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Character formulae for the positive-energy unitary irreducible representations of the /NV-extended
D = 4 conformal superalgebras su(2,2/N) are given. Using them we also derive decompositions of
long superfields as they descend to the unitarity threshold. These results are also applicable to irreps
of the complex Lie superalgebras sl(4/N). Our derivations use the results from the representation
theory of su(2,2/N) developed already in the 1980s.
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INTRODUCTION

Recently, superconformal field theories in various dimensions are attracting
more interest, cf. [1-96] and references therein. Particularly important are those
for D < 6 since in these cases the relevant superconformal algebras satisfy [97]
the Haag—Lopuszanski—Sohnius theorem [98]. This makes the classification of
the UIRs of these superalgebras very important. Until recently such classification
was known only for the D = 4 superconformal algebras su(2,2/1) [99] and
su(2,2/N) [100-103] (for arbitrary N). Recently, the classification for D = 3
(for even N), D = 5, and D = 6 (for N = 1,2) was given in [104] (some
results being conjectural), and then the D = 6 case (for arbitrary N) was finalized
in [105].

Once we know the UIRs of a (super-)algebra, the next question is to find their
characters, since these give the spectrum which is important for the applications.
Some results on the spectrum were given in the early papers [106-108, 102], but
it is necessary to have systematic results for which the character formulae are
needed. This is the question we address in this paper for the UIRs of D = 4
conformal superalgebras su(2,2/N). From the mathematical point of view this
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question is clear only for representations with conformal dimension above the
unitarity threshold viewed as irreps of the corresponding complex superalgebra
sl(4/N). But for su(2,2/N) even the UIRs above the unitarity threshold are
truncated for small values of spin and isospin. And what is more, in the appli-
cations the most important role is played by the representations with «quantized»
conformal dimensions at the unitarity threshold and at discrete points below. In
the quantum field or string theory framework some of these correspond to opera-
tors with «protected» scaling dimension and therefore imply «nonrenormalization
theorems» at the quantum level, cf., e.g., [22,23].

Thus, we need detailed knowledge about the structure of the UIRs from
the representation-theoretical point of view. Fortunately, such information is
contained in [100-103]. Following these papers in Sec.1 we recall the basic
ingredients of the representation theory of the D = 4 superconformal algebras.
In particular, we recall the structure of Verma modules and UIRs. Using this
information we are able to derive character formulae, some of which are very
explicit, cf. Sec.2. We also pin-point the difference between character formulae
for si(4/N) and su(2,2/N) since for the latter we need to introduce and use the
notion of counter-terms in the character formulae. The general formulae are valid
for arbitrary N. For illustration we give more explicit formulae for N = 1,2,
but we leave the example N = 4 for a follow-up paper, since that would take too
many pages, and the present paper is long enough. In Sec.3 we summarize our
results on the decompositions of long superfields as they descend to the unitarity
threshold. These results may be applied to the problem of operators with protected
dimensions.

1. REPRESENTATIONS OF D = 4 CONFORMAL SUPERSYMMETRY

1.1. The Setting. The superconformal algebras in D = 4 are G = su(2,2/N).
The even subalgebra of G is the algebra Gy = su(2,2) ®u(1) ® su(N). We label
their physically relevant representations of G by the signature:

x=1I[d;j1,d2;2;7m1,...,"N-1], (1.1)

where d is the conformal weight; j;, jo are non-negative (half-)integers which are
Dynkin labels of the finite-dimensional irreps of the D = 4 Lorentz subalgebra
s0(3,1) of dimension (251 + 1)(2j2 + 1); # represents the u(1) subalgebra which
is central for Gy (and for N = 4 is central for G itself), and r{,...,ry_1 are
non-negative integers which are Dynkin labels of the finite-dimensional irreps of
the internal (or R) symmetry algebra su(N).

We recall that the algebraic approach to D = 4 conformal supersymme-
try developed in [100-103] involves two related constructions — on function
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spaces and as Verma modules. The first realization employs the explicit con-
struction of induced representations of G (and of the corresponding supergroup
G = SU(2,2/N)) in spaces of functions (superfields) over superspace which are
called elementary representations (ER). The UIRs of G are realized as irreducible
components of ERs, and then they coincide with the usually used superfields in in-
dexless notation. The Verma module realization is also very useful as it provides
simpler and more intuitive picture for the relation between reducible ERs, for the
construction of the irreps, in particular, of the UIRs. For the latter the main tool
is an adaptation of the Shapovalov form [109] to the Verma modules [102, 103].
Here we shall need only the second — Verma module — construction.

1.2. Verma Modules. To introduce Verma modules one needs the standard
triangular decomposition:

GC=GtoHaG, (1.2)

where G% = sl(4/N) is the complexification of G; G*, G~ are the subalgebras
corresponding to the positive, negative roots of GZ, resp.; and H denotes the
Cartan subalgebra of GZ.

We consider the lowest weight Verma modules, so that VA = U/ (GT) @,
where U(G™) is the universal enveloping algebra of G, A € H* is the lowest

weight, and v is the lowest weight vector vy such that:

Xvy=0, Xeg, (1.3)
Huvo = A(H)vy, H € H.

Further, for simplicity we omit the sign ®, i.e., we writt Pvy € V* with
PeU(GH).

The lowest weight A is characterized by its values on the Cartan subalgebra
‘H, or, equivalently, by its products with the simple roots (given explicitly below).
In general, these would be 3 + N complex numbers, however, in order to be
useful for the representations of the real form G these values would be restricted
to be real and furthermore to correspond to the signatures x , and we shall write
A = A(x) or x = x(A). Note, however, that there are Verma modules to which
correspond no ERs, cf. [101] and below.

If a Verma module V* is irreducible, then it gives the lowest weight irrep
L with the same weight. If a Verma module VA is reducible, then it contains a
maximal invariant submodule %, and the lowest weight irrep L, with the same
weight is given by factorization: Ly = VA /I* [110-112].

Thus, we need first to know which Verma modules are reducible. The
reducibility conditions for the highest weight Verma modules over basic classical
Lie superalgebra were given by Kac [112]. Translating his conditions to the
lowest weight Verma modules we have [101]: A lowest weight Verma module
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VA is reducible only if at least one of the following conditions is true*:

(p— A, B) =m(B,8)/2, BeAT, (B,6)#0, meN, (1.4a)
(p—A,B) =0, peA*, (8,8 =0, (1.4b)

where AT is the positive root system of G%; p € H* is the very important in
representation theory element given by p = pg — p1, where pg, p7 are the half-
sums of the even, odd, resp., positive roots; (-, -) is the standard bilinear product
in H*.

If a condition from (1.4a) is fulfilled then V2 contains a submodule which is
a Verma module V2" with shifted weight given by the pair m, 3: A = A + mp.
The embedding of VA" in VA is provided by mapping the lowest weight vector
vh of VA" to the singular vector v”# in VA which is completely determined by
the conditions

Xom™P =0, Xeg, (1.5)
Ho™P =N (H) vo, HEH, N =A+mp.

Explicitly, v7# is given by an even polynomial in the positive root generators
p™B = pmiBayy, PP e U(GT). (1.6)

Thus, the submodule of V* which is isomorphic to VA s given by
U(G+)P™Pyy. (More information on the even case, following the same ap-
proach, may be seen in, e.g., [113, 114].)

If a condition from (1.4b) is fulfilled, then V* contains a submodule I
obtained from the Verma module VA" with shifted weight A’ = A+ 3 as follows.
In this situation V* contains a singular vector

X =0, Xeg, (1.7)
Hv? =N (H)vy, HeH, N=A+5.

Explicitly, v2 is given by an odd polynomial in the positive root generators
v? = PPvy, PP ecUGT). (1.8)

Then we have
1P =U(G") PP (1.9)

*Many statements below are true for any basic classical Lie superalgebra and would require
changes only for the superalgebras osp(1/2N).
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which is smaller than VA" = U(G") v}, since this polynomial is Grassmannian:
(PP)? =0. (1.10)

To describe this situation we say that VA s oddly embedded in V2.

Note, however, that the above formulae describe also more general situations
when the difference A’ — A = 3 is not a root, as used in [101] and below.

The weight shifts A’ = A+, when (3 is an odd root, are called odd reflections
in [101] (see also [115]) and for future reference will be denoted as

Each such odd reflection generates an infinite discrete Abelian group
Ws={(3s)"Ine Z}, (((35)") =n, (1.12)

where the unit element is obviously obtained for n = 0, and (5g) " is the inverse
of (53)", and for future use we have also defined the length function ¢(-) on the
elements of W . This group acts on the weights A extending (1.11):

(38)" A=A+np, neZ (5,8)=0, (APp)#0. (1.13)

This is related to the fact that there is a doubly-infinite chain of oddly embedded
Verma modules whenever a Verma module is reducible w.r.t. an odd root. This is
explained in detail and used for the classification of the Verma modules in [100]
and shall be used below.

Further, to be more explicit we need to recall the root system of G — for
definiteness — as used in [101]. The positive root system A7 is comprised from
aij, 1 <@ <j <4+ N. The even positive root system Ag is comprised from
ayj, with 4,5 < 4 and 4,7 > 5; the odd positive root system A;r is comprised
from «;j;, with ¢ < 4,7 > 5. The simple roots are chosen as in (1.4) of [101]:

M =012, Y2 = 034,73 = 25, V4 = QU A4+N, Vk = Ok k+1,0 < K <3+ N.

(1.14)
Thus, the Dynkin diagram is
O—&®—O—-- O X —O (1.15)
1 3 5 34N 4 2

This is a nondistinguished simple root system with two odd simple roots (for the
various root systems of the basic classical superalgebras we refer to [116]).
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Let A = A(x). The products of A with the simple roots are [101]:

(A va) == 2Ja,  a=1,2, (1.16a)
1 , . m

(A,v3) =5(d+2)+51 — - +1, (1.16b)
2 N
1 / . m

(Aya) =5(d=2) +jo—mi+ 5+ 1, (1.16¢)
2’ = z(1~ dna),
(A, y) =rNga—j, 5<Jj<3+N. (1.16d)

These formulae give the correspondence between signatures y and the lowest
weights A(x)*.

In the case of even roots 3 € Ag there are six roots «;, j < 4, coming from
the sl(4) factor (which is complexification of su(2,2)) and N(N — 1)/2 roots
a;j, 5 < 4, coming form the si(IV) factor (complexification of su(V)).

The reducibility conditions, w.r.t. the positive roots coming from
sl(4)(su(2,2)), coming from (1.4) (denoting m — n;; for § — «;) are

nis = 14251 = ng, (1.17a)
nog =1 —d — j1 — jo = na, (1.17b)
n3s = 1 4+ 2j3 = ns, (1.17¢)
n13 =2 —d+ j1 — jo = n1 + na, (1.17d)
nog = 2 —d — j1 + j2 = ng + ng, (1.17¢)
niy =3 —d+ j1 + j2 =n1 +na +ns. (1.17f)

Thus, reducibility conditions (1.17a), (1.17¢) are fulfilled automatically for A(y)
with x from (1.1) since we always have: nj,n3 € IN. There are no such
conditions for the ERs since they are induced from the finite-dimensional irreps
of the Lorentz subalgebra (parameterized by ji,j2). However, to these two
conditions there correspond differential operators of order 1 4 2j; and 1 + 275
(as we mentioned above) and these annihilate all functions of the ERs with
signature .

The reducibility conditions w.r.t. the positive roots coming from sl(NN)
(su(N)) are all fulfilled for A(yx) with x from (1.1). In particular, for the
simple roots from those condition (1.4) is fulfilled with 3 — ~;, m = 1+ry14—j,

*For N = 4 the factor (1) in Go becomes central in G and ge Consequently, the representation
parameter z cannot come from the products of A with the simple roots, as indicated in (1.16). In
that case the lowest weight is actually given by the sum A + A, where A carries the representation
parameter z. This is explained in detail in [101] and further we shall not comment more on it, but
the peculiarities for N = 4 will be evident in the formulae.
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for every j = 5,6,..., N + 3. There are no such conditions for the ERs since
they are induced from the finite-dimensional UIRs of su(/N). However, to these
N — 1 conditions there correspond N — 1 differential operators of orders 1 + r
(as we mentioned), and the functions of our ERs are annihilated by all these
operators [101]*.

For future use we note also the following decompositions:

N+3

A= Najjp=A"+ A+ A (1.18a)
j=1
3 N+3
A = Z /\jOéj7j+1, A? = )\4&45, A = Z /\jaj7j+1, (118b)
j=1 =5

which actually employ the distinguished root system with one odd root ays.
The reducibility conditions for the 4N odd positive roots of G are [102, 101]:

d=dN, — 20N4, dy =4 —2k+ 2js+ 2+ 2my — 2m/N, (1.19a.k)
d=d%, — 20N4, dap =2 — 2k — 2jo+ 2+ 2my — 2m/N, (1.19b.k)
d=d3, + 20N4, dap =242k — 2N +2j; — 2 — 2my + 2m/N, (1.19¢c.k)
d=dxy + 2084, dyj, =2k —2N —2j; — 2z — 2my, +2m/N, (1.19d.k)

where in all four cases of (1.19) k =1,..., N, my =0, and
N-1 N-1 —1
my = ri, M= Z my = Z krg, (1.20)
i=k k=1 k=1

my, is the number of cells of the kth row of the standard Young tableau; m is
the total number of cells. Condition (1.19a.k) corresponds to the root a3 y45—k,
(1.19b.k) corresponds to the root a4 n45-, (1.19c.k) corresponds to the root
a1 N+5—k, (1.19d.k) corresponds to the root as ny5—k-

Note that for a fixed module and fixed i = 1,2, 3,4 only one of the odd N
conditions involving dﬁVk may be satisfied. Thus, no more than four (two, for
N =1) of the conditions (1.19) may hold for a given Verma module.

Remark. Note that for no € IN (cf. (1.17)) the corresponding irreps of
su(2,2) are finite-dimensional (the necessary and sufficient condition for this is:
ni,ng,ng € IN). Then the irreducible LWM Ly of su(2,2/N) are also finite-
dimensional (and nonunitary) independently of whether the corresponding Verma

*Note that there are actually as many operators as positive roots of s/(IN) but all are expressed
in terms of the N — 1 above corresponding to the simple roots [101].
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module V™ is reducible w.r.t. any odd root. If V* is not reducible w.r.t. any odd
root, then these finite-dimensional irreps are called «typical» [112], otherwise,
the irreps are called «atypical» [112]. In our considerations ns ¢ IN in all cases,
except the trivial 1-dimensional UIR (for which ny = 1, cf. below). <

We shall consider quotients of Verma modules factoring out the even sub-
modules for which the reducibility conditions are always fulfilled. Before this we
recall the root vectors following [101]. The positive (negative) root vectors cor-
responding to «;j;, (—ay;) are denoted by X;]T, (X;;). In the su(2,2/N) matrix
notation the convention of [101], (1.7), is

v e;j otherwise
Xij =* (X;_; )s

where e;; are (N +4) x (N + 4) matrices with all elements zero except the

element equal to 1 on the intersection of the ith row and jth column. The simple
root vectors X f follow the notation of the simple roots y; (1.14):

+_ yt+t yt—y+t yvt— yt yv+t— y+ +_ y+
X =X, Xy =Xg,, X5 =X, X/ :X474+N, X, =X

kk+1
5<k<3+N. (1.22)
The mentioned submodules are generated by the singular vectors related to
the even simple roots y1,v2,7s, - .-, Yn+3 [101]:
vy =(X) 1w, (1.23a)
v? =(X )92 g, (1.23b)
v] =(X)veaieg,  j=5,...,N+3 (1.23¢c)

(for N = 1 (1.23c) being empty). The corresponding submodules are I =
U(G1)v*, and the invariant submodule to be factored out is

N = U I, (1.24)
k

Thus, instead of VA we shall consider the factor-modules
vA=vA A (1.25)

which are closer to the structure of the ERs. In the factorized modules the
singular vectors (1.23) become null conditions, i.e., denoting by |A) the lowest
weight vector of VA we have

(X1 [A) =0, (1.26)
(X522 [A) =0, (1.26b)

(X[ )i [A) =0, j=5,...,N+3. (1.26¢)
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1.3. Singular Vectors and Invariant Submodules at the Unitary Reduction
Points. We first recall the result of [102] (cf. part (i) of the Theorem there) that
the following is the complete list of the lowest weight (positive energy) UIRs of
su(2,2/N):

d > dpax = max(dy,, dan), (1.27a)
d=dyy > dy;,j1 =0, (1.27b)
d=dy, = dyy,j2 =0, (1.27¢)
d=d¥, =dyy,j1=ja =0, (1.27d)

where dyax 18 the threshold of the continuous unitary spectrum®. Note that in
case (d) we have d = m1, z = 2m/N — mg, and that it is trivial for N = 1 since
then the internal symmetry algebra su (V) is trivial and by definition m; = m = 0
(the resulting irrep is 1-dimensional with d = 2z = j; = j2 = 0). The UIRs for
N =1 were first given in [99].

Next we note that if d > dyax, the factorized Verma modules are irre-
ducible and coincide with the UIRs Lj. These UIRs are called long in the
modern literature, cf., e.g., [8,17,23,32-35]. Analogously, we shall use for the
cases when d = dyax, i.e., (1.27a), the terminology of semishort UIRs, intro-
duced in [8, 23], while the cases (1.27b)—(1.27d) are also called short UlRs, cf.,
e.g., [17,23,32-35].

Next consider in more detail the UIRs at the four distinguished reduction
points determining the list above:

dh1 =2+ 2j2 + 2z +2my — 2m/N,

d%, = z+2m1 —2m/N  (jo = 0), (1.28)
dyy =2+ 2j1 — z+2m/N,

dyy =—2+2m/N (j; =0).

*Note that from (1.27a) follows:
dmax = 2+ J1 + j2 +ma,
the equality being achieved only when dzl\rl = d?\, > While from (1.27b), (1.27¢) follows:
dZz21+j1+j2+mi, jij2=0,

the equality being achieved only when d%VN = dll\n, or d?\n = d?\rN’ for (1.27b), (1.27c), resp.
Recalling the unitarity conditions [117] for the conformal algebra su(2,2):

d>2+71+7j2, Jij2>0,

d>214j1+7j2, jij2=0,
we see that the superconformal unitarity conditions are more stringent than the conformal ones.
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First, we recall the singular vectors corresponding to these points. The above
reducibilities occur for the following odd roots, resp.:

Q3 44N, OQ444+N, O15, Q5. (1.29)
The second and the fourth are the two odd simple roots:
V3= Q25, V4 = Q444N (1.30)
and the other two are simply related to these:
Q15 = Q12 + a5 = 71 + 73, 03.44+N = Q34 + 04 arN =72 +72. (1.31)

Thus, the corresponding singular vectors are

Voaa =Psarnvo = (XX (ho — 1) = XF X[ ho) vo = (1.32a)
= (2o XS XS — (252 + DX XS) v =
- (QjQX?jHN - ijg) v, d=dy,, (1.322)
vig =XF v,  d=d%y, (1.32b)
v3qa =Pisvo = (X5 X (h1 — 1) = X" X5 hy) vo = (1.32¢)
= (271X7 X5 — (21 + DXFXT") vo =
= (251 X5 — X5 X") o, d=d%y, (1.32¢))
Vaaa =X5 o, d=dyy, (1.32d)
where X3, n = [X5,X][] is the odd-root vector corresponding to the root

asza+N, Xis = [X{7, X5 ] is the odd-root vector corresponding to the root ass,
h1, he € H are Cartan generators corresponding to the roots 1, v2, (cf. [101]),
and passing from the (1.32a), (1.32c) to the next line we have used the fact that
havg = —2j2v9 (h1 vy = —2j1 vg), consistently with (1.16b), (1.16a). These
vectors are given in (8.9a), (8.7b), (8.8a), (8.7a), resp., of [101].

These singular vectors carry over for the factorized Verma modules VA:

Doqa =Psasn [A) = (X5 XS (ha — 1) — X5 X he) [A) = (1.33a)
— (202 X5 uon — XTXT) [N, d=di, (133a)
Phq =X [A),  d=d3y, (1.33b)
Bga =Pis [A) = (X§ X (hy — 1) — X7 X5 hy) [A) = (1.33¢)
— (231 X5 — XS X)) A),  d=ddy, (1.33¢")

aga =X3 |A),  d=diy. (1.33d)
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For j; =0, j2 = 0, resp., the vector vgdd, v(l)dd, resp., is a descendant of the
singular vector v}, v2, resp., cf. (1.23a), (1.23b), resp. In the same situations the
tilde counterparts ¥}, 92 are just zero — cf. (1.26a), (1.26b), resp. However, then
there is another independent singular vector of VA in both cases. For j; = 0, it
corresponds to the sum of two roots: ay5 + ags (which sum is not a root!) and
is given by formula (D.1) of [101]:

0= X5 X XS |A) = XS X5 (A), d=dyy, j1=0. (1.34)

Checking singularity we see at once that X, 93 = 0 for k # 3. It remains to
calculate the action of X3 :

X5 0% = hs X" XS |A) — X5 X{ ha|A) =
= Xi X3 (hs — 1)[A) = X X{ hg|A) =0,
hs,hs € H are Cartan generators corresponding to the roots 3,4, (cf. [101]),

the first term is zero since A(h3) — 1 = —(d — d ) = 0, while the second term

1
2
is zero due to (1.26a) for j; = 0.

For j» = 0, there is a singular vector corresponding to the sum of two roots:
Q3 44N + a4 44§ (Which sum is not a root) and is given in [101] (cf. the formula
before (D.4) there):

P = X5 XS XF N = X XS, v N, d=dy,, j2=0.  (1.35)

As above, one checks that X, v'? = 0 for k # 4 and then calculates:

X,y o2 =hy X5 XN — X XS hy|A) =
= X5 X (ha = 1)|A) — X X ha|A) =0

1
using A(hy) — 1 = §(d —d}y,) =0, and (1.26b) for jo = 0.
To the above two singular vectors in the ER picture there correspond second-

order superdifferential operators given explicitly in formulae (11a), (11b) of [102]
and in formulae (D3), (D5) of [105]*.

*Note that w.r.t. V2 the analogues of the vectors #3* and ©'2 are not singular, but subsingular
vectors. Indeed, consider the vector in VA given by the same U(G1) monomial as #3%: 3% =
X;r Xfr X;r. Clearly, X, v3* = 0 for k # 3. It remains to calculate the action of X3
X5 v = hg X XF vo—XT X havo = X XJ (hs—1)vo— X5 X havo = =X X vo,
where the first term is zero as above, while the second term is a descendant of the singular vector
vl = Xf' vo (cf. (1.23a) for j; = 0), which fulfills the definition of subsingular vector. Analogously,

for the vector v!2 = er X; XZ we have X,: v12 =0 for k # 4, and
Xy o2 =x; X xFx) = -xF x5 v,

(using A(h4) — 1), which is a descendant of the singular vector v? = X; vo, cf. (1.23b) for j2 = 0.
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From the expressions of the singular vectors follow, using (1.9), the explicit
formulae for the corresponding invariant submodules 7% of the modules V* as
follows:

I'=U(G")Psain |\ =U(GT) (XIX;_(M -1) - X;thz) |A) =
(1.36a)

—UG") (202X 0n — X{XT) [A), d=dhy, j2>0,  (1362)
P=UG") X[ |A), d=d%, (1.36b)
I =U(G") Pis |A) = U(GF) (X5 X{ (b — 1) = X{ X ) [A) = (1.36c)

—UGY) (21 X5 — X5 XT) IN),  d=dkn, 51>0, (1.36¢")
I'=U(G") X{ [A), d=diy, (1.36d)

2 =y@h o2 =XF XS XFIN),  d=dy,, j2=0, (1.36¢)
P =UGh) i = XF X XS N, d=d%y, i =0. (1.36f)

Sometimes we shall indicate the signature y(A), writing, e.g., I*(x); sometimes
we shall indicate also the resulting signature, writing, e.g., I'(,x’) — this is a
redundancy since it is determined by what is displayed already: x' = x(A + 3),
but will be useful to see immediately in the concrete situations without calculation.

The invariant submodules were used in [102] in the construction of the UIRs,
as we shall recall below.

1.4. Structure of Single-Reducibility-Condition Verma Modules and UIRs.
We discuss now the reducibility of Verma modules at the four distinguished
points (1.28). We note a partial ordering of these four points:

dy, > dyy, dyy > diw, (1.37)
or more precisely:
dy, = d3, +2 (j2 =0); dyn =dvy +2 (1 =0). (1.38)

Due to this ordering at most two of these four points may coincide. Thus, we
have two possible situations: of Verma modules (or ERs) reducible at one and at
two reduction points from (1.28).

In this Subsection we deal with the situations in which no two of the points
in (1.28) coincide. According to [102] (Theorem) there are four such situations



CHARACTERS OF THE POSITIVE-ENERGY UIRs OF D = 4 CONFORMAL 1091

involving UlIRs:

d = dpax = diq > dyn, (1.39a)
d=d, >dyy, Jj2=0, (1.39b)
d = dpax = dan > di1, (1.39¢)
d=dyy >dy,, j1=0. (1.39d)

We shall call these cases single-reducibility-condition (SRC) Verma modules
or UIRs, depending on the context. In addition, as already stated, we use for the
cases when d = dyax, 1.., (1.39a), (1.39c), the terminology of semishort UIRs
[8,23], while the cases (1.39b), (1.39d) are also called short UIRs [17,23,32-35].

As we see, the SRC cases have supplementary conditions as specified. And
due to the inequalities there are the following additional restrictions which are
correspondingly given as

z >j1 — ja —m1 +2m/N, (1.392)
z>j1 +1—m1+2m/N, (1.39b")
2 <j1 — jo — my + 2m/N, (1.39¢")
z<—1-—7j5—m1+2m/N. (1.39d")

Using these inequalities, the unitarity conditions (1.39) may be rewritten more
explicitly:

d=dy, =d*=2+2js + 2+ 2my —2m/N > 24 j; + jo +mq, (1.392")
N1

d=d%, =z+2m; —2m/N > j; + 14+ my, jo =0, (1.39b")
d=dyxy=d°=2+2j; — 2+2m/N > 2+ ji1 + jo +my, (1.39¢")
d=dyxy=—2+2m/N > 1+ jo +my, jo =0, (1.39d"")

where we have introduced notation d®, d° to designate two of the SRC cases.
To finalize the structure we should check the even reducibility conditions
(1.17b), (1.17d)—~(1.17f). It is enough to note that the conditions on d in (1.39a"),
(1.39¢"):
d > 2+j1 —|—j2+m1

and in (1.39b”), (1.39d"):
d> 1471+ j2 +mi(jijz = 0)

are incompatible with (1.17b), (1.17d)—(1.17f), except in two cases. The excep-
tions are in cases (1.39b”), (1.39d"”) when d = 2 + j1 + jo = 2z and jijo = 0.
In these cases we have ny4 = 1 in (1.17f) and there exists a Verma sub-
module VA+e11 However, the su(2,2) signature yo(A 4 a14) is unphysical:
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[ —1/2,—1/2;3+ ju] for jo = 0, and [~1/2, jo—1/2;3+ j1] for j; = 0. Thus,
there is no such submodule of V2.

Thus, the factorized Verma modules V2 with the unitary signatures from
(1.39) have only one invariant (odd) submodule which has to be factorized in
order to obtain the UIRs. These odd embeddings are given explicitly as

VA AS, (1.40)

where we use the convention [100] that arrows point to the oddly embedded
module, and there are the following cases for 53:

B=oazarn, for (1.3%a), j2>0, (1.41a)
=ag44+n, for (1.39b), (1.41b)
=aqs, for (1.39c), j1>0, (1.41c)
= ags, for (1.39d), (1.41d)
=a34+N +agayn, for (1.39a), jo =0, (1.41e)
= o154+ a5, for (1.39¢), ji = 0. (1.41f)

This diagram gives the UIR L contained in VA as follows:
Ly =VA/IP, (1.42)

where 17 is given by I', I%, I3, I*, I'2, I3*, resp. (cf. (1.36), in the cases
(1.41a), (1.41b), (1.41c), (1.41d), (1.41e), (1.41f), resp.

It is useful to record the signatures of the shifted lowest weights, i.e., ¥’ =
X(A+5). In fact, for future use we give the signature changes for arbitrary roots.
The explicit formulae are [100, 101]:

B=asNis—k:X =

1 1
= [d+ 5; J1,J2 — 5; Z4EN; T, Te1 — LTk +1,...,7*N_1}, (1.43a)

j2 >0, 71r_1 >0, (1.43a")

B=asni5—k:X =

1 1
= |:d—|— 5; J1.J2 + 5; Z4€EN; T1y -3 Th—1 — 1,7k +1,...,7’N_1:|, (1.43b)

rg—1 >0, (1.43b")
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B =o1,Ni5-k X =

2 2
J1>0, 7 >0, (1.43¢")

B = N5k X =

1 .
= |:d+_a]1 — 51J2) ® T €EN; T],...,Tk;1+1,7’k-1,...,7"N1:|, (1430)

1 1
= |:d+ 5a]1+§7]2a2_6N7 T],...,Tk;1+1,7’k-1,...,7"N1:|, (143(1)

ri > 0, (1.43d)

2 1
=1,...,N == —c. 1.44
k ) IEAS) EN N 2 ( )

For each fixed y the lowest weight A(x’) fulfills the same odd reducibility con-
dition as A(x’). We need also the special cases used in (1.41e), (1.41f):

Bi2 = a3 44N + 04agpn X0 = [d+1; j1,0; 2+ 2en; 11+ 2,72, ..., TN—1],
(1.43e)
j2 =0, d=dy,
B3a =15 + o5 : Xag = [d+1; 0,525 2 — 2en5 71, .., PN_2,"N-1 + 2],
(1.43f)

J1=0, d=dxy.

The lowest weight A(x),) fulfils (1.39b), while the lowest weight A(x%,) ful-
fils (1.39d).

The embedding diagram (1.40) is a piece of a much richer picture [100].
Indeed, notice that if (1.4b) is fulfilled for some odd root [, then it is fulfilled
also for an infinite number of Verma modules V; = VAT for all ¢ € Z. These
modules form an infinite chain complex of oddly embedded modules:

— Vo —= VN —V— (1.45)

Because of (1.10) this is an exact sequence with one nilpotent operator involved
in the whole chain. Of course, once we restrict to the factorized modules VA, the
diagram will be shortened — this is evident from the signature changes (1.43a)—
(1.43d). In fact, there are only a finite number of factorized modules for N > 1,
while for V = 1 the diagram continues to be infinite to the left. Furthermore,
when 6 = (12, 834, from the end of the restricted chain one transmutes — via
the embeddings (1.36e) (1.36f), resp. — to the chain with 8 = a4 n 44, @25, TESP.
More explicitly, when 3 = (312, #34, then the module V; plays the role of V{, with
B = o4 N4, a25. All this is explained in detail in [100]. Furthermore, when a
factorized Verma module V* = V* contains an UIR, then not all modules V/
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would contain an UIR [101, 102]. From all this, all which is important from the
view of modern applications can be summarized as follows:

e The semishort SRC UIRs (cf. (1.39a), (1.39¢c)) are obtained by factorizing
a Verma submodule VA+5 containing either another semishort SRC UIR of the
same type (cf. (1.41a), (1.41c)) or containing a short SRC UIR of a different
type (cf. (1.41e), (1.41f)). In contrast, short SRC UIRs (cf. (1.39b), (1.39d))
are obtained by factorizing a Verma submodule V2*7 whose irreducible factor-
module is not unitary (cf. (1.41b), (1.41d)).

1.5. Structure of Double-Reducibility-Condition Verma Modules and UIRs.
We consider now the situations in which fwo of the points in (1.28) coincide.
According to [102] (Theorem) there are four such situations involving UIRs:

d = dpax = d* = dy, = dan, (1.46a)
d=dy, =dyy, 51=0, (1.46b)
d=d%, =dy, Jj2=0, (1.46¢)
d=dy, =dyy, J1=ja=0. (1.46d)

We shall call these double-reducibility-condition (DRC) Verma modules or
UIRs. As in the previous Subsection we shall use for the cases when d = dpax,
i.e., (1.46a), also the terminology of semishort UIRs [8,23], while the cases
(1.46b)—(1.46d) shall also be called short UIRs [17,23,32-35].

For later use we list more explicitly the values of d and z:

d=d* =dy, =d}n =2+ j1+ j2 +m,

z=Jj1—Jj2+2m/N —my; (1.46a")
d=dy, =d\yy =1+j2+mi, ji1=0,

z=—1—j3+2m/N — mq; (1.46b")
d=d¥, =dyy =1+ji+mi, j2=0,

2 =1+ j1 +2m/N — my; (1.46¢")
d=d¥, =dyy =m1, j1=j2=0,

z=2m/N —m;. (1.464d")

We noted already that for N = 1 the last case (1.46d), (1.46d"), is trivial. Note
also that for N = 2 we have: 2m/N —m; = m —my = 0.

To finalize the structure we should check the even reducibility conditions
(1.17b), (1.17d), (1.17e), (1.17f). It is enough to note that the values of d in
(1.46) are incompatible with (1.17b), (1.17d), (1.17e), (1.17f), except in a few
cases. The exceptions are:
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d=dy, =dyy =24+ j1+ jo, my =0, (1.47a)
d=dy; =dyy =1+j2+mi,j1 =0,  mi=0,1, (1.47b)
d=dy; =dyy =147 +m,j2=0, my =0,1, (1.47¢)
d=d% =dyy=m1, j1=ja=0, mi=0,1,2 (1.47d)

e In case (1.47a) we have ny4 = 1 in (1.17f) and there exists a Verma
submodule VAt with su(2,2) signature xo(A+a14) = [j1 —1/2,ja—1/2;3+
J1 4+ Jj2]- As we can see this signature is unphysical for j;jo = 0. Thus, there is
the even submodule VA+@14 of VA only if j;jo # 0.

e In case (1.47b) there are three subcases:
mp = 0, jo = 1/2; then d = 3/2, noys = 1, niy = 2. The signa-
tures of the embedded submodules of VA are: xo(A + ag4) = [1/2,0;5/2],

Xo(A + 2aq4) = [-1,—1/2;7/2]. Thus, there is only the even submodule
VAteu of

mp =0, jo=0;thend =1, ni3 = 1, noy = 1, ny4 = 2. The signa-
tures of the embedded submodules of VA are: yo(A + ay3) = [~1/2,1/2;2],
Xo(A + a24) = [1/2,-1/2;2], xo(A + 2014) = [-1,—1;3], and all are un-

physical. However, the Verma module V* has a subsingular vector of weight
Q93 + a4, cf. [118], and thus, the factorized Verma module V' has the submod-
ule VA+Q23+O‘14.

my = 1; then n14 = 1, but as above there is no nontrivial even submod-
ule of VA,

e The case (1.47¢) is dual to (1.47b) so we list shortly the three subcases:
my =0, j1 = 1/2; then d = 3/2, n13 = 1, n14 = 2. There is only the
even submodule VA3 of V.
mp =0, j1 =0; thend =1, n13 = 1, nagy = 1, ny4 = 2. This subcase
coincides with the second subcase of (1.47b).
my = 1; then n14 = 1 and as above there is no nontrivial submodule of VA,

e In case (1.47d) there are again three subcases:

my = 0; then all quantum numbers in the signature are zero and the UIR
is the one-dimensional trivial irrep.

my = 1; then d = 1, ni3 = 1, nay = 1, nyy = 2. Though this subcase
has nontrivial isospin from su(2,2) point of view, it has the same structure as
the second subcase of (1.47b) and the factorized Verma module VA has the
submodule VA+azstais,

m1 = 2; then d = 2, ny4 = 1 and as above there is no nontrivial even
submodule of V2.

The embedding diagrams for the corresponding modules VA when there are
no even embeddings are:
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VA+S
T
VA LyAts, (1.48)
where
(8,08") = (a1s,a3.44n), for (1.46a), myjije >0, (1.49a)
= (o5, a344N + a3 a4n), for (1.46a), 41 >0, jo=0, (1.49b)
= (o5 + o5, 344 n), for (1.46a), j1 =0, j2 >0, (1.49¢)
= (15 + aos, 344N + a3 44n), for (1.46a), ji1 =j2 =0, (1.49d)
= (g5, a3.44n), for (1.46b), 72 >0, 2jo+my > 2, (1.49¢)
= (o5, 344N + 0aa4n), for (1.46b), jo =0, mq >0, (1.49f)
= (o15,444n), for (1.46¢c), 41 >0, 251+my > 2, (1.49¢)
= (15 + oo, uayn), for (1.46¢c), j1 =0, mi >0, (1.49h)
= (25, 4 a4n), for (1.46d), my # 1. (1.491)

This diagram gives the UIR Ly contained in V* as follows:
Ly=VA/IPF P8 =P yT”, (1.50)

where I8, I?" are given in (1.36), according to the cases in (1.49).
The embedding diagrams for the corresponding modules V*, when there are
even embeddings are:

VA+HS
T
VAtBe . yA L, YAB, (1.51)

where
(57 ﬂl7ﬂ€) = (Oél5, a374+Na al4)a fOI' (1463)7 j1j2 > 07 my = 07 (1523)
= (a2, 344N, 24), for (1.46b), jo=1/2, m; =0, (1.52b)

= (a25, Q344N + Qu a4 N, Q23 + a14), for (1.46b), jo=my =0,
(1.52¢)

= (0415,04474+N,0413), for (1.460), j1 = 1/27 my = O, (152(1)

= (o5 + a5, a4 44N, 23 + 1g), for (1.46¢), j, =mi =0,
(1.52¢)

= (a25, Qg4 44N, Q23 + 0114), for (146(1), m1 = 1. (1.52f)
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This diagram gives the UIR L contained in V* as follows:
Ly = VA/Iﬁﬁ/ﬂa’ Iﬂﬂ/ =71y I/@/ U A (1.53)

Naturally, the two odd embeddings in (1.48) or (1.51) are the combination of
the different cases of (1.40). Similarly, like (1.40) is a piece of the richer picture
(1.45), here we have the following analogues of (1.45) [100]*

1

Vo1

1 N=1, (1.54)
-— Voo — Vig—---

1

where Vi, = VATKAHE" and 3,8’ are the roots appearing in (1.49a), (1.49¢),
(1.49¢), (1.49i) (or (1.52a), (1.52b), (1.52d), (1.52f))

T T

= Vig— Vig— .-

1 1 N>1, (1.55)
= Voo — Vor— -

T T

The difference between the cases N = 1 and N > 1 is due to the fact that
if (1.4b) is fulfilled for Voo w.r.t. two odd roots 3,3, then for N > 1 it is
fulfilled also for all Verma modules Vj, again w.r.t. these odd roots 3, 3’, while
for N =1 it is fulfilled only for Vi w.r.t. the odd root § and only for Vj, w.r.t.
the odd root 3.

In the cases (1.49b), (1.49c¢), (1.49d), (1.49f), (1.49h) (or (1.52¢), (1.52¢))
we have the same diagrams though their parameterization is more involved [100]
(cf. also what we said about transmutation for the single chains after (1.45)).

*These diagrams are essential parts of much richer diagrams (which we do not need since we
consider only UIRs-related modules) which are explicitly described for any N in [100], and shown
there in Fig. 1 (for N = 1) and Fig.2 (for N = 2).



1098 DOBREV V.K.

However, for the modules with 0 < k,¢ < 1 (which we use) we have simply as
before Vi = VAT*A+8" for the appropriate 3, 3.

The richer structure for N > 1 has practical consequences for the calculation
of the character formulae, cf. the next Section.

2. CHARACTER FORMULAE OF POSITIVE-ENERGY UIRs

2.1. Character Formulae: Generalities. In the beginning of this Subsection
we follow [110]. Let G be a simple Lie algebra of rank ¢ with Cartan subalgebra
H, root system A, simple root system 7. Let I' (resp. I'y) be the set of
all integral, (resp. integral dominant), elements of 7:l*, i.e., A € H* such that
N\, «o)) € Z, (resp. Z), for all simple roots a;, (o) = 2c; /(v ;). Let V be
the lowest weight module with the lowest weight A and the lowest weight vector
vg. It has the following decomposition:

V=& Vi Vi={u€V|Hu=\+pu)(H)u, YH €H}. 2.1)
nely

(Note that Vo = Qvg.) Let E(H*) be the associative Abelian algebra consisting
of the series ZueH* cpe(p), where ¢, € @, ¢, = 0 for p outside the union of a
finite number of sets of the form D(\) = {u € H*|u > A}, using some ordering
of H*, e.g., the lexicographic one; the formal exponents e(y) have the properties:

e(0) = L, e(n)e(v) = e(u + v).
Then the (formal) character of V' is defined by

cho V=" (dimV,)e(A+p) = e(A) > (dimV,)e(p) (2.2)

nely prely

(we shall use subscript «0» for the even case).

For a Verma module, i.e., V = VA, one has dimV,, = P(u), where P(u)
is a generalized partition function, P(u) = # of ways p can be presented as a
sum of positive roots (3, each root taken with its multiplicity dim Cg (= 1 here),
P(0) = 1. Thus, the character formula for Verma modules is

chy VA = e(A) Z P(u)e(p) = e(A) H (1 —e(a))™t. (2.3)

pely acA+
Further we recall the standard reflections in H*:
saN)=A—(\a)a, M€ H*, a€A. (2.4)

The Weyl group W is generated by the simple reflections s; = s,,, a; € 7. Thus
every element w € W can be written as the product of simple reflections. It is
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said that w is written in a reduced form if it is written with the minimal possible
number of simple reflections; the number of reflections of a reduced form of w
is called the length of w, denoted by ¢(w).

The Weyl character formula for the finite-dimensional irreducible LWM L
over C;, i.e., when A € —I', has the form*:

cho Ly = Z (=) ®chy V¥, Ae —Ty, (2.5)
weWw

where the dot - action is defined by w - A = w(A — p) + p. For future reference
we note:

Sa A=A+ nya, (2.6)

where
N =na(A) = (p— A, aY)=(p—A)(H,), acAT. (2.7)

In the case of basic classical Lie superalgebras the first character formulae
were given by Kac [112, 120]**. For all such superalgebras (except osp(1/2N))
the character formula for Verma modules is [112, 120]:

chVh=e(A) [ T (0 —e(@)™ IT @ +e(@) |- (2.8)

aEAg' aEA;

Note that the factor ] (1 — e(a))~! represents the states of the even sector:
aeAg
Vit = U((G%)(0)) vo (as above in the even case), while ] (1-+e(c)) represents
aGA;r
the states of the odd sector: VA = (U(G%)/U((G%)())) vo. Thus, we may
introduce a character for V* as follows:

chVAh = T (1+e(a)). (2.9)

aEA;r

In our case, VA may be viewed as a result of all possible applications of the
4N odd generators XI 4 ON Vg, ie., VA has 2N states (including the vacuum).

*A more general character formula involves the Kazhdan-Lusztig polynomials Py ., (u),
y,w €€ W [119].

** Kac considers the highest weight modules, but his results are immediately transferable to the
lowest weight modules.
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Explicitly, the basis of VA may be chosen as in [103]:

1
we=| [ X0 ) | I (G ) x

k=N k=N

N
(T K a)en H (X ) | v, 20 = 0,1, (210)

where £ denotes the set of all £;;*. Thus, the character of VA may be written as

ch VA = "e(We) = (2.11a)
£
N N
Z H e ayr) itk H e(ag ayr) 24+ | x
k=1 k=1
N N
x H e asr) H e(aaarr) ™ | = (2.11b)
4
—Ze ZZsa,4+kaa,4+k (2.11¢)
3 k=1a=1

(note that in the above formula there is no actual dependence on A.)
We shall use the above to write for the character of V:

chVA =ch V™ - chy V' =

N 4
= Ze ZZ Ea,4+k Xa 44k €(A) H (1 - e(a))_l =
5 k=1a=1 aeAg
_Ze A+ ZZ €a,d+k Qg 4+k H (I—e(a)™'| =
k=1a=1 aeA(ﬂ;
N 4
A D0 > Eaatk Qaatk
A @12
5

*The order chosen in (2.10) was important in the proof of unitarity in [102, 103] and for that
purposes one may choose also an order in which the vectors on the first row are exchanged with the
vectors on the second row. For our purposes the order is important as far as to avoid impossible
states — this is much of the analysis done in the next Subsections.
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where chg Vi is the character obtained by restriction of VA to Vi
chy Vi = e(A?) chg VA" - chy VA", (2.13)

where we use the decomposition A = A® 4+ A%+ A% from (1.18a); and VA", VA",
resp., are Verma modules over the complexifications of su(2,2), su(N), resp.,
cf. Appendix C.

Analogously, for the factorized Verma modules V* the character formula is

N 4
~ “ - AT YD €adtk Qajdatk
ch VA =ch VA cho Vg = “cho ¥y =7 , (2.14)

€

where chg V! is the character obtained by restriction of VA to Vi* = U((G%)(0)

|A), or more explicitly:
chg V{* = e(A*)chg Las - chg Lu, (2.15)

where we use the decomposition A = A® + A# + A* from (1.18a) and character
formulae (C.2)—(C.4) for the irreps of the even subalgebra (from Appendix C).

Formula (2.14) represents the expansion of the corresponding superfield in
components, and each component has its own even character. We see that this
expansion is given exactly by the expansion of the odd character (2.11).

We have already displayed how the UIRs L, are obtained as factor-modules
of the (even-submodules-factorized) Verma modules VA, Of course, this factor-
ization means that the odd singular vectors of VA from (1.33) are becoming null
conditions in L. However, this is not enough to determine the character formu-
lae even when considering our UIRs as irreps of the complexification si(4/N).
The latter is a well known feature even in the bosonic case. Here the situation is
much more complicated and much more refined analysis is necessary.

The most important aspect of this analysis is the determination of the su-
perfield content. (This analysis was used in [102,103] but was not explicated
enough.) This is given by the positive norm states La among all states in the
odd sector VA, Of course, iA may have less than 24N gtates.

For future use we introduce notation for the levels of the different chiralities
¢; and the overall level e

N
€= Eiapk, 1=1,2,34, e=c1+ertesten (2.16)
k=1

The odd null conditions entwine with the even null conditions as we shall
see. The even null conditions follow from the even singular vectors in (1.23)
(alternatively, one may say that they carry over from the even null conditions
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(1.26) of VA). We write down the even null conditions first since they hold for
any positive energy UIR:

(X)) |A) = o, (2.17a)
(X)) [A) =0, (2.17b)
(XJT*‘)1+TN+4—J' IAy=0, j=5,....,N+3 (2.17¢)

((2.17¢) being empty for N = 1), where by |A) we shall denote the lowest weight
vector of the UIR L.

2.2. Character Formulae for the Long UIRs. As we mentioned if d > dax,
there are no further reducibilities, and the UIRs Ly = VA are called long since
L, may have the maximally possible number of states 24V (including the vacuum
state).

However, the actual number of states may be less than 24V states due to the
fact that — depending on the values of j, and r; — not all actions of the odd
generators on the vacuum would be allowed. The latter is obvious from formulae
(1.43). Using the latter we can give the resulting signature of the state W;:

1 . 1 . 1
X (Vs) = |d+ 38 0 + 5(52 —€1), Jjo + 5(54 —e3); 2+
+en(ezt+es—e1—e2);... i+ €1,N44—i — E1,N+5—i T €2 N44—i—

— €9 N4+5—i — €3, N+4—i + €3 N45—i — €4, N4+4—i + E4N45—ir--- |- (2.18)

Thus, only if j1,j2 > N/2 and r; > 4 (for all 7), the number of states is
24N [102], and the character formula for the irreducible lowest weight module
is (2.14):

chLy =ch VA =ch VA cho VP,  d > dmax, (2.19a)

J1,42 = N/2; 124, i=1,....N—1. (2.20a)
The general formula for ch L shall be written in a similar fashion:
ch Ly = ch Ly - chy V{*. (2.21)

Moreover, from now on we shall write only the formulae for ch Ly. Thus,
formula (2.19) shall be written equivalently as

chLy=chV™ ji,jo>N/2, 1 >4,Vi. (2.22)

As we have noted after (2.14) we do not lose information using this factorized
form which has the advantage of brevity.
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If the auxiliary conditions (2.19b) are not fulfilled, then a careful analysis
is necessary. To simplify the exposition we classify the states by the following
quantities:

Cc

&‘j =£&1 — €2,

6? =e3 — &y, (2.22)
i

Ep = €1,54+i T €2,5+i T E3,4+5 T E4,4+i — €1,4+i — €2,4+i — €3,5+i — €4,5+4>
i=1,...,N—1.

This gives the following necessary conditions on ¢;; for a state to be allowed:

€5 < 271, (2.23a)
€% < 2jy, (2.23b)
e <ry_y, i=1,...,N—1. (2.23¢)

These conditions are also sufficient only for N = 1 (when (2.23c) is absent).
The exact conditions are:

Criterion. The necessary and sufficient conditions for the state Wz of level
¢ to be allowed are that conditions (2.23) are fulfilled and that the state is a
descendant of an allowed state of level e — 1.

The second part of the Criterion will take care first of all of chiral (or
antichiral) states when some ,; contribute to opposing sides of the inequalities
in (2.23a) and (2.23c) (or (2.23b) and (2.23c)). This phenomenon happens for
jlzrl‘:O(OI‘jgzrl‘:O).

We shall give now the most important such occurrences. Take first chiral
states, i.e., all e3 44 =€344% =0. Fixe=1,...,N — 1. It is easy to see that
the following states are not allowed:

big = ¢ij 1A) = X g XSis X ive - Xah a0, an=1,2, (224)
j=1,...,N—i, j1:7‘1\/_i=...=7‘1\/_i_j+1:0,
in addition, for N >2, ¢>1 holds ry_;+1 # 0.

Demonstration. Naturally, this statement is nontrivial only when these
states are allowed by condition (2.23a) (i.e., the number of a, being equal
to 2 is not less than the number of a, being equal to 1), thus we restrict
to those. By design these states fulfil also (2.23c) ((2.23b) is not relevant)
however, they are not descendants of allowed states. First, all states zﬁij =

X;fi+5 X(:)HG X;,l,i+4+j |A) violate (2.23c) with rn_; = 0. Next, the

state ;1 is not allowed since in addition to 1/;11 also the state X1+¢+4 |A) is
not allowed (it violates (2.23a) with j; = 0). Due to this, the state ;3 is not
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descendant of any allowed states, and so on, for all 1;; . Note that the last part
of the proof trivializes unless all a,, = 2. R

Remark. The additional condition on the last line of (2.24) is there, since
if rv—it1 = 0, the states 1);; |A) (for i > 1) violate (2.23¢) with ry—;+1 = 0 and
are excluded without use of the Criterion. <

Consider now antichiral states, i.e., such that €1 44, = €2.44% = 0, for all
k=1,...,N. Fixi=1,..., N — 1. Then the following antichiral states are not
allowed:

¢§j = ¢§j [A) = X?T,i+5 XL+4 Xl:,wrs Xl;:q,zﬁrsfj [A)s bn =34, (2.25)

jzla"'7i7 jQZrN—i:-~-:rN—i+j—1:Oa
in addition, for N >2,¢>1 holds ry_;—1 #0.

Furthermore, any combinations of ¢;; and ¢/, are not allowed.

Note that for N > 4 the states in (2.24), (2.25) do not exhaust the states
forbidden by our Criterion. For example, for N = 4 there are the following
forbidden states:

e = g |A) =X35 XiH X5 XoE|A), ji=r=ra=r3=0, (2.24"
Vi = oL |A) =X X X XK IA), jo=ri=ra=1r3=0. (2.25")

Summarizing the discussion so far, the general character formula may be
written as follows:

chiy=chV® = Riong,  d> dmax, (2.26)
R = e(‘}éﬁcl) = Z e(¥s),

excluded
states

where the counter-terms denoted by R are determined by Ve/)‘(cl which is the
collection of all states (i.e., collection of ¢,;) which violate the conditions (2.23),
or are impossible in the sense of (2.24) and/or (2.25). Of course, each excluded
state is accounted for only once even if it is not allowed for several reasons®.
Finally, we consider two important conjugate special cases.
First, the chiral sector of R-symmetry scalars with j; = 0. Taking into

account (2.23a), (2.23c) ((2.23b) is trivially satisfied for chiral states) and our

*We should stress that the necessity of the counter-terms above is related to the fact that our
representations of su(2,2/N) have physical meaning and the states of L represent components of
a superfield. There are no counter-terms when we consider these UIRs as irreps of sl(4/N). Thus,
formula (2.26) and almost all character formulae derived further in this Section are character formulae
of sl(4/N) by just dropping the counter-term R, cf. the next Section.
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Criterion, it is easy to see that the appearance of the generators X, 4 1s restricted
as follows. The generator X 1+5 may appear only in the state

X XS5 |A) 2.27)

and its descendants. The generator X, may only appear either in states descen-
dant to the state (2.27) or in the state

X X5EA) (2.28)

and its descendants including only generators X;rs L @ = 1,2, £ > 1. Further,
the restrictions are described recursively, namely, fix £ such that 1 </ < N — 1.
The generator Xf 540 may only appear either in states containing generators

X{'5, ;> where 0 < j < £, or in the state
X e X are Xolgar - Xa5 |A) (2.29)

and its descendants including only generators X;fs pra=12,0>1

The chiral part of the basis is further restricted. Namely, there are only N
chiral states that can be built from the generators X, ., alone, given as follows:

Xfupr - XEIN), k=1,...N, ji=r=0,Yi. (2.30)

This follows from (2.23c) which in this case is reduced to €1; < e1,41 for
i=1,...,N—1.

Second, the antichiral sector of R-symmetry scalars with j» = 0. Taking
into account (2.23b), (2.23c) ((2.23a) is trivially satisfied for antichiral states) and
our Criterion, it is easy to see that the appearance of the generators X;f Aik 18

restricted as follows. The generator X ;r 44y May only appear in the state
Xan XL [0) (231)

and its descendants. The generator X;r 34y may only appear either in states
descendant to the state (2.31) or in the state

X ain X{apn |A) (2.32)

and its descendants including only generators X; 44N_p @ = 3,4, £ > 1. Further,
fix ¢ such that 1 < ¢ < N — 1. The generator Xgr 44 N_¢ may only appear either
in states containing generators X3+ 4+N—j > where 0 < j < £, or in the state

X?T,4+Nfe XIMN—Z XI6+N—£ T XZ:4+N |A> (2.33)

and its descendants including only generators X1,y ,, a=3,4,0 > L.
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The antichiral part of the basis is further restricted. Namely, there are only
N antichiral states that can be built from the generators X", , alone, given as
follows:

X sin— XI6+N—k e XN A, k=1,...N, ja=r;=0,Vi. (2.34)

This follows from (2.23c) which for such states becomes €4 4+ N—; < €4,54N—i
fori=1,...,N — 1.

2.3. Character Formulae of SRC UIRs. Here we consider the four SRC
cases.

a) d=dy, =d* =2+ 2jp+ 2+ 2my —2m/N > d3y.

e Let first jo > 0. In these semishort SRC cases there holds the odd null
condition (following from the singular vector (8.9a) of [101], cf. also (1.32a’),
(1.33a"), (1.36a)):

Pyapn |A) = (X[ X5 (ha — 1) = X)X ho) [A) =
- (2j2X§f4+N - XZX;) IA) =0, (2.35)

where X, v = [X5, X[]. Clearly, condition (2.35) means that the generator

X gr 44 is eliminated from the basis that is built on the lowest weight vector |A).
Thus, for N =1 and if 1 > 0 for N > 1, the character formula is

chly = H (1+e(a)) — R,
QEA?

@Foa g (2.36)
d:dmax :d}\n > dZI;\/Na j27‘1 > 0.

There are no counter-terms when j; > N/2, jo > (N —1)/2 and r; > 4 (for
all i), and then the number of states is 2V ~!. The change of statement (as
compared to the long superfields) w.r.t. jo comes because of the elimination of
the generator X3, v

Remark. For the finite-dimensional irreps of sl(4/N) (in fact, of all basic
classical Lie superalgebras) such situations are called «singly atypical» and the
character formulae look exactly as (2.36) with R =0, c¢f. [121-123]*. {

When there are no counter-terms (also for the complex si(4/N) case) this
formula follows easily from (1.42). Indeed, in the case at hand I° = I (cf.
(1.36a)); then from L = ‘N/A/I1 follows:

chLy =chVA—chI', or equivalently, ch Ly=chVA —ch fl, (2.37)

*For character formulae of finite-dimensional irreps beyond the «singly atypical» case cf. [124—
127] and references therein.
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where I is the projection of I' to the odd sector. Naively, the character of
I' should be given by the character of VA+°‘3»4+N, however, as discussed in
general (cf. (1.9)), I' is smaller than VAtesaen and its character is given with
a prefactor®:

~ 1 N ~
it e L qpatesaes - _C(08a0N) g (2.38)

1+ 6(&3)4+N) 1+ 6(&3)4+N)

Now (2.36) (with R = 0) follows from the combination of (2.37) and (2.38).
Formula (2.36) may also be described by using the odd reflection (1.11) with
B =as4inN:

chLy=chVA - mch Vieaanh R = (2.392)
=chV* — 84y, n "chVA —R = (2.39b)
= Y (-1)Ps.chVr-R, (2.39¢)

8€Ways 4y n

where W3 = {1,535} is a two-element semigroup restriction of 13, and we have
formalized further by introducing notation for the action of an odd reflection on
characters:
1 A 1 e(f)
85 -chVh= —— _chV% A= —— _chVAF = L _chvA,
’ 1+¢(B) 1+e¢(B) 1+ ¢(f)
(2.40)

It is natural to introduce the restriction Wﬁ since only the identity element of
W and the generator 53 act nontrivially because the action 5 on characters is
nilpotent:

(83)° -ch VA =0. (2.41)

(This is because the odd embeddings are nilpotent, cf. (1.9), and the action of
(838)™,m < 0 on the characters is also trivial, since the embeddings are in the
opposite direction, e.g., V7 is oddly embedded in VA=P, cf. [100] and (1.45).)

In fact, we shall need more general formula for the action of odd reflections
on polynomials P from E(H*). Thus, instead of (2.40) we shall define the action
of §3 on P as a homogeneity operator treating e(/3) as a variable

) B B)
5P =e(p) 3e(3) P, (2.42)

*This technique was applied first when deriving the characters of the N = 2 super-Virasoro
algebras, cf. [128].
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where (5 may be a root or the sum of roots. Obviously, if P is a monomial which
contains a multiplicative factor 1+ e((), this action is equivalent to the action in
(2.40), but it is more general since it acts on arbitrary polynomials P which we
need to describe our results below.

In particular, we shall show that in many cases character formulae (2.36),
(2.39) may be written as follows:

chin= Y (~1)®3 (ch VA Rlong) , (2.43)
§€Wﬁ

where Riong represents the counter-terms for the long superfields for the same
values of j; and r; as A, while the value of js is zero when jo from A is zero,
otherwise it has to be the generic value jo > N/2. (As we know, restriction
(2.23b) trivializes for jo > N/2 and thus the structure of the irrep is the same for
any such generic value.)

Writing (2.36) as (2.39) (or (2.43)) may look as a complicated way to describe
the cancellation of a factor from the character formula for VA, however, first of
all it is related to the structure of V2 given by (1.42) and furthermore may be
interpreted — when there are no counter-terms — as the following decomposition:

VA =LA ® Layp, (2.44)

for 8 = asa4n. Indeed, for generic signatures £A+ﬁ is isomorphic to Ly as
a vector space (this is due to the fact that VA*+# has the same reducibilities as
VA, cf. Sec. 1), they differ only by the vacuum state. Thus, when there are no
counter-terms, both L and Ly, have the same 2*N—1 states. If we describe
them for shortness as

D, |A), o, A+ 5), (2.45)
where none of ®; contains X3, \ and recall that the embedding of VA+S into
VA is given essentially by the generator X3, y (cf. (1.36a)), then we see that
after the embedding the states in (2.45) restore all 24N gtates in VA:

®ilA), Xy ®ilA). (2.46)

It is more important that there is a similar decomposition valid for many cases
beyond the generic, i.e., we have

(-tlong) ‘d:da = ﬁAEBI:AJraS,HN, N=1or ri >0 for N>1, (247

where leong is a long superfield with the same values of j; and r; as A, while
the value of jp has to be specified as above for Riong, and equality is as vector
spaces.
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For N > 1, there are possible additional truncations of the basis. To make
the exposition easier we need additional notation. Let ¢y be an integer such that
0<t9<N—-1,and r; =0 for 7 < ig, and if iy <N—1,thenri0+1 > 0%,

Let now N > 1 and 7o > 0; then the generators X;MN%, 1=1,...,14, are
eliminated from the basis.

Demonstration. First, we consider the vector

— (945, x+ + + _
Pyainvo = (2J2X3,3+N — Xizin X2 ) Yo =

= 2j2 (X;:4+NX;_+N - X:?+NX;T4+N) Vo—
= (X3 Xy — X3nXd) X5 w0 = (Prasny X3y — Xy Prasn) o.
(2.48)

For r1 =0, it is descendant of (1.23c) and (1.32) and leads to the null condition
Pugin 1) = (202XFa1n = Xigun X3) 1A) =0, (2.49)

which naturally follows from (2.17c) and (2.35), and which means that the gen-
erator X; 34 Is eliminated from the basis. Analogously, we define the vectors

Pyasn-ivo = (20X pn—i — Xiapn-i X3 ) vo, (2.50)

which are recursively related:

o + + _ y+ + _
Py gy n—ivo = 2j2 (X3,5+N7iX4+N7i X4+N7iX3,5+N7i) Yo

- (XI5+N—iXZ+N—i - XZ_+N—iXI5+N—i) X2+UO =
= (P3,5+N—iXZ_+N_i - XI+N_iP3,5+N—i) vg. (2.51)

Thus, in the situation: r; =0, i = 1,...,1g, there are the following null condi-
tions:

Py in—i|A)= <2j2X3+,4+N_i—XI4+N_¢X2+) |IA)=0, r; =0,1<j <i <.

(2.52)
These are recursively descendant null conditions, which means that a condition
for fixed i is a descendant of the one for i — 1 (since XI+N71‘ |A) = 0 due to

(2.17¢)). Conditions (2.52) mean that the generators X;4+N—i’ i =1,...,1
are eliminated from the basis. W

*This is formally valid for N = 1 with g = 0 since 79 = 0 by convention. This shall be used
to make certain statements valid for general N.
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From the above follows that for 79 > 0 the decomposition (2.47) cannot hold.
Indeed, the generators X;f AL N—is i=1,...,10, are eliminated from the irrep ﬁA
due to the fact that we are at a reducibility point, but there is no reason for them
to be eliminated from the long superfield. Certainly, some of these generators
are present in the second term IAJA+Q314 +n in (2.47), but that would be only
those which in the long superfield were in states of the kind: ® X 3+ ALN |A), and,
certainly, such states do not exhaust the occurrence of the discussed generators in
the long superfield. Symbolically, instead of the decomposition (2.47) we shall
write:

(Liong) |, =Ln @ Lavaruun® Lhe N>1 >0, @53)

where we have represented the excess states by the last term with prime. With
the prime we stress that this is not a genuine irrep, but just a book-keeping
device. Formulae as (2.53) in which not all terms are genuine irreps shall be
called quasi-decompositions.

The corresponding character formula is

chiy=J] (+e@)-R= (2.54a)
aeaf

aF#ag 54 Nk
k=1, 14ig

- Z (-1)¥®) §.chVA —R = (2.54b)
sews

=Y ()@ s (ch VA Rlong) , (2.54¢)
§€Wi"6
W = Wagnia X Wagngs X X Wag yiaiigs (2.544)

d=dmax = dyy > day, J2>0, 1,=0, i<ig.

The restrictions (2.23) used to determine the counter-terms are, of course, with
e3syN—k = 0, K =1,...,1 4 ip. Formulae (2.36), (2.39), (2.43) are special
cases of (2.54a)—(2.54c), resp., for 7o = 0. The maximal number of states in La
is 24N —1=%  This is the number of states that is obtained from the action of the
Weyl group WZ‘(‘) on ch V4, while the actual counter-term is obtained from the
action of the Weyl group on Rigng.

In the extreme case of R-symmetry scalars: 79 = N — 1, ie., 7, = 0,
i=1,...,N —1, or, equivalently, m; = 0 = m, all the N generators X;f4+k
are eliminated. The character formula is again (2.54) taken with i = N — 1.

e Let now jo = 0. Then all null conditions above (valid for jo > 0) follow
from (1.26b), so these conditions do not mean elimination of the mentioned
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vectors. As we know in this situation we have the singular vector (1.35) which
leads to the following null condition:

X arn Xiaow 10) = X5 X3 X[ [A) =o0. (2.55)
The state in (2.55) and all of its 24V =2 descendants are zero for any N. Thus,

the character formula is similar to (2.39), but with as 44y is replaced by (312 =
Q344N + 444N, (cf. (1.43€)):

chin= > (1)@ schV*-R= (2.56a)
3€Wp,,

=Y ()3 (ch VA Rlong) . N=1lorr >0, (2.56b)
3€Wps,,

where Wg,, = {1, f12}.

Note that for N = 1 formula (2.56) is equivalent to (2.36) since due to
(2.23b) the generator X3, \ could appear only together with X", \ but the
resulting state (2.55) is zero.

Here holds a decomposition similar to (2.47):

(ilong) ‘d:da — I ®Larp,, N=lorr>0fr N>1, (2.57)

where ﬁlong is with the same values of ji, jo(= 0),7; as A. Note, however, that
the UIR ﬁA+512 belongs to type b) below.

There are more eliminations for N > 1 when ig > 0. For instance, we can
show that all states as in (2.33) considered for / = 1,..., 4y are not allowed.

Demonstration. We show this by induction. Consider first the case
(=1

X3+,3+N XZ4+N |A) = (X;+NX;4+N - X3+,4+NX?T+N) XI4+N |A) =

= _X3+,4+N X3++N Xz4+N [A) = _X?t4+N XZS+N |A), (2.58)

where the first term is zero due to (2.55), and the second term is transformed by
pulling X;r " 1o the right, where it annihilates the vacuum (due to (2.17c) with
j = N+ 3 for ry = 0), and the resulting state is the forbidden 1/);\/—1,1 from
(2.25). Thus, the above state is not allowed.

Now fix k such that 1 < k < ig and suppose that we have already shown that
all states in (2.33) for £ < k are not allowed, and we shall show this for { = k.
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Indeed, this state is not allowed:

+ + + + _
Xoain—k XNk Xioen—k " Xiapn |A) =

— + + + + —
- _X4,5+N—k X3,4+N—k X4,6+N—k e X4,4+N ‘A> -

= _Xszerk (XI+N7kX?jT5+N7k - X;5+N7kXI+N7k) X
X X oinr o Xian 1), (259

where the first term on the last line is a state descendant of (2.33) with k — k—1,
which is not allowed by the induction hypothesis and the second term is zero due
to pulling XIJerk to the right, where it annihilates the vacuum (due to (2.17c)
with j=N+4—k forr,=0). R

From the above follows that if iy > 0 the decomposition (2.57) does not
hold. Instead, there is a quasi-decomposition similar to (2.53).

We can be more explicit in the case when all r; = 0. In that case all the
vectors X, 5 4+~ are eliminated from all antichiral states.

Demonstration. We show this by induction in k starting with k = 1, 2.
Take first the generator X;4+N. As we know, when jo = r; = 0, Vi, the
only antichiral state containing it in a long superfield is the state (2.31) and its
descendants. However, here all these possible states are zero due to (2.55). Thus,
there are no antichiral states containing X gr 41N

Take next the vector X; 31N+ As we know, the only antichiral states con-
taining it in a long superfield are the states (2.31), (2.32), and their descendants.
The first is zero, while the second is not allowed as we showed above. Thus, the
vector X;f 34 IS eliminated from all antichiral states.

Now fix € such that 1 < { < N — 1 and suppose that we have already shown
elimination of X;:5+N_k for k = 1,...,4, from all antichiral states. We want
to show elimination for k = £ + 1, i.e., of the generator X3Jf4+N—e' As we know
from the similar consideration of long superfields, all antichiral states including
X 3+ 14 N_¢ and which are not yet excluded may be wriiten as the state (2.33) and

its descendants including only generators Xa+,4+N—e~ a=3,4, ' > L. However,

above we have shown that this state is not allowed. Thus, all generators X; Atk
for k=1,... N are eliminated from the antichiral part of the basis. R

The antichiral part of the basis is further restricted. As we know, when
jo = r; = 0, Vi, there are only N antichiral states that can be built from
the generators XLI 4 alone, given in (2.34). Thus the corresponding character
formula is
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N k
chin =) JJelasin-i)+ [] (1+e(@)-r,
k=1i=1 aeat (2.60)

€1+e2>0

d = dmax = diy > dyy, J2=0, r=0,Vi.

b) d =dy, = z+2my —2m/N > d}y, j2=0.

In these short single-reducibility-condition cases, there holds the odd null
condition (following from the singular vector (1.32b) or (1.33b))

XN =X yIA) =0. (2.61)
Since jo = 0 from (1.26b) and (1.61) follows the additional null condition:

Xy n 1A) = [X5, XJT[A) = 0. (2.62)

For N > 1 and r; > 2 each of these UIRs enters as the second term in
decomposition (2.57), when the first term is an UIR of type a with jo = 0, as
explained above.

Further, for N > 1 there are additional null conditions if »; = 0, 7 < ig.
Indeed, let 1 = 0, then from (1.26¢) and (2.62) follow the additional null
conditions:

XISJFN [A) = [XI4+N,X;+N] Ay =0, r; =0, (2.63a)
Xgyn M) = (XS, N, XS n]IA) =0, 71 =0. (2.63b)
Analogously, in the situation: r; = 0, ¢« = 1,...,4p, there are recursive null

conditions:

X;4+N7i |A) = [X;5+N—i7XZr+N7i} |A) =0, 7;=0, 1<j<i<io,

(2.64a)

XI4+N—¢ |A) = [XI5+N—ivXZ+N—i] |A) =0, rj =0, 1<7j<i<io,
(2.64b)
Thus, 2(1+io) generators X35 v, X; 7o v o kb =1,...,14ig are eliminated.

The maximal number of states in L, is 24V —2-2,
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The corresponding character formula is

chl, = 11 (1+e()-R= (2.65a)
aeaf

A 54N~k
j=3,4 ,k=1,..., 1+ig

= Y (1) @s.chVr - R, (2.65b)
sewl
WZZZ) = WQS,NH X WQS,NH X oo X WQS,NH%O X
X Wasnra X Wanngs X X W viaios (2.65¢)

2 ) o
d=d¥, >dyy, Jj2=0, 1,=0, i<ig,

where determining the counter-terms we use €j54nv— = 0, j = 3,4, k =
1,...,1+14.
In the case of R-symmetry scalars (¢o = N — 1) we have

X;4+k\A>:0, X4f4+k|A>=0, k=1,...,N, r,=0,Vi. (2.66)

The character formula is (2.65) taken with 1 + ¢g = N. These UIRs should be
called chiral since all antichiral generators are eliminated.

The next two cases are conjugates of the first two and the exposition will be
compact.

o)d=dyy=d°=2+2j; —z+2m/N > dX,.

e Let first j1 > 0. In these semishort SRC cases, the odd null condition
holds (following from the singular vector (8.8a) of [101]), here cf. (1.32¢’) or
(1.33¢")):

Pi5|A) = (2j1X1+5 — X;Xfr) |A) =0, (2.67)

where X% = [X;F, XJ]. Clearly, condition (2.67) means that the generator X
is eliminated from the basis.

Let now 4( be an integer such that 0 < iy, < N —1, and ry_; = 0 for
i < 1(, and if 4 < N — 1, then rN-1-i; > 0*. For N > 1 and i( > 0 there are
additional truncations due to the vectors (cf. (C.7) of [101]):

Prsivo = (21 X 50— Xd50,) Ximvo = 201 (X7, Xah — X0 X)X
XUO_(X;:4+1‘XZ_+1‘ - XZ+iX2+,4+i) X{ o = (P174+i XIH - XIH P174+i) Yo,
(2.68)

*This is formally valid for N = 1 with i, = 0 since 7y = 0 by convention.
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which produced recursive null conditions:

Prsyi|A) = (211X 50 — X5, X07) [A) =0, rnj=0, 1<j<i<i,

(2.69)
which means that the generators X 1+ 5.4; are eliminated from the basis.
The corresponding character formula is
chiy= J] @A+el@)-R= (2.70a)
aeaf
aFay 41k
k=1,..., 1+i6
=) (1)@ 5.chVA-R = (2.70b)
sews
0
= 3 (1 5 (b VN = Riong ), (2.70c)
sews
[9)
Wf6 = Waps X Woge X -0 X Wa1,5+i67 (2.70d)

d=dmpax = dayyny >dny, 51>0, rn_;i=0, i<ij<N-—1.

This formula is valid also for N = 1 or when ry_1 > 0 by setting ij, = 0. The
maximal number of states in L, is 24V =1~ The restrictions (2.23) used for
the counter-terms are with ey y—; =0, i =0,1,...,4(.

When i, = 0, decomposition similar to (2.47) holds:

Liong =LAa®Lata,, N=lorry_;>0for N>1, (2.71)
d=d¢°

where ﬁlong is a long superfield with the same values of jo and r; as A, while the
value of j; is zero when j; from A is zero, otherwise it has to be the generic value
Jj1 = N/2. From the above follows also that when i > 0, the decomposition
(2.71) does not hold.

In the case of R-symmetry scalars (i = N — 1) all the N generators X 1+ Atk

(k=1,...,N) are eliminated. The maximal number of states in L, is 23V

e Let now j; = 0. Then the null conditions above all follow from (1.26a)
so these conditions do not mean elimination of the mentioned vectors. In this
situation we have the singular vector (1.34) which leads to the following null
condition:

XEXE|A) =X XPXS|A) =o0. (2.72)

The state in (2.72) and all of its 24V =2 descendants are zero for any N. Thus,
for N =1 or if rxy_1 > 0, the character formula is as (2.70) for ¢, = 0, but with
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a1 replaced by (O34 = ais + g5 (cf. (1.43f)):

chir= > (1)@ 5. chV»-R= (2.73a)
§€W534

- Y ()@ s (chVA _ Rlong) . N=1orry_1 >0, (2.73b)
§€W@34

where Wg,, = {1, Ba4}.

For N = 1 formula (2.73) is equivalent to (2.70) for if, = O since due to
(2.23a) the generator X5 could appear only together with X, but the resulting
state (2.72) is zero.

For i, = 0 there holds the decomposition

(ilong) ‘d:dc —Ia®Lasg,, N=lorry_1>0for N>1, (2.74)

where leong is with the same values of ji(= 0), j2,7; as A. Note, however, that
the UIR ﬁA+534 belongs to type d) below.
There are more eliminations for N > 1 when 4(, > 0. For instance, we can
show that all states as in (2.29) considered for £ = 1,..., i} are not allowed.
Demonstration. We show this by induction. Consider first the case { = 1:

Xis X5 [A) = (X5X5 — X X)) X55(A) =
= X5 X5 XEA) = X5 X56[A), (2.75)

where the second term is zero due to (2.72) and the first term is transformed by
pulling X;‘ to the right, where it annihilates the vacuum (due to (2.17c) with
j =1 for ry—1 = 0), and the resulting state is the forbidden 1. Thus, the
above state is not allowed. Further, we proceed by induction similarly to the
conjugate case, cf. (2.59).

From the above follows that when ¢, > 0, the decomposition (2.74) does
not hold.

We can be more explicit in the case when all r; = 0. In that case all the
generators X 1+ 4yp (for k=1,..., N) are eliminated from all chiral states.

Demonstration. Take first the vector X1+5. As we know, when j1 =1; =
0, Vi, the only chiral state containing it in a long superfield is the state (2.27) and
its descendants. However, here all these possible states are zero due to (2.72).
Thus, there are no chiral states containing X .

Take next the vector X {%. As we know, the only chiral states containing it in
a long superfield are the states (2.27), (2.28) and their descendants. The first is
zero, while the second is not allowed as we showed above. Thus, the vector X 1+6
is eliminated from all chiral states.
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Now fix £ such that 1 < £ < N — 1 and suppose that we have already
shown elimination of Xf:4+k for k = 1,...,4, from all antichiral states. We
want to show elimination of Xf4+k for k =€+ 1. As we know from the similar
consideration of long superfields all chiral states including Xit5+e and which are
not yet excluded may be written as the state (2.29) and its descendants including
only generators X;r,5+£” a=1,2 ¢ > (. Then it is shown (analogously to (2.33))
that this state is also not allowed. Thus, all generators Xf:4+k fork=1,...,N
are eliminated from the chiral part of the basis. B

The chiral part of the basis is further restricted. As we know, when j; =
r; = 0, Vi, there are only IV chiral states that can be built from the generators
X;f 4. alone, given in (2.30). Thus, the corresponding character formula is

N k
chly = Z H e(ag,a4i) + H (1+e(a)) — R, (2.76)
k=1i=1 acat
53+541>D

d = dpax = dyny > dNy, 51 =0, 7, =0,Yi.

d)d=dyy=—2+2m/N >dY, j1 =0.
In these short single-reducibility-condition cases, the odd null condition holds
(following from the singular vector (1.32d) or (1.33d)):

XA = X5 A =0. (2.77)
Since j; = 0, from (1.26a) and (2.77) the additional null condition follows:
X35 1A) = X, XS11A) = 0. (2.78)

For N > 1 and rny_1 > 2 each of these UIRs enters as the second term in
decomposition (2.74), when the first term is an UIR of type ¢) with j; = 0, as
explained above.

Further, for N > 1 there are additional null conditions if ry_; = 0, ¢ < 4.
These are recursive null conditions:

Xl IA) = [X{00 XEIA) =0, rv—y =0, 1< <i<ip, (27%)
X o IN) = [X5 40 XS IA) =0, ryo; =0, 1<j<i<ip (2.79b)
Thus, 2(1 + if) generators X", .. X;° .. k =1,...,1+(, are eliminated.

. . el . — — !
The maximal number of states in L, is 24V —2-2%,
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The corresponding character formula is

chLy= 11 (1+e(a)—R= (2.80a)
aEA?
OFXj dtk
j=1,2,k=1,.,.,1+i6
=Y (D)5 chVr-R, (2.80b)
sewd
0
Wfé =Wans X Wayg X oo X Way 50 X Wang X Wage Xooo X Wy o0

(2.80c)
d=dyy >dy;, 71=0, ryoi=0, i<ig<N-1, ry_1_y >0,

where R designates the counter-terms due to our Criterion, in particular, due to
(2.23) taken with €44, =0, j=1,2, k=1,..., 1+ 4.
In the case of R-symmetry scalars we have

Xk IN) =0, X3, M) =0, k=1,...,N, r;,=0,Vi. (2.81)

The character formula is (2.80) taken with 1 + i, = N. These are chiral UIRs
conjugate to the antichiral ones in (2.66).

2.4. Character Formulae of DRC UIRs. Each of the DRC cases is the
obvious combination of two SRC cases and some results follow from this. In
fact, in the generic cases, we can give a general character formula which follows
directly from embedding diagram (1.55).

So let first N > 1 and r17y — 1 > 0 (i.e., ip = i(, = 0). Then the following
character formula holds:

chin= Y (D)@ s.chV*-R= (2.82a)
3€EW; g1
- 1 . 1 e
—chVA - h VA8 _ h 1 A+8
chV 1#_e(ﬂ)cv 1+e(ﬁ,)cV +
1 ~ !
+ ch VAP _ R, (2.82b)
(I+e(B) (L+e(d))
W5 = W5 x W (2.82¢)

The above formula is proved similarly to what we had in the SRC cases. It
reflects the contribution of the modules on embedding diagram (1.55). In fact,
the two terms with minus sign on the first line of (2.82b) take into account the
factorization of the oddly embedded submodules 17, 17, cf. (1.50), coming from
the modules Vig, Vp1, resp. There can be no contribution of the modules along
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the same lines of embeddings Vig, Vi, k, € > 1, due to the Grassmannian nature
of the odd embeddings involved. Consequently, all modules Vi, for k,¢ > 1
cannot contribute to the character formula of UIR in Vjg. Only the module Vi,
can contribute since it is also a nonzero submodule of V. However, since it is
oddly embedded in Vjy via both submodules Vi, Vp1, its contribution is taken
out two times — once with I®, and a second time with I®". Thus, we need the
term with plus sign on the second line of (2.82b) to restore its contribution once*.
We cannot apply the same kind of arguments for N = 1, nevertheless, formula
(2.82) holds also then for the case (1.49a), cf. Appendix A.l.

In accord with (2.82) for N > 1 and d = d“¢ the following decomposition
holds:

(Bions) |, . = Ea @ Lasp® Lavy ® s, rarw1 >0, (283)

where ﬁlong is a long superfield with the same values of r; as A, while the value
of j; (resp. jo) is zero when j; (resp. jo) from A is zero, otherwise it has to be
the generic value j; > N/2 (resp. jo = N/2).

Next we consider the four DRC cases separately.

ac) d = dmax = djyy = dyy = d* =24 j1 4+ jo +m1, 2 = j1 — ja +
2m/N — mj.

In these semishort DRC cases, the two null conditions (2.35) and (2.67) hold.
In addition, for N > 1,ifr; = 0,7 =1, ..., 1, there hold (2.52) and if ry_; = O,
i=1,...,1, there hold (2.69).

There are two basic situations. The first is when ig + i, < N — 2. (This
situation is not applicable for NV = 1.) This means that not all r; are zero and
all eliminations are as described separately for cases a) and c). These semishort
UIRs may be called Grassmann-analytic following [23], since odd generators
from different chiralities are eliminated. The maximal number of states in L A 1S
94N —2—ig—if)

The second is when i +14(, < N —2 does not hold which means that all r; are
zero (R-symmetry scalars, m; = 0 = m), and in fact we have ig = i, = N — 1,
and all generators X;", , and X3, , are eliminated. The maximal number of
states in L, is 22V,

Note that below only one case is applicable for N = 1.

e For jij2 > 0 the corresponding character formulae are combinations of
(2.54) and (2.70):

*For more complicated application of similar arguments we refer to [128].
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chly = [[ G+e(@)-R= (2.84a)
aead
1
aFay 41k
k=1,..., 1+i6

aFag 5L N—j
j=1,." 1+ig

= > ()P 5.V -R, (2.84b)
sewee |
o

= Y U5 (b T~ Rigny) (2.84c)
sewae ,
e

W, = Wit x Wy, (2.84d)

d:dmaX:d}Vl:dil))\/N:2+j1+j2+m17 j1j2>07

either

io+ig<N—2, 7,=0, i=1,2,...,i0, N —ip, N —ig+1,...,N —1,
r; >0, i=i0—|—1,N—i6—1, orioziE}:N—l, r; = 0,V1.

The last subcase is of R-symmetry scalars. It is also the only formula in the case
under consideration — ac) — valid for N = 1 (where there are no counterterms
since (2.23a), (2.23b) bring no restrictions, cf. also Appendix A.1).

For N > 1 and igp = i, = 0, formula (2.84) is equivalent to (2.82) with
B =ais, 0/ = azsyn. Also (2.83) holds with these (3, 5"

(Llong) ’d*dac - LA D LA+(115 D LA+(1314+N S5 LA+a15+a3,4+Na "TrN—1 > 07
- (2.85)
and with -i/long being a long superfield with the same values of r; as A and with
J1,J2 = N/2.
All formulae below to the end of case ac) are for NV > 1.
e For j; > 0, j2 = 0 the corresponding character formulae are combinations
of (2.56) and (2.70):

chiy= > (-1)" s chV*-R= (2.862)
sewg'e
0
- 3 (@5 (ch VA Rlong) , (2.86b)
sews’e
0
Wiilc = Wﬂw X Wicz)’ P12 = @344 N + Q4,44 N, (2.86¢)

d=dmax =dN, =dyy =2+71+mi, j1>0, jo=0, 71 >0.
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For ig = i(, = 0, decomposition (2.83) holds:

(-i/long) ‘d_dac =Lro ﬁA+a15 @ ﬁAHam 3] ﬁA+a15+ﬁ12, riry—1 >0,
. (2.87)
where Liong is a long superfield with the same values of ja(= 0),r; as A and with

41 = N/2. Note that the UIR L q,, is also of the type ac) under consideration,
while the last two UIRs are short from type bc) considered below.

For R-symmetry scalars we combine (2.60) and (2.70a):

N k&
chin=> T]elusin-i)+ [] A+e(@)-R, (2.88)
k=1i=1 aca?
aFoy 41k
k=1,...,N
eg>0

d=dpax =di; =dy =2+7j1, j1>0, jo=0, r =0, Vi.

e For j; = 0,52 > 0 the corresponding character formulae are combinations of
(2.73) and (2.54):

chin= Y (-1)Ws.chV*-R= (2.892)
sewse’

= > ()95 (ch VA Rlong) : (2.89b)
§€Wi{:’;,

Wi%c/ = Wﬁ34 X Wz%? B34 = au5 + azs, (2.89¢)

d:dmax:d}Vl:d%N:2+j2+m1, j1:0, j2>0, ry_1 > 0.
For ig = i(, = 0 there holds decomposition (2.83):

([A/long) ’d:dac =Lr® LA+0‘3,4+N D LA+534 D LA+043,4+N+534’ rirn-1 >0,

(2.90)
where leong is a long superfield with the same values of j;1(= 0),7; as A and
with jo > N/2. Note that the UIR IA/AJFQSA .~ is again of the type ac) under
consideration, while the last two UIRs are actually from type ad) considered
below.
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For R-symmetry scalars we combine (2.54a) and (2.76):

N k
chin =" [Jelezari)+ [] (1+e(@)-R, (2.91)
k=1 i=1 aeA;’
aFag 4qk
=1,..., N
£4>0

d = dmax = di, = dxy = 2+ Jo,
Jj1=0, j2>0, 7 =0,Vi.

e For j; = j2 = 0 the corresponding character formulae are combinations of
(2.56) and (2.73):

chin= Y (1) 5. chVr-R= (2.92a)
§€W;1/ICI
0
- 3 (@ s (chVA - Rlong) : (2.92b)
éeWL_a//C/
0
Wi =Wy, x Wi, (2.920)

d = dpax = dyy = dy =2 +my,
J1=3j2=0, riry—1>0.

For i = i, = 0, decomposition (2.83) holds:

(ilong) ’d:dac - j’l\ ® il\-‘rﬂm ® j’/\-‘rﬂm D [A’A+512+534’ rirn-1 >0,
(2.93)
where ﬁlong is a long superfield with the same values of j1(= 0),j2(= 0),7;
as A. Note that the UIR £A+612 is of the bc) type, £A+ﬁ34 is of the ad) type,
ﬁA+512+g34 is of the bd) type, these three being considered below.
For R-symmetry scalars we combine (2.60) and (2.76):

N k N k
Chsz—Z He a24+2 ZH (a45+N i + H 1+6 —R,
=1 =1 k=11= aeA+

€1+€2>0
e3+e€4>0

(2.94)
d=dpax =di, =dyy =2, 2=0,

Jj1=372=0, r, =0, Vi
ad)dzd}\,l:d‘]lVN:l—sz%-ml, j1=0, z=2m/N —mq —1— j.
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In these short DRC cases, three null conditions (2.35), (2.77) and (2.78)
hold. In addition, for N > 1, if r; =0, ¢ = 1,...,1%9, there hold (2.52), and if
rv—; =0,4=1,...,4(, there hold (2.79).

If ig + iy < N — 2, all eliminations are as described separately for cases
a) and d). All these are Grassmann-analytic UIRs. The maximal number of
states in L is 24V —3~%~2i  Interesting subcases are the so-called BPS states,
cf. [16,20,23,35,41,42,44,53]. They are characterized by the number « of
odd generators which annihilate them — then the corresponding case is called

1
——-BPS state. For example, consider N = 4 and —-BPS cases with z =
0 = d = 2m/N. One such case is obtained for iy = 1,i = 0,j2 > 0, then
1
d= 5(27‘2 +3r3), r1 =0, 72 >0, 73 = 2(1 + jo).

For jom; > 0 the corresponding character formula is a combination of (2.54)
and (2.80):

chln = 11 (1+e()-R= (2.952)
aeaf

aFag 54N k-
k=1,...,141i¢

aFog 4t
a=1,2, j=1,,.,,1+i6
= > (-D)Wz.chVA - R, (2.95b)
éevi/;:ﬁié

Wod, = Wi x Wi, d=dy, =dyny =1+ja+mi, (295

1052
J1=0,j2 > 0,ig +ifg < N — 2,
r,=0, 1=1,2,...,1, N—ig, N—i6—|—l,...,N—1,
ri >0, 1=19+1, N—Z.é)—l.

For ig = i, = 0 some of these UIRs appear (up to two times) in the
decomposition (2.90). More precisely, those with 7; > 20; y—1, @ = 1, N — 1,
appear as the term ﬁA+534, while those with 7; > d;1 +26; n—1, ¢ = 1, N — 1,
appear also as the term ﬁAJraS,HNHgM.

For jo = 0, my > 0 the corresponding character formula is a combination of
(2.56) and (2.80b):

chin= > (-1 5.chV*-R, (2.96a)

~ T 'd
SEW;Z)

Wi = Wp,, x Wi, (2.96b)
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where 12 = a3.a4n + @ 44n. For ig = iy = 0 some of these UIRs appear in
the decomposition (2.93) or (2.90). More precisely, those with r; > 2; y_1, 7 =
1, N—1, appear as the term ﬁA+534 of (2.93), while those with r; > §;1 +2J; ny—1,
1 =1, N —1, appear as the term £A+a3,4+N+ﬁ34 of (2.90) but only when j, = 1/2
in A there.

In the case of R-symmetry scalars we have ig = i, = N — 1, x = 3N and all
generators Xf’4+k, X2JT4+1¢’ X3+,4+k are eliminated. Here holds d = —z = 1 + js.
These antichiral irreps form one of the three series of massless UIRs; they are
denoted Xj, s=jo=0,1/2,1,..., in Sec.3 of [102]. Besides the vacuum, they
contain only N states in La given by (2.34) for k = 1,...,N. These should
be called ultrashort UIRs. The character formula can be written in the most
explicit way:

N &
chliy=1+ Z H e(aas5+n—i),
h=1i=1 (2.97)

d=dy, =dyy=1+jo=—2, j1 =0, r=0,Vi,

and it is valid for any j. In the case under consideration — ad) — only the last
character formula is valid for N = 1 (cf. Appendix A.l).

The next case is conjugate to the previous one.
be)d=d3, =dxy =1+j1+mi,j2=0,2=2m/N —mqs+ 1+ ji.
In these short DRC cases, three null conditions (2.61), (2.62) and (2.67)

hold. In addition, for N > 1, if r; =0, ¢ = 1,...,1%9, there hold (2.64), and if
rv—; =0,4=1,...,4, there hold (2.69).

If ig + ig < N — 2, all eliminations are as described separately for cases
b) and c). These are also Grassmann-analytic UIRs. The maximal number of

. = . _9_9; _ s
states in L is 24V —3—2i0—ig

1
. Here for N = 4 one Z-BPS case is obtained for
1
io =0,iy = 1,71 > 0, then d = 5(27‘2 +3r1), 11 =2(1+41), 12 >0, 73 = 0.

For j;my > 0 the corresponding character formula is a combination of (2.65)
and (2.70):

chly = 11 (1+e(a)—R= (2.98a)
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= > (D)5 VR, (2.98b)
geWZ)C,ié
Wy, =W x Wi, d=dy, = dyy =1+ ji+mi, (2.98¢)

J1>0, j2a=0, ig+ig<N -2,
re=0,i=1,2....i0,N — i, N —ib+1,....N — 1,
Ti>0,i=i0+1,N—i6—1.

For ig = i{, = 0 some of these UIRs appear in the decomposition (2.87). More
precisely, those with r; > 2d;1, ¢ = 1, N — 1, appear as the term f/A+512, while
those with 7; > 26;1 + d; y—1, ¢ = 1, N — 1, appear as the term £A+a15+ﬂ12.

For j; = 0, m; > 0 the corresponding character formula is a combination of
(2.73) and (2.65b):

chly= Y (-1)PschV*-R, (2.99a)
sewle’
Whe' = Wg,, x W, (2.99b)

where (34 = a15 + aos. For ig = iy = 0 some of these UIRs appear in
the decomposition (2.93) or (2.87). More precisely, those with r; > 24,1, i =
1, N —1, appear as the term £A+612 of (2.93), while those with 7; > 26,1 +6; n—1,
i=1,N — 1, appear as the term L a,,44,, of (2.87) but only when j; = 1/2
in A there.

In the case of R-symmetry scalars we have ig = iy, = N — 1, kK = 3N and
all generators Xf Atk X; Atk XZ4 . are eliminated. These chiral irreps form
another series of massless UIRs, conjugate to the first above; they are denoted
Xs» § = j1 =0,1/2,1,..., in Sec.3 of [102]. Besides the vacuum they contain
only NN states in La given by (2.30) for £ = 1,..., N. These should also be
called ultrashort UIRs. The character formula is

N k
chLy =1+ J]elazars), (2.100)
k=11=1

d=d4, =dyy=1+j1=2jo=0, 7=0,V1,

and it is valid for any j; . In the case under consideration — bc) — only the last
character formula is valid for N =1 (cf. Appendix A.1).

bd)d:d?\/l :d?VN:TTL1,j1 :j2:0,z:2m/N—m1.

In these short DRC cases, four null conditions (2.61), (2.62), (2.77), and
(2.78) hold.
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For N =1 this is the trivial irrep with d = z = 0. This follows from the fact
that since d = j; = j2 = 0, the even reducibility condition (1.17b) also holds (and
consequently (1.17d)—(1.17f)). Thus, we have the null conditions: X ,j |A) =0
for all simple root generators (and consequently for all generators) and the irrep
consists only of the vacuum |A).

For N > 1 the situation is nontrivial. In addition to the mentioned conditions,
and if 7, =0, ¢ = 1,...,14p, there hold (2.64) and if ry_; =0, i = 1,...,if,
there hold (2.79).

If ig + iy < N — 2, all eliminations are as described separately for cases
b) and d). These are also 4Gra4ssmann-analytic UIRs. The maximal number
of states in Lp is 24N—4-20=2i  For N = 4, for the BPS cases we take

1 1
z = 5(7"3 —711)=0=d=2r1 +ry. In the Z—BPS case we have ig = i, = 0,
ry =13 > 0.

For ip = i(, = 0 some of these UIRs appear in the decomposition (2.93).
More precisely, those with r; > 26;1 +26; y—1, ¢ = 1, N — 1 appear as the term
LA+,312+ﬂ34'

Most interesting is the case ig + i, = N — 2, then there is only one nonzero
T3, namely, 714, = TN-1-if > 0, while the rest r; are zero. Thus, the Young
tableau parameters are: mi = 144, M = (1 + %0)7144,-

An important subcase is when d =mj; =1, thenm=ip+1=N —1— ig,

= i, and these irreps form the third series of massless UIRs. In Sec.3

of [102] they are parameterlzed by n € IN, N n < N, and denoted by x/,,

n=m(z=2n/N—-1), x,f,n=N-m (z =1—2n/N). Note that for even
N there is the coincidence: x), = x/;t, where n = m = N —m = N/2. Here we
shall parameterize these UIRs by the parameter 1o =0,1,..., N — 2.

1
Another subcase here are §-BPS states for even N with 2 =0=d =my =

N
2m/N = iy =ig = N/2 =1 = my = ryj, m = 5 TN/2: These are also
massless only if 7/ = 1, which is the self-conjugate case: x;,, n = N/2. For
N =4 we have: ig =i( = 1, r; = rg = 0, 72 > 0, which is also massless if
T9 = 1.

Finally, in the case of R-symmetry scalars we have ig = i(, = N — 1 and all
4N odd generators X", . X, . X5, . X, are eliminated. More than
this, all quantum numbers are zero (cf. (1.46d), (1.46d")), and this is the trivial
irrep. The latter follows exactly as explained above for the case N = 1.

For my > 0 the corresponding character formula is a combination of (2.65)
and (2.80):
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chLp = 11 (1+e(a)—R = (2.101a)
aEA%’
aFaj 51 N—k
j=3,4,k=1,...,1+ig

AFCG Aq k!
j’=1,2,k'=1,..., 1+,

= > ()P s5.hVr-R, (2.101b)
sEWibo‘fi,
Wi{jz‘g = Wzl:) X Wicéad = d?\n = d}lVN = my, (2.101¢)

1=J2=0, io+ig <N -2,
ri=0, i=1,2,...,i0, N —ig, N —ig+1,...,N —1,
r; > 0, i=i0+1,N—’i6—1,

where R designates the counter-terms due to our Criterion, in particular, due
to (2.23) taken with €j5+N—k = 0, =34, k=1,...,1+ 1, Ejl Atk = 0,
J=12K=1,...,1+1.

Also for the third series of massless UIRs we can give a much more explicit
character formula without counter-terms. Fix the parameter ¢p = 0,1,..., N — 2.
Then there are only the following states in ﬁA:

X nyay o Xdnya s Ay 5=0,1,...io, (2.102a)
Xiun o Xins i), k=1, ,N —1—i, (2.102b)

altogether IV states besides the vacuum.

D emonstration. Indeed, besides (2.102) no other states involving gener-
ators X:,4+k for a = 2,4 are possible due to the restrictions (2.23). Note that
the generators of the latter kind which do not appear in (2.102) are eliminated
due to (2.61), (2.64b) and (2.77), (2.79b). We have to discuss the generators
X;f4+k for a = 1,3. Part of them are eliminated due to (2.64a) and (2.79a). The
rest are: XffN+47j, 7 =0,1,...,i9 and Xz4+k’ k=1,....,N —1—1y. They
cannot act on the vacuum, so they can only act on some of the states in (2.102a)
or (2.102b), resp. For two of these: XiN+4—io and X;N+3_io it is easy to see
that they cannot act on any state. For the rest: XfN+4—j’ j=0,1,...,50—1
and X4+,4+k’ k=1,...,N — 2 — 1, the only possibility for action which cannot
be excluded in an obvious way, is:

X1+,N+4—j X;N+3_j o X nia 1N, G=0,1,..i0—1,  (2.103a)
Xy Xd s X npsi M), E=1,...,N—2—i (2.103b)
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However, all these states are not allowed. This is shown also for the states (2.33)
and (2.29). Thus, besides the vacuum, ﬁA contains only the N states given in
(2.102). A

The corresponding character formula for the massless UIRs of this series is
therefore:

0 10 N
ChiA =1+ Z He(a2,N+4—i) + Z H 6(044744_1‘), (2.104)

—1—ig N—1—1ig
j=01i=j k= i=

—
x>

d=dy, =dyy=m1=1, ig=0,1,....N -2,
z2=2(p+1)/N =1, ji=72=0, 75=70iip+1-

Remark. In this paper we use the Verma (factor-)module realization of the
UIRs. We give here a short remark on what happens with the ER realization
of the UIRs. As we know, cf. [101], the ERs are superfields depending on the
Minkowski space-time and on the 4N Grassmann coordinates 6, éf, a,b=1,2,
i,k =1,...,N*. There is I-to-1 correspondence in these dependences and the
odd null conditions. Namely, if the condition X;rAJr,C |A) =0, a = 1,2, holds,
then the superfields of the corresponding ER do not depend on the variable 0¥,
while if the condition X:,4+k |AY = 0, a = 3,4, holds, then the superfields of
the corresponding ER do not depend on the variable 0% . These statements
were used in the proof of unitarity for the ERs picture, cf. [103], but were not
explicated. They were analyzed in detail in the papers [16, 17, 20, 23], using the
notions of «harmonic superspace analyticity» and the Grassmann analyticity. <

3. DISCUSSION AND OUTLOOK

First, we summarize the results on decompositions of long irreps as they
descend to the unitarity threshold.

In the SRC cases we have embedding formula (1.40), and UIRs are given by
formula (1.42). Starting from this, in Subsection (2.3) we have established that
for d = dpax there hold the following decompositions:

(Liong) |, , =Ln@Lass, (3.1)

where there are two possibilities for A and four possibilities for (5 as given
in (1.41a), (1.41c), (1.41e), (1.41f), however, for N > 1 there are additional

*A mathematically precise formulation is given in [101], while for the even case we refer
to [113, 114].
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conditions on ;. In more detail, A and [ are specified as follows:

d = dpax = d* =dy; > dxy, 7 >0, (3.2a)
B=azarn, J2>0, (3.22")
B =0a344N + 44N, J2=0, (3.24"")
d=dnayx =d° = dyy >dy,, Tn_1>0, (3.2b)
B =ais, j1>0, (3.21)
B =015+ azs, j1=0. (3.2b"")

The corresponding four decompositions are given in formulae (2.47), (2.57),
(2.71), (2.74), resp., and in each case it is explained how ﬁlong is specified. It
is also noted that in cases (3.2a”), (3.2b”) the UIRs £A+ﬁ are short from types
given in (1.39b), (1.39d), resp., and with 1 > 2, rny_1 > 2, resp.

In the DRC cases we have embedding formulae (1.48), (1.54), (1.55), and
UIRs are given by formula (1.50). Starting from this, in Subsec. 2.4 we have
established that for vV > 1 and d = dpax = d* there hold the following
decompositions:

(ilong) ‘d:d“ =LA@ Ly ® Lary ® Larsep, riry—1 >0, (3.3)

where A is the semishort DRC designated as type ac), and there are four possibili-
ties for 3, 3 as given in (1.49a)—(1.49d). The corresponding four decompositions
are given in formulae (2.85), (2.87), (2.90), (2.93), resp., and in each case it is
explained how ﬁlong is specified. Note that in (2.85) all UIRs are semishort. In
(2.87) the first two UIRs are semishort, the last two UIRs are short of type bc).
From the latter two, the first is with 1 > 2,rny_1 > 0 (r; > 2 if N = 2), the
second is with 71 > 2,ry_1 > 1 (r1 > 3 if N = 2). In (2.90) the first two
UIRs are semishort, the last two UIRs are short of type ad). From the latter
two, the first is with 7y > 0,r7ry_1 > 2 (r; > 2 if N = 2), the second is with
ry > 1,ry_1 > 2 (ry > 3 if N = 2). In (2.93) the first UIR is the semishort, the
other three UIRs are short of types bc), ad), bd), resp. From the latter three, the
first is with 1 > 2,rny_1 > 0, the second is with 1 > 0,7x5_1 > 2, the third is
with 71, 7ny_1 > 2 (ry > 4 if N = 2).

Summarizing the above, we note first that for N = 1 all SRC cases enter
some decomposition (3.1), while no DRC cases enter any decomposition (3.3).
For N > 1 the situation is more diverse and so we give the list of UIRs that do
not enter decompositions (3.1) and (3.3):

SRC Cases:

a) d = dpax = d* = dX; =2+ 2j2 + 2+ 2mq — 2m/N > d3;y,

J1, Jo arbitrary, r; = 0.



1130 DOBREV V.K.

b) d =d%, = z+2my —2m/N > d¥ y,j2 =0,

J1 arbitrary, r; < 2.

¢) d = dmax = d° = d¥ y =2+ 2j1 — 2+ 2m/N > dj,
J1,J2 arbitrary, ry_1 = 0.

d)d=dyy=—-2+2m/N > d,,j1 =0,

J1 arbitrary, ry—1 < 2.

DRC Cases:
all nontrivial cases for N = 1, while for N > 1 the list is:
ac) d = dpax = d*€ :d}Vl :d‘;’\,N =240 +jo+m, 2 =71 —Jo+
2m/N—m1,
J1, Jo arbitrary, riry—1 = 0.
ad)d:d}\,l Zdilszlﬁ-jQ—le,jl :O,z:—l—j2—|—2m/N—m1,
Jjo arbitrary, ry_1 < 2,71 =0 for N > 2.
bc)d:d?\,1 :d§’VN:1+j1 +m1,j2 =0, z=14j1 +2m/N — mq,
j1 arbitrary, 1 < 2, ry—1 =0 for N > 2.
bd)d:d?\n :d;lVN:ml,jl :jQZO,ZZQ’ITL/N—ml,
ri,rn—1 <2 for N >2,r;y <4 for N =2.

We would like to point out possible application of our results to current de-
velopments in the conformal field theory. Recently, there is interest in superfields
with conformal dimensions which are protected from renormalization in the sense
that they cannot develop anomalous dimensions [23,31-34,51]. Initially, the
idea was that this happens because the representations, under which they trans-
form, determine these dimensions uniquely. Later, it was argued that one can
tell which operators will be protected in the quantum theory simply by looking
at the representations they transform under and whether they can be written in
terms of single trace 1/2 BPS operators (chiral primaries or CPOs) on analytic
superspace [34]. In [51] it was shown how, at the unitarity threshold, a long
multiplet can be decomposed into four semishort multiplets, and decompositions
similar to (2.83), i.e., involving the modules in (1.55) (as given in [100]), were
considered for N = 2,4. However, the decompositions of [51] are justified on the
dimensions of the finite-dimensional irreps of the Lorentz and su(N) subalgebras
involved in the superfields involved in the decompositions, and in particular, the
latter hold also when riry_1 = 0.

Independently of the above, we would like to make a mathematical re-
mark. As a by-product of our analysis we have obtained character formulae
for the complex Lie superalgebras sl(4/N). The point is that our character
formulae have as starting point character formulae of Verma modules and factor-
modules over sl(4/N). Thus, almost all character formulae in Section 2, more
precisely, formulae (2.26), (2.36), (2.39), (2.43), (2.54), (2.56), (2.65), (2.70),
(2.73), (2.80), (2.82), (2.84), (2.86), (2.89), (2.92), (2.95), (2.96), (2.97a), (2.98),
(2.99), (2.100a), (2.101), become character formulae for si(4/N) for the same
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values of the representation parameters by just discarding the counter-terms R,
Riong, resp.

Finally, let us mention that we explicate our results for N = 1,2 in Appen-
dix A. There we display explicitly all decompositions (3.1), (3.3), and when these
do not hold, all quasi-decompositions (like (2.53)) that replace them. We leave
similar detailed discussion for N = 4 for the follow-up paper.
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Appendix A
EXPLICIT CHARACTER FORMULAE FOR N =1,2

A.l. N =1. For N =1 the displayed results are almost explicit, so we can
allow telegram style.

Long Superfields. 1f jj, > 0, then L, has the maximum possible number
of states: sixteen. The character formula is (2.19).

If j1 = 0,52 > 0, then the generator X, can appear only together with
the generator X2+5, and L, has 12 states = 3(chiral) x4(antichiral) states *. The
character formula is (2.26) with

R = 6(0415)(1 + 6(0435))(1 + 6(0645)). (A.1)

The next case is conjugate. If j; > 0,72 = 0, then the generator X?f5 can
appear only together with the generator X 2’5, and L has 12 states. The character
formula is (2.26) with

R = 6(0[35)(1 + 6(0[15))(1 + 6(0[25)). (A.2)

The next case combines the previous two. If j; = jo = 0, then the
generator X 1+5 can appear only together with the generator X2+5, the generator
X5 can appear only together with the generator X5, and L, has 9 states =
3(chiral) x 3(antichiral) states. The character formula is (2.26) with

R = e(a15)(1 + e(ass))(1 + e(aus)) + e(ass) (1 + e(ais))(1 + e(azs))—
— 6(0615)6(0435), (A3)

*In statements like this, each sector includes the vacuum.
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i.e., we combine the counter-terms of the previous two cases, but need to subtract
a counter-term that is counted twice.

SRC Cases

a) d = dmax = diy =2+ 2j2 + 2 > d3;.

e j; > 0. The generator ng is eliminated (though for different reasons for
j2 > 0 and jo = 0, cf. (2.35), resp., (2.55)) and there are only 8 states*. Then
the character formula is (2.36) (or equivalently (2.39)) without counter-terms:

chin= [ A+e(@), d=dma=di >d};, j1>0. (A4)

aeaf
a#aszs

For js > 0 the decomposition (2.47) is fulfilled with ﬁlong having 16 states
as the maximal long superfield with j;jo > 0, while ﬁA+a35 has 8 states (being
of the same type as L).

For jo = 0 the decomposition (2.57) is fulfilled with ﬁlong having 12 states
as the long superfield with j; > 0,752 = 0, 8 = as5 + au5, and ﬁA+a35+a4s
having 4 states — it actually belongs to case b) below (for j; > 0, jo = 0).

e j1 = 0. The generator X is eliminated, the generator X5 can appear only
together with the generator X;r5 and there are only 6 states. Then the character
formula is (2.36) (equivalently (2.39)):

chly = H+ (1+e(a)) — R,
*e8y (A.5)

a#ags

R = 6(0415)(1 + €(Oé45)),d = dmax = dh > d?l, jl =0.
This formula is equivalent also to (2.43), noting:
R = 6(0[15)(1 + 6(0[45)) = (1 — §a35)R10ng, (A6)

taking Riong from (A.1).

For js > 0 the decomposition (2.47) is fulfilled with f)long having 12 states
as the long superfield with j; = 0,52 > 0, while ﬁA+a35 has 6 states (being of
the same type as L).

For j, = 0 the decomposition (2.57) is fulfilled with ﬁlong having 9 states
as the long superfield with j; = jo = 0, while ﬁA+a35+a4s has 3 states — it
actually belongs to the next case b), cf. below (for j; = j2 = 0).

b)yd=d? =z>d},j2=0.

*For brevity, here and often below we shall say «there are M states» meaning «there are M
states in Lp».
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e ji > 0. The generators X7 and X; are eliminated and there are only 4
states. Then the character formula is (2.65) (for ¢9 = 0) without counter-terms:

chLy = (1+e(a1s))(1+e(ass), d=d?, >d, j1>0, jo=0. (A7)

These UIRs and the next subcase enter formula (2.47) together with UIRs of case
a) as we have shown above.

e ji = 0. The generators X5 and X; are eliminated, the generator X% can
appear only together with the generator X2+5, and there are only 3 states. Then
the character formula is (2.65) (for ip = 0) with counter-term R = e(aqs):

ch .EA =1+ 6(&25) + 6(&15)6(0[25), d= d?l > dzlil, J1=742=0. (A.B)

Here holds also an analog of (2.43) with Wg replaced by Wé’ and Riong from
(A.1).

¢) d=dmax = d3y =2+ 2j1 — 2 > di;.

e jo > 0. The generator X is eliminated (though for different reasons for
J1 >0 and j; =0, cf. (2.67), resp., (2.72)) and there are only 8 states. Then the
character formula is (2.70) without counter-terms:

chin= [ A+e(@), d=dmax=d}, >dj;, j2>0. (A9)

aeA%’
a#ays

For j; > 0 the decomposition (2.71) is fulfilled with ﬁlong having 16 states as
the maximal long superfield with j;jo > 0. For j; = 0 the decomposition (2.74) is
fulfilled with f)long having 12 states as the long superfield with j; = 0, jo > 0, and
LAta5+a.; having 4 states — it actually belongs to the next case d), cf. below
(for j1 = 0,72 > 0).

e jo = 0. The generator X/ is eliminated, the generator X; can appear only
together with the generator X ;g and there are only 6 states. Then the character
formula is (2.70):

chly = H (1+e(a)) — R,
acaf (A.10)

aFals

R = 6(0435)(1 + 6(0425)), d = dmnax = d?l > dh, j2 =0.

This formula is equivalent also to (2.43) with Rione from (A.2).

For j; > 0 the decomposition (2.71) is fulfilled with f)long having 12 states
as the long superfield with j; > 0, jo = 0. For j; = 0 the decomposition (2.74)
is fulfilled with ﬁlong having 9 states as the long superfield with j; = j» = 0, and
LAtai5+a; having 3 states — it actually belongs to the next case d), cf. below,
(fOI‘ jl = j2 = O)
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d) d: d4111 = —z> d%l’jl == 0.
e jo > 0. The generators X;; and X, are eliminated and there are only
4 states. Then the character formula is (2.80) (for i(, = 0) without counter-terms:

chiy = (14e(ass))(14e(ays)), d=di, >di,, 51=0, j2>0. (All)

These UIRs and the next subcase enter formula (2.71) together with UIRs of
case ¢) as we have shown above.

e jo = 0. The generators X5 and X, are eliminated, the generator X5 can
appear only together with the generator X 4+5, and there are only 3 states. Then
the character formula is (2.80) (for i{;, = 0) with counter-term R = e(ass):

chLy =1+ e(ays) +e(ass)e(ass), d=di, >db, j1=72=0. (A.12)

Here holds also an analog of (2.43) with Wg replaced by ng and Riong
from (A.2).

DRC Cases

ac) d = diax = d}y = dfy = d* =2+ j1 + jo, 2 = j1 — Ja.

The generators X and X3; are eliminated (though for different reasons for
j1 >0 and j; = 0, resp., for jo > 0 and jo = 0). There are only 4 states and the
character formula is (2.84) (for iy = i, = 0) without counter-terms:

. . 1 .
hLy=(1 1 =chV? - — h A+ _
chLy=(1+4e(as))(l+elass)) =c 1+e(a15)c

N 1 N
ch VA+ass 4 ch VAtastass = (A 13)

~ 1+e(azs) (1+e(as))(1 + e(ass))

where the terms with minus may be interpreted as taking out states, while the last
term indicates adding back what was taken two times. This may be written also
in the form of the following pseudodecomposition:

(Liong) |, = Ea® Lavars ® Dnvags © Lnrarbasss (A1)

where fLA+a15, ﬁA+a35 are SRC UIRs with 8 states each described above in
cases c), a), resp. They are embedded in V2 via the generators X5, X,
resp. Together with Ly this brings in terms which have to be taken out with
the last term in which the representation denoted ﬁA+a15+a35 is supposed to
have the same 4 states as ﬁA and these excessive states are de-embedded via the
composition of the other two maps, i.e., via the product of generators X% X .

ad)d=dly =d};, =1+jo=—2,51=0.

The generators X%, X, and X are eliminated (for the latter for different
reasons for jo > 0 and j, = 0). These are the first series of massless UIRs, and
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everything is already explicit in the general formulae. There are only 2 states and
the character formula is (2.97) for N = 1:

chLy =1+ e(aus). (A.15)

bC)d:d%lzdi’l:lﬂ-jl:Z,jQZO.
The generators X5, X3, and X5 are eliminated (for the first for different

reasons for j; > 0 and j; = 0). These are the second series of massless UIRs.
There are only 2 states and the character formula is (2.100) for N = 1:

chLy =1+ e(ass). (A.16)

bd)d=d? =d};, =j1 =ja=2=0.

As we explained in detail, this is the trivial one-dimensional irrep consisting
of the vacuum.

A2. N =2,

Long Superfields. We first write down conditions (2.23) explicitly for N = 2:

€15 + €16 < €25 + €26 + 2J1, (A.17a)
€35 + €36 < €45 + €46 + 2J2, (A.17b)
€16 + €26 + €35 + €45 < €15 + €95 + €36 + €46 + 71 (A.17¢)

To simplify the exposition we classify the generators by their contribution to
(A.17). Namely, the chiral and antichiral operators

P = (X1p)7° (X5)7 (Xg5)™ (X35)7°,

(A.18)
D = (X35)7 (X35)%° (X35)7° (X )™
will be distinguished by the values (cf. also (2.22)):
€5 = €25 + €26 — €15 — €16,
€] = €45 + €46 — €35 — €36,
€, = €15 + €25 — €16 — €26, (A.19)
€r = €36 + €46 — €35 — €45,

_ 1 -
er =€, =¢p + €.
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Explicitly, the chiral operators are arranged as follows:

+ v+ c _ c __
X5 X5, e.=2, €;=0,
+ + v+ v+
KXoy Xog Xi5 Xo5, €7 =
+ + v+ v+
X5 XigXi5 X5, €

+ + c __ c __
Xog Xo5, €,.=0, ¢€5=2,

L, Xig X35, XogXi5, XigXgeXi5X55 e7=0, €5=0, (A20)
XX, ef=0, &=-2,

X2+6, X2+6X1+6X2+5, e =-1, =1

X, XHEXEXS, e=-1 &=-1,

X5 X5, &5 =-2, €5=0,

while the antichiral operators are arranged as follows:

+ + a __ a __
Xag Xy, € =2, €5=0,

+ + y+ v+ a_
Xior Xa5 Xg6 Xggo e =1, ¢

r

+ + x+ y+ g0
Xgor  Xg5 Xg6 X €r =1, ¢

T

XX, ev=0, €4 =2,

T

1, X&EXS, XEXd, X&HX5XiXe, =0 /=0 (A2])
XH X, €r=0, &f=-2

X5 XEXGE X, er=-1, =1,

X, X XHXfE, et =-1, ej =—1,

XH XS5, er=-2, ei=0.

The same arrangement applies to the states obtained by applying the operators
on the vacuum (for which all these indices naturally have zero value). We have
added also the identity operator 1 in order to be able to take into account the
vacuum automatically.

The allowed states satisfy: €§ + 251 =2 0, E? + 255 20, e, +1r1 =2 0,
cf. (2.23). Now we are ready to classify the allowed states depending on the
values of j1,j2,71. Actually what we do below amounts to giving explicitly
formula (2.26).

e First, we give the possible states when j1, jo > 1:

OO |A), j1,j2 =1, 7T >4, 256 states; (A.22a)
OCDY|A), ji1,72=1, r1 =3, 255 states,
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excluding the state X5 X5 X35 X5, with e, = —4; (A.22b)
PCOU|A), j1,j2 =1, T =2, 247 states,

excluding the 9 states with ¢, < —3; (A.22¢)
P |A), j1,je=1, 7T =1, 219 states,

excluding the 37 states with €, < —2; (A.22d)
¢ DAY, ji,j2 =1, 7 =0, 163 states,

excluding the 93 states with e, < —1. (A.22e)

Further we classify the states when j;, jo > 1 is not fulfilled using the five
cases in (A.22) as a reference point.

e j1 > 1, jo = 1/2. With respect to (A.22) we exclude 16 states with
ef =—2,(80€f +2jo=—1)

X X ®¢|A). (A.23)

However, for (A.22d), (A.22¢) the case when ®¢ = X;i X (with €& = —2)
is already taken out, and for (A.22e) the four cases of ®°¢ with ef = —1
are already taken out. Thus, altogether, in the five cases corresponding to
(A.22a)—(A.22e) we take out 16,16,16,15,11 states and so there remain now
240,239, 231, 204, 152 states.

e j1 = 1/2, jo > 1. This is the case conjugate to the previous one. With
respect to (A.22) we exclude 16 states with €j=—-2(s0¢j+2j =—1

X X5 @ |A). (A.24)

Noting the double-counting for the five cases & with €& = —2, —1, in the cases
corresponding to (A.22a)—(A.22e) we have now 240, 239, 231, 204, 152 states.

e j1 = jo = 1/2. This is a combination of the previous two cases. With
respect to (A.22) we exclude the states we have excluded in both the cases, which
would double the numbers (to 32, 32,32, 30, 22), however, we have to take into
account that the state X, X5 X35 X3 |A) is counted two times. Thus, altogether,
in the five cases corresponding to (A.22a)—(A.22e) we take out 31,31, 31, 29,21
states and so there remain now 225,224,216, 190, 142 states.

e j; > 1, jo = 0. In addition to the states excluded in the case j; > 1,
jo = 1/2, we exclude 64 states with 6? = —1 (so 6? + 259 = —1):

X @A), X5 X X @A), (A.25a)
X @A), X5 Xos Xk @A), (A.25b)

We have to take into account that certain states were already taken out,
namely, the following:
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— for (A.22¢)—(A.22e) the two cases (A.25b) with ®¢ = X}k X (so that
er = —3);

— for (A.22d), (A.22¢) the eight cases obtained by combining (A.25b) with
®¢ with € = —1 (so that ¢, = —2);

— for (A.22e) the twelve cases obtained by combining (A.25b) with &¢ with
€S =0 (so that ¢, = —1);

— for (A.22e) the two cases (A.25a) with ®¢ = X X5 (so that &, = —1).

Altogether, for (A.22c)—(A.22e) the overcounting is by 2, 10, 24 states. Thus,
the states we actually take out w.r.t. the case j; > 1, jo = 1/2 are 64, 64, 62, 54,
40. Finally, for (A.22e) we have to take out the impossible state X5 X5 [A),
cf. (2.25). Altogether the states remaining in the cases corresponding to (A.22a)—
(A.22e) are 176,175,169, 150, 111, resp.

e j1 =0, j2 > 1. This is the case conjugate to the previous one. In addition
to the states excluded in the case j; = 1/2, jo > 1, we exclude 64 states with
ej=—1,(s0ef+2j; =—1)

XE®"|A), X X5 XS5 @A), (A.26a)
X0 A), Xy XiE XS5 @ |A). (A.26b)

We have to take into account that certain states were already taken out, namely,
the following:

— for (A.22c)—(A.22e) the two cases (A.26b) with @ = X X - (so that
er = —3);

— for (A.22d), (A.22e) the eight cases obtained by combining (A.26b) with
®* with €& = —1 (so that e, = —2);

— for (A.22e) the twelve cases obtained by combining (A.26b) with ®¢ with
€2 =0 (so that e, = —1);

— for (A.22e) the two cases (A.26a) with ¢ = Xt X £ (so that &, = —1).

Altogether, excluding also the impossible state X5 X5 |A) (when r; = 0,
cf. (2.24)), in the five cases corresponding to (A.22a)-(A.22e) we have now
176,175,169, 150, 111 states.

e j1 = 1/2, jo = 0. This is a combination of previous cases, so W.r.t.
(A.22) we exclude the states in (A.23), (A.24), (A.25). Due to overlaps there
are five states which are counted two times — those in (A.23), (A.25) when
¢ = X X{&. Thus, w.r.t. the case j; > 1, jo = 1/2 we would take out eleven
states. However, from those cases the state (A.24) with ®* = X% X - was taken
out in (A.22d), (A.22¢) and the states (A.24) with &% = XZ% P = XZ% X:,f5 XZ%
were taken out in (A.22e). Thus, w.r.t. the case j; > 1, jo = 1/2 we take out
11,11,11, 10, 8 states, and in the cases corresponding to (A.22a)—(A.22e) there
are 165,164, 158, 140, 103 states.

e j; =0, jo = 1/2. This case is conjugate to the previous one and so
w.r.t. (A.22) we exclude the states in (A.23), (A.24), (A.26). With respect to
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the case j; = 1/2, jo > 1 we take out 11,11, 11,10, 8 states. Thus, in the cases
corresponding to (A.22a)—(A.22e) there are 165, 164, 158, 140, 103 states.

e j; = jo = 0. This is a combination of previous cases so we exclude
the states in (A.23), (A.24), (A.25), (A.26). Due to overlaps of (A.26) with
(A.23) and (A.24) wart. the case j; = 1/2, jo = 0 we would take out 44
states (instead of 64). However, from those cases the two states (A.26b) with
®* = X X - were taken out in (A.22c)—(A.22e), the four states obtained from
(A.26b) with ®* = X o, ®* = X5 Xt X\ were taken out in (A.22d), (A.22e),
the two states (A.26b) with ®* = X - X were taken out in (A.22e), the eight
states obtained from (A.26b) with ®* = 1, ®* = XL X5, ®* = X X,
P = X X2 X5 X were taken out in (A.22e), the two states (A.26a) with
®* = X, X, were taken out in (A.22e). Thus, the states we actually take out
w.r.t. the case j; = 1/2, jo = 0 are 44,44,42,38,26. For (A.22e) we have also
to take out two impossible states: (2.24) and its combination with (2.25):

X X5 Xa X5 |A). (A.27)

Altogether the states remaining in the cases corresponding to (A.22a)—(A.22e)
are 121,120,116, 102, 75 states. .

Thus, the smallest NV = 2 long superfield has 75 states in Lj. Since above
the states we described by exclusion we would like to list these 75 states. First,
there are 6 chiral states:

X35 1A), X5 X55[A),  Xgg Xi5 X35 [A), (A.282)
Xoo X5 IA), Xig Xo5[A), X5 Xog Xi5 X35 |A) (A.28b)

and 6 antichiral states:
Xi6 1A), Xas Xi6 1A), X35 Xy X |A), (A29)
XEXGIN), XEXEIA),  X§ X5 X5 X6 IA). (A.29b)

Now let ®.|A), ®,|A) denote any of the six states in (A.28), (A.29), resp.,
®’ |A), ! |A) denote any of the three states in (A.28a), (A.29a), resp. Then,
there are the following states:

|A), @2, [A), (A.30a)
X{5 X5 @ |A), (A.30b)
Xijs X 15 ®c ), (A.30¢)
XS @A), Xy X5 Xk @ |A), (A.30d)
XE®LIA), X3 X X @LIA), (A.30e)

Xou X X5 XSE N, X X X X5 |A). (A.30f)
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Obviously, there are 63 states in (A.30) (3746 + 6 + 6 + 6 4+ 2) and altogether
75 states in (A.29), (A.28), and (A.30).

SRC Cases. Here we consider the SRC cases similarly to the long superfields
taking again the five cases in (A.22) as reference point.

a) d = dmax = diy =2+ 2j2 + 2+ 11 > diy.

The maximal number of states is 128 = 16(chiral) x 8(antichiral), achieved
for jl 2 1,7‘1 2 4.

e jo > 0. Here there hold the character formulae (2.36), or equivalently
(2.39) or (2.43) when r; > 0, while for r; = 0 the character formula is (2.54)
(for 79 = 1). We give more detailed description.

The generator X3 is eliminated. The eight states in the antichiral sector are
obtained by applying to the vacuum the following operators:

XZ%, en =1, e =1,

X5 X =0, ei=2

1, X5 X, €=0, =0, (A31a)
X5 Xifs X X, ep=-1, =1,

X5, e =—1, €f=-1,

X35 X5, ep=-2, €}=0.

The above is equivalent to the antichiral part of character formula (2.36):
(1+ e(aue))(1 + e(ass))(1 + e(aas)), (A.31b)

however, the more detailed description in (A.31a) is necessary to obtain the
results on the counter-terms. In particular, for r; = 1 the last operator does not
contribute to the antichiral sector, while for 71 = 0 only the first three operators
contribute to the antichiral sector, and the generator X ;‘5 is also eliminated from
the whole basis.

In summary, the results are: When j; > 1, correspondingly to the cases
in (A.22a)-(A.22¢) we have now 128,127,120,99,42 states. When j; = 1/2,
correspondingly to the cases in (A.22a)—(A.22e) we have now 120,119,112,92,
39 states. When j; = 0, correspondingly to the cases in (A.22a)—(A.22¢e) we have
now 88,87, 82,68, 28 states.

When r; > 0, there holds formula (2.47) with § = agg, where ﬁlong is a
long superfield with the same values of j; and r; as A, and with jo > 1. Note
that when the weight A corresponds to cases (A.22a)—(A.22e), then the weight
A + age corresponds to cases (A.22a), (A.22a)-(A.22d) (since the value of
is increased by 1). Thus, when j; > 1, the UIR ﬁA+a36 has 128,128, 127,120,
99 states, when j; = 1/2, it has 120,120,119, 112,92 states, when j; = 0, it
has 88, 88,87, 82,68 states. Summed together with the numbers for the UIR La
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from above we obtain the following contributions to ﬁlong: when j; > 1, there
are 256, 255,247,219, 141 states, when j; = 1/2, there are 240,239,231, 204,
131 states, when j; = 0, there are 176,175,169, 150, 96 states. Except the last
cases (in which r; = 0) these cases match exactly (not only by numbers) the cases
of long superfields for the corresponding values of j; = 1,1/2,0 and jo > 1.

When r; = 0, the long superfields have 163,152, 111 states, i.e., a mismatch
of 22,21,15 states. All these extra states contain the generator X;g and do not
contain the generator X ;. Explicitly, when j; > 1 the 22 states are:

X @C[A), X X5 X @F[A),  Xap X5 ®5[A), X5 X Xi5 X5 A),

(A.32)
where ®{ denotes the 5 chiral operators of the first three rows of (A.20), ®5
denotes the 11 chiral operators of the first six rows of (A.20). When j; = 1/2,
the 21 states are as in (A.32) except the state X35 X5 X s X;5 |A) which is not
in the long superfield (since 65 4271 = —1). When j; = 0, the 16 states are as in
(A.32) except the state excluded for j; = 1/2 and six states which are obtained
for ®§ = &5 = X, Xk X5 XoF (i.e., excluding the third row of (A.20), since
for them ej+21 =¢5=-1). Altogether, instead of the decomposition (2.47)
we have the quasi-decomposition (2.53):

(ﬁlong) ]d:da =LA@ Latag @ Lyya,, 71 =0 (A.33)

The 28 states of the minimal case are given as follows. There are two
antichiral states:

XGIA), X5 X |A) (A34)

and six chiral states (just as in (A.28)):
X5 IN), XEXEIA), XXk X5 |A), (A.352)
X X5 [A), X3 Xo5 [A), X35 X5 Xi5 Xo5 | A). (A.35b)

Combining the chiral and antichiral states would give further 12 states. The rest
of the states are obtained by combining these states with impossible states from
the opposite chirality, yet obtaining allowed states. Explicitly, the list looks like
this. Let ®,|A), ®.|A) denote any of the states in (A.34), (A.35), resp., P, |A)
denote any of the three states in (A.35a), resp. Thus, there are the following
states:

‘A>v (I)c (I)a |A>7 (A36a)
X1 X ®a [A), (A.36b)
Xog Xas |A),  Xos Xis Xo5 X35 |A), (A.36¢)

X2 ®L|A). (A.36d)
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Obviously, there are 20 states in (A.36) (13 + 2 + 2 + 3). Altogether, there are
28 states in (A.34), (A.35), and (A.36). This list amounts to giving explicitly
character formula (2.54) (for N = 2, ig = N — 1 = 1) without counter-terms.
This superfield and its conjugate (considered below) are the shortest semishort
SRC N = 2 superfields.

e jo = 0. Here there holds character formula (2.56) and for ;1 = O there
holds also character formula (2.60). A more detailed description follows.

The state X3 X5 |A) and its descendants are eliminated (due to (2.55)).
This elimination is described by the second term in character formula (2.56a).
The eight states in the antichiral sector here come from:

Xis» =1, =1,
X35 Xis, =0, et=2
L X5 X, X5 X, e2=0, &4=0, (A37)
X, X5 X35 X5, er=—1, =1,
X5 X5 g8 =-2 =0

The above eight differ from (A.31) by one operator: X is replaced here by
X5 X4 For r; = 1 the last operator does not contribute to the antichiral sector.
Whenever r; = 0, the generators X5z and X are eliminated from the antichiral
part of the basis, which is further restricted due to (2.23c) and there are only two
antichiral states as given in (A.34).

In summary, when j; > 1, correspondingly to the cases in (A.22a)—(A.22e)
we have now 128,127,121, 103, 68 states. When j; = 1/2, correspondingly to the
cases in (A.22a)-(A.22e) we have now 120,119,113, 96, 63 states. When j; = 0,
correspondingly to the cases in (A.22a)—(A.22e) we have now 88,87,83,70,
45 states.

We know that when r; > 0, there holds formula (2.57) for ﬁlong with the
same values of ji,ja(= 0),71 as A and with § = (12 = ass + ass. In more
detail, when the weight A corresponds to cases (A.22a)—(A.22¢e), then the weight
A + 12 corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22¢) (since
the value of 7; is increased by 2) and furthermore ﬁA+512 is actually a SRC
of type b), see below from where we take the numbers: When j; > 1, the
UIR £A+ﬁ12 has 48,48,48,47,42 states, when j; = 1/2, it has 45,45, 45, 44,39
states, when j; = 0, it has 33,33, 33, 32, 29 states. Summed together with the
numbers for the UIR L, from above we obtain the following contributions to
ﬁlong: when j; > 1, there are 176, 175, 169, 150, 110 states, when j; = 1/2, there
are 165,164, 158,140, 102 states, when j; = 0, there are 121,120,116,102,74
states. Except the last cases (when r; = 0) these cases match exactly the cases
of long superfields for the corresponding values of j; = 1,1/2,0 and jo» = 0.
For completeness one may check that the states of ﬁA+512 appear in ﬁlong being
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multiplied by X;é X j%. In the cases when r; = 0, there is a mismatch of one
state and that extra state is X5 X5 |A) which is excluded from L, as explained
in general, cf. (2.58). (It is also excluded in case b) below.) Thus, instead of
(2.57) we have the quasi-decomposition:

(Bong) | =2 @ Laipns ® Erpoprase 11 =0, (A3)

where as in (A.33) we have put a prime on the last term indicating that this is
not a genuine irrep.

b)d:dgl =z+r >d§2,j2:0.

The character formula is (2.65). The generators X,; and X are eliminated
due to (2.61) and (2.62). Due to (2.23b) there are at most two antichiral states:

X5IA), X35 X5 [A). (A.39)

Thus, the maximal number of states is 48(16 x 3) achieved for r1 > 4, j; > 1.
These states are given explicitly as

Ue = (X75)70 (X75)7° (Xg5)72 (X5)™%° (X55)%° (X5)°*° [A),  (A.40)
€aj =0,1; €35 <eus; T 24, j1=>1

In summary, when j; > 1, we have correspondingly to the cases in (A.22a)—
(A.22e) 48,47,42,31,10 states. When j; = 1/2, we have correspondingly to
the cases in (A.22a)—(A.22e) 45,44,39,29,9 states. When j; = 0, we have
correspondingly to the cases in (A.22a)-(A.22e) 33, 32,29, 23, 7 states. The cases
when r; > 2 were included in decompositions (2.57) in the previous case a).
(The cases when r; = 2 were included in quasi-decompositions (A.38) in the
previous case a).)

The minimal number, when r; > 0, is 23 achieved for 1 = 1, j; = 0.
Besides the obvious states, which include X% |A), nine chiral states, their com-
binations and the vacuum, there are the following states:

X X5 |A), (A41)

@' = X35, X5 X5, X6 X5 X5
Whenever 7 = 0, the generators X3z and X are also eliminated from the
basis due to (2.63). Thus, these UIRs are chiral. Due to (2.23c) and excluding

the state (2.24) there are 10,9, 7 states for j; > 1,1/2,0, resp. (as stated above).
These states explicitly are

A, X55IA), XX IA), X5 XEIA), X X5[A),

Xfs X5 X5 1A), Xl X5 X5 X551A), 71 >0, (A.42a)
X5 IA), X X5 X5 |A), 51 >1/2, (A.42b)
X5 X5GA), >l (A.42¢)
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For j; = 0, the superfield in (A.42a) and its conjugate (considered below)
are the shortest short SRC N = 2 superfields.

Q) d = dmax = dig =2+ 2j1 — 2+ 11 > d.

This case is conjugate to a) and the maximal number of states is 128 =
8 (chiral) x16 (antichiral) achieved for jo > 1,7 > 4.

e j; > 0. The generator X 1+5 is eliminated. The eight states in the chiral
sector are obtained from the following operators:

X2+5, el =1, g; =1,
+ vt - _ c
X6 X5 er =0, e =2,
+ v+ . - _
1, X X5, =0, =0, (A43)
+ v+ v+ v
X6+ Xo6 X16 X 25, gr=-1 &=1
Xi‘rﬁﬂ 6?‘ = _1a 6? _1a
X6 X5, e =-2, =0

In summary, when jo > 1, correspondingly to the cases in (A.22a)—-(A.22e) we
have now 128,127,120,99,42 states. When jo = 1/2, correspondingly to the
cases in (A.22a)-(A.22e) we have now 120,119,112, 92, 39 states. When jo = 0,
correspondingly to the cases in (A.22a)-(A.22e) we have now 88,87,82, 68,
28 states. Whenever r; = 0, the generator Xf6 is also eliminated from the basis.

When r; > 0, there holds decomposition (2.71) with § = a35. When r; = 0,
there holds the quasi-decomposition:

(Lions) |, = L@ Lakass @ Lagay,s 1 =0, (A44)

cf. (A.33). We omit most details since all results and formulae are by conjugation
from case a) (when jy # 0).

We still give the 28 states of the minimal case. There are two chiral states:
X5 1A), X3 X55[A) (A.45)
and six antichiral states (just as in (A.29)):

X IA), Xag X5 A), X5 Xas X5 |A), (A.462)
XEXEIN), XEXEIN), XEXE X5 XEIA). (A.46b)

The rest of the states are obtained as follows. Let ®4 |A), B, |A) denote any
of the states in (A.45), (A.46), resp., P/ |A) denote any of the three states in
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(A.46a), resp. Thus, there are the following states:

1A), DD, [A), (A.47a)
Xis X35 @ [A), (A.47b)
XEX5E N, X5 X5 X XS5 |A), (A.47c)
X5 ®L|A). (A.47d)

This superfield and its conjugate (considered in a)) are the shortest semishort SRC
N = 2 superfields.

e j1 = 0. The state X;5 X5 |A) and its descendants are eliminated (due to
(2.55)). The eight states in the chiral sector here come from:

X5, e =1, g =1,
X2—% X2—E’ Eycﬂ =0, E; 2,
L, X{5X5, Xo6Xi5 er=0, &5=0, (A.48)
X2+67 X2+6X1+6X2+57 g = -1, 55217
X6 X5, e, =-2, €;=0.

The above eight states differ from (A.43) by one operator: Xf% is replaced
here by X5 X;5. In summary, when j, > 1, correspondingly to the cases in
(A.22a)—(A.22e) we have now 128,127,121,103,68 cases. When jo = 1/2,
correspondingly to the cases in (A.22a)—(A.22e) we have now 120,119, 113, 96,
63 cases. When jo = 0, correspondingly to the cases in (A.22a)—(A.22e) we have
now 88,87,83,70,45 cases. Whenever r; = 0, the generators Xf% and ng are
eliminated from the chiral part of the basis, which is further restricted due to
(2.23c) and there are only two chiral states as in (A.45).

When r; > 0, there holds formula (2.74) for ﬁlong with the same values of
jl(: 0),j2,’l“1 as for A and with B = P34 = ais + ass. When ;1 = 0, this
decomposition is spoiled by one state X;5 X5 |A) which is excluded from L,
as explained in general, cf. (2.75), and instead of (2.74) we have the quasi-
decomposition:

(ﬁlong) ‘d:dc = [A/A @ ﬁA+534 &5 [A/Q\+a15+a25, ry = 0. (A.49)

d)d:d322—2+T1>d%1, 71 =0.

This case is conjugate to b).

The generators X% and X, are eliminated due to (2.77) and (2.78). Due to
(2.23b) there are at most two chiral states depending on the value of r1:

X;G |A>7 Ty 2 17

~ (A.50)
XX |, =2
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The maximal number of states is 48(3 x 16) achieved for 1 > 4, jo > 1. These
states are given explicitly as

We = (Xg5)™ (X5)7 (X35)7° (Xs) ™ (X15)7 (X26)7° |A),

. (A51)
€aj = 0,15 e35<egs; 1122, J221

In summary, when jo > 1, correspondingly to the cases in (A.22a)—(A.22¢)
we have now 48,47,42 31,10 states. When jo = 1/2, correspondingly to the
cases in (A.22a)—(A.22e) we have now 45,44,39,29,9 states. When jo = 0,
correspondingly to the cases in (A.22a)-(A.22e) we have now 33,32,29,23,
7 states. The cases, when r; > 2, were included in decompositions (2.74) in
the previous case c). (The cases, when r; = 2, were included in decompositions
(A.49) in the previous case c).)

The minimal number, when r; > 0, is 23 achieved for 1 = 1, jo = 0.
Besides the obvious states which include X;% |A), nine antichiral states, their
combinations and the vacuum, there are the following states:

@ = X5, Xgis Xils, X5 Xgg X
Whenever r; = 0, the generators X;; and X are also eliminated from
the basis due to (2.63). Thus, these UIRs are antichiral. Due to (2.23c) and

excluding the state (2.25) there are 10,9, 7 states for jo > 1,1/2,0, resp. These
states explicitly are

A), X IA),  Xds XigIA),  Xa5 X5 1A),  Xi5 Xg5[A),

XE X3 X510, X XE X5 X5GIA),  j2 >0, (A.532)
X3 1A), X X3 X§5 [A),  ja >0, (A.53b)
X X5 A), jo>1 (A.53¢)

For j» = 0 the superfield in (A.53a) and its conjugate (considered above) are
the shortest short SRC N = 2 superfields.

DRC Cases. Here we consider the DRC cases taking again the five cases of
long superfields in (A.22) as a reference point.

a¢) d = dinax = dby = d3y = 2+ j1 + j2 + 71, 2 = j1 — jo.

The maximal number of states is 64 = 8(chiral)x 8(antichiral), achieved for
r1 2 4. The 8 antichiral, chiral states are as described in a), c), resp. (differing
for jo > 0 and j2 =0, 51 > 0 and j; = 0, resp.).

e j1j2 > 0. Here character formulae (2.84) hold (without counterterms for
r1 > 4). The states X5 |A), X35 |A) and their descendants are eliminated. Corre-
spondingly to the cases in (A.22a)—(A.22e) we have now 64,63,57,42, 11 states.
In the last case (where r; = 0), we eliminate also the generators ng and X1+6.
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For r; > 0, there holds decomposition (2.83) with 5 = ai5, 8/ = agg as
stated in the general exposition. We would like to demonstrate this and also see
how it breaks down for r; = 0, thus, we include for the moment the case »; = 0.
Referring to (2.83) we note when the weight A corresponds to cases (A.22a)-
(A.22e) then the weights A + a5, A + aizg correspond to cases (A.22a), (A.22a),
(A.22b), (A.22c¢), (A.22d) (since the value of r; is increased by 1), i.e., the
corresponding UIRs have 64, 64,63, 57,42 states each. The weight A + 15 + asg
corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22c) (since the value
of r1 is increased by 2), i.e., the corresponding UIRs have 64, 64, 64, 63, 57 states.
Summed together with the numbers for the UIR ﬁA from above we obtain the
following contributions to f)long: 256, 255,247,219, 152. Except the last case (in
which r; = 0) these cases match exactly the cases of long superfields for the case
J1,J2 = 1.

When r; = 0, the long superfields for the cases j;,j2 > 1 have 163 states,
i.e., a mismatch of 11 states*. These extra states contain either the generator X
or X3 or both, and they do not contain either X5 or X3. Explicitly, these extra
states are

Xifs Xifs [A), X3l Xo5 [A), X3l X5 X5 [A),

Xifs Xols Xos X35 [N), Xifs Xof Xof X5 |A),

X35 XG5 1A), X35 Xa5|A), X35 Xo5 X5 |A), (A.54)
X Xofe Xof X5 [A), - X Xof X X |0),

Xifs Xofs Xols Xfs ).

Altogether, instead of (2.83) we may write:

(ilong) ’d:dac - i/A ©® -Z/A+oc15 ©® £A+a36 © £A+a15+a35€9

& ‘i’//\+als ® i’ﬁ\+a35 ® i’$\+a16+a357 = 0’ (A'SS)

where we have represented the extra states by the last three terms (corresponding
to the first and second line of (A.54), the third and fourth line of (A.54), the fifth
line of (A.54), resp.), and we have put primes on these since they are not genuine
irreps.

*The reader may wonder whether the long superfield with j1 = 1/2,j2 > 1,71 = 0 may not
be used since it has 152 states, however, this is only a coincidence of the total number.
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Finally, we give the 11 states of the UIR at r; = 0:

A), X5 XGGIA),  Xog Xi5 Xa5 X5 A),

XN, XX, (A.56)
X35 1A), X35 X35 [A),

DIXGGA), D= Ko, Xop X,

Oo X5 [A), @0 =X55, X5 X

This superfield is the shortest semishort N = 2 superfield.

e j; > 0,72 = 0. Here there hold character formulae (2.86) (without
counterterms for r; > 4). The states X455 X |A), X;% |A) and their descendants
are eliminated. Correspondingly to the cases in (A.22a)-(A.22e) we have now
64,63, 58,45, 16 states. In the last case, where r; = 0, we eliminate the generator
X and exclude the generators X; 41 from the antichiral sector.

For r; > 0, there holds decomposition (2.87). Note that when the weight
A corresponds to cases (A.22a)-(A.22¢), then the weight A + a5 corresponds
to cases (A.22a), (A.22a), (A.22b), (A.22¢c), (A.22d) (since the value of 7y is
increased by 1), i.e., the corresponding UIRs have 64, 64,63, 58, 45 states. The
weight A + (15 corresponds to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22¢)
(since the value of r; is increased by 2), but from type bc) considered below, i.e.,
the corresponding UIRs have 24, 24,24, 23,19 states. The weight A + a15 + B12
corresponds to cases (A.22a), (A.22a), (A.22a), (A.22a), (A.22b) (since the value
of r1 is increased by 3), also from type bc), i.e., the corresponding UIRs have
24,24,24,24,23 states. Summed together with the numbers for the UIR L from
above we obtain the following contributions to ﬁlong: 176,175,169, 150, 103.
Except the last case (in which r; = 0) these cases match exactly the cases of long
superfields for the cases when j; > 1, jo = 0.

When 7; = 0, the corresponding long superfields have 111 states, i.e., there
is a mismatch of 8 states*. These extra states contain either the generator X or
X;% or both, and they do not contain X 1+5 Explicitly, they are

X XN, X X5IA),  XiG X X5 [A), X7 X Xo5 X35 A),
X Xos X5 X5 [A), X Xo5 X6 X451A), (A.57)
X5 X5 1),

X5 X35 Xo5 Xi5 |A).

*Again the long superfield with correct number of states 103 (with j1 = 1/2,52 = r1 = 0)
does not fit.
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Altogether, instead of (2.87) we may write:

(ilong) ‘d:d“c = i’A @ i’A+a15 D £A+ﬂ12 D £A+a15+512@

® Loy ® Lavass @ Litayrass: 71=0, (AS8)

where (as in (A.55)) we have represented the extra states by the last three terms
(corresponding to the first and second line of (A.57), third line of (A.57), fourth
line of (A.57), resp.), and we have put primes on these since they are not genuine
irreps.

Finally, we give the 16 states of the UIR at r; = 0:

A), Xo5 X ),
XN, XEXGIA),
X5IA),  XgXo5 [A),
VXL |A), @Y = XL X X X, X X5, (A.59)

®o X35 [A), o = X5, X5 Xi5 X,
D XN, D= Xy, Xop Xoh,
Y X5 XL |A).

The states of (A.56) are a subset of (A.59).

The next case is conjugate to the preceding.

e j1 = 0,72 > 0. Here character formulae (2.89) hold (without counterterms
for 1 > 4). The states X5 X5 |A), X35 |A) and their descendants are eliminated.
Correspondingly to the cases in (A.22a)—(A.22e) we have now 64,63, 58,45, 16
states. In the last case, when r; = 0, we eliminate the generator X 3+5 and exclude
the generators X 1+ 41 from the chiral sector.

For r; > 0, decomposition (2.90) holds. When r; = 0, the corresponding
long superfields have 111 states, i.e., there is a mismatch of 8 states. These extra

states contain either the generator X or X35 or both, and they do not contain
Xg%. Explicitly, these extra states are

s Xo5 [A), Xa5 X [A), X5 Xig X5 [A), X5 X5 X5 X35 [A),
X5 X X6 X5 |A), X Xjg X5 X3 |A), (A.60)
X X35 |A),
X5 Xis Xig X35 |A).

Altogether, instead of (2.90) we may write:

(ilong) ‘d:d“c = i’A @ i’A+a36 D £A+ﬂ34 D £A+a35+534@

® ‘i;\JrOtw b IA’;\+0635 b IA’A//\+0416+C¥35’ r1=0. (A.61)
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Finally, we give the 16 states of the UIR at r; = 0:

|A), X35 X5 |A),
X35 I0), X35 Xi6 |A),
X35 [A), X X35 [A),
PO XA, @Y = X Xof, X X, Xk XS, (A.62)

CXGIN), @ = X X X0 X5
Do X5 IA), o= X35, X5 XS,
O X5 X35 ).

The states of (A.56), are a subset of (A.62).

e j1 = jo = 0. Here character formulae (2.92) hold (without countert-
erms for r; > 4). The states X5 X55 |A), X5 X5 |A) and their descendants
are eliminated. Correspondingly to the cases in (A.22a)-(A.22e) we have now
64,63,59,47, 24 states. In the last case, when r; = 0, we exclude the generators
X 3.4+ from the antichiral sector and the generators X 1.4+ from the chiral sector
and also the combination of impossible states (A.27) as explained in the general
exposition.

For r; > 0, decomposition (2.93) holds. Note that when the weight A corre-
sponds to cases (A.22a)—(A.22¢), then the weights A + (12, A + (334 correspond
to cases (A.22a), (A.22a), (A.22a), (A.22b), (A.22¢) (since the value of ry is
increased by 2), but from types bc), ad), resp., considered below, i.e., the cor-
responding UIRs have 24,24, 24, 23, 20 states each. The weight A + (812 + O34
corresponds to cases (A.22a), (A.22a), (A.22a), (A.22a), (A.22a) (since the value
of ry is increased by 4), but from type bd), i.e., the corresponding UIRs have
9,9,9,9,9 states. Summed together with the numbers for the UIR Ly from above
we obtain the following contributions to f)long: 121,120,116, 102, 73. Except the
last case (in which r; = 0) these cases match exactly the cases of long superfields
for the cases when j; = j» = 0.

When r; = 0, the corresponding long superfields have 75 states, i.e., there is
a mismatch of 2 states. These extra states are

Xiis Xo5 [A), X5 X [A). (A.63)
Altogether, instead of (2.93) we may write:

(ilong) ‘d:dac = i/A 3] IA/A+ﬂ12 =) £A+ﬂ34 D £A+512+ﬂ34@

S Loy @ Lhvasss ™ =0. (A64)
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Finally, we give the 24 states of the UIR at r; = 0:
|A), X35 X4 |A),
XiglA), X5 XA,
XJ51A),  Xgg X5 |A),
P X |A), = Xy X5, Xig X5, X5 X,
O XA, @ = X5, Xih X X5, (A.65)
Py X35 ), @y = X5 Xig, Xa5 X, Xgig X5,
®, Xj5|A), P, = X5, X5 X5 X,
®Y % |A) excluding the state: X5 Xob X X5 [A).

The states of (A.59), (A.62) are subsets of (A.65).

ad)d=di =dyo =1+ jo+71,51 =0, 2= —1 — jo.

Here character formulae (2.95) hold when jzr; > 0, (2.96) when jo =
0,71 > 0 (both these cases without counterterms for r; > 4), and finally when
r1 = 0, (2.97) holds independently of the value of jo — these are the antichiral
massless UIRs.

The generators X, Xo5, and in addition X for jo > 0 (resp., the state
X5 X5 |A), and its descendants for j = 0) are eliminated. The maximal number
of states is 24 = 3(chiral)x 8(antichiral), achieved for r; > 4. The chiral sector
for r1 > 0 consists of the two states in (A.50) and the vacuum, while the antichiral
sector is given by (A.31) for jo > 0 and by (A.37) for jo = 0.

The 24 states for jo > 0 are given explicitly as

A), X3 |A), X35 X5 [A),
X35 X1 1A), Xa6 X35 |A),
X5 1A), X5 X35 X[ |A),

r1 >Oa
1 2 ]-7
Xoo XI5 X5 1), X5 [A), m> 1,

Xofg [A), Xolg Xa5 X35 [A), X Xofs X5 |A), m1 =1, (A.66)
X Xa5 1), Xog X5 X5 Xig |A), X35 X5 [A), Xifs Xog Xi5 Xy |A), m1 > 2,
X X35 |A), X1 X3 X35 Xis |A), Xog X351A), m >2,
X35 X5 X5 [A), Xilg Xog X5 |A), X1 Xog X5 X5 Xig [A), Xis Xog X35 |A),
1 2 37
X1 X6 X35 X5 [A),
Thus, correspondingly to the cases in (A.22a)-(A.22e) we have now 24, 23, 19,
12, 3 states.

The irreps with 7; > 2 appear (two times if r; > 3) in decomposition (2.90)

as explained in detail in the main text for type ad). (The irreps with r; = 2 have
appeared in quasi-decomposition (A.61).)

71 24
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The 24 states for jo = 0 are given explicitly as

[A), X35 |A), Xa5 Xig[A), 1120,

X X35 1A), Xo X |A), X35 XS5 1A), i >1,

XEIA), Xa5 Xa5 X [A), Xo X5 X5 [A),  rmi>1,

X [A), Xog X5 Xig [A), X1l Xog Xis [A), Xog Xi5 X6 |A), m1 =1, (A67)
X Xa5 1), Xo Xif5 X35 X5 |A), X5 X5 1A), X7 Xo6 X X4 [A), m > 2,
X Xo |A), X Xofg X X5 1A), Xifs Xog Xofs X5 [A), 1 >2,

X Xas Xa5 M), X7l Xols X5 |A), X Xog X Xk X5 [A),  m1 >3,
X5 Xas X5 X5 10),  m>4

Thus, correspondingly to the cases in (A.22a)-(A.22e) we have now 24, 23,
20, 13, 3 states.

The irreps with 7 > 2 appear as the term L A+8s4 Of (2.93), while those with
r1 > 3 appear also as the term £A+a3,4+N+ﬁ34 of (2.90) but only when j, = 1/2in
A there. (The irreps with r; = 2 have appeared in quasi-decompositions (A.64).)

The cases (A.66) and (A.67) share 21 states (for r; > 4). The 3 states by
which they differ are the last states on the 3rd, 6th, 7th lines of (A.66) and 2nd,
4th, 6th lines of (A.67).

bC)d:dgl =d§2 =14714+71,72=0, z=1+ 7.

Here there hold character formulae (2.98) when j;7; > 0 and (2.99) when
j1 = 0,71 > 0 (both these cases without counterterms for r; > 4), and finally
when r; = 0, (2.100) holds independently of the value of j; — these are the
chiral massless UIRs.

The generators X;é, Xj%, and in addition Xfr5 for j; > 0 (resp., the state
X5 X5 |A), and its descendants for j; = 0) are eliminated. The maximal
number of states is 24 = 8(chiral)x 3(antichiral), achieved for ;1 > 4. The
antichiral sector for r; > consists of the two states in (A.39) and the vacuum,
while the chiral sector is given by (A.43) for j; > 0 and by (A.48) for j; = 0.

The 24 states for j; > 0 are given explicitly as

), X35 |A), Xjg Xo5[A), 11 >0,

Xig X5 M), X5 X55[A),  m>1,

X6 [A), Xog Xig X5 ), X5 Xog X5 [A), , Xig[A), =1,

X5 |A), X35 X0 X35 [A), Xgs X5 X5 [A), =1,

X5 X 1), X5 Xo X g X5 [A), X7 X5 [A), X X5 Xig X5 [A), 1 > 2,
Xy X5 [A), X5 X5 X1 X5 [A), X5 X5[A), 1 >2,
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X X X5 |10), X X X5 |A), X X5 Xo X1 X35 |A), X X6 X5 |A),
™ 2 3a
X XEXH XG0, >4 (A.68)

Thus, correspondingly to the cases in (A.22a)—(A.22e) we have now 24, 23,
19, 12, 3 states.

The irreps with r; > 2 appear (up to two times) in decomposition (2.87) as
explained in detail in the main text for type bc). (The irreps with r; = 2 have
appeared in quasi-decomposition (A.58).)

The 24 states for j; = 0 are given explicitly as

[A), X35 |A), Xog Xo5[A), 11 >0,
Xis X35 [A), XE XS IA), X X51A), m>1,

Xolg [A), Xofg X Xof [A), X Xfs Xo5 [A),  mi> 1,

XEIN), XEXGXSIA), X5 X5 X5 0), X X56X50), m>1,

X5 X35 |A), Xi5 Xofs Xifs X35 |A), Xifs X35 |A), X5 X5 X35 X5 1A), 1 >2,
X XEIA), X X5 X5 X5 |A), X XE X5 X5 (A), rn>2,

X Xif X5 1A), Xa X5 Xf5[A), Xah Xb X Xifs X5 |A), 1 >3,

Xas X5 X5 X55|0), m >4, (A.69)

Thus, correspondingly to the cases in (A.22a)-(A.22e) we have now 24, 23,
20, 13, 3 states.

The irreps with 7 > 2 appear as the term L A+, Of (2.93), while those with
r1 > 3 appear also as the term f)A+a15+512 of (2.87) but only when j; = 1/2 in
A there. (The irreps with r; = 2 have appeared in quasi-decomposition (A.64).)

bd)d:d%:de:’r‘l, j1:j2:022.

The generators X5, Xo5, Xib, X are eliminated. For 7; = 1 also the
generators X, X3 are eliminated. For r; = 0 the remaining two generators
X;%, X 15 are eliminated and we have the trivial irrep as explained in general.

For r; > 0 the character formula is (2.101) with i = i;, = 0. The maximal
number of states is nine and the list of states together with the conditions when
they exist are

‘A>7 ™ 2 Oa
X5 IA), X5 [A), ry =1,
X X5 IA), XEXEIN), XHEXEIAN, =2, (A.70)

X5 Xgo X5 [A), Xgs X5 X5 |A), =3,
Xig Xo X X5 1A), 11 >4,
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Thus, correspondingly to the cases in (A.22a)—(A.22e) we have now 9, 8,6, 3,
1 states. The mixed massless irrep is obtained for d = r; = 1 and consists of the
first three states above — as was shown in general.

The irreps with r; > 4 have appeared in decomposition (2.93), cf. type ac)
above. (The irreps with r; = 4 have appeared in quasi-decomposition (A.64).)

Appendix B
ODD REFLECTIONS

Below we repeat first the original text of our submission to «Concise Ency-
clopedia of Supersymmetry» (Eds. S.Duplij, W. Siegel, and J. Bagger. Kluwer
Acad. Publ., 2003).

Odd Reflection — action of an odd root o on the dual x* of the Cartan
subalgebra y of a basic classical Lie superalgebra G. Let A = Ag U Az be the
root system of G = G @ G7, where Ag is the root system of the even subalgebra
Gg of G, and the set of odd roots Az is the weight system of the representation
of Gy in Gi. The action of a € A7 on A € x* is defined by

(@, A)
(a, a) a’ (a’ a) # O’

sa A =A+aq, (,a) =0, (o, A) #0,
sa A=A, (,a) =0, (0, A) =0, a#A,

Sq O = —Q, (Oé,Oé): )

saA=A—-2

where (-,-) is the standard bilinear product in x*. As in the even case one has:

so' = s_q, but an odd reflection is not always a reflection since s2 # idy- if

(o, ) = 0. In particular, one has
ssA=A+no, (a,a)=0, (a,A)#0,n€Z,

i.e., in this situation the odd reflection acts as a translation.

Note that if o, 3, + 8 € A and (o, @)(3, 8) (o + 8, + 3) = 0, then 5445
cannot be expressed in terms of s,, sg.

The odd reflections s, with (o, ) = 0 generate an infinite Abelian group
with elements

H shel ng € Z.
a€A1, (a,a)=0
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This group does not preserve A, Ag, A7*.
Appendix C
CHARACTERS OF THE EVEN SUBALGEBRA

For the characters of the even subalgebra we first recall its structure: gg7 =
sl(4)@gl(1)@sl(N) of GZ. We choose a basis in which the Cartan subalgebra H
of G%is also a Cartan subalgebra of GZ. Since the subalgebra GZ is reductive, the
corresponding character formulae will be given by the products of the character
formulae of the two simple factors si(4) and sl(N).

We start with the si(4) case. We denoted the six positive roots of si(4) by
aij, 1 <4 < j < 4. For the simplification of the character formulae we use
notation for the formal exponents corresponding to the si(4) simple roots: t; =
e(ey j+1), j = 1,2, 3; then for the three nonsimple roots we have: e(ai3) = t1t2,
e(ags) = tats, e(a14) = titats. In terms of these, the character formula for a
Verma module over sl(4) is

s e(A®)
cho V" = 0=t —1)(0 = 1)1 — 1ha)(1 = bats) (1 —tataly)’ TV

where by A® we denote the s/(4) lowest weight.

The representations of sl(4), which we consider, are infinite-dimensional.
When d > dpyax, then all the numbers: ns,n13,n24,n14 from (1.17) cannot
be positive integers. Then the only reducibilities of the si(4) Verma module
are related to the complexification of the Lorentz subalgebra of su(2,2), i.e.,
with sl(2) @ sl(2), and the character formula is given by the product of the two
character formulae for finite-dimensional s/(2) irreps. In short, the si(4) character
formula is

cho Lys = chg VA —chg VA Tz _chy A Fna0as oy A Fmionztnaoas -
e(A?) 1 —17) (1 —t5%)

(1 —t1)(1 —t2)(1 — t3)(1 — t1ta)(1 — tat3) (1 — tatats)
— e(A%) nm=2j1+1, 13 =2+ 1, d> dpax, (C2)

S
ny,n2’

*Dobrev V. K., Petkova V. B. On the Group-Theoretical Approach to Extended Conformal Super-
symmetry: Function Space Realizations and Invariant Differential Operators // Fortschr. Phys. 1987.
Bd.35. S.537-572.

Note that this reference in this paper is [101]. The above text was submitted in June 2000.
Recently, we were informed that a similar definition was proposed independently in [129], while a
different, geometric, version of odd reflections was introduced in [130] (see also [131]).
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and we have introduced for later use notation Qy, . for the character factorized
by e(A®). The above formula obviously has the form (2.5) replacing W —
Wy x Wy, where Ws is the two-element Weyl group of si(2).

When d < dpay, there are additional even reducibilities, cf. (1.47), (1.51),
(1.52), and the discussion in-between.

Thus, we need additional formulae for chg Lps:
Cho LAS =

=e(A)Q;, ., (1 — tatats) = e(A*)(1 —t1) (1 —t5°)

(1 —t1)(1 —t2)(1 —3)(1 — t1t2)(1 — tat3)’

(C.3a)
for (1.52a), d=dy, =d}y =241 +7j2, Jrja>0;
e(A%)(1 4+ t3)
=e(A*)Q5 o (1 — tat3) = , C.3b
(A9 Q1L (1 —tats) (1= t2)(1 — t1ta)(1 — titats) (C.3b)
for (1.52b), d=dy, =dyy =3/2, j1=0, joa=1/2;
e(A®) (1+t1)
=e(A%)Q5 (1 —tity) = , C.3c
(A9)Q2,(1 k) (1= t2)(1 — tots)(1 — titats) (.39
for (1.52d) d = d&, = dynx = 3/2, j1=1/2, 7ja=0;
e(A®)(1 — t1t3ts)
=e(A*) Qf (1 — tyt3t3) = )
( ) 1’1( 1%2 3) (1 — tg)(l — tltg)(l — t2t3)(1 — tltgtg)
for (1.52e), (1.52f), d=1, j;=j2=0. (C.3d)

In the case of sI(N), the representations are finite-dimensional since we
induce from UIRs of su(N). The character formula is (2.5), which we repeat in
order to introduce the corresponding notation:

cho Law(ry,...,rv—1) = Y (1) ™ehg VA A% e -T4.  (C4)
weW,

The index w is to distinguish the quantities pertinent to the case.
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