ˇrst is zero, while the second is not allowed as we showed above. Thus, the
vector X+

3,3+N is eliminated from all antichiral states.

Now ˇx � such that 1 < � � N − 1 and suppose that we have already shown
elimination of X+

3,5+N−k for k = 1, . . . , �, from all antichiral states. We want

to show elimination for k = � + 1, i.e., of the generator X+
3,4+N−�. As we know

from the similar consideration of long superˇelds, all antichiral states including
X+

3,4+N−� and which are not yet excluded may be written as the state (2.33) and

its descendants including only generators X+
a,4+N−�′ , a = 3, 4, �′ > �. However,

above we have shown that this state is not allowed. Thus, all generators X+
3,4+k

for k = 1, . . . , N are eliminated from the antichiral part of the basis. �
The antichiral part of the basis is further restricted. As we know, when

j2 = ri = 0, ∀ i, there are only N antichiral states that can be built from
the generators X+

4,4+k alone, given in (2.34). Thus the corresponding character
formula is
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ch L̂Λ =
N∑

k=1

k∏
i=1

e(α4,5+N−i) +
∏

α∈Δ+
1̄

ε1+ε2>0

(1 + e(α)) −R,

d = dmax = d1
N1 > d3

NN , j2 = 0, ri = 0, ∀ i.

(2.60)

b) d = d2
N1 = z + 2m1 − 2m/N > d3

NN , j2 = 0.

In these short single-reducibility-condition cases, there holds the odd null
condition (following from the singular vector (1.32b) or (1.33b))

X+
4 |Λ〉 = X+

4,4+N |Λ〉 = 0. (2.61)

Since j2 = 0 from (1.26b) and (1.61) follows the additional null condition:

X+
3,4+N |Λ〉 = [X+

2 , X+
4 ] |Λ〉 = 0. (2.62)

For N > 1 and r1 > 2 each of these UIRs enters as the second term in
decomposition (2.57), when the ˇrst term is an UIR of type a with j2 = 0, as
explained above.

Further, for N > 1 there are additional null conditions if ri = 0, i � i0.
Indeed, let r1 = 0, then from (1.26c) and (2.62) follow the additional null
conditions:

X+
4,3+N |Λ〉 = [X+

4,4+N , X+
3+N ] |Λ〉 = 0, r1 = 0, (2.63a)

X+
3,3+N |Λ〉 = [X+

3,4+N , X+
3+N ] |Λ〉 = 0, r1 = 0. (2.63b)

Analogously, in the situation: ri = 0, i = 1, . . . , i0, there are recursive null
conditions:

X+
3,4+N−i |Λ〉 = [X+

3,5+N−i, X
+
4+N−i] |Λ〉 = 0, rj = 0, 1 � j � i � i0,

(2.64a)

X+
4,4+N−i |Λ〉 = [X+

4,5+N−i, X
+
4+N−i] |Λ〉 = 0, rj = 0, 1 � j � i � i0,

(2.64b)

Thus, 2(1+i0) generators X+
3,5+N−k, X+

4,5+N−k, k = 1, . . . , 1+i0 are eliminated.

The maximal number of states in L̂Λ is 24N−2−2i0 .
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The corresponding character formula is

ch L̂Λ =
∏

α∈Δ+
1̄

α �=αj,5+N−k
j=3,4 ,k=1,...,1+i0

(1 + e(α)) −R = (2.65a)

=
∑

ŝ∈Ŵ b
i0

(−1)�(ŝ)ŝ · ch V̂ Λ −R, (2.65b)

Ŵ b
i0 ≡ Ŵα3,N+4 × Ŵα3,N+3 × · · · × Ŵα3,N+4−i0

×
× Ŵα4,N+4 × Ŵα4,N+3 × · · · × Ŵα4,N+4−i0

, (2.65c)

d = d2
N1 > d3

NN , j2 = 0, ri = 0, i � i0,

where determining the counter-terms we use εj,5+N−k = 0, j = 3, 4, k =
1, . . . , 1 + i0.

In the case of R-symmetry scalars (i0 = N − 1) we have

X+
3,4+k |Λ〉 = 0, X+

4,4+k |Λ〉 = 0, k = 1, . . . , N, ri = 0, ∀ i. (2.66)

The character formula is (2.65) taken with 1 + i0 = N . These UIRs should be
called chiral since all antichiral generators are eliminated.

The next two cases are conjugates of the ˇrst two and the exposition will be
compact.

c) d = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1.
• Let ˇrst j1 > 0. In these semishort SRC cases, the odd null condition

holds (following from the singular vector (8.8a) of [101]), here cf. (1.32c′) or
(1.33c′)):

P15 |Λ〉 =
(
2j1X

+
15 − X+

3 X+
1

)
|Λ〉 = 0, (2.67)

where X+
15 = [X+

1 , X+
3 ]. Clearly, condition (2.67) means that the generator X+

15

is eliminated from the basis.
Let now i′0 be an integer such that 0 � i′0 � N − 1 , and rN−i = 0 for

i � i′0, and if i′0 < N − 1, then rN−1−i′0
> 0∗. For N > 1 and i′0 > 0 there are

additional truncations due to the vectors (cf. (C.7) of [101]):

P1,5+i v0 =
(
2j1X

+
1,5+i − X+

2,5+i

)
X+

1 v0 = 2j1
(
X+

1,4+iX
+
4+i − X+

4+iX
+
1,4+i

)
×

×v0−
(
X+

2,4+iX
+
4+i − X+

4+iX
+
2,4+i

)
X+

1 v0 =
(
P1,4+i X+

4+i − X+
4+i P1,4+i

)
v0,

(2.68)

∗This is formally valid for N = 1 with i′0 = 0 since rN = 0 by convention.
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which produced recursive null conditions:

P1,5+i |Λ〉 =
(
2j1X

+
1,5+i − X+

2,5+iX
+
1

)
|Λ〉 = 0, rN−j = 0, 1 � j � i � i′0,

(2.69)
which means that the generators X+

1,5+i are eliminated from the basis.
The corresponding character formula is

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α1,4+k
k=1,...,1+i′0

(1 + e(α)) −R = (2.70a)

=
∑

ŝ∈Ŵ c
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.70b)

=
∑

ŝ∈Ŵ c
i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.70c)

Ŵ c
i′0
≡ Ŵα15 × Ŵα16 × · · · × Ŵα1,5+i′0

, (2.70d)

d = dmax = d3
NN > d1

N1, j1 > 0, rN−i = 0, i � i′0 � N − 1.

This formula is valid also for N = 1 or when rN−1 > 0 by setting i′0 = 0. The
maximal number of states in L̂Λ is 24N−1−i′0 . The restrictions (2.23) used for
the counter-terms are with ε1,N−i = 0, i = 0, 1, . . . , i′0.

When i′0 = 0, decomposition similar to (2.47) holds:(
L̂long

) ∣∣∣
d=dc

= L̂Λ ⊕ L̂Λ+α15 , N = 1 or rN−1 > 0 for N > 1, (2.71)

where L̂long is a long superˇeld with the same values of j2 and ri as Λ, while the
value of j1 is zero when j1 from Λ is zero, otherwise it has to be the generic value
j1 � N/2. From the above follows also that when i′0 > 0, the decomposition
(2.71) does not hold.

In the case of R-symmetry scalars (i′0 = N − 1) all the N generators X+
1,4+k

(k = 1, . . . , N) are eliminated. The maximal number of states in L̂Λ is 23N .
• Let now j1 = 0. Then the null conditions above all follow from (1.26a)

so these conditions do not mean elimination of the mentioned vectors. In this
situation we have the singular vector (1.34) which leads to the following null
condition:

X+
15 X+

25 |Λ〉 = X+
3 X+

1 X+
3 |Λ〉 = 0. (2.72)

The state in (2.72) and all of its 24N−2 descendants are zero for any N . Thus,
for N = 1 or if rN−1 > 0, the character formula is as (2.70) for i′0 = 0, but with



1116 DOBREV V.K.

α15 replaced by β34 = α25 + α25 (cf. (1.43f)):

ch L̂Λ =
∑

ŝ∈Ŵβ34

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.73a)

=
∑

ŝ∈Ŵβ34

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, N = 1 or rN−1 > 0, (2.73b)

where Ŵβ34 ≡ {1, β34}.
For N = 1 formula (2.73) is equivalent to (2.70) for i′0 = 0 since due to

(2.23a) the generator X+
15 could appear only together with X+

25 but the resulting
state (2.72) is zero.

For i′0 = 0 there holds the decomposition(
L̂long

) ∣∣∣
d=dc

= L̂Λ ⊕ L̂Λ+β34 , N = 1 or rN−1 > 0 for N > 1, (2.74)

where L̂long is with the same values of j1(= 0), j2, ri as Λ. Note, however, that

the UIR L̂Λ+β34 belongs to type d) below.
There are more eliminations for N > 1 when i′0 > 0. For instance, we can

show that all states as in (2.29) considered for � = 1, . . . , i′0 are not allowed.
D e mon s t r a t i o n. We show this by induction. Consider ˇrst the case � = 1:

X+
16 X+

25 |Λ〉 =
(
X+

15X
+
5 − X+

5 X+
15

)
X+

25 |Λ〉 =

= X+
15 X+

5 X+
25 |Λ〉 = X+

15 X+
26 |Λ〉, (2.75)

where the second term is zero due to (2.72) and the ˇrst term is transformed by
pulling X+

5 to the right, where it annihilates the vacuum (due to (2.17c) with
j = 1 for rN−1 = 0), and the resulting state is the forbidden ψ11. Thus, the
above state is not allowed. Further, we proceed by induction similarly to the
conjugate case, cf. (2.59). �

From the above follows that when i′0 > 0, the decomposition (2.74) does
not hold.

We can be more explicit in the case when all ri = 0. In that case all the
generators X+

1,4+k (for k = 1, . . . , N ) are eliminated from all chiral states.

D e mon s t r a t i o n. Take ˇrst the vector X+
15. As we know, when j1 = ri =

0, ∀ i, the only chiral state containing it in a long superˇeld is the state (2.27) and
its descendants. However, here all these possible states are zero due to (2.72).
Thus, there are no chiral states containing X+

15.
Take next the vector X+

16. As we know, the only chiral states containing it in
a long superˇeld are the states (2.27), (2.28) and their descendants. The ˇrst is
zero, while the second is not allowed as we showed above. Thus, the vector X+

16

is eliminated from all chiral states.
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Now ˇx � such that 1 < � � N − 1 and suppose that we have already
shown elimination of X+

1,4+k for k = 1, . . . , �, from all antichiral states. We

want to show elimination of X+
1,4+k for k = � + 1. As we know from the similar

consideration of long superˇelds all chiral states including X+
1,5+� and which are

not yet excluded may be written as the state (2.29) and its descendants including
only generators X+

a,5+�′ , a = 1, 2, �′ > �. Then it is shown (analogously to (2.33))

that this state is also not allowed. Thus, all generators X+
1,4+k for k = 1, . . . , N

are eliminated from the chiral part of the basis. �
The chiral part of the basis is further restricted. As we know, when j1 =

ri = 0, ∀ i, there are only N chiral states that can be built from the generators
X+

2,4+k alone, given in (2.30). Thus, the corresponding character formula is

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α2,4+i) +
∏

α∈Δ+
1̄

ε3+ε4>0

(1 + e(α)) −R, (2.76)

d = dmax = d3
NN > d1

N1, j1 = 0, ri = 0, ∀ i.

d) d = d4
NN = −z + 2m/N > d1

N1, j1 = 0.
In these short single-reducibility-condition cases, the odd null condition holds

(following from the singular vector (1.32d) or (1.33d)):

X+
3 |Λ〉 = X+

25 |Λ〉 = 0. (2.77)

Since j1 = 0, from (1.26a) and (2.77) the additional null condition follows:

X+
15 |Λ〉 = [X+

1 , X+
3 ] |Λ〉 = 0. (2.78)

For N > 1 and rN−1 > 2 each of these UIRs enters as the second term in
decomposition (2.74), when the ˇrst term is an UIR of type c) with j1 = 0, as
explained above.

Further, for N > 1 there are additional null conditions if rN−i = 0, i � i′0.
These are recursive null conditions:

X+
1,5+i |Λ〉 = [X+

1,4+i, X
+
4+i] |Λ〉 = 0, rN−j = 0, 1 � j � i � i′0, (2.79a)

X+
2,5+i |Λ〉 = [X+

2,4+i, X
+
4+i] |Λ〉 = 0, rN−j = 0, 1 � j � i � i′0. (2.79b)

Thus, 2(1 + i′0) generators X+
1,4+k, X+

2,4+k, k = 1, . . . , 1 + i′0, are eliminated.

The maximal number of states in L̂Λ is 24N−2−2i′0 .
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The corresponding character formula is

ch L̂Λ =
∏

α∈Δ+
1̄

α �=αj,4+k
j=1,2,k=1,...,1+i′0

(1 + e(α)) −R = (2.80a)

=
∑

ŝ∈Ŵ d
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R, (2.80b)

Ŵ d
i′0
≡Ŵα15 × Ŵα16 × · · · × Ŵα1,5+i0

× Ŵα25 × Ŵα26 × · · · × Ŵα2,5+i0
,

(2.80c)

d = d4
NN >d1

N1, j1 = 0, rN−i = 0, i � i′0 � N − 1, rN−1−i′0
> 0,

where R designates the counter-terms due to our Criterion, in particular, due to
(2.23) taken with εj,4+k = 0, j = 1, 2, k = 1, . . . , 1 + i′0.

In the case of R-symmetry scalars we have

X+
1,4+k |Λ〉 = 0, X+

2,4+k |Λ〉 = 0, k = 1, . . . , N, ri = 0, ∀ i. (2.81)

The character formula is (2.80) taken with 1 + i′0 = N . These are chiral UIRs
conjugate to the antichiral ones in (2.66).

2.4. Character Formulae of DRC UIRs. Each of the DRC cases is the
obvious combination of two SRC cases and some results follow from this. In
fact, in the generic cases, we can give a general character formula which follows
directly from embedding diagram (1.55).

So let ˇrst N > 1 and r1rN − 1 > 0 (i.e., i0 = i′0 = 0). Then the following
character formula holds:

ch L̂Λ =
∑

ŝ∈Ŵβ,β′

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.82a)

= ch V̂ Λ − 1
1 + e(β)

ch V̂ Λ+β − 1
1 + e(β′)

ch V̂ Λ+β′
+

+
1

(1 + e(β)) (1 + e(β′))
ch V̂ Λ+β+β′

−R, (2.82b)

Ŵβ,β′ ≡ Ŵβ × Ŵβ′ . (2.82c)

The above formula is proved similarly to what we had in the SRC cases. It
re	ects the contribution of the modules on embedding diagram (1.55). In fact,
the two terms with minus sign on the ˇrst line of (2.82b) take into account the
factorization of the oddly embedded submodules Iβ , Iβ′

, cf. (1.50), coming from
the modules V10, V01, resp. There can be no contribution of the modules along
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the same lines of embeddings Vk0, V0�, k, � > 1, due to the Grassmannian nature
of the odd embeddings involved. Consequently, all modules Vk� for k, � > 1
cannot contribute to the character formula of UIR in V00. Only the module V11

can contribute since it is also a nonzero submodule of V00. However, since it is
oddly embedded in V00 via both submodules V10, V01, its contribution is taken
out two times Å once with Iβ , and a second time with Iβ′

. Thus, we need the
term with plus sign on the second line of (2.82b) to restore its contribution once∗.
We cannot apply the same kind of arguments for N = 1, nevertheless, formula
(2.82) holds also then for the case (1.49a), cf. Appendix A.1.

In accord with (2.82) for N > 1 and d = dac the following decomposition
holds:(

L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+β ⊕ L̂Λ+β′ ⊕ L̂Λ+β+β′ , r1rN−1 > 0, (2.83)

where L̂long is a long superˇeld with the same values of ri as Λ, while the value
of j1 (resp. j2) is zero when j1 (resp. j2) from Λ is zero, otherwise it has to be
the generic value j1 � N/2 (resp. j2 � N/2).

Next we consider the four DRC cases separately.

ac) d = dmax = d1
N1 = d3

NN = dac ≡ 2 + j1 + j2 + m1, z = j1 − j2 +
2m/N − m1.

In these semishort DRC cases, the two null conditions (2.35) and (2.67) hold.
In addition, for N > 1, if ri = 0, i = 1, . . . , i0, there hold (2.52) and if rN−i = 0,
i = 1, . . . , i′0, there hold (2.69).

There are two basic situations. The ˇrst is when i0 + i′0 � N − 2. (This
situation is not applicable for N = 1.) This means that not all ri are zero and
all eliminations are as described separately for cases a) and c). These semishort
UIRs may be called Grassmann-analytic following [23], since odd generators
from different chiralities are eliminated. The maximal number of states in L̂Λ is
24N−2−i0−i′0 .

The second is when i0+i′0 � N −2 does not hold which means that all ri are
zero (R-symmetry scalars, m1 = 0 = m), and in fact we have i0 = i′0 = N − 1,
and all generators X+

1,4+k and X+
3,4+k are eliminated. The maximal number of

states in L̂Λ is 22N .

Note that below only one case is applicable for N = 1.
• For j1j2 > 0 the corresponding character formulae are combinations of

(2.54) and (2.70):

∗For more complicated application of similar arguments we refer to [128].
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ch L̂Λ =
∏

α∈Δ+
1̄

α �=α1,4+k
k=1,...,1+i′0

α �=α3,5+N−j
j=1,...,1+i0

(1 + e(α)) −R = (2.84a)

=
∑

ŝ∈Ŵ ac
i0,i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R, (2.84b)

=
∑

ŝ∈Ŵ ac
i0,i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.84c)

Ŵ ac
i0,i′0

≡ Ŵ a
i0 × Ŵ c

i′0
, (2.84d)

d = dmax = d1
N1 = d3

NN = 2 + j1 + j2 + m1, j1j2 > 0,

either

i0 + i′0 � N − 2, ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,

ri > 0, i = i0 + 1, N − i′0 − 1, or i0 = i′0 = N − 1, ri = 0, ∀ i.

The last subcase is of R-symmetry scalars. It is also the only formula in the case
under consideration Å ac) Å valid for N = 1 (where there are no counterterms
since (2.23a), (2.23b) bring no restrictions, cf. also Appendix A.1).

For N > 1 and i0 = i′0 = 0, formula (2.84) is equivalent to (2.82) with
β = α15, β′ = α3,4+N . Also (2.83) holds with these β, β′:(

L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+α3,4+N ⊕ L̂Λ+α15+α3,4+N , r1rN−1 > 0,

(2.85)
and with L̂long being a long superˇeld with the same values of ri as Λ and with
j1, j2 � N/2.

All formulae below to the end of case ac) are for N > 1.
• For j1 > 0, j2 = 0 the corresponding character formulae are combinations

of (2.56) and (2.70):

ch L̂Λ =
∑

ŝ∈Ŵ a′c
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.86a)

=
∑

ŝ∈Ŵ a′c
i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.86b)

Ŵ a′c
i′0

≡ Ŵβ12 × Ŵ c
i′0

, β12 = α3,4+N + α4,4+N , (2.86c)

d = dmax = d1
N1 = d3

NN = 2 + j1 + m1, j1 > 0, j2 = 0, r1 > 0.
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For i0 = i′0 = 0, decomposition (2.83) holds:

(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+β12 ⊕ L̂Λ+α15+β12 , r1rN−1 > 0,

(2.87)
where L̂long is a long superˇeld with the same values of j2(= 0), ri as Λ and with

j1 � N/2. Note that the UIR L̂Λ+α15 is also of the type ac) under consideration,
while the last two UIRs are short from type bc) considered below.

For R-symmetry scalars we combine (2.60) and (2.70a):

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α4,5+N−i) +
∏

α∈Δ+
1̄

α �=α1,4+k,

k=1,...,N
ε2>0

(1 + e(α)) −R, (2.88)

d = dmax = d1
N1 = d3

NN = 2 + j1, j1 > 0, j2 = 0, ri = 0, ∀ i.

• For j1 = 0, j2 > 0 the corresponding character formulae are combinations of
(2.73) and (2.54):

ch L̂Λ =
∑

ŝ∈Ŵ ac′
i0

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.89a)

=
∑

ŝ∈Ŵ ac′
i0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.89b)

Ŵ ac′

i0 ≡ Ŵβ34 × Ŵα
i0 , β34 = α15 + α25, (2.89c)

d = dmax = d1
N1 = d3

NN = 2 + j2 + m1, j1 = 0, j2 > 0, rN−1 > 0.

For i0 = i′0 = 0 there holds decomposition (2.83):

(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α3,4+N ⊕ L̂Λ+β34 ⊕ L̂Λ+α3,4+N +β34 , r1rN−1 > 0,

(2.90)
where L̂long is a long superˇeld with the same values of j1(= 0), ri as Λ and
with j2 � N/2. Note that the UIR L̂Λ+α3,4+N is again of the type ac) under
consideration, while the last two UIRs are actually from type ad) considered
below.
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For R-symmetry scalars we combine (2.54a) and (2.76):

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α2,4+i) +
∏

α∈Δ+
1̄

α �=α3,4+k
k=1,...,N

ε4>0

(1 + e(α)) −R, (2.91)

d = dmax = d1
N1 = d3

NN = 2 + j2,

j1 = 0, j2 > 0, ri = 0, ∀ i.

• For j1 = j2 = 0 the corresponding character formulae are combinations of
(2.56) and (2.73):

ch L̂Λ =
∑

ŝ∈Ŵ a′c′
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R = (2.92a)

=
∑

ŝ∈Ŵ a′c′
i′0

(−1)�(ŝ) ŝ ·
(
ch V̂ Λ −Rlong

)
, (2.92b)

Ŵ a′c′

i′0
≡Ŵβ12 × Ŵβ34 , (2.92c)

d = dmax = d1
N1 = d3

NN = 2 + m1,

j1 = j2 = 0, r1rN−1 > 0.

For i0 = i′0 = 0, decomposition (2.83) holds:(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+β12 ⊕ L̂Λ+β34 ⊕ L̂Λ+β12+β34 , r1rN−1 > 0,

(2.93)
where L̂long is a long superˇeld with the same values of j1(= 0), j2(= 0), ri

as Λ. Note that the UIR L̂Λ+β12 is of the bc) type, L̂Λ+β34 is of the ad) type,

L̂Λ+β12+β34 is of the bd) type, these three being considered below.
For R-symmetry scalars we combine (2.60) and (2.76):

ch L̂Λ =
N∑

k=1

k∏
i=1

e(α2,4+i) +
N∑

k=1

k∏
i=1

e(α4,5+N−i) +
∏

α∈Δ+
1̄

ε1+ε2>0
ε3+ε4>0

(1 + e(α)) −R,

(2.94)
d = dmax = d1

N1 = d3
NN = 2, z = 0,

j1 = j2 = 0, ri = 0, ∀ i.

ad) d = d1
N1 = d4

NN = 1 + j2 + m1, j1 = 0, z = 2m/N − m1 − 1 − j2.
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In these short DRC cases, three null conditions (2.35), (2.77) and (2.78)
hold. In addition, for N > 1, if ri = 0, i = 1, . . . , i0, there hold (2.52), and if
rN−i = 0, i = 1, . . . , i′0, there hold (2.79).

If i0 + i′0 � N − 2, all eliminations are as described separately for cases
a) and d). All these are Grassmann-analytic UIRs. The maximal number of
states in L̂Λ is 24N−3−i0−2i′0 . Interesting subcases are the so-called BPS states,
cf. [16, 20, 23, 35, 41, 42, 44, 53]. They are characterized by the number κ of
odd generators which annihilate them Å then the corresponding case is called
k

4N
-BPS state. For example, consider N = 4 and

1
4
-BPS cases with z =

0 ⇒ d = 2m/N . One such case is obtained for i0 = 1, i′0 = 0, j2 > 0, then

d =
1
2
(2r2 + 3r3), r1 = 0, r2 > 0, r3 = 2(1 + j2).

For j2m1 > 0 the corresponding character formula is a combination of (2.54)
and (2.80):

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α3,5+N−k,

k=1,...,1+i0
α �=αa,4+j ,

a=1,2, j=1,...,1+i′0

(1 + e(α)) −R = (2.95a)

=
∑

ŝ∈Ŵ ad
i0,i′0

(−1)�(ŝ)ŝ · ch V̂ Λ −R, (2.95b)

Ŵ ad
i0,i′0

≡ Ŵ a
i0 × Ŵ d

i′0
, d = d1

N1 = d4
NN = 1 + j2 + m1, (2.95c)

j1 = 0, j2 > 0, i0 + i′0 � N − 2,

ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,

ri > 0, i = i0 + 1, N − i′0 − 1.

For i0 = i′0 = 0 some of these UIRs appear (up to two times) in the
decomposition (2.90). More precisely, those with ri > 2δi,N−1, i = 1, N − 1,
appear as the term L̂Λ+β34 , while those with ri > δi1 + 2δi,N−1, i = 1, N − 1,
appear also as the term L̂Λ+α3,4+N +β34 .

For j2 = 0, m1 > 0 the corresponding character formula is a combination of
(2.56) and (2.80b):

ch L̂Λ =
∑

ŝ∈Ŵ a′d
i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R, (2.96a)

Ŵ a′d
i′0

≡ Ŵβ12 × Ŵ d
i′0

, (2.96b)
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where β12 = α3,4+N + α4,4+N . For i0 = i′0 = 0 some of these UIRs appear in
the decomposition (2.93) or (2.90). More precisely, those with ri > 2δi,N−1, i =
1, N−1, appear as the term L̂Λ+β34 of (2.93), while those with ri > δi1+2δi,N−1,

i = 1, N−1, appear as the term L̂Λ+α3,4+N+β34 of (2.90) but only when j2 = 1/2
in Λ there.

In the case of R-symmetry scalars we have i0 = i′0 = N −1, κ = 3N and all
generators X+

1,4+k, X+
2,4+k, X+

3,4+k are eliminated. Here holds d = −z = 1 + j2.
These antichiral irreps form one of the three series of massless UIRs; they are
denoted χ+

s , s = j2 = 0, 1/2, 1, . . ., in Sec. 3 of [102]. Besides the vacuum, they
contain only N states in L̂Λ given by (2.34) for k = 1, . . . , N . These should
be called ultrashort UIRs. The character formula can be written in the most
explicit way:

ch L̂Λ = 1 +
N∑

k=1

k∏
i=1

e(α4,5+N−i),

(2.97)

d = d1
N1 = d4

NN = 1 + j2 = −z, j1 = 0, ri = 0, ∀ i,

and it is valid for any j2. In the case under consideration Å ad) Å only the last
character formula is valid for N = 1 (cf. Appendix A.1).

The next case is conjugate to the previous one.

bc) d = d2
N1 = d3

NN = 1 + j1 + m1, j2 = 0, z = 2m/N − m1 + 1 + j1.

In these short DRC cases, three null conditions (2.61), (2.62) and (2.67)
hold. In addition, for N > 1, if ri = 0, i = 1, . . . , i0, there hold (2.64), and if
rN−i = 0, i = 1, . . . , i′0, there hold (2.69).

If i0 + i′0 � N − 2, all eliminations are as described separately for cases
b) and c). These are also Grassmann-analytic UIRs. The maximal number of

states in L̂Λ is 24N−3−2i0−i′0 . Here for N = 4 one
1
4
-BPS case is obtained for

i0 = 0, i′0 = 1, j1 > 0, then d =
1
2
(2r2 + 3r1), r1 = 2(1 + j1), r2 > 0, r3 = 0.

For j1m1 > 0 the corresponding character formula is a combination of (2.65)
and (2.70):

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α1,4+k,

k=1,...,1+i′0
α �=αa,5+N−j,

a=3,4,j=1,...,1+i0

(1 + e(α)) −R = (2.98a)
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=
∑

ŝ∈Ŵ bc
i0,i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R, (2.98b)

Ŵ bc
i0,i′0

≡ Ŵ b
i0 × Ŵ c

i′0
, d = d2

N1 = d3
NN = 1 + j1 + m1, (2.98c)

j1 > 0, j2 = 0, i0 + i′0 � N − 2,

ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,

ri > 0, i = i0 + 1, N − i′0 − 1.

For i0 = i′0 = 0 some of these UIRs appear in the decomposition (2.87). More
precisely, those with ri > 2δi1, i = 1, N − 1, appear as the term L̂Λ+β12 , while
those with ri > 2δi1 + δi,N−1, i = 1, N − 1, appear as the term L̂Λ+α15+β12 .

For j1 = 0, m1 > 0 the corresponding character formula is a combination of
(2.73) and (2.65b):

ch L̂Λ =
∑

ŝ∈Ŵ bc′
i0

(−1)�(ŝ)ŝ ch V̂ Λ −R, (2.99a)

Ŵ bc′

i0 ≡ Ŵβ34 × Ŵ b
i0 , (2.99b)

where β34 = α15 + α25. For i0 = i′0 = 0 some of these UIRs appear in
the decomposition (2.93) or (2.87). More precisely, those with ri > 2δi1 , i =
1, N−1, appear as the term L̂Λ+β12 of (2.93), while those with ri > 2δi1+δi,N−1,
i = 1, N − 1, appear as the term L̂Λ+α15+β12 of (2.87) but only when j1 = 1/2
in Λ there.

In the case of R-symmetry scalars we have i0 = i′0 = N − 1, κ = 3N and
all generators X+

1,4+k, X+
3,4+k, X+

4,4+k are eliminated. These chiral irreps form
another series of massless UIRs, conjugate to the ˇrst above; they are denoted
χs, s = j1 = 0, 1/2, 1, . . ., in Sec. 3 of [102]. Besides the vacuum they contain
only N states in L̂Λ given by (2.30) for k = 1, . . . , N . These should also be
called ultrashort UIRs. The character formula is

ch L̂Λ = 1 +
N∑

k=1

k∏
i=1

e(α2,4+i), (2.100)

d = d2
N1 = d3

NN = 1 + j1 = z, j2 = 0, ri = 0, ∀ i,

and it is valid for any j1 . In the case under consideration Å bc) Å only the last
character formula is valid for N = 1 (cf. Appendix A.1).

bd) d = d2
N1 = d4

NN = m1, j1 = j2 = 0, z = 2m/N − m1.
In these short DRC cases, four null conditions (2.61), (2.62), (2.77), and

(2.78) hold.
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For N = 1 this is the trivial irrep with d = z = 0. This follows from the fact
that since d = j1 = j2 = 0, the even reducibility condition (1.17b) also holds (and
consequently (1.17d)Ä(1.17f)). Thus, we have the null conditions: X+

k |Λ〉 = 0
for all simple root generators (and consequently for all generators) and the irrep
consists only of the vacuum |Λ〉.

For N > 1 the situation is nontrivial. In addition to the mentioned conditions,
and if ri = 0, i = 1, . . . , i0, there hold (2.64) and if rN−i = 0, i = 1, . . . , i′0,
there hold (2.79).

If i0 + i′0 � N − 2, all eliminations are as described separately for cases
b) and d). These are also Grassmann-analytic UIRs. The maximal number
of states in L̂Λ is 24N−4−2i0−2i′0 . For N = 4, for the BPS cases we take

z =
1
2
(r3 − r1) = 0 ⇒ d = 2r1 + r2. In the

1
4
-BPS case we have i0 = i′0 = 0,

r1 = r3 > 0.

For i0 = i′0 = 0 some of these UIRs appear in the decomposition (2.93).
More precisely, those with ri > 2δi1 + 2δi,N−1, i = 1, N − 1 appear as the term
L̂Λ+β12+β34 .

Most interesting is the case i0 + i′0 = N − 2, then there is only one nonzero
ri, namely, r1+i0 = rN−1−i′0

> 0, while the rest ri are zero. Thus, the Young
tableau parameters are: m1 = r1+i0 , m = (1 + i0)r1+i0 .

An important subcase is when d = m1 = 1, then m = i0 + 1 = N − 1 − i′0,
ri = δmi, and these irreps form the third series of massless UIRs. In Sec. 3

of [102] they are parameterized by n ∈ IN ,
1
2
N � n < N , and denoted by χ′

n,

n = m (z = 2n/N − 1), χ′+
n , n = N − m (z = 1 − 2n/N ). Note that for even

N there is the coincidence: χ′
n = χ′+

n , where n = m = N −m = N/2. Here we
shall parameterize these UIRs by the parameter i0 = 0, 1, . . . , N − 2.

Another subcase here are
1
2
-BPS states for even N with z = 0 ⇒ d = m1 =

2m/N ⇒ i0 = i′0 = N/2 − 1 ⇒ m1 = rN/2, m =
N

2
rN/2. These are also

massless only if rN/2 = 1, which is the self-conjugate case: χ′
n, n = N/2. For

N = 4 we have: i0 = i′0 = 1, r1 = r3 = 0, r2 > 0, which is also massless if
r2 = 1.

Finally, in the case of R-symmetry scalars we have i0 = i′0 = N − 1 and all
4N odd generators X+

1,4+k, X+
2,4+k, X+

3,4+k, X+
4,4+k are eliminated. More than

this, all quantum numbers are zero (cf. (1.46d), (1.46d′)), and this is the trivial
irrep. The latter follows exactly as explained above for the case N = 1.

For m1 > 0 the corresponding character formula is a combination of (2.65)
and (2.80):
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ch L̂Λ =
∏

α∈Δ+
1̄

α �=αj,5+N−k
j=3,4 ,k=1,...,1+i0

α �=α
j′,4+k′

j′=1,2,k′=1,...,1+i′0

(1 + e(α)) −R = (2.101a)

=
∑

ŝ∈Ŵ bd
i0,i′0

(−1)�(ŝ) ŝ · ch V̂ Λ −R, (2.101b)

Ŵ bd
i0,i′0

≡ Ŵ b
i0 × Ŵ d

i′0
, d = d2

N1 = d4
NN = m1, (2.101c)

j1 = j2 = 0, i0 + i′0 � N − 2,

ri = 0, i = 1, 2, . . . , i0, N − i′0, N − i′0 + 1, . . . , N − 1,

ri > 0, i = i0 + 1, N − i′0 − 1,

where R designates the counter-terms due to our Criterion, in particular, due
to (2.23) taken with εj,5+N−k = 0, j = 3, 4, k = 1, . . . , 1 + i0, εj′,4+k′ = 0,
j′ = 1, 2, k′ = 1, . . . , 1 + i′0.

Also for the third series of massless UIRs we can give a much more explicit
character formula without counter-terms. Fix the parameter i0 = 0, 1, . . . , N − 2.
Then there are only the following states in L̂Λ:

X+
2,N+4−j · · · X+

2,N+4−i0
|Λ〉, j = 0, 1, . . . , i0, (2.102a)

X+
4,4+k · · · X+

4,N+3−i0
|Λ〉, k = 1, . . . , N − 1 − i0, (2.102b)

altogether N states besides the vacuum.
D e mo n s t r a t i o n. Indeed, besides (2.102) no other states involving gener-

ators X+
a,4+k for a = 2, 4 are possible due to the restrictions (2.23). Note that

the generators of the latter kind which do not appear in (2.102) are eliminated
due to (2.61), (2.64b) and (2.77), (2.79b). We have to discuss the generators
X+

a,4+k for a = 1, 3. Part of them are eliminated due to (2.64a) and (2.79a). The

rest are: X+
1,N+4−j , j = 0, 1, . . . , i0 and X+

4,4+k, k = 1, . . . , N − 1 − i0. They
cannot act on the vacuum, so they can only act on some of the states in (2.102a)
or (2.102b), resp. For two of these: X+

1,N+4−i0
and X+

3,N+3−i0
it is easy to see

that they cannot act on any state. For the rest: X+
1,N+4−j , j = 0, 1, . . . , i0 − 1

and X+
4,4+k, k = 1, . . . , N − 2 − i0, the only possibility for action which cannot

be excluded in an obvious way, is:

X+
1,N+4−j X+

2,N+3−j · · · X+
2,N+4−i0

|Λ〉, j = 0, 1, . . . , i0 − 1, (2.103a)

X+
3,4+k X+

4,5+k · · · X+
4,N+3−i0

|Λ〉, k = 1, . . . , N − 2 − i0. (2.103b)
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However, all these states are not allowed. This is shown also for the states (2.33)
and (2.29). Thus, besides the vacuum, L̂Λ contains only the N states given in
(2.102). �

The corresponding character formula for the massless UIRs of this series is
therefore:

ch L̂Λ = 1 +
i0∑

j=0

i0∏
i=j

e(α2,N+4−i) +
N−1−i0∑

k=1

N−1−i0∏
i=k

e(α4,4+i), (2.104)

d = d2
N1 = d4

NN = m1 = 1, i0 = 0, 1, . . . , N − 2,

z = 2(i0 + 1)/N − 1, j1 = j2 = 0, ri = δi,i0+1.

Re ma r k. In this paper we use the Verma (factor-)module realization of the
UIRs. We give here a short remark on what happens with the ER realization
of the UIRs. As we know, cf. [101], the ERs are superˇelds depending on the
Minkowski space-time and on the 4N Grassmann coordinates θi

a, θ̄k
b , a, b = 1, 2,

i, k = 1, . . . , N∗. There is 1-to-1 correspondence in these dependences and the
odd null conditions. Namely, if the condition X+

a,4+k |Λ〉 = 0, a = 1, 2, holds,

then the superˇelds of the corresponding ER do not depend on the variable θk
a ,

while if the condition X+
a,4+k |Λ〉 = 0, a = 3, 4, holds, then the superˇelds of

the corresponding ER do not depend on the variable θ̄k
a−2. These statements

were used in the proof of unitarity for the ERs picture, cf. [103], but were not
explicated. They were analyzed in detail in the papers [16, 17, 20, 23], using the
notions of ®harmonic superspace analyticity¯ and the Grassmann analyticity. ♦

3. DISCUSSION AND OUTLOOK

First, we summarize the results on decompositions of long irreps as they
descend to the unitarity threshold.

In the SRC cases we have embedding formula (1.40), and UIRs are given by
formula (1.42). Starting from this, in Subsection (2.3) we have established that
for d = dmax there hold the following decompositions:(

L̂long

) ∣∣∣
d=dmax

= L̂Λ ⊕ L̂Λ+β , (3.1)

where there are two possibilities for Λ and four possibilities for β as given
in (1.41a), (1.41c), (1.41e), (1.41f), however, for N > 1 there are additional

∗A mathematically precise formulation is given in [101], while for the even case we refer
to [113, 114].
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conditions on ri. In more detail, Λ and β are speciˇed as follows:

d = dmax = da = d1
N1 > d3

NN , r1 > 0, (3.2a)

β = α3,4+N , j2 > 0, (3.2a′)

β = α3,4+N + α4,4+N , j2 = 0, (3.2a′′)

d = dmax = dc = d3
NN > d1

N1, rN−1 > 0, (3.2b)

β = α15, j1 > 0, (3.2b′)

β = α15 + α25, j1 = 0. (3.2b′′)

The corresponding four decompositions are given in formulae (2.47), (2.57),
(2.71), (2.74), resp., and in each case it is explained how L̂long is speciˇed. It

is also noted that in cases (3.2a′′), (3.2b′′) the UIRs L̂Λ+β are short from types
given in (1.39b), (1.39d), resp., and with r1 > 2, rN−1 > 2, resp.

In the DRC cases we have embedding formulae (1.48), (1.54), (1.55), and
UIRs are given by formula (1.50). Starting from this, in Subsec. 2.4 we have
established that for N > 1 and d = dmax = dac there hold the following
decompositions:(

L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+β ⊕ L̂Λ+β′ ⊕ L̂Λ+β+β′ , r1rN−1 > 0, (3.3)

where Λ is the semishort DRC designated as type ac), and there are four possibili-
ties for β, β′ as given in (1.49a)Ä(1.49d). The corresponding four decompositions
are given in formulae (2.85), (2.87), (2.90), (2.93), resp., and in each case it is
explained how L̂long is speciˇed. Note that in (2.85) all UIRs are semishort. In
(2.87) the ˇrst two UIRs are semishort, the last two UIRs are short of type bc).
From the latter two, the ˇrst is with r1 > 2, rN−1 > 0 (r1 > 2 if N = 2), the
second is with r1 > 2, rN−1 > 1 (r1 > 3 if N = 2). In (2.90) the ˇrst two
UIRs are semishort, the last two UIRs are short of type ad). From the latter
two, the ˇrst is with r1 > 0, rN−1 > 2 (r1 > 2 if N = 2), the second is with
r1 > 1, rN−1 > 2 (r1 > 3 if N = 2). In (2.93) the ˇrst UIR is the semishort, the
other three UIRs are short of types bc), ad), bd), resp. From the latter three, the
ˇrst is with r1 > 2, rN−1 > 0, the second is with r1 > 0, rN−1 > 2, the third is
with r1, rN−1 > 2 (r1 > 4 if N = 2).

Summarizing the above, we note ˇrst that for N = 1 all SRC cases enter
some decomposition (3.1), while no DRC cases enter any decomposition (3.3).
For N > 1 the situation is more diverse and so we give the list of UIRs that do
not enter decompositions (3.1) and (3.3):

SRC Cases:
a) d = dmax = da = d1

N1 = 2 + 2j2 + z + 2m1 − 2m/N > d3
NN ,

j1, j2 arbitrary, r1 = 0.
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b) d = d2
N1 = z + 2m1 − 2m/N > d3

NN , j2 = 0,
j1 arbitrary, r1 � 2.
c) d = dmax = dc = d3

NN = 2 + 2j1 − z + 2m/N > d1
N1,

j1, j2 arbitrary, rN−1 = 0.
d) d = d4

NN = −z + 2m/N > d1
N1, j1 = 0,

j1 arbitrary, rN−1 � 2.

DRC Cases:
all nontrivial cases for N = 1, while for N > 1 the list is:

ac) d = dmax = dac = d1
N1 = d3

NN = 2 + j1 + j2 + m1, z = j1 − j2 +
2m/N − m1,

j1, j2 arbitrary, r1rN−1 = 0.
ad) d = d1

N1 = d4
NN = 1 + j2 + m1, j1 = 0, z = −1 − j2 + 2m/N − m1,

j2 arbitrary, rN−1 � 2, r1 = 0 for N > 2.
bc) d = d2

N1 = d3
NN = 1 + j1 + m1, j2 = 0, z = 1 + j1 + 2m/N − m1,

j1 arbitrary, r1 � 2, rN−1 = 0 for N > 2.
bd) d = d2

N1 = d4
NN = m1, j1 = j2 = 0, z = 2m/N − m1,

r1, rN−1 � 2 for N > 2, r1 � 4 for N = 2.

We would like to point out possible application of our results to current de-
velopments in the conformal ˇeld theory. Recently, there is interest in superˇelds
with conformal dimensions which are protected from renormalization in the sense
that they cannot develop anomalous dimensions [23, 31Ä34, 51]. Initially, the
idea was that this happens because the representations, under which they trans-
form, determine these dimensions uniquely. Later, it was argued that one can
tell which operators will be protected in the quantum theory simply by looking
at the representations they transform under and whether they can be written in
terms of single trace 1/2 BPS operators (chiral primaries or CPOs) on analytic
superspace [34]. In [51] it was shown how, at the unitarity threshold, a long
multiplet can be decomposed into four semishort multiplets, and decompositions
similar to (2.83), i.e., involving the modules in (1.55) (as given in [100]), were
considered for N = 2, 4. However, the decompositions of [51] are justiˇed on the
dimensions of the ˇnite-dimensional irreps of the Lorentz and su(N) subalgebras
involved in the superˇelds involved in the decompositions, and in particular, the
latter hold also when r1rN−1 = 0.

Independently of the above, we would like to make a mathematical re-
mark. As a by-product of our analysis we have obtained character formulae
for the complex Lie superalgebras sl(4/N). The point is that our character
formulae have as starting point character formulae of Verma modules and factor-
modules over sl(4/N). Thus, almost all character formulae in Section 2, more
precisely, formulae (2.26), (2.36), (2.39), (2.43), (2.54), (2.56), (2.65), (2.70),
(2.73), (2.80), (2.82), (2.84), (2.86), (2.89), (2.92), (2.95), (2.96), (2.97a), (2.98),
(2.99), (2.100a), (2.101), become character formulae for sl(4/N) for the same
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values of the representation parameters by just discarding the counter-terms R,
Rlong, resp.

Finally, let us mention that we explicate our results for N = 1, 2 in Appen-
dix A. There we display explicitly all decompositions (3.1), (3.3), and when these
do not hold, all quasi-decompositions (like (2.53)) that replace them. We leave
similar detailed discussion for N = 4 for the follow-up paper.
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Appendix A

EXPLICIT CHARACTER FORMULAE FOR N = 1, 2

A.1. N = 1. For N = 1 the displayed results are almost explicit, so we can
allow telegram style.

Long Superˇelds. If j1j2 > 0, then L̂Λ has the maximum possible number
of states: sixteen. The character formula is (2.19).

If j1 = 0, j2 > 0, then the generator X+
15 can appear only together with

the generator X+
25, and L̂Λ has 12 states = 3(chiral)×4(antichiral) states ∗. The

character formula is (2.26) with

R = e(α15)(1 + e(α35))(1 + e(α45)). (A.1)

The next case is conjugate. If j1 > 0, j2 = 0, then the generator X+
35 can

appear only together with the generator X+
45, and L̂Λ has 12 states. The character

formula is (2.26) with

R = e(α35)(1 + e(α15))(1 + e(α25)). (A.2)

The next case combines the previous two. If j1 = j2 = 0, then the
generator X+

15 can appear only together with the generator X+
25, the generator

X+
35 can appear only together with the generator X+

45, and L̂Λ has 9 states =
3(chiral)×3(antichiral) states. The character formula is (2.26) with

R = e(α15)(1 + e(α35))(1 + e(α45)) + e(α35)(1 + e(α15))(1 + e(α25))−
− e(α15)e(α35), (A.3)

∗In statements like this, each sector includes the vacuum.
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i.e., we combine the counter-terms of the previous two cases, but need to subtract
a counter-term that is counted twice.

SRC Cases
a) d = dmax = d1

11 = 2 + 2j2 + z > d3
11.

• j1 > 0. The generator X+
35 is eliminated (though for different reasons for

j2 > 0 and j2 = 0, cf. (2.35), resp., (2.55)) and there are only 8 states∗. Then
the character formula is (2.36) (or equivalently (2.39)) without counter-terms:

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α35

(1 + e(α)), d = dmax = d1
11 > d3

11, j1 > 0. (A.4)

For j2 > 0 the decomposition (2.47) is fulˇlled with L̂long having 16 states
as the maximal long superˇeld with j1j2 > 0, while L̂Λ+α35 has 8 states (being
of the same type as L̂).

For j2 = 0 the decomposition (2.57) is fulˇlled with L̂long having 12 states
as the long superˇeld with j1 > 0, j2 = 0, β = α35 + α45, and L̂Λ+α35+α45

having 4 states Å it actually belongs to case b) below (for j1 > 0, j2 = 0).
• j1 = 0. The generator X+

35 is eliminated, the generator X+
15 can appear only

together with the generator X+
25 and there are only 6 states. Then the character

formula is (2.36) (equivalently (2.39)):

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α35

(1 + e(α)) −R,

R = e(α15)(1 + e(α45)), d = dmax = d1
11 > d3

11, j1 = 0.

(A.5)

This formula is equivalent also to (2.43), noting:

R = e(α15)(1 + e(α45)) = (1 − ŝα35)Rlong, (A.6)

taking Rlong from (A.1).

For j2 > 0 the decomposition (2.47) is fulˇlled with L̂long having 12 states

as the long superˇeld with j1 = 0, j2 > 0, while L̂Λ+α35 has 6 states (being of
the same type as L̂).

For j2 = 0 the decomposition (2.57) is fulˇlled with L̂long having 9 states

as the long superˇeld with j1 = j2 = 0, while L̂Λ+α35+α45 has 3 states Å it
actually belongs to the next case b), cf. below (for j1 = j2 = 0).

b) d = d2
11 = z > d3

11, j2 = 0.

∗For brevity, here and often below we shall say ®there are M states¯ meaning ®there are M
states in L̂Λ¯.
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• j1 > 0. The generators X+
35 and X+

45 are eliminated and there are only 4
states. Then the character formula is (2.65) (for i0 = 0) without counter-terms:

ch L̂Λ = (1 + e(α15))(1 + e(α25)), d = d2
11 > d3

11, j1 > 0, j2 = 0. (A.7)

These UIRs and the next subcase enter formula (2.47) together with UIRs of case
a) as we have shown above.

• j1 = 0. The generators X+
35 and X+

45 are eliminated, the generator X+
15 can

appear only together with the generator X+
25, and there are only 3 states. Then

the character formula is (2.65) (for i0 = 0) with counter-term R = e(α15):

ch L̂Λ = 1 + e(α25) + e(α15)e(α25), d = d2
11 > d3

11, j1 = j2 = 0. (A.8)

Here holds also an analog of (2.43) with Ŵβ replaced by Ŵ b
0 and Rlong from

(A.1).
c) d = dmax = d3

11 = 2 + 2j1 − z > d1
11.

• j2 > 0. The generator X+
15 is eliminated (though for different reasons for

j1 > 0 and j1 = 0, cf. (2.67), resp., (2.72)) and there are only 8 states. Then the
character formula is (2.70) without counter-terms:

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α15

(1 + e(α)), d = dmax = d3
11 > d1

11, j2 > 0. (A.9)

For j1 > 0 the decomposition (2.71) is fulˇlled with L̂long having 16 states as
the maximal long superˇeld with j1j2 > 0. For j1 = 0 the decomposition (2.74) is
fulˇlled with L̂long having 12 states as the long superˇeld with j1 = 0, j2 > 0, and
LΛ+α15+α25 having 4 states Å it actually belongs to the next case d), cf. below
(for j1 = 0, j2 > 0).

• j2 = 0. The generator X+
15 is eliminated, the generator X+

35 can appear only
together with the generator X+

45 and there are only 6 states. Then the character
formula is (2.70):

ch L̂Λ =
∏

α∈Δ+
1̄

α �=α15

(1 + e(α)) −R,

R = e(α35)(1 + e(α25)), d = dmax = d3
11 > d1

11, j2 = 0.

(A.10)

This formula is equivalent also to (2.43) with Rlong from (A.2).

For j1 > 0 the decomposition (2.71) is fulˇlled with L̂long having 12 states
as the long superˇeld with j1 > 0, j2 = 0. For j1 = 0 the decomposition (2.74)
is fulˇlled with L̂long having 9 states as the long superˇeld with j1 = j2 = 0, and
LΛ+α15+α25 having 3 states Å it actually belongs to the next case d), cf. below,
(for j1 = j2 = 0).
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d) d = d4
11 = −z > d1

11, j1 = 0.
• j2 > 0. The generators X+

15 and X+
25 are eliminated and there are only

4 states. Then the character formula is (2.80) (for i′0 = 0) without counter-terms:

ch L̂Λ = (1+e(α35))(1+e(α45)), d = d4
11 > d1

11, j1 = 0, j2 > 0. (A.11)

These UIRs and the next subcase enter formula (2.71) together with UIRs of
case c) as we have shown above.

• j2 = 0. The generators X+
15 and X+

25 are eliminated, the generator X+
35 can

appear only together with the generator X+
45, and there are only 3 states. Then

the character formula is (2.80) (for i′0 = 0) with counter-term R = e(α35):

ch L̂Λ = 1 + e(α45) + e(α35)e(α45), d = d4
11 > d1

11, j1 = j2 = 0. (A.12)

Here holds also an analog of (2.43) with Ŵβ replaced by Ŵ d
0 and Rlong

from (A.2).
DRC Cases
ac) d = dmax = d1

11 = d3
11 = dac = 2 + j1 + j2, z = j1 − j2.

The generators X+
15 and X+

35 are eliminated (though for different reasons for
j1 > 0 and j1 = 0, resp., for j2 > 0 and j2 = 0). There are only 4 states and the
character formula is (2.84) (for i0 = i′0 = 0) without counter-terms:

ch L̂Λ = (1 + e(α25))(1 + e(α45)) = ch V̂ Λ − 1
1 + e(α15)

ch V̂ Λ+α15−

− 1
1 + e(α35)

ch V̂ Λ+α35 +
1

(1 + e(α15))(1 + e(α35))
ch V̂ Λ+α15+α35 , (A.13)

where the terms with minus may be interpreted as taking out states, while the last
term indicates adding back what was taken two times. This may be written also
in the form of the following pseudodecomposition:(

L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+α35 � L̂Λ+α15+α35 , (A.14)

where L̂Λ+α15 , L̂Λ+α35 are SRC UIRs with 8 states each described above in
cases c), a), resp. They are embedded in V̂ Λ via the generators X+

15, X+
35,

resp. Together with L̂Λ this brings in terms which have to be taken out with
the last term in which the representation denoted L̂Λ+α15+α35 is supposed to
have the same 4 states as L̂Λ and these excessive states are de-embedded via the
composition of the other two maps, i.e., via the product of generators X+

15 X+
35.

ad) d = d1
11 = d4

11 = 1 + j2 = −z, j1 = 0.
The generators X+

15, X+
25, and X+

35 are eliminated (for the latter for different
reasons for j2 > 0 and j2 = 0). These are the ˇrst series of massless UIRs, and



CHARACTERS OF THE POSITIVE-ENERGY UIRs OF D = 4 CONFORMAL 1135

everything is already explicit in the general formulae. There are only 2 states and
the character formula is (2.97) for N = 1:

ch L̂Λ = 1 + e(α45). (A.15)

bc) d = d2
11 = d3

11 = 1 + j1 = z, j2 = 0.
The generators X+

15, X+
35, and X+

45 are eliminated (for the ˇrst for different
reasons for j1 > 0 and j1 = 0). These are the second series of massless UIRs.
There are only 2 states and the character formula is (2.100) for N = 1:

ch L̂Λ = 1 + e(α25). (A.16)

bd) d = d2
11 = d4

11 = j1 = j2 = z = 0.
As we explained in detail, this is the trivial one-dimensional irrep consisting

of the vacuum.

A.2. N = 2.

Long Superˇelds. We ˇrst write down conditions (2.23) explicitly for N = 2:

ε15 + ε16 � ε25 + ε26 + 2j1, (A.17a)

ε35 + ε36 � ε45 + ε46 + 2j2, (A.17b)

ε16 + ε26 + ε35 + ε45 � ε15 + ε25 + ε36 + ε46 + r1. (A.17c)

To simplify the exposition we classify the generators by their contribution to
(A.17). Namely, the chiral and antichiral operators

Φc = (X+
16)

ε16 (X+
15)

ε15 (X+
26)

ε26 (X+
25)

ε25 , (A.18)

Φa = (X+
35)

ε35 (X+
36)

ε36 (X+
45)

ε45 (X+
46)

ε46

will be distinguished by the values (cf. also (2.22)):

εc
j = ε25 + ε26 − ε15 − ε16,

εa
j = ε45 + ε46 − ε35 − ε36,

εc
r ≡ ε15 + ε25 − ε16 − ε26, (A.19)

εa
r ≡ ε36 + ε46 − ε35 − ε45,

εr ≡ ε1
r = εc

r + εa
r .



1136 DOBREV V.K.

Explicitly, the chiral operators are arranged as follows:

X+
15 X+

25, εc
r = 2, εc

j = 0,

X+
25, X+

26 X+
15 X+

25, εc
r = 1, εc

j = 1,

X+
15, X+

16 X+
15 X+

25, εc
r = 1, εc

j = −1,

X+
26 X+

25, εc
r = 0, εc

j = 2,

1, X+
16 X+

25, X+
26 X+

15, X+
16 X+

26 X+
15 X+

25, εc
r = 0, εc

j = 0, (A.20)

X+
16 X+

15, εc
r = 0, εc

j = −2,

X+
26, X+

26 X+
16 X+

25, εc
r = −1, εc

j = 1,

X+
16, X+

16 X+
15 X+

26, εc
r = −1, εc

j = −1,

X+
16 X+

26, εc
r = −2, εc

j = 0,

while the antichiral operators are arranged as follows:

X+
36 X+

46, εa
r = 2, εa

j = 0,

X+
46, X+

45 X+
36 X+

46, εa
r = 1, εa

j = 1,

X+
36, X+

35 X+
36 X+

46, εa
r = 1, εa

j = −1,

X+
45 X+

46, εa
r = 0, εa

j = 2,

1, X+
35 X+

46, X+
45 X+

36, X+
35 X+

45 X+
36 X+

46, εa
r = 0, εa

j = 0, (A.21)

X+
35 X+

36, εa
r = 0, εa

j = −2,

X+
45, X+

45 X+
35 X+

46, εa
r = −1, εa

j = 1,

X+
35, X+

35 X+
36 X+

45, εa
r = −1, εa

j = −1,

X+
35 X+

45, εa
r = −2, εa

j = 0.

The same arrangement applies to the states obtained by applying the operators
on the vacuum (for which all these indices naturally have zero value). We have
added also the identity operator 1 in order to be able to take into account the
vacuum automatically.

The allowed states satisfy: εc
j + 2j1 � 0, εa

j + 2j2 � 0, εr + r1 � 0,
cf. (2.23). Now we are ready to classify the allowed states depending on the
values of j1, j2, r1. Actually what we do below amounts to giving explicitly
formula (2.26).

• First, we give the possible states when j1, j2 � 1:

Φc Φa |Λ〉, j1, j2 � 1, r1 � 4, 256 states; (A.22a)

Φc Φa |Λ〉, j1, j2 � 1, r1 = 3, 255 states,
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excluding the state X+
16 X+

26 X+
35 X+

45, with εr = −4; (A.22b)

Φc Φa |Λ〉, j1, j2 � 1, r1 = 2, 247 states,
excluding the 9 states with εr � −3; (A.22c)

Φc Φa |Λ〉, j1, j2 � 1, r1 = 1, 219 states,
excluding the 37 states with εr � −2; (A.22d)

Φc Φa |Λ〉, j1, j2 � 1, r1 = 0, 163 states,
excluding the 93 states with εr � −1. (A.22e)

Further we classify the states when j1, j2 � 1 is not fulˇlled using the ˇve
cases in (A.22) as a reference point.

• j1 � 1, j2 = 1/2. With respect to (A.22) we exclude 16 states with
εa

j = −2, (so εa
j + 2j2 = −1):

X+
35 X+

36 Φc |Λ〉. (A.23)

However, for (A.22d), (A.22e) the case when Φc = X+
16 X+

26 (with εc
r = −2)

is already taken out, and for (A.22e) the four cases of Φc with εc
r = −1

are already taken out. Thus, altogether, in the ˇve cases corresponding to
(A.22a)Ä(A.22e) we take out 16, 16, 16, 15, 11 states and so there remain now
240, 239, 231, 204, 152 states.

• j1 = 1/2, j2 � 1. This is the case conjugate to the previous one. With
respect to (A.22) we exclude 16 states with εc

j = −2 (so εc
j + 2j1 = −1):

X+
16 X+

15 Φa |Λ〉. (A.24)

Noting the double-counting for the ˇve cases Φa with εa
r = −2,−1, in the cases

corresponding to (A.22a)Ä(A.22e) we have now 240, 239, 231, 204, 152 states.
• j1 = j2 = 1/2. This is a combination of the previous two cases. With

respect to (A.22) we exclude the states we have excluded in both the cases, which
would double the numbers (to 32, 32, 32, 30, 22), however, we have to take into
account that the state X+

16 X+
15 X+

35 X+
36 |Λ〉 is counted two times. Thus, altogether,

in the ˇve cases corresponding to (A.22a)Ä(A.22e) we take out 31, 31, 31, 29, 21
states and so there remain now 225, 224, 216, 190, 142 states.

• j1 � 1, j2 = 0. In addition to the states excluded in the case j1 � 1,
j2 = 1/2, we exclude 64 states with εa

j = −1 (so εa
j + 2j2 = −1):

X+
36 Φc |Λ〉, X+

35 X+
36 X+

46 Φc |Λ〉, (A.25a)

X+
35 Φc |Λ〉, X+

35 X+
36 X+

45 Φc |Λ〉. (A.25b)

We have to take into account that certain states were already taken out,
namely, the following:
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Å for (A.22c)Ä(A.22e) the two cases (A.25b) with Φc = X+
16 X+

26 (so that
εr = −3);

Å for (A.22d), (A.22e) the eight cases obtained by combining (A.25b) with
Φc with εc

r = −1 (so that εr = −2);
Å for (A.22e) the twelve cases obtained by combining (A.25b) with Φc with

εc
r = 0 (so that εr = −1);

Å for (A.22e) the two cases (A.25a) with Φc = X+
16 X+

26 (so that εr = −1).
Altogether, for (A.22c)Ä(A.22e) the overcounting is by 2, 10, 24 states. Thus,

the states we actually take out w.r.t. the case j1 � 1, j2 = 1/2 are 64, 64, 62, 54,
40. Finally, for (A.22e) we have to take out the impossible state X+

36 X+
45 |Λ〉,

cf. (2.25). Altogether the states remaining in the cases corresponding to (A.22a)Ä
(A.22e) are 176, 175, 169, 150, 111, resp.

• j1 = 0, j2 � 1. This is the case conjugate to the previous one. In addition
to the states excluded in the case j1 = 1/2, j2 � 1, we exclude 64 states with
εc

j = −1, (so εc
j + 2j1 = −1):

X+
15 Φa |Λ〉, X+

16 X+
15 X+

25 Φa |Λ〉, (A.26a)

X+
16 Φa |Λ〉, X+

16 X+
15 X+

26 Φa |Λ〉. (A.26b)

We have to take into account that certain states were already taken out, namely,
the following:

Å for (A.22c)Ä(A.22e) the two cases (A.26b) with Φa = X+
35 X+

45 (so that
εr = −3);

Å for (A.22d), (A.22e) the eight cases obtained by combining (A.26b) with
Φa with εa

r = −1 (so that εr = −2);
Å for (A.22e) the twelve cases obtained by combining (A.26b) with Φa with

εa
r = 0 (so that εr = −1);

Å for (A.22e) the two cases (A.26a) with Φa = X+
35 X+

45 (so that εr = −1).
Altogether, excluding also the impossible state X+

15 X+
26 |Λ〉 (when r1 = 0,

cf. (2.24)), in the ˇve cases corresponding to (A.22a)Ä(A.22e) we have now
176, 175, 169, 150, 111 states.

• j1 = 1/2, j2 = 0. This is a combination of previous cases, so w.r.t.
(A.22) we exclude the states in (A.23), (A.24), (A.25). Due to overlaps there
are ˇve states which are counted two times Å those in (A.23), (A.25) when
Φc = X+

16 X+
15. Thus, w.r.t. the case j1 � 1, j2 = 1/2 we would take out eleven

states. However, from those cases the state (A.24) with Φa = X+
35 X+

45 was taken
out in (A.22d), (A.22e) and the states (A.24) with Φa = X+

45 Φa = X+
45 X+

35 X+
46

were taken out in (A.22e). Thus, w.r.t. the case j1 � 1, j2 = 1/2 we take out
11, 11, 11, 10, 8 states, and in the cases corresponding to (A.22a)Ä(A.22e) there
are 165, 164, 158, 140, 103 states.

• j1 = 0, j2 = 1/2. This case is conjugate to the previous one and so
w.r.t. (A.22) we exclude the states in (A.23), (A.24), (A.26). With respect to
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the case j1 = 1/2, j2 � 1 we take out 11, 11, 11, 10, 8 states. Thus, in the cases
corresponding to (A.22a)Ä(A.22e) there are 165, 164, 158, 140, 103 states.

• j1 = j2 = 0. This is a combination of previous cases so we exclude
the states in (A.23), (A.24), (A.25), (A.26). Due to overlaps of (A.26) with
(A.23) and (A.24) w.r.t. the case j1 = 1/2, j2 = 0 we would take out 44
states (instead of 64). However, from those cases the two states (A.26b) with
Φa = X+

35 X+
45 were taken out in (A.22c)Ä(A.22e), the four states obtained from

(A.26b) with Φa = X+
45, Φa = X+

45 X+
35 X+

46 were taken out in (A.22d), (A.22e),
the two states (A.26b) with Φa = X+

45 X+
46 were taken out in (A.22e), the eight

states obtained from (A.26b) with Φa = 1, Φa = X+
35 X+

46, Φa = X+
45 X+

36,
Φa = X+

35 X+
45 X+

36 X+
46 were taken out in (A.22e), the two states (A.26a) with

Φa = X+
35 X+

45 were taken out in (A.22e). Thus, the states we actually take out
w.r.t. the case j1 = 1/2, j2 = 0 are 44, 44, 42, 38, 26. For (A.22e) we have also
to take out two impossible states: (2.24) and its combination with (2.25):

X+
15 X+

26 X+
36 X+

45 |Λ〉. (A.27)

Altogether the states remaining in the cases corresponding to (A.22a)Ä(A.22e)
are 121, 120, 116, 102, 75 states.

Thus, the smallest N = 2 long superˇeld has 75 states in L̂Λ. Since above
the states we described by exclusion we would like to list these 75 states. First,
there are 6 chiral states:

X+
25 |Λ〉, X+

15 X+
25 |Λ〉, X+

26 X+
15 X+

25 |Λ〉, (A.28a)

X+
26 X+

25 |Λ〉, X+
16 X+

25 |Λ〉, X+
16 X+

26 X+
15 X+

25 |Λ〉 (A.28b)

and 6 antichiral states:

X+
46 |Λ〉, X+

36 X+
46 |Λ〉, X+

45 X+
36 X+

46 |Λ〉, (A.29a)

X+
45 X+

46 |Λ〉, X+
35 X+

46 |Λ〉, X+
35 X+

45 X+
36 X+

46 |Λ〉. (A.29b)

Now let Φc |Λ〉, Φa |Λ〉 denote any of the six states in (A.28), (A.29), resp.,
Φ′

c |Λ〉, Φ′
a |Λ〉 denote any of the three states in (A.28a), (A.29a), resp. Then,

there are the following states:

|Λ〉, Φc Φa |Λ〉, (A.30a)

X+
15 X+

26 Φa |Λ〉, (A.30b)

X+
36 X+

45 Φc |Λ〉, (A.30c)

X+
26 Φ′

a |Λ〉, X+
16 X+

26 X+
25 Φ′

a |Λ〉, (A.30d)

X+
45 Φ′

c |Λ〉, X+
35 X+

45 X+
46 Φ′

c |Λ〉, (A.30e)

X+
35 X+

45 X+
15 X+

25 |Λ〉, X+
16 X+

26 X+
36 X+

46 |Λ〉. (A.30f)
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Obviously, there are 63 states in (A.30) (37 + 6 + 6 + 6 + 6 + 2) and altogether
75 states in (A.29), (A.28), and (A.30).

SRC Cases. Here we consider the SRC cases similarly to the long superˇelds
taking again the ˇve cases in (A.22) as reference point.

a) d = dmax = d1
21 = 2 + 2j2 + z + r1 > d3

22.
The maximal number of states is 128 = 16(chiral)×8(antichiral), achieved

for j1 � 1, r1 � 4.
• j2 > 0. Here there hold the character formulae (2.36), or equivalently

(2.39) or (2.43) when r1 > 0, while for r1 = 0 the character formula is (2.54)
(for i0 = 1). We give more detailed description.

The generator X+
36 is eliminated. The eight states in the antichiral sector are

obtained by applying to the vacuum the following operators:

X+
46, εa

r = 1, εa
j = 1,

X+
45 X+

46, εa
r = 0, εa

j = 2,

1, X+
35 X+

46, εa
r = 0, εa

j = 0, (A.31a)

X+
45, X+

45 X+
35 X+

46, εa
r = −1, εa

j = 1,

X+
35, εa

r = −1, εa
j = −1,

X+
35 X+

45, εa
r = −2, εa

j = 0.

The above is equivalent to the antichiral part of character formula (2.36):

(1 + e(α46))(1 + e(α35))(1 + e(α45)), (A.31b)

however, the more detailed description in (A.31a) is necessary to obtain the
results on the counter-terms. In particular, for r1 = 1 the last operator does not
contribute to the antichiral sector, while for r1 = 0 only the ˇrst three operators
contribute to the antichiral sector, and the generator X+

35 is also eliminated from
the whole basis.

In summary, the results are: When j1 � 1, correspondingly to the cases
in (A.22a)Ä(A.22e) we have now 128, 127, 120, 99, 42 states. When j1 = 1/2,
correspondingly to the cases in (A.22a)Ä(A.22e) we have now 120, 119, 112, 92,
39 states. When j1 = 0, correspondingly to the cases in (A.22a)Ä(A.22e) we have
now 88, 87, 82, 68, 28 states.

When r1 > 0, there holds formula (2.47) with β = α36, where L̂long is a
long superˇeld with the same values of j1 and ri as Λ, and with j2 � 1. Note
that when the weight Λ corresponds to cases (A.22a)Ä(A.22e), then the weight
Λ + α36 corresponds to cases (A.22a), (A.22a)Ä(A.22d) (since the value of r1

is increased by 1). Thus, when j1 � 1, the UIR L̂Λ+α36 has 128, 128, 127, 120,
99 states, when j1 = 1/2, it has 120, 120, 119, 112, 92 states, when j1 = 0, it
has 88, 88, 87, 82, 68 states. Summed together with the numbers for the UIR L̂Λ
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from above we obtain the following contributions to L̂long: when j1 � 1, there
are 256, 255, 247, 219, 141 states, when j1 = 1/2, there are 240, 239, 231, 204,
131 states, when j1 = 0, there are 176, 175, 169, 150, 96 states. Except the last
cases (in which r1 = 0) these cases match exactly (not only by numbers) the cases
of long superˇelds for the corresponding values of j1 = 1, 1/2, 0 and j2 � 1.

When r1 = 0, the long superˇelds have 163, 152, 111 states, i.e., a mismatch
of 22, 21, 15 states. All these extra states contain the generator X+

35 and do not
contain the generator X+

36. Explicitly, when j1 � 1 the 22 states are:

X+
35 Φc

1 |̃Λ〉, X+
35 X+

45 X+
46 Φc

1 |̃Λ〉, X+
35 X+

46 Φc
2 |̃Λ〉, X+

35 X+
45 X+

15 X+
25 |̃Λ〉,
(A.32)

where Φc
1 denotes the 5 chiral operators of the ˇrst three rows of (A.20), Φc

2

denotes the 11 chiral operators of the ˇrst six rows of (A.20). When j1 = 1/2,
the 21 states are as in (A.32) except the state X+

35 X+
46 X+

16 X+
15 |̃Λ〉 which is not

in the long superˇeld (since εc
j +2j1 = −1). When j1 = 0, the 16 states are as in

(A.32) except the state excluded for j1 = 1/2 and six states which are obtained
for Φc

1 = Φc
2 = X+

16, X
+
16X

+
15 X+

25 (i.e., excluding the third row of (A.20), since
for them εc

j + 2j1 = εc
j = −1). Altogether, instead of the decomposition (2.47)

we have the quasi-decomposition (2.53):(
L̂long

) ∣∣∣
d=da

= L̂Λ ⊕ L̂Λ+α36 ⊕ L̂′
Λ+α35

, r1 = 0. (A.33)

The 28 states of the minimal case are given as follows. There are two
antichiral states:

X+
46 |Λ〉, X+

45 X+
46 |Λ〉 (A.34)

and six chiral states (just as in (A.28)):

X+
25 |Λ〉, X+

15 X+
25 |Λ〉, X+

26 X+
15 X+

25 |Λ〉, (A.35a)

X+
26 X+

25 |Λ〉, X+
16 X+

25 |Λ〉, X+
16 X+

26 X+
15 X+

25 |Λ〉. (A.35b)

Combining the chiral and antichiral states would give further 12 states. The rest
of the states are obtained by combining these states with impossible states from
the opposite chirality, yet obtaining allowed states. Explicitly, the list looks like
this. Let Φa |Λ〉, Φc |Λ〉 denote any of the states in (A.34), (A.35), resp., Φ′

c |Λ〉
denote any of the three states in (A.35a), resp. Thus, there are the following
states:

|Λ〉, Φc Φa |Λ〉, (A.36a)

X+
15 X+

26 Φa |Λ〉, (A.36b)

X+
26 X+

46 |Λ〉, X+
26 X+

16 X+
25 X+

46 |Λ〉, (A.36c)

X+
45 Φ′

c |Λ〉. (A.36d)
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Obviously, there are 20 states in (A.36) (13 + 2 + 2 + 3). Altogether, there are
28 states in (A.34), (A.35), and (A.36). This list amounts to giving explicitly
character formula (2.54) (for N = 2, i0 = N − 1 = 1) without counter-terms.
This superˇeld and its conjugate (considered below) are the shortest semishort
SRC N = 2 superˇelds.

• j2 = 0. Here there holds character formula (2.56) and for r1 = 0 there
holds also character formula (2.60). A more detailed description follows.

The state X+
36 X+

46 |Λ〉 and its descendants are eliminated (due to (2.55)).
This elimination is described by the second term in character formula (2.56a).
The eight states in the antichiral sector here come from:

X+
46, εa

r = 1, εa
j = 1,

X+
45 X+

46, εa
r = 0, εa

j = 2,

1, X+
35 X+

46, X+
45 X+

36, εa
r = 0, εa

j = 0, (A.37)

X+
45, X+

45 X+
35 X+

46, εa
r = −1, εa

j = 1,

X+
35 X+

45, εa
r = −2, εa

j = 0.

The above eight differ from (A.31) by one operator: X+
35 is replaced here by

X+
45 X+

36. For r1 = 1 the last operator does not contribute to the antichiral sector.
Whenever r1 = 0, the generators X+

35 and X+
36 are eliminated from the antichiral

part of the basis, which is further restricted due to (2.23c) and there are only two
antichiral states as given in (A.34).

In summary, when j1 � 1, correspondingly to the cases in (A.22a)Ä(A.22e)
we have now 128, 127, 121, 103, 68 states. When j1 = 1/2, correspondingly to the
cases in (A.22a)Ä(A.22e) we have now 120, 119, 113, 96, 63 states. When j1 = 0,
correspondingly to the cases in (A.22a)Ä(A.22e) we have now 88, 87, 83, 70,
45 states.

We know that when r1 > 0, there holds formula (2.57) for L̂long with the
same values of j1, j2(= 0), r1 as Λ and with β = β12 = α36 + α46. In more
detail, when the weight Λ corresponds to cases (A.22a)Ä(A.22e), then the weight
Λ + β12 corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22c) (since
the value of r1 is increased by 2) and furthermore L̂Λ+β12 is actually a SRC
of type b), see below from where we take the numbers: When j1 � 1, the
UIR L̂Λ+β12 has 48, 48, 48, 47, 42 states, when j1 = 1/2, it has 45, 45, 45, 44, 39
states, when j1 = 0, it has 33, 33, 33, 32, 29 states. Summed together with the
numbers for the UIR L̂Λ from above we obtain the following contributions to
L̂long: when j1 � 1, there are 176, 175, 169, 150, 110 states, when j1 = 1/2, there
are 165, 164, 158, 140, 102 states, when j1 = 0, there are 121, 120, 116, 102, 74
states. Except the last cases (when r1 = 0) these cases match exactly the cases
of long superˇelds for the corresponding values of j1 = 1, 1/2, 0 and j2 = 0.
For completeness one may check that the states of L̂Λ+β12 appear in L̂long being
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multiplied by X+
36 X+

46. In the cases when r1 = 0, there is a mismatch of one

state and that extra state is X+
35 X+

46 |̃Λ〉 which is excluded from L̂Λ as explained
in general, cf. (2.58). (It is also excluded in case b) below.) Thus, instead of
(2.57) we have the quasi-decomposition:(

L̂long

) ∣∣∣
d=da

= L̂Λ ⊕ L̂Λ+β12 ⊕ L̂′
Λ+α35+α46

, r1 = 0, (A.38)

where as in (A.33) we have put a prime on the last term indicating that this is
not a genuine irrep.

b) d = d2
21 = z + r1 > d3

22, j2 = 0.
The character formula is (2.65). The generators X+

36 and X+
46 are eliminated

due to (2.61) and (2.62). Due to (2.23b) there are at most two antichiral states:

X+
45 |Λ〉, X+

35 X+
45 |Λ〉. (A.39)

Thus, the maximal number of states is 48(16 × 3) achieved for r1 � 4, j1 � 1.
These states are given explicitly as

Ψε̄ = (X+
16)

ε16 (X+
15)

ε15 (X+
26)

ε26 (X+
25)

ε25 (X+
35)

ε35 (X+
45)

ε45 |Λ〉, (A.40)

εaj = 0,1; ε35 � ε45; r1 � 4, j1 � 1.

In summary, when j1 � 1, we have correspondingly to the cases in (A.22a)Ä
(A.22e) 48, 47, 42, 31, 10 states. When j1 = 1/2, we have correspondingly to
the cases in (A.22a)Ä(A.22e) 45, 44, 39, 29, 9 states. When j1 = 0, we have
correspondingly to the cases in (A.22a)Ä(A.22e) 33, 32, 29, 23, 7 states. The cases
when r1 > 2 were included in decompositions (2.57) in the previous case a).
(The cases when r1 = 2 were included in quasi-decompositions (A.38) in the
previous case a).)

The minimal number, when r1 > 0, is 23 achieved for r1 = 1, j1 = 0.
Besides the obvious states, which include X+

45 |Λ〉, nine chiral states, their com-
binations and the vacuum, there are the following states:

X+
35 X+

45 Φ′ |Λ〉, (A.41)

Φ′ = X+
25, X

+
15 X+

25,X
+
26 X+

15 X+
25.

Whenever r1 = 0, the generators X+
35 and X+

45 are also eliminated from the
basis due to (2.63). Thus, these UIRs are chiral. Due to (2.23c) and excluding
the state (2.24) there are 10, 9, 7 states for j1 � 1, 1/2, 0, resp. (as stated above).
These states explicitly are

|Λ〉, X+
25 |Λ〉, X+

15 X+
25 |Λ〉, X+

16 X+
25 |Λ〉, X+

26 X+
25 |Λ〉,

X+
26 X+

15 X+
25 |Λ〉, X+

16 X+
26 X+

15 X+
25 |Λ〉, j1 � 0, (A.42a)

X+
15 |Λ〉, X+

16 X+
15 X+

25 |Λ〉, j1 � 1/2, (A.42b)

X+
16 X+

15 |Λ〉, j1 � 1. (A.42c)
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For j1 = 0, the superˇeld in (A.42a) and its conjugate (considered below)
are the shortest short SRC N = 2 superˇelds.

c) d = dmax = d3
22 = 2 + 2j1 − z + r1 > d1

21.

This case is conjugate to a) and the maximal number of states is 128 =
8 (chiral) ×16 (antichiral) achieved for j2 � 1, r1 � 4.

• j1 > 0. The generator X+
15 is eliminated. The eight states in the chiral

sector are obtained from the following operators:

X+
25, εc

r = 1, εc
j = 1,

X+
26 X+

25, εc
r = 0, εc

j = 2,

1, X+
16 X+

25, εc
r = 0, εc

j = 0, (A.43)

X+
26, X

+
26 X+

16 X+
25, εc

r = −1, εc
j = 1,

X+
16, εc

r = −1, εc
j = −1,

X+
16 X+

26, εc
r = −2, εc

j = 0.

In summary, when j2 � 1, correspondingly to the cases in (A.22a)Ä(A.22e) we
have now 128, 127, 120, 99, 42 states. When j2 = 1/2, correspondingly to the
cases in (A.22a)Ä(A.22e) we have now 120, 119, 112, 92, 39 states. When j2 = 0,
correspondingly to the cases in (A.22a)Ä(A.22e) we have now 88, 87, 82, 68,
28 states. Whenever r1 = 0, the generator X+

16 is also eliminated from the basis.

When r1 > 0, there holds decomposition (2.71) with β = α15. When r1 = 0,
there holds the quasi-decomposition:(

L̂long

) ∣∣∣
d=dc

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂′
Λ+α16

, r1 = 0, (A.44)

cf. (A.33). We omit most details since all results and formulae are by conjugation
from case a) (when j2 �= 0).

We still give the 28 states of the minimal case. There are two chiral states:

X+
25 |Λ〉, X+

26 X+
25 |Λ〉 (A.45)

and six antichiral states (just as in (A.29)):

X+
46 |Λ〉, X+

36 X+
46 |Λ〉, X+

45 X+
36 X+

46 |Λ〉, (A.46a)

X+
45 X+

46 |Λ〉, X+
35 X+

46 |Λ〉, X+
35 X+

45 X+
36 X+

46 |Λ〉. (A.46b)

The rest of the states are obtained as follows. Let Φ̂a |Λ〉, Φ̂c |Λ〉 denote any
of the states in (A.45), (A.46), resp., Φ̂′

c |Λ〉 denote any of the three states in
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(A.46a), resp. Thus, there are the following states:

|Λ〉, Φ̂c Φ̂a |Λ〉, (A.47a)

X+
36 X+

45 Φ̂c |Λ〉, (A.47b)

X+
45 X+

25 |Λ〉, X+
45 X+

35 X+
46 X+

25 |Λ〉, (A.47c)

X+
26 Φ̂′

c |Λ〉. (A.47d)

This superˇeld and its conjugate (considered in a)) are the shortest semishort SRC
N = 2 superˇelds.

• j1 = 0. The state X+
15 X+

25 |Λ〉 and its descendants are eliminated (due to
(2.55)). The eight states in the chiral sector here come from:

X+
25, εc

r = 1, εc
j = 1,

X+
26 X+

25, εc
r = 0, εc

j = 2,

1, X+
16 X+

25, X+
26 X+

15, εc
r = 0, εc

j = 0, (A.48)

X+
26, X+

26 X+
16 X+

25, εc
r = −1, εc

j = 1,

X+
16 X+

26, εc
r = −2, εc

j = 0.

The above eight states differ from (A.43) by one operator: X+
16 is replaced

here by X+
26 X+

15. In summary, when j2 � 1, correspondingly to the cases in
(A.22a)Ä(A.22e) we have now 128, 127, 121, 103, 68 cases. When j2 = 1/2,
correspondingly to the cases in (A.22a)Ä(A.22e) we have now 120, 119, 113, 96,
63 cases. When j2 = 0, correspondingly to the cases in (A.22a)Ä(A.22e) we have
now 88, 87, 83, 70, 45 cases. Whenever r1 = 0, the generators X+

16 and X+
15 are

eliminated from the chiral part of the basis, which is further restricted due to
(2.23c) and there are only two chiral states as in (A.45).

When r1 > 0, there holds formula (2.74) for L̂long with the same values of
j1(= 0), j2, r1 as for Λ and with β = β34 = α15 + α25. When r1 = 0, this

decomposition is spoiled by one state X+
16 X+

25 |̃Λ〉 which is excluded from L̂Λ

as explained in general, cf. (2.75), and instead of (2.74) we have the quasi-
decomposition:(

L̂long

) ∣∣∣
d=dc

= L̂Λ ⊕ L̂Λ+β34 ⊕ L̂′
Λ+α16+α25

, r1 = 0. (A.49)

d) d = d4
22 = −z + r1 > d1

21, j1 = 0.
This case is conjugate to b).
The generators X+

15 and X+
25 are eliminated due to (2.77) and (2.78). Due to

(2.23b) there are at most two chiral states depending on the value of r1:

X+
26 |Λ〉, r1 � 1,

X+
16 X+

26 |Λ〉, r1 � 2.
(A.50)
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The maximal number of states is 48(3 × 16) achieved for r1 � 4, j2 � 1. These
states are given explicitly as

Ψε̄ = (X+
35)

ε35 (X+
36)

ε36 (X+
45)

ε45 (X+
46)

ε46 (X+
16)

ε16 (X+
26)

ε26 |Λ〉,
εaj = 0, 1; ε35 � ε45; r1 � 2, j2 � 1.

(A.51)

In summary, when j2 � 1, correspondingly to the cases in (A.22a)Ä(A.22e)
we have now 48, 47, 42, 31, 10 states. When j2 = 1/2, correspondingly to the
cases in (A.22a)Ä(A.22e) we have now 45, 44, 39, 29, 9 states. When j2 = 0,
correspondingly to the cases in (A.22a)Ä(A.22e) we have now 33, 32, 29, 23,
7 states. The cases, when r1 > 2, were included in decompositions (2.74) in
the previous case c). (The cases, when r1 = 2, were included in decompositions
(A.49) in the previous case c).)

The minimal number, when r1 > 0, is 23 achieved for r1 = 1, j2 = 0.
Besides the obvious states which include X+

26 |Λ〉, nine antichiral states, their
combinations and the vacuum, there are the following states:

X+
16 X+

26 Φ′ |Λ〉, (A.52)

Φ′ = X+
46,X

+
36 X+

46, X
+
45 X+

36 X+
46.

Whenever r1 = 0, the generators X+
16 and X+

26 are also eliminated from
the basis due to (2.63). Thus, these UIRs are antichiral. Due to (2.23c) and
excluding the state (2.25) there are 10, 9, 7 states for j2 � 1, 1/2, 0, resp. These
states explicitly are

|Λ〉, X+
46 |Λ〉, X+

36 X+
46 |Λ〉, X+

35 X+
46 |Λ〉, X+

45 X+
46 |Λ〉,

X+
45 X+

36 X+
46 |Λ〉, X+

35 X+
45 X+

36 X+
46 |Λ〉, j2 � 0, (A.53a)

X+
36 |Λ〉, X+

35 X+
36 X+

46 |Λ〉, j2 > 0, (A.53b)

X+
35 X+

36 |Λ〉, j2 � 1. (A.53c)

For j2 = 0 the superˇeld in (A.53a) and its conjugate (considered above) are
the shortest short SRC N = 2 superˇelds.

DRC Cases. Here we consider the DRC cases taking again the ˇve cases of
long superˇelds in (A.22) as a reference point.

ac) d = dmax = d1
21 = d3

22 = 2 + j1 + j2 + r1, z = j1 − j2.
The maximal number of states is 64 = 8(chiral)×8(antichiral), achieved for

r1 � 4. The 8 antichiral, chiral states are as described in a), c), resp. (differing
for j2 > 0 and j2 = 0, j1 > 0 and j1 = 0, resp.).

• j1j2 > 0. Here character formulae (2.84) hold (without counterterms for
r1 � 4). The states X+

15 |Λ〉, X+
36 |Λ〉 and their descendants are eliminated. Corre-

spondingly to the cases in (A.22a)Ä(A.22e) we have now 64, 63, 57, 42, 11 states.
In the last case (where r1 = 0), we eliminate also the generators X+

35 and X+
16.
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For r1 > 0, there holds decomposition (2.83) with β = α15, β′ = α36 as
stated in the general exposition. We would like to demonstrate this and also see
how it breaks down for r1 = 0, thus, we include for the moment the case r1 = 0.
Referring to (2.83) we note when the weight Λ corresponds to cases (A.22a)Ä
(A.22e) then the weights Λ + α15, Λ + α36 correspond to cases (A.22a), (A.22a),
(A.22b), (A.22c), (A.22d) (since the value of r1 is increased by 1), i.e., the
corresponding UIRs have 64, 64, 63, 57, 42 states each. The weight Λ+α15 +α36

corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22c) (since the value
of r1 is increased by 2), i.e., the corresponding UIRs have 64, 64, 64, 63, 57 states.
Summed together with the numbers for the UIR L̂Λ from above we obtain the
following contributions to L̂long: 256, 255, 247, 219, 152. Except the last case (in
which r1 = 0) these cases match exactly the cases of long superˇelds for the case
j1, j2 � 1.

When r1 = 0, the long superˇelds for the cases j1, j2 � 1 have 163 states,
i.e., a mismatch of 11 states∗. These extra states contain either the generator X+

16

or X+
35 or both, and they do not contain either X+

15 or X+
36. Explicitly, these extra

states are

X+
16 X+

46 |Λ〉, X+
16 X+

25 |Λ〉, X+
16 X+

25 X+
46 |Λ〉,

X+
16 X+

26 X+
25 X+

46 |Λ〉, X+
16 X+

25 X+
45 X+

46 |Λ〉,
X+

35 X+
46 |Λ〉, X+

35 X+
25 |Λ〉, X+

35 X+
25 X+

46 |Λ〉, (A.54)

X+
35 X+

26 X+
25 X+

46 |Λ〉, X+
35 X+

25 X+
45 X+

46 |Λ〉,
X+

16 X+
35 X+

25 X+
46 |Λ〉.

Altogether, instead of (2.83) we may write:

(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+α36 ⊕ L̂Λ+α15+α36⊕

⊕ L̂′
Λ+α16

⊕ L̂′
Λ+α35

⊕ L̂′
Λ+α16+α35

, r1 = 0, (A.55)

where we have represented the extra states by the last three terms (corresponding
to the ˇrst and second line of (A.54), the third and fourth line of (A.54), the ˇfth
line of (A.54), resp.), and we have put primes on these since they are not genuine
irreps.

∗The reader may wonder whether the long superˇeld with j1 = 1/2, j2 � 1, r1 = 0 may not
be used since it has 152 states, however, this is only a coincidence of the total number.
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Finally, we give the 11 states of the UIR at r1 = 0:

|Λ〉, X+
25 X+

46 |Λ〉, X+
26 X+

45 X+
25 X+

46 |Λ〉,
X+

46 |Λ〉, X+
45 X+

46 |Λ〉, (A.56)

X+
25 |Λ〉, X+

26 X+
25 |Λ〉,

Φ0
c X+

46 |Λ〉, Φ0
c = X+

26, X+
26 X+

25,

Φ0
a X+

25 |Λ〉, Φ0
a = X+

45, X+
45 X+

46.

This superˇeld is the shortest semishort N = 2 superˇeld.
• j1 > 0, j2 = 0. Here there hold character formulae (2.86) (without

counterterms for r1 � 4). The states X+
36 X+

46 |Λ〉, X+
15 |Λ〉 and their descendants

are eliminated. Correspondingly to the cases in (A.22a)Ä(A.22e) we have now
64, 63, 58, 45, 16 states. In the last case, where r1 = 0, we eliminate the generator
X+

16 and exclude the generators X+
3,4+k from the antichiral sector.

For r1 > 0, there holds decomposition (2.87). Note that when the weight
Λ corresponds to cases (A.22a)Ä(A.22e), then the weight Λ + α15 corresponds
to cases (A.22a), (A.22a), (A.22b), (A.22c), (A.22d) (since the value of r1 is
increased by 1), i.e., the corresponding UIRs have 64, 64, 63, 58, 45 states. The
weight Λ + β12 corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22c)
(since the value of r1 is increased by 2), but from type bc) considered below, i.e.,
the corresponding UIRs have 24, 24, 24, 23, 19 states. The weight Λ + α15 + β12

corresponds to cases (A.22a), (A.22a), (A.22a), (A.22a), (A.22b) (since the value
of r1 is increased by 3), also from type bc), i.e., the corresponding UIRs have
24, 24, 24, 24, 23 states. Summed together with the numbers for the UIR L̂Λ from
above we obtain the following contributions to L̂long: 176, 175, 169, 150, 103.
Except the last case (in which r1 = 0) these cases match exactly the cases of long
superˇelds for the cases when j1 � 1, j2 = 0.

When r1 = 0, the corresponding long superˇelds have 111 states, i.e., there
is a mismatch of 8 states∗. These extra states contain either the generator X+

16 or
X+

35 or both, and they do not contain X+
15. Explicitly, they are

X+
16 X+

46 |Λ〉, X+
16 X+

25 |Λ〉, X+
16 X+

25 X+
46 |Λ〉, X+

16 X+
26 X+

25 X+
46 |Λ〉,

X+
16 X+

25 X+
45 X+

46 |Λ〉, X+
16 X+

25 X+
36 X+

45 |Λ〉, (A.57)

X+
35 X+

46 |Λ〉,
X+

16 X+
35 X+

25 X+
46 |Λ〉.

∗Again the long superˇeld with correct number of states 103 (with j1 = 1/2, j2 = r1 = 0)
does not ˇt.
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Altogether, instead of (2.87) we may write:(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α15 ⊕ L̂Λ+β12 ⊕ L̂Λ+α15+β12⊕

⊕ L̂′
Λ+α16

⊕ L̂′
Λ+α35

⊕ L̂′
Λ+α16+α35

, r1 = 0, (A.58)

where (as in (A.55)) we have represented the extra states by the last three terms
(corresponding to the ˇrst and second line of (A.57), third line of (A.57), fourth
line of (A.57), resp.), and we have put primes on these since they are not genuine
irreps.

Finally, we give the 16 states of the UIR at r1 = 0:

|Λ〉, X+
25 X+

46 |Λ〉,
X+

46 |Λ〉, X+
45 X+

46 |Λ〉,
X+

25 |Λ〉, X+
26 X+

25 |Λ〉,
Φ0

a X+
25 |Λ〉, Φ0

a = X+
45 X+

46, X
+
35 X+

46, X
+
36 X+

45, (A.59)

Φ−
a X+

25 |Λ〉, Φ−
a = X+

45, X
+
35 X+

45 X+
46,

Φ̂c X+
46 |Λ〉, Φ̂c = X+

26, X
+
26 X+

25,

Φ0
a X+

45 X+
25 |Λ〉.

The states of (A.56) are a subset of (A.59).
The next case is conjugate to the preceding.
• j1 = 0, j2 > 0. Here character formulae (2.89) hold (without counterterms

for r1 � 4). The states X+
15 X+

25 |Λ〉, X+
36 |Λ〉 and their descendants are eliminated.

Correspondingly to the cases in (A.22a)Ä(A.22e) we have now 64, 63, 58, 45, 16
states. In the last case, when r1 = 0, we eliminate the generator X+

35 and exclude
the generators X+

1,4+k from the chiral sector.
For r1 > 0, decomposition (2.90) holds. When r1 = 0, the corresponding

long superˇelds have 111 states, i.e., there is a mismatch of 8 states. These extra
states contain either the generator X+

16 or X+
35 or both, and they do not contain

X+
36. Explicitly, these extra states are

X+
35 X+

25 |Λ〉, X+
35 X+

46 |Λ〉, X+
35 X+

46 X+
25 |Λ〉, X+

35 X+
45 X+

46 X+
25 |Λ〉,

X+
35 X+

46 X+
26 X+

25 |Λ〉, X+
35 X+

46 X+
15 X+

26 |Λ〉, (A.60)

X+
16 X+

25 |Λ〉,
X+

35 X+
16 X+

46 X+
25 |Λ〉.

Altogether, instead of (2.90) we may write:(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+α36 ⊕ L̂Λ+β34 ⊕ L̂Λ+α36+β34⊕

⊕ L̂′
Λ+α16

⊕ L̂′
Λ+α35

⊕ L̂′
Λ+α16+α35

, r1 = 0. (A.61)
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Finally, we give the 16 states of the UIR at r1 = 0:

|Λ〉, X+
25 X+

46 |Λ〉,
X+

46 |Λ〉, X+
45 X+

46 |Λ〉,
X+

25 |Λ〉, X+
26 X+

25 |Λ〉,
Φ0

c X+
46 |Λ〉, Φ0

c = X+
26 X+

25, X
+
16 X+

25, X
+
15 X+

26, (A.62)

Φ−
c X+

46 |Λ〉, Φ−
c = X+

26, X
+
16 X+

26 X+
25,

Φ̂a X+
25 |Λ〉, Φ̂a = X+

45, X
+
45 X+

46,

Φ0
c X+

45 X+
46 |Λ〉.

The states of (A.56), are a subset of (A.62).
• j1 = j2 = 0. Here character formulae (2.92) hold (without countert-

erms for r1 � 4). The states X+
15 X+

25 |Λ〉, X+
36 X+

46 |Λ〉 and their descendants
are eliminated. Correspondingly to the cases in (A.22a)Ä(A.22e) we have now
64, 63, 59, 47, 24 states. In the last case, when r1 = 0, we exclude the generators
X+

3,4+k from the antichiral sector and the generators X+
1,4+k from the chiral sector

and also the combination of impossible states (A.27) as explained in the general
exposition.

For r1 > 0, decomposition (2.93) holds. Note that when the weight Λ corre-
sponds to cases (A.22a)Ä(A.22e), then the weights Λ + β12 , Λ + β34 correspond
to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22c) (since the value of r1 is
increased by 2), but from types bc), ad), resp., considered below, i.e., the cor-
responding UIRs have 24, 24, 24, 23, 20 states each. The weight Λ + β12 + β34

corresponds to cases (A.22a), (A.22a), (A.22a), (A.22a), (A.22a) (since the value
of r1 is increased by 4), but from type bd), i.e., the corresponding UIRs have
9, 9, 9, 9, 9 states. Summed together with the numbers for the UIR L̂Λ from above
we obtain the following contributions to L̂long: 121, 120, 116, 102, 73. Except the
last case (in which r1 = 0) these cases match exactly the cases of long superˇelds
for the cases when j1 = j2 = 0.

When r1 = 0, the corresponding long superˇelds have 75 states, i.e., there is
a mismatch of 2 states. These extra states are

X+
16 X+

25 |Λ〉, X+
35 X+

46 |Λ〉. (A.63)

Altogether, instead of (2.93) we may write:

(
L̂long

) ∣∣∣
d=dac

= L̂Λ ⊕ L̂Λ+β12 ⊕ L̂Λ+β34 ⊕ L̂Λ+β12+β34⊕

⊕ L̂′
Λ+α16

⊕ L̂′
Λ+α35

, r1 = 0. (A.64)
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Finally, we give the 24 states of the UIR at r1 = 0:

|Λ〉, X+
25 X+

46 |Λ〉,
X+

46 |Λ〉, X+
45 X+

46 |Λ〉,
X+

25 |Λ〉, X+
26 X+

25 |Λ〉,
Φ0

c X+
46 |Λ〉, Φ0

c = X+
26 X+

25, X
+
16 X+

25, X
+
15 X+

26,

Φ−
c X+

46 |Λ〉, Φ−
c = X+

26, X
+
16 X+

26 X+
25, (A.65)

Φ0
a X+

25 |Λ〉, Φ0
a = X+

45 X+
46, X

+
35 X+

46, X
+
36 X+

45,

Φ−
a X+

25 |Λ〉, Φ−
a = X+

45, X
+
35 X+

45 X+
46,

Φ0
c Φ0

a |Λ〉 excluding the state : X+
15 X+

26 X+
36 X+

45 |Λ〉.
The states of (A.59), (A.62) are subsets of (A.65).

ad) d = d1
21 = d4

22 = 1 + j2 + r1, j1 = 0, z = −1 − j2.
Here character formulae (2.95) hold when j2r1 > 0, (2.96) when j2 =

0, r1 > 0 (both these cases without counterterms for r1 � 4), and ˇnally when
r1 = 0, (2.97) holds independently of the value of j2 Å these are the antichiral
massless UIRs.

The generators X+
15, X+

25, and in addition X+
36 for j2 > 0 (resp., the state

X+
36 X+

46 |Λ〉, and its descendants for j2 = 0) are eliminated. The maximal number
of states is 24 = 3(chiral)×8(antichiral), achieved for r1 � 4. The chiral sector
for r1 > 0 consists of the two states in (A.50) and the vacuum, while the antichiral
sector is given by (A.31) for j2 > 0 and by (A.37) for j2 = 0.

The 24 states for j2 > 0 are given explicitly as

|Λ〉, X+
46 |Λ〉, X+

45 X+
46 |Λ〉, r1 � 0,

X+
35 X+

46 |Λ〉, X+
26 X+

46 |Λ〉, r1 � 1,

X+
45 |Λ〉, X+

45 X+
35 X+

46 |Λ〉, X+
26 X+

45 X+
46 |Λ〉, X+

35 |Λ〉, r1 � 1,

X+
26 |Λ〉, X+

26 X+
35 X+

46 |Λ〉, X+
16 X+

26 X+
46 |Λ〉, r1 � 1, (A.66)

X+
26 X+

45 |Λ〉, X+
26 X+

45 X+
35 X+

46 |Λ〉, X+
35 X+

45 |Λ〉, X+
16 X+

26 X+
45 X+

46 |Λ〉, r1 � 2,

X+
16 X+

26 |Λ〉, X+
16 X+

26 X+
35 X+

46 |Λ〉, X+
26 X+

35 |Λ〉, r1 � 2,

X+
26 X+

35 X+
45 |Λ〉, X+

16 X+
26 X+

45 |Λ〉, X+
16 X+

26 X+
45 X+

35 X+
46 |Λ〉, X+

16 X+
26 X+

35 |Λ〉,
r1 � 3,

X+
16 X+

26 X+
35 X+

45 |Λ〉, r1 � 4.

Thus, correspondingly to the cases in (A.22a)Ä(A.22e) we have now 24, 23, 19,
12, 3 states.

The irreps with r1 > 2 appear (two times if r1 > 3) in decomposition (2.90)
as explained in detail in the main text for type ad). (The irreps with r1 = 2 have
appeared in quasi-decomposition (A.61).)
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The 24 states for j2 = 0 are given explicitly as

|Λ〉, X+
46 |Λ〉, X+

45 X+
46 |Λ〉, r1 � 0,

X+
35 X+

46 |Λ〉, X+
26 X+

46 |Λ〉, X+
45 X+

36 |Λ〉, r1 � 1,

X+
45 |Λ〉, X+

45 X+
35 X+

46 |Λ〉, X+
26 X+

45 X+
46 |Λ〉, r1 � 1,

X+
26 |Λ〉, X+

26 X+
35 X+

46 |Λ〉, X+
16 X+

26 X+
46 |Λ〉, X+

26 X+
45 X+

36 |Λ〉, r1 � 1, (A.67)

X+
26 X+

45 |Λ〉, X+
26 X+

45 X+
35 X+

46 |Λ〉, X+
35 X+

45 |Λ〉, X+
16 X+

26 X+
45 X+

46 |Λ〉, r1 � 2,

X+
16 X+

26 |Λ〉, X+
16 X+

26 X+
35 X+

46 |Λ〉, X+
16 X+

26 X+
45 X+

36 |Λ〉, r1 � 2,

X+
26 X+

35 X+
45 |Λ〉, X+

16 X+
26 X+

45 |Λ〉, X+
16 X+

26 X+
45 X+

35 X+
46 |Λ〉, r1 � 3,

X+
16 X+

26 X+
35 X+

45 |Λ〉, r1 � 4.

Thus, correspondingly to the cases in (A.22a)Ä(A.22e) we have now 24, 23,
20, 13, 3 states.

The irreps with r1 > 2 appear as the term L̂Λ+β34 of (2.93), while those with
r1 > 3 appear also as the term L̂Λ+α3,4+N +β34 of (2.90) but only when j2 = 1/2 in
Λ there. (The irreps with r1 = 2 have appeared in quasi-decompositions (A.64).)

The cases (A.66) and (A.67) share 21 states (for r1 � 4). The 3 states by
which they differ are the last states on the 3rd, 6th, 7th lines of (A.66) and 2nd,
4th, 6th lines of (A.67).

bc) d = d2
21 = d3

22 = 1 + j1 + r1, j2 = 0, z = 1 + j1.
Here there hold character formulae (2.98) when j1r1 > 0 and (2.99) when

j1 = 0, r1 > 0 (both these cases without counterterms for r1 � 4), and ˇnally
when r1 = 0, (2.100) holds independently of the value of j1 Å these are the
chiral massless UIRs.

The generators X+
36, X+

46, and in addition X+
15 for j1 > 0 (resp., the state

X+
15 X+

25 |Λ〉, and its descendants for j1 = 0) are eliminated. The maximal
number of states is 24 = 8(chiral)×3(antichiral), achieved for r1 � 4. The
antichiral sector for r1 > consists of the two states in (A.39) and the vacuum,
while the chiral sector is given by (A.43) for j1 > 0 and by (A.48) for j1 = 0.

The 24 states for j1 > 0 are given explicitly as

|Λ〉, X+
25 |Λ〉, X+

26 X+
25 |Λ〉, r1 � 0,

X+
16 X+

25 |Λ〉, X+
45 X+

25 |Λ〉, r1 � 1,

X+
26 |Λ〉, X+

26 X+
16 X+

25 |Λ〉, X+
45 X+

26 X+
25 |Λ〉, , X+

16 |Λ〉, r1 � 1,

X+
45 |Λ〉, X+

45 X+
16 X+

25 |Λ〉, X+
35 X+

45 X+
25 |Λ〉, r1 � 1,

X+
45 X+

26 |Λ〉, X+
45 X+

26 X+
16 X+

25 |Λ〉, X+
16 X+

26 |Λ〉, X+
35 X+

45 X+
26 X+

25 |Λ〉, r1 � 2,

X+
35 X+

45 |Λ〉, X+
35 X+

45 X+
16 X+

25 |Λ〉, X+
45 X+

16 |Λ〉, r1 � 2,
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X+
45 X+

16 X+
26 |Λ〉, X+

35 X+
45 X+

26 |Λ〉, X+
35 X+

45 X+
26 X+

16 X+
25 |Λ〉, X+

35 X+
45 X+

16 |Λ〉,
r1 � 3,

X+
35 X+

45 X+
16 X+

26 |Λ〉, r1 � 4. (A.68)

Thus, correspondingly to the cases in (A.22a)Ä(A.22e) we have now 24, 23,
19, 12, 3 states.

The irreps with r1 > 2 appear (up to two times) in decomposition (2.87) as
explained in detail in the main text for type bc). (The irreps with r1 = 2 have
appeared in quasi-decomposition (A.58).)

The 24 states for j1 = 0 are given explicitly as

|Λ〉, X+
25 |Λ〉, X+

26 X+
25 |Λ〉, r1 � 0,

X+
16 X+

25 |Λ〉, X+
45 X+

25 |Λ〉, X+
26 X+

15 |Λ〉, r1 � 1,

X+
26 |Λ〉, X+

26 X+
16 X+

25 |Λ〉, X+
45 X+

26 X+
25 |Λ〉, r1 � 1,

X+
45 |Λ〉, X+

45 X+
16 X+

25 |Λ〉, X+
35 X+

45 X+
25 |Λ〉, X+

45 X+
26 X+

15 |Λ〉, r1 � 1,

X+
45 X+

26 |Λ〉, X+
45 X+

26 X+
16 X+

25 |Λ〉, X+
16 X+

26 |Λ〉, X+
35 X+

45 X+
26 X+

25 |Λ〉, r1 � 2,

X+
35 X+

45 |Λ〉, X+
35 X+

45 X+
16 X+

25 |Λ〉, X+
35 X+

45 X+
26 X+

15 |Λ〉, r1 � 2,

X+
45 X+

16 X+
26 |Λ〉, X+

35 X+
45 X+

26 |Λ〉, X+
35 X+

45 X+
26 X+

16 X+
25 |Λ〉, r1 � 3,

X+
35 X+

45 X+
16 X+

26 |Λ〉, r1 � 4. (A.69)

Thus, correspondingly to the cases in (A.22a)Ä(A.22e) we have now 24, 23,
20, 13, 3 states.

The irreps with r1 > 2 appear as the term L̂Λ+β12 of (2.93), while those with

r1 > 3 appear also as the term L̂Λ+α15+β12 of (2.87) but only when j1 = 1/2 in
Λ there. (The irreps with r1 = 2 have appeared in quasi-decomposition (A.64).)

bd) d = d2
21 = d4

22 = r1, j1 = j2 = 0 = z.
The generators X+

15, X+
25, X+

36, X+
46 are eliminated. For r1 = 1 also the

generators X+
16, X+

35 are eliminated. For r1 = 0 the remaining two generators
X+

26, X+
45 are eliminated and we have the trivial irrep as explained in general.

For r1 > 0 the character formula is (2.101) with i0 = i′0 = 0. The maximal
number of states is nine and the list of states together with the conditions when
they exist are

|Λ〉, r1 � 0,

X+
26 |Λ〉, X+

45 |Λ〉, r1 � 1,

X+
16 X+

26 |Λ〉, X+
35 X+

45 |Λ〉, X+
26 X+

45 |Λ〉, r1 � 2, (A.70)

X+
16 X+

26 X+
45 |Λ〉, X+

26 X+
35 X+

45 |Λ〉, r1 � 3,

X+
16 X+

26 X+
35 X+

45 |Λ〉, r1 � 4.
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Thus, correspondingly to the cases in (A.22a)Ä(A.22e) we have now 9, 8, 6, 3,
1 states. The mixed massless irrep is obtained for d = r1 = 1 and consists of the
ˇrst three states above Å as was shown in general.

The irreps with r1 > 4 have appeared in decomposition (2.93), cf. type ac)
above. (The irreps with r1 = 4 have appeared in quasi-decomposition (A.64).)

Appendix B

ODD REFLECTIONS

Below we repeat ˇrst the original text of our submission to ®Concise Ency-
clopedia of Supersymmetry¯ (Eds. S. Duplij, W. Siegel, and J. Bagger. Kluwer
Acad. Publ., 2003).

Odd Re�ection Å action of an odd root α on the dual χ∗ of the Cartan
subalgebra χ of a basic classical Lie superalgebra G. Let Δ = Δ0̄ ∪ Δ1̄ be the
root system of G = G0̄ ⊕G1̄, where Δ0̄ is the root system of the even subalgebra
G0̄ of G, and the set of odd roots Δ1̄ is the weight system of the representation
of G0̄ in G1̄. The action of α ∈ Δ1̄ on Λ ∈ χ∗ is deˇned by

sα Λ = Λ − 2
(α, Λ)
(α, α)

α, (α, α) �= 0,

sα Λ = Λ + α, (α, α) = 0, (α, Λ) �= 0,

sα Λ = Λ, (α, α) = 0, (α, Λ) = 0, α �= Λ,

sα α = −α, (α, α) = 0,

where (·, ·) is the standard bilinear product in χ∗. As in the even case one has:
s−1

α = s−α, but an odd re	ection is not always a re	ection since s2
α �= idχ∗ if

(α, α) = 0. In particular, one has

sn
α Λ = Λ + nα, (α, α) = 0, (α, Λ) �= 0, n ∈ ZZ,

i.e., in this situation the odd re	ection acts as a translation.

Note that if α, β, α + β ∈ Δ and (α, α)(β, β)(α + β, α + β) = 0, then sα+β

cannot be expressed in terms of sα, sβ .

The odd re	ections sα with (α, α) = 0 generate an inˇnite Abelian group
with elements ∏

α∈Δ1̄, (α,α)=0

snα
α , nα ∈ ZZ.
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This group does not preserve Δ, Δ0̄, Δ1̄
∗.

Appendix C

CHARACTERS OF THE EVEN SUBALGEBRA

For the characters of the even subalgebra we ˇrst recall its structure: GCI
0 =

sl(4)⊕gl(1)⊕sl(N) of GCI . We choose a basis in which the Cartan subalgebra H
of GCI is also a Cartan subalgebra of GCI

0 . Since the subalgebra GCI
0 is reductive, the

corresponding character formulae will be given by the products of the character
formulae of the two simple factors sl(4) and sl(N).

We start with the sl(4) case. We denoted the six positive roots of sl(4) by
αij , 1 � i < j � 4. For the simpliˇcation of the character formulae we use
notation for the formal exponents corresponding to the sl(4) simple roots: tj ≡
e(αj,j+1), j = 1, 2, 3; then for the three nonsimple roots we have: e(α13) = t1t2,
e(α24) = t2t3, e(α14) = t1t2t3. In terms of these, the character formula for a
Verma module over sl(4) is

ch0 V Λs

=
e(Λs)

(1 − t1)(1 − t2)(1 − t3)(1 − t1t2)(1 − t2t3)(1 − t1t2t3)
, (C.1)

where by Λs we denote the sl(4) lowest weight.
The representations of sl(4), which we consider, are inˇnite-dimensional.

When d > dmax, then all the numbers: n2, n13, n24, n14 from (1.17) cannot
be positive integers. Then the only reducibilities of the sl(4) Verma module
are related to the complexiˇcation of the Lorentz subalgebra of su(2, 2), i.e.,
with sl(2) ⊕ sl(2), and the character formula is given by the product of the two
character formulae for ˇnite-dimensional sl(2) irreps. In short, the sl(4) character
formula is

ch0 LΛs = ch0 V Λs−ch0 V Λs+n1α12−ch0 V Λs+n3α34+ch0 V Λs+n1α12+n3α34 =

=
e(Λs) (1 − tn1

1 ) (1 − tn3
3 )

(1 − t1)(1 − t2)(1 − t3)(1 − t1t2)(1 − t2t3)(1 − t1t2t3)
=

= e(Λs) Qs
n1,n2

, n1 = 2j1 + 1, n3 = 2j2 + 1, d > dmax, (C.2)

∗Dobrev V. K., Petkova V. B. On the Group-Theoretical Approach to Extended Conformal Super-
symmetry: Function Space Realizations and Invariant Differential Operators // Fortschr. Phys. 1987.
Bd. 35. S. 537Ä572.

Note that this reference in this paper is [101]. The above text was submitted in June 2000.
Recently, we were informed that a similar deˇnition was proposed independently in [129], while a
different, geometric, version of odd re	ections was introduced in [130] (see also [131]).
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and we have introduced for later use notation Qs
n1,n2

for the character factorized
by e(Λs). The above formula obviously has the form (2.5) replacing W �→
W2 × W2, where W2 is the two-element Weyl group of sl(2).

When d � dmax, there are additional even reducibilities, cf. (1.47), (1.51),
(1.52), and the discussion in-between.

Thus, we need additional formulae for ch0 LΛs :

ch0 LΛs =

= e(Λs)Qs
n1,n2

(1 − t1t2t3) =
e(Λs)(1 − tn1

1 ) (1 − tn3
3 )

(1 − t1)(1 − t2)(1 − t3)(1 − t1t2)(1 − t2t3)
,

(C.3a)

for (1.52a), d = d1
N1 = d3

NN = 2 + j1 + j2, j1j2 > 0;

= e(Λs)Qs
1,2(1 − t2t3) =

e(Λs)(1 + t3)
(1 − t2)(1 − t1t2)(1 − t1t2t3)

, (C.3b)

for (1.52b), d = d1
N1 = d4

NN = 3/2, j1 = 0, j2 = 1/2;

= e(Λs)Qs
2,1(1 − t1t2) =

e(Λs) (1 + t1)
(1 − t2)(1 − t2t3)(1 − t1t2t3)

, (C.3c)

for (1.52d) d = d2
N1 = d3

NN = 3/2, j1 = 1/2, j2 = 0;

= e(Λs) Qs
1,1(1 − t1t

2
2t3) =

e(Λs)(1 − t1t
2
2t3)

(1 − t2)(1 − t1t2)(1 − t2t3)(1 − t1t2t3)
,

for (1.52e), (1.52f), d = 1, j1 = j2 = 0. (C.3d)

In the case of sl(N), the representations are ˇnite-dimensional since we
induce from UIRs of su(N). The character formula is (2.5), which we repeat in
order to introduce the corresponding notation:

ch0 LΛu(r1, . . . , rN−1) =
∑

w∈Wu

(−1)�(w)ch0 V w·Λu

, Λu ∈ −Γu
+. (C.4)

The index u is to distinguish the quantities pertinent to the case.

REFERENCES

1. Lee S. et al. // Adv. Theor. Math. Phys. 1998. V. 2. P. 697; hep-th/9806074.

2. D'Hoker E. et al. // Nucl. Phys. B. 2000. V. 589. P. 3Ä37; hep-th/0003218.

3. Ferrara S., Fronsdal C. Conformal Fields in Higher Dimensions // Recent Developments in
Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories.
Pt. A. Rome, 2000. P. 508Ä527; Quantization, Gauge Theory, and Strings. M., 2000. V. 1.
P. 405Ä426; hep-th/0006009.

4. D'Hoker E., Pioline B. Near-Extremal Correlators and Generalized Consistent Truncation for
AdS4|7 × S7|4 // JHEP. 2000. 0007. 021; hep-th/0006103.



CHARACTERS OF THE POSITIVE-ENERGY UIRs OF D = 4 CONFORMAL 1157

5. Nelson A., Strassler M. J. // Phys. Rev. D. 1999. V. 60. P. 015004; hep-ph/9806346; JHEP. 2000.
0009. 030; hep-ph/0006251.

6. Osborn H. // Ann. Phys. (N.Y.). 1999. V. 272. P. 243; hep-th/9808041.

7. Park J.-H. // Nucl. Phys. B. 1999. V. 559. P. 455; hep-th/9903230.

8. Freedman D. Z. et al. // Adv. Theor. Math. Phys. 1999. V. 3. P. 363; hep-th/9904017.

9. Gremm M., Kapustin A. // JHEP. 1999. 9907. 005; hep-th/9904050.

10. Aharony O. et al. // Phys. Rep. 2000. V. 323. P. 184; hep-th/9905111.

11. Rehren K.-H. Algebraic Holography // Ann. Henri Poincare. 2000. V. 1. P. 607Ä623; hep-
th/9905179; QFT Lectures on AdS-CFT // Zlatibor Summer School on Modern Math. Phys.
(SFIN XVIII (A1)), Aug. 2004. Belgrade, 2005. P. 95Ä118; hep-th/0411086.

12. Ceresole A. et al. // Phys. Rev. D. 2000. V. 61. P. 066001; hep-th/9905226; Class. Quant. Grav.
2000. V. 17. P. 1017; hep-th/9910066.

13. Bianchi M. et al. // JHEP. 1999. 9909. 020; hep-th/9906188; Nucl. Phys. B. 2000. V. 584.
P. 216; hep-th/0003203.

14. D'Hoker E. et al. The Many Faces of the Superworld. P. 332; hep-th/9908160.

15. Ferrara S., Zaffaroni A. // Conf. Moshe Flato. Dijon, 1999. V. I. Math. Phys. Stud. 2000. V. 21.
P. 177Ä188; hep-th/9908163.

16. Andrianopoli L. et al. // Adv. Theor. Math. Phys. 1999. V. 3. P. 1149; hep-th/9912007.

17. Ferrara S., Sokatchev E. // Lett. Math. Phys. 2000. V. 52. P. 247; hep-th/9912168; J. Math.
Phys. 2001. V. 42. P. 3015; hep-th/0010117.

18. Pelc O. // JHEP. 2000. 0003. 012; hep-th/0001054.

19. Ferrara S. // TMR Conf., Paris, Sept. 1Ä7, 1999; hep-th/0002141.

20. Ferrara S., Sokatchev E. // JHEP. 2000. 0005. 038; hep-th/0003051; Intern. J. Mod. Phys B.
2000. V. 14. P. 2315; hep-th/0007058; New J. Phys. 2002. V. 4. P. 2Ä22; hep-th/0110174.

21. Bastianelli F., Zucchini R. // JHEP. 2000. 0005. 047; hep-th/0003230.

22. Heslop P. J., Howe P. S. // Class. Quant. Grav. 2000. V. 17. P. 3743; hep-th/0005135; TMR
Conf., Paris, Sept. 2000; hep-th/0009217.

23. Ferrara S., Sokatchev E. // Intern. J. Theor. Phys. 2001. V. 40. P. 935; hep-th/0005151.

24. Duff M. J., Liu J. T., Stelle K. S. // J. Math. Phys. 2001. V. 42. P. 3027; hep-th/0007120.

25. Liu J. T., Sati H. // Nucl. Phys. B. 2001. V. 605. P. 116; hep-th/0009184.

26. D'Auria R. et al. Spinor Algebras // J. Geom. Phys. 2001. V. 40. P. 101Ä128; hep-th/0010124.

27. Klemm D., Sabra W. A. // JHEP. 2001. 0102. 031; hep-th/0011016.

28. Freedman D. Z., Henry-Labordere P. // TMR Conf., Paris, Sept. 7Ä13, 2000; hep-th/0011086.

29. Martin S. P., Wells J. D. // Phys. Rev. D. 2001. V. 64. P. 036010; hep-ph/0011382.

30. Argyres P. C. // Nucl. Phys. B (Proc. Suppl.). 2001. V. 101. P. 175; hep-th/0102006.

31. Arutyunov G. et al. // Nucl. Phys. B. 2002. V. 620. P. 380; hep-th/0103230.

32. Bianchi M. et al. // JHEP. 2001. 0105. 042; hep-th/0104016.

33. Arutyunov G., Eden B., Sokatchev E. // Nucl. Phys. B. 2001. V. 619. P. 359; hep-th/0105254.

34. Heslop P. J., Howe P. S. // Phys. Lett. B. 2001. P. 516. P. 367; hep-th/0106238; Nucl. Phys. B.
2002. V. 626. P. 265Ä286; hep-th/0107212; Aspects of N = 4 SYM. hep-th/0307210.

35. Eden B., Sokatchev E. // Nucl. Phys. B. 2001. V. 618. P. 259; hep-th/0106249.



1158 DOBREV V.K.

36. Penati S., Santambrogio A. // Nucl. Phys. B. 2001. V. 614. P. 367; hep-th/0107071.

37. Eden B., Ferrara S., Sokatchev E. // JHEP. 2001. 0111. 020; hep-th/0107084.

38. Kubo J., Suematsu D. // Phys. Rev. D. 2001. V. 64. P. 115014; hep-ph/0107133.

39. West P. // Nucl. Phys. B (Proc. Suppl.). 2001. V. 101. P. 112.

40. Heslop P. J. // Class. Quant. Grav. 2002. V. 19. P. 303; hep-th/0108235; Aspects of Supercon-
formal Field Theories in Six Dimensions // JHEP. 2004. 0407. 056; hep-th/0405245.

41. Ryzhov A. V. // JHEP. 2001. 0111. 046; hep-th/0109064; Operators in the D = 4, N = 4 SYM
and the AdS/CFT Correspondence. hep-th/0307169; UCLA thesis. 169 p.

42. D'Hoker E., Ryzhov A. V. Three-Point Functions of Quarter BPS Operators in N = 4 SYM //
JHEP. 2002. 0202. 047; hep-th/0109065.

43. Hoffmann L. et al. Multitrace Quasi-Primary Fields of N = 4 SYM from AdS n-Point Func-
tions // Nucl. Phys. B. 2002. V. 641. P. 188Ä222; hep-th/0112191.

44. Arutyunov G., Sokatchev E. Implications of Superconformal Symmetry for Interacting (2,0) Ten-
sor Multiplets // Nucl. Phys. B. 2002. V. 635. P. 3Ä32; hep-th/0201145; Class. Quant. Grav. 2003.
V. 20. P. L123ÄL131; A note on the perturbative properties of BPS operators. hep-th/0209103.

45. D'Hoker E., Freedman D. Z. Strings, Branes and Extra Dimensions. Boulder, 2001. P. 3Ä158;
Supersymmetric Gauge Theories and the AdS/CFT Correspondence. hep-th/0201253.

46. Takayanagi T., Terashima S. Strings on Orbifolded PP Waves // JHEP. 2002. 0206. 036;
hep-th/0203093.

47. Sezgin E., Sundell P. Massless Higher Spins and Holography // Nucl. Phys. B. 2002. V. 644.
P. 303Ä370; hep-th/0205131.

48. Bianchi M. et al. // Nucl. Phys. B. 2002. V. 646. P. 69Ä101; On Operator Mixing in N = 4
SYM. hep-th/0205321.

49. Arutyunov G. et al. Nonprotected Operators in N = 4 SYM and Multiparticle States of AdS5

SUGRA // Nucl. Phys. B. 2002. V. 643. P. 49Ä78; hep-th/0206020.

50. Fernando S., Gunaydin M., Pavlyk O. // JHEP. 2002. 0210. 007; Spectra of PP -Wave Limits
of M-/Superstring Theory on AdS(p) × Sq Spaces. hep-th/0207175.

51. Dolan F. A., Osborn H. // Ann. Phys. 2003. V. 307. P. 41Ä89; On Short and Semishort Represen-
tations for Four-Dimensional Superconformal Symmetry // DAMTP/02-114; hep-th/0209056.

52. Beisert N. BMN Operators and Superconformal Symmetry // Nucl. Phys. B. 2003. V. 659.
P. 79Ä118; hep-th/0211032; The Complete One-Loop Dilatation Operator of N = 4 Super
YangÄMills Theory // Nucl. Phys. B. 2004. V. 676. P. 3Ä42; hep-th/0307015; The Dilatation
Operator of N = 4 Super YangÄMills Theory and Integrability // Phys. Rep. 2004. V. 405.
P. 1Ä202; hep-th/0407277.

53. D'Hoker E. et al. Systematics of Quarter BPS Operators in N = 4 SYM // JHEP. 2003. 0304.
038; hep-th/0301104.

54. Cheng Shun-Jen, Lam Ngau, Zhang R. B. // J. Algebra. 2004. V. 273. P. 780Ä805;
math.RT/0301183.

55. Beisert N., Kristjansen C., Staudacher M. // Nucl. Phys. B. 2003. V. 664. P. 131Ä184; The
Dilatation Operator of N = 4 Super YangÄMills Theory. hep-th/0303060.

56. Dhar A., Mandal G., Wadia S. R. String Bits in Small Radius AdS and Weakly Coupled N = 4
Super YangÄMills Theory: I. hep-th/0304062.

57. Bianchi M., Morales J. F., Samtleben H. // JHEP. 2003. 0307. 062; On Stringy AdS5 ×S5 and
Higher Spin Holography. hep-th/0305052.



CHARACTERS OF THE POSITIVE-ENERGY UIRs OF D = 4 CONFORMAL 1159

58. Drummond J. M. et al. Integral Invariants in N = 4 SYM and the Effective Action for Coincident
D-Branes // JHEP. 2003. 0308. 016; hep-th/0305202.

59. Fukuma M., Matsuura S., Sakai T. Holographic Renormalization Group // Prog. Theor. Phys.
2003. V. 109. P. 489Ä562.

60. Leonhardt T., Manvelyan R., Ruehl W. // Nucl. Phys. B. 2003. V. 667. P. 413Ä434; The Group
Approach to AdS Space Propagators: hep-th/0305235; The Group Approach to AdS Space
Propagators: A Fast Algorithm // J. Phys. A. 2004. V. 37. P. 7051; hep-th/0310063.

61. Terning J. TASI-2002 Lectures: Nonperturbative Supersymmetry // Part. Phys. and Cosmology.
Boulder, 2002. P. 343Ä443; hep-th/0306119.

62. Beisert N., Staudacher M. // Nucl. Phys. B. 2003. V. 670. P. 439Ä463; The N = 4 SYM
Integrable Super Spin Chain. hep-th/0307042.

63. Kovacs S. // Nucl. Phys. B. 2004. V. 684. P. 3Ä74; On Instanton Contributions to Anomalous
Dimensions in N = 4 Supersymmetric YangÄMills Theory. hep-th/0310193.

64. Beisert N. et al. On the Spectrum of AdS/CFT Beyond Supergravity // JHEP. 2004. 0402.
001; hep-th/0310292; Higher Spin Symmetry and N = 4 SYM // JHEP. 2004. 0407. 058;
hep-th/0405057.

65. Kujawa J. Crystal Structures Arising from Representations of GL(m|n). math.RT/0311251.

66. Metsaev R. R. Massive Totally Symmetric Fields in AdS(d) // Phys. Lett. B. 2004. V. 590.
P. 95Ä104; hep-th/0312297; Eleven Dimensional Supergravity in Light Cone Gauge // Phys.
Rev. D. 2005. V. 71. P. 085017; hep-th/0410239; Mixed Symmetry Massive Fields in AdS(5) //
Class. Quant. Grav. 2005. V. 22. P. 2777Ä2796; hep-th/0412311; AdS Friendly Light-Cone
Formulation of Conformal Field Theory. hep-th/0512330.

67. Schnitzer H. J. Gauged Vector Models and Higher-Spin Representations in AdS5 // Nucl. Phys.
B. 2004. V. 695. P. 283Ä300; hep-th/0310210; Conˇnement/Deconˇnement Transition of Large
N Gauge Theories with Nf Fundamentals: Nf /N Finite // Nucl. Phys. B. 2004. V. 695.
P. 267Ä282; hep-th/0402219.

68. Csaki C., Meade P., Terning J. A Mixed Phase of SUSY Gauge Theories from a-Maximization
// JHEP. 2004. 0404. 040; hep-th/0403062.

69. Ruehl W. Lifting a Conformal Field Theory from D-Dimensional Flat Space to (D+1)-
Dimensional AdS Space // Nucl. Phys. B. 2005. V. 705. P. 437Ä456; hep-th/0403114; The
Masses of Gauge Fields in Higher Spin Fieldc Theory on AdS(4) // Phys. Lett. B. 2005. V. 605.
P. 413Ä418; hep-th/0409252.

70. Zoubos K. A Conformally Invariant Holographic Two-Point Function on the Berger Sphere //
JHEP. 2005. 0501. 031; hep-th/0403292.

71. Lee S., Park J. J. Noncentral Extension of the AdS(5) × S-5 Superalgebra: Supermultiplet of
Brane Charges // JHEP. 2004. 0406. 038; hep-th/0404051.

72. Dolan F. A., Gallot L., Sokatchev E. On Four-Point Functions of Half-BPS Operators in General
Dimensions // JHEP. 2004. 0409. 056; hep-th/0405180.

73. Arnaudon D. et al. General Boundary Conditions for the sl(N) and sl(M/N) Open Spin
Chains // J. Stat. Mech.: Theor. Exp. (JSTAT). 2004. V. 08. P. 005; math-ph/0406021.

74. Nirschl M., Osborn H. Superconformal Ward Identities and Their Solution // Nucl. Phys. B.
2005. V. 711. P. 409Ä479; hep-th/0407060.

75. Demir D. A. Renormalization Group Invariants in the MSSM and Its Extensions // JHEP. 2005.
0511. 003; hep-ph/0408043.

76. Eden B., Jarczak C., Sokatchev E. A Three-Loop Test of the Dilatation Operator in N = 4
SYM // Nucl. Phys. B. 2005. V. 712. P. 157Ä195; hep-th/0409009.



1160 DOBREV V.K.

77. Bianchi M. Higher-Spin Symmetry (Breaking) in N = 4 SYM Theory and Holography //
Comptes Rendus Phys. 2004. V. 5. P. 1091Ä1099; hep-th/0409292; Fortsch. Phys. 2005. Bd. 53.
S. 665Ä691; hep-th/0409304.

78. Morales J. F., Samtleben H. Higher-Spin Holography for SYM in d Dimensions // Phys. Lett.
B. 2005. V. 607. P. 286Ä293; hep-th/0411246.

79. Burrington B. A., Liu J. T., Sabra W. A. AdS5 Black Holes with Fermionic Hair // Phys. Rev.
D. 2005. V. 71. P. 105015; hep-th/0412155.

80. Manvelyan R., Ruehl W. The Masses of Gauge Fields in Higher Spin Field Theory on the Bulk
of AdS4 // Phys. Lett. B. 2005. V. 613. P. 197Ä207; hep-th/0412252; The Off-Shell Behaviour
of Propagators and the Goldstone Field in Higher Spin Gauge Theory on AdSd+1 Space //
Nucl. Phys. B. 2005. V. 717. P. 3Ä18; hep-th/0502123.

81. Carmeli C. et al. Unitary Representations of Super Lie Groups and Applications to the Clas-
siˇcation and Multiplet Structure of Super Particles // Commun. Math. Phys. 2006. V. 263.
P. 217Ä258; hep-th/0501061.

82. Barabanschikov A. et al. The Spectrum of YangÄMills on a Sphere // JHEP. 2006. 0601. 160;
hep-th/0501063.

83. Krasnov K., Louko J. SO0(1, d + 1) Racah Coefˇcients: Type I Representations // J. Math.
Phys. 2006. V. 47. P. 033513; math-ph/0502017.

84. Bianchi M., Didenko V. ®Massive¯ Higher Spin Multiplets and Holography. hep-th/0502220.

85. Genovese L., Stanev Y. S. Rationality of the Anomalous Dimensions in N = 4 SYM Theory //
Nucl. Phys. B. 2005. V. 721. P. 212Ä228; hep-th/0503084.

86. D'Alessandro M., Genovese L. A Wide Class of Four-Point Functions of BPS Operators in
N = 4 SYM at Order g4 // Nucl. Phys. B. 2006. V. 732. P. 64Ä88; hep-th/0504061.

87. Argyres P. C. et al. Classiˇcation of N = 2 Superconformal Field Theories with Two-
Dimensional Coulomb Branches. hep-th/0504070.

88. Bianchi M., Heslop P. J., Riccioni F. More on La Grande Bouffe // JHEP. 2005. 0508. 088;
hep-th/0504156.

89. Arvidsson P. Superconformal Symmetry in the Interacting Theory of (2,0) Tensor Multiplets
and Self-Dual Strings // J. Math. Phys. 2006. V. 47. P. 042301; hep-th/0505197.

90. Ibe M. et al. Conformally Sequestered SUSY Breaking in Vector-Like Gauge Theories // Phys.
Rev. D. 2006. V. 73. P. 015004; hep-ph/0506023; More on Conformally Sequestered SUSY
Breaking // Phys. Rev. D. 2006. V. 73. P. 035012; hep-ph/0509229.

91. Milanesi G., O'Loughlin M. Singularities and Closed Time-Like Curves in Type-IIB 1/2 BPS
Geometries // JHEP. 2005. 0509. 008; hep-th/0507056.

92. Henn J., Jarczak C., Sokatchev E. On Twist-Two Operators in N = 4 SYM // Nucl. Phys. B.
2005. V. 730. P. 191Ä209; hep-th/0507241.

93. Zaikin V. N., Palchik M. Ya. Secondary Fields in D > 2 Conformal Theories. hep-th/0509103.

94. Kinney J. et al. An Index for 4-Dimensional Super-Conformal Theories. hep-th/0510251.

95. Nakayama Yu. Index for Orbifold Quiver Gauge Theories. hep-th/0512280; Index for Super-
gravity on AdS5 × T 1,1 and Conifold Gauge Theory. hep-th/0602284.

96. Berkooz M., Reichmann D., Simon J. A Fermi Surface Model for Large Supersymmetric AdS5

Black Holes. hep-th/0604023.

97. Nahm W. // Nucl. Phys. B. 1978. V. 135. P. 149.

98. Haag R., Lopuszanski J. T., Sohnius M. // Nucl. Phys. B. 1975. V. 88. P. 257.



CHARACTERS OF THE POSITIVE-ENERGY UIRs OF D = 4 CONFORMAL 1161

99. Flato M., Fronsdal C. // Lett. Math. Phys. 1984. V. 8. P. 159.

100. Dobrev V. K., Petkova V. B. On the Group-Theoretical Approach to Extended Conformal Super-
symmetry: Classiˇcation of Multiplets // Lett. Math. Phys. 1985. V. 9. P. 287.

101. Dobrev V. K., Petkova V. B. On the Group-Theoretical Approach to Extended Conformal Super-
symmetry: Function Space Realizations and Invariant Differential Operators // Fortschr. Phys.
1987. Bd. 35. S. 537Ä572; First as Preprint IC/85/29. ICTP Trieste, 1985.

102. Dobrev V. K., Petkova V. B. All Positive Energy Unitary Irreducible Representations of Extended
Conformal Supersymmetry // Phys. Lett. B. 1985. V. 162. P. 127Ä132.

103. Dobrev V. K., Petkova V. B. // Lecture Notes in Physics. Berlin, 1986. V. 261. P. 291; 300.

104. Minwalla S. // Adv. Theor. Math. Phys. 1998. V. 2. P. 781Ä846.

105. Dobrev V. K. Positive Energy Unitary Irreducible Representations of D = 6 Conformal Super-
symmetry // J. Phys. A. 2002. V. 35. P. 7079Ä7100; hep-th/0201076.

106. Siegel W. // Nucl. Phys. B. 1981. V. 177. P. 325.

107. Howe P. S., Stelle K. S., Townsend P. K. // Ibid. V. 192. P. 332.

108. Gunaydin M., Marcus N. // Class. Quant. Grav. 1985. V. 2. P. L11.

109. Shapovalov N. N. // Funkts. Anal. Prilozh. 1972. V. 6(4). P. 65; English transl. Funct. Anal. Appl.
1972. V. 6. P. 307.

110. Dixmier J. Enveloping Algebras. N. Y.: North Holland, 1977.

111. Kac V. G. Inˇnite-Dimensional Lie Algebras. Boston: Birkhéauser, 1983.

112. Kac V. G. // Lect. Notes in Math. 1978. V. 676. P. 597Ä626.

113. Dobrev V. K. Multiplet Classiˇcation of the Reducible Elementary Representations of Real
Semisimple Lie Groups: the SOe(p, q) Example // Lett. Math. Phys. 1985. V. 9. P. 205Ä211;
Talk at the I National Congress of Bulg. Physicists, Soˇa, 1983; INRNE Soˇa preprint, 1983.

114. Dobrev V. K. // Rep. Math. Phys. 1988. V. 25. P. 159Ä181.

115. Dobrev V. K., Petkova V. B. Odd Re	ection, Contribution to ®Concise Encyclopedia of Super-
symmetry¯. Kluwer Acad. Publ., 2003. P. 282Ä283. (However, this is not the original text of
our contribution Å that is given here in Appendix B.)

116. Kac V. G. // Adv. Math. 1977. V. 26. P. 8Ä96; Commun. Math. Phys. 1977. V. 53. P. 31Ä64 (the
second paper is an adaptation for physicists of the ˇrst paper).

117. Mack G. // Ibid. V. 55. P. 1.

118. Dobrev V. K. Subsingular Vectors and Conditionally Invariant (q-deformed) Equations // J. Phys.
A: Math. Gen. 1995. V. 28. P. 7135Ä7155.

119. Kazhdan D., Lusztig G. // Inv. Math. 1979. V. 53. P. 165.

120. Kac V. G. Characters of Typical Representations of Classical Lie Superalgebras // Comm. Alge-
bra. 1977. V. 5. P. 889Ä897.

121. Bernstein I. N., Leites D. A. // C. R. Acad. Bulg. Sci. 1980. V. 33. P. 1049.

122. Van der Jeugt J. et al. // Comm. Algebra. 1990. V. 18. P. 3453; J. Math. Phys. 1990. V. 31.
P. 2278Ä2304.

123. Van der Jeugt J. // Comm. Algebra. 1991. V. 19. P. 199.

124. Serganova V. KazhdanÄLusztig Polynomials and Character Formula for the Lie Superalgebra
gl(m|n) // Selecta Math. 1996. V. 2. P. 607Ä654.

125. van der Jeugt J., Zhang R. B. Characters and Composition Factor Multiplicities for the Lie
Superalgebra gl(m|n) // Lett. Math. Phys. 1999. V. 47. P. 49Ä61.



1162 DOBREV V.K.

126. Brundan J. KazhdanÄLusztig Polynomials and Character Formulae for the Lie Superalgebra
gl(m|n) // J. Am. Math. Soc. 2002. V. 16. P. 185Ä231; KazhdanÄLusztig Polynomials and
Character Formulae for the Lie Superalgebra q(n) // Adv. Math. 2004. V. 182. P. 28Ä77.

127. Su Yucai, Zhang R. B. Character and Dimension Formulae for General Linear Superalgebra.
math. QA/0403315.

128. Dobrev V. K. Character of the Unitarizable Highest Weight Modules Over the N = 2 Super-
conformal Algebras // Phys. Lett. B. 1987. V. 186. P. 43Ä51.

129. Serganova V. V. Appendix to the paper: Leites D. A., Saveliev M. V., Serganova V. V. // Proc. of
Group Theoretical Methods in Physics. Yurmala, 1985 (in Russian: M., 1985. P. 377Ä394; in
English: VNU. Dordrecht: Sci. Press, 1987).

130. Penkov I., Skornyakov I. // C. R. Acad. Sci. (Paris). 1984. V. 299, Serie I. P. 1005Ä1008.

131. Penkov I. // J. Sov. Math. 1990. V. 51. P. 2108.


