ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2008. Т. 39. ВЫП. 1

ТОП-КВАРК ОТ ТЭВАТРОНА ДО LHC

Е.В.Храмов, В.А.Бедняков, Н.А.Русакович Объединенный институт ядерных исследований, Дубна

А. Н. Тоноян

Университет Бергена, Норвегия

ВВЕДЕНИЕ	217
ПЕРВЫЕ ПОПЫТКИ ОБНАРУЖЕНИЯ t -КВАРКА	218
СИГНАТУРЫ РАСПАДА $tar{t}$ -ПАРЫ	219
ОТКРЫТИЕ ТОП-КВАРКА НА ТЭВАТРОНЕ	220
МЕТОДЫ ИЗМЕРЕНИЯ МАССЫ t -КВАРКА НА ТЭВАТРОНЕ	225
ИЗМЕРЕНИЕ МАССЫ <i>t</i> -КВАРКА НА LHC	228
ФИЗИКА t -КВАРКА НА РАННЕЙ СТАДИИ РАБОТЫ LHC	236
ИЗМЕРЕНИЕ ЗАРЯДА t -КВАРКА НА УСТАНОВКЕ ATLAS	237
ЗАКЛЮЧЕНИЕ	239
СПИСОК ЛИТЕРАТУРЫ	240

ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2008. Т. 39. ВЫП. 1

ТОП-КВАРК ОТ ТЭВАТРОНА ДО LHC

Е. В. Храмов, В. А. Бедняков, Н. А. Русакович

Объединенный институт ядерных исследований, Дубна

А. Н. Тоноян

Университет Бергена, Норвегия

Изложена история обнаружения в 1995 г. самой тяжелой элементарной частицы — t-кварка на ускорителе тэватрон с помощью установки CDF. Описаны основные каналы регистрации t-кварка и методы определения его массы. Обсуждается важность и стратегия измерения массы t-кварка в различных каналах распада $t\bar{t}$ -пары в с. ц. м. на протон-протонном коллайдере LHC с энергией 14 ТэВ, начало работы которого ожидается в ближайшем будущем. Описаны исследования по физике t-кварка на самой ранней стадии работы ускорителя.

The history of discovering of the heaviest elementary particle — top-quark with CDF experiment at the tevatron collider in 1995 is stated. Main production channels and methods of top-quark mass measurement are described. The importance and strategics of the top-quark mass measurement in different decay channels of $t\bar{t}$ pair at proton–proton collider LHC with $\sqrt{s} = 14$ TeV, whose operation is expected to start in the nearest future, are discussed. Also, investigations in the early period of collider operation are described.

PACS: 14.65.Ha

введение

Современной теорией элементарных частиц является Стандартная модель (СМ), которая основана на группе калибровочных симметрий $SU(3)_C \times SU(2)_L \times U(1)_Y$. До настоящего времени она успешно описывает практически всю физику электрослабых взаимодействий и квантовую хромодинамику. Фермионы — элементарные частицы со спином 1/2 — в СМ делятся на две группы: кварки и лептоны (табл. 1).

Топ-кварк был открыт в 1995 г. в экспериментах CDF и D0 на протонантипротонном коллайдере — тэватроне (FNAL, США) [1]. Основные исследования, проведенные до настоящего времени, касались изучения кинематических свойств рождения *t*-кварка, определения его массы, возможных каналов распада, сечения рождения пары, а также электрического заряда.

Как видно из табл. 1, t-кварк — самый тяжелый из всех кварков. Кроме большой массы, он еще имеет очень малое время жизни ($\tau_t \sim 1/\Gamma_t \sim 0.5 \cdot 10^{-24}$ с) и, в отличие от других кварков, распадается настолько быстро,

что не успевает адронизоваться. По крайней мере, еще не зарегистрировано никаких адронов или связанных адронных состояний, содержащих *t*-кварк.

Таблица 1. Три поколения кварков и лептонов, их заряды, массы и третьи компоненты слабого изоспина (*I*₃) [25,34]

Поко-	Кварки		Лептоны			I_2	
ление	Символ	Заряд	Macca, M ₉ B/c ²	Символ	Заряд	Масса, МэВ/ c^2	13
1	u	+2/3	1,5-4	ν_e	0	$< 3 \cdot 10^{-6}$	+1/2
1	d	-1/3	4 - 8	e^-	-1	0,51	-1/2
2	c	+2/3	$(1,\!15\!-\!1,\!35)\cdot 10^3$	$ u_{\mu}$	0	< 0,19	+1/2
2	s	-1/3	80-130	μ^-	-1	106	-1/2
3	t	+2/3	$(171,4\pm1,2\pm1,8)\cdot10^3$	$\nu_{ au}$	0	< 0,18	+1/2
3	b	-1/3	$(4,1{-}4,4)\cdot 10^3$	$ au^-$	-1	1777	-1/2

Эти специфические свойства *t*-кварка сильно затрудняют его изучение, поскольку, помимо существующих методов, выработанных для исследования остальных кварков, надо находить и использовать новые подходы и методы.

1. ПЕРВЫЕ ПОПЫТКИ ОБНАРУЖЕНИЯ *t*-кварка

Сразу же после открытия *b*-кварка в 1977 г. — кварка третьего поколения с зарядом -1/3 возникли гипотезы существования его партнера по слабому изоспиновому дублету — t-кварка. Первые предсказания массы t-кварка (см. рис. 1) были в области 20 ГэВ/c² [2-4]. Возможность исследования в этой области масс появилась через два года на e^+e^- -коллайдере PETRA с максимальной энергией 46,8 ГэВ (DESY, Германия) [5-9]. Сразу в нескольких экспериментах, проведенных в 1979-1984 гг., его не обнаружили, но установили нижний предел для массы 23 ГэВ/с². Следующая попытка была сделана также на e^+e^- -коллайдере TRISTAN (Япония) с максимальной энергией 61,4 ГэВ. В результате сбора данных 1987–1990 гг. никаких доказательств существования t-кварка обнаружено не было, и нижний предел массы составил 30,2 ГэВ/ c^2 [10,11]. В 1989 г. начали работать e^+e^- -ускорители LEP (CERN) и SLC (США) с энергией ~ 90 ГэВ. Искали события распада Z^0 -бозона на $t\bar{t}$ кварковую пару. Но, опять же, был установлен только нижний предел массы в 45,8 ГэВ/с² [12-15]. Также в середине 1980-х гг. проводились поиски t-кварка на адронном коллайдере $Sp\bar{p}S$ с энергиями от 546 ГэВ в начале работы до 630 ГэВ. Поиски проводились в канале распада рождающегося W-бозона $p \bar{p} \to W^{\pm} \to t \bar{b}/\bar{t} b$. В результате был определен нижний предел массы 69 ГэВ/с² [16]. В 1988 г. начались поиски t-кварка на установке CDF на адронном коллайдере тэватроне с энергией в с. ц. м. 1,8 ГэВ.

Рис. 1. Значения нижних пределов инвариантной массы *t*-кварка, определенных в различных экспериментах

Первоначально предполагалось, что масса *t*-кварка меньше суммарной массы *W*-бозона и *b*-кварка. Но позже, после установления нижнего предела сечения рождения $t\bar{t}$ -пары, был подсчитан нижний предел массы *t*-кварка, и он оказался выше суммарной массы *W*-бозона и *b*-кварка: $M_{\rm top} > M_W + M_b =$ 91 ГэВ/ c^2 [17,18]. В 1992 г. на этом же коллайдере начала работать установка D0, и был поставлен нижний предел 131 ГэВ/ c^2 [19]. В 1995 г. глобальный фит данных в рамках СМ указал на значение $M_{\rm top} \approx 178$ ГэВ/ c^2 [20].

2. СИГНАТУРЫ РАСПАДА $t\bar{t}$ -ПАРЫ

Так как величина элемента матрицы Кабиббо–Кобаяши–Маскавы (СКМ) $|V_{tb}| \sim 1$, то почти 100 % распадов *t*-кварка приходятся на моду W + b-кварк. Ширина этого канала распада *t*-кварка имеет вид [42]

$$\Gamma(t \to Wb) = |V_{tb}|^2 \frac{G_F M_{top}^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{M_{top}^2}\right)^2 \times \left(1 + 2\frac{M_W^2}{M_{top}^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right], \quad (1)$$

где M_W — это масса W-бозона; G_F — постоянная Ферми; M_{top} — масса t-кварка; α_s — постоянная сильного взаимодействия. Таким образом, пространственно-временная картина (т.е. сигнатура) распада образующейся

в $pp(p\bar{p})$ -столкновениях $t\bar{t}$ -пары в значительной степени определяется распадами двух W-бозонов, которые, в свою очередь, могут распасться как по лептонному каналу (т.е. $W \rightarrow l\nu$), который с учетом вклада τ -лептонной пары составляет примерно 33 % всех распадов, так и по адронному каналу

Рис. 2. Лептон-струйный канал распада $t\bar{t}$ -пары. При этом только электрон и мюон принимаются как лептоны

(т. е. $W \to qq'$), отвечающему ~67 % всех распадов $\bar{t}t$ -пары. Мода распада $t\bar{t}$ -пары, в которой один из W-бозонов распался по лептонному каналу, а другой по адронному $t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}(l^+\nu)(jj)$, называется «лептон-струйной» (см. рис. 10). Она составляет ~43,5 % от всех распадов $t\bar{t}$ -пар. Продуктами распада по этому каналу являются $b\bar{b}$ кварковая пара, один заряженный лептон и пара легких кварков (т. е. кварков с массой меньше массы *b*-кварка). Порядка 46,2 % всех $t\bar{t}$ -пар распадается по мультиструйному каналу: $t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}(jj)(jj)$, когда оба *W*-бозона дают кварк-антикварковую пару. Остальные 10,3 % распадов приходятся на дилептонный канал, когда оба

W-бозона распадаются по лептонному каналу. В результате имеются два заряженных лептона и $b\bar{b}$ -кварковая пара: $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}(l^+\nu)(l^-\bar{\nu})$ [41] (см. табл. 2).

Таблица 2. Вероятности и каналы распадов tt-пары [41]

Канал распада	Вероятность, %
$pp \to t\bar{t} + X \to b\bar{b}W^+W^- \to b\bar{b}(l^+\nu)(jj)$	43,5
$pp \to t\bar{t} + X \to b\bar{b}W^+W^- \to b\bar{b}(jj)(jj)$	46,2
$pp \to t\bar{t} + X \to b\bar{b}W^+W^- \to b\bar{b}(l^+\nu)(l^-\bar{\nu})$	10,3

3. ОТКРЫТИЕ ТОП-КВАРКА НА ТЭВАТРОНЕ

В связи с тем, что масса t-кварка оказалась больше суммы масс W-бозона и b-кварка, необходимо было менять стратегию поиска t-кварков, так как использованные ранее критерии отбора, ориентированные на другие конечные состояния от распада t-кварков, уже не подходили [36]. Для этого на установке CDF была проведена модернизация — добавлен кремниевый вершинный детектор SVX II, тригтер к которому был сделан сотрудниками ОИЯИ [43–47], что позволило достичь точности восстановления вторичных вершин b-адронов порядка 130 мкм (см. рис. 3).

ТОП-КВАРК ОТ ТЭВАТРОНА ДО LHC 221

Рис. 3. Установка CDF II [34]

Для выделения дилептонного канала распада $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}(l^+\nu)(l^-\nu)$ и максимального подавления соответствующих ему фоновых событий были выбраны новые критерии отбора событий:

1. В дилептонном событии должны присутствовать два противоположно заряженных лептона с поперечными импульсами $p_T > 20$ ГэВ/с.

2. Должен быть один изолированный электрон с $E_T > 20$ ГэВ или один изолированный мюон с $p_T > 20$ ГэВ/с в интервале псевдобыстроты $|\eta| < 1,0$.

3. Необходимо иметь две адронные струи с $p_T>10$ Гэ
В/cв интервале псевдобыстроты $|\eta|<2,4.$

4. Потерянная поперечная энергия в событии должна удовлетворять условию $E_T^{\rm miss}>25$ ГэВ.

5. Если $E_T^{\text{miss}} < 50$ ГэВ, то азимутальный угол между E_T^{miss} и ближайшим лептоном или адронной струей должен быть меньше 20°.

6. Отбрасываются также события с e^+e^- - или $\mu^+\mu^-$ -парой, когда инвариантная масса этой пары удовлетворяет условию $75 < M_{ll} < 105 \ \Gamma$ эB/ c^2 .

Третий критерий в этом списке, например, позволил уменьшить фон в четыре раза, сохранив при этом 84 % «сигнальных» событий с массой $M_{\rm top}$ =

160 ГэВ/ c^2 . Пятый критерий редуцирует вклад фоновых событий от распада Z-бозона $Z \to \tau \tau$. Ни одного дилептонного события с e^+e^- - или $\mu^+\mu^-$ -парой не было выделено по этим критериям и только два события с $e\mu$ -парой.

Лептон-струйный канал $t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}(l^+\nu)(jj)$ в эксперименте CDF выделяли по следующим критериям:

1. В лептон-струйном событии должен быть один изолированный лептон с $p_T > 20 \ \Gamma$ эВ/ c^2 в интервале псевдобыстроты $|\eta| < 1,0$.

2. Потерянная поперечная энергия в событии должна удовлетворять условию $E_T^{\rm miss} > 20$ ГэВ.

3. Отбрасываются события с e^+e^- - или $\mu^+\mu^-$ -парой, когда инвариантная масса пары находится в интервале $70 < M_{ll} < 110$ ГэВ/ c^2 .

4. В событии присутствует некоторое количество адронных струй $N_{\rm jet}$ с $E_T \ge 15$ ГэВ в интервале псевдобыстроты $|\eta| < 2.0$.

Эти критерии позволяют выделить W-бозон, распавшийся по лептонному каналу в сопровождении нескольких адронных струй. Отношение сигнала к фону в значительной степени увеличивается при $N_{\rm jet} \ge 3$. В данном случае основной фоновый вклад дают события, содержащие W-бозон и адронные струи. Эти фоновые события подавляются почти в 400 раз, при этом остается ~75% от общего числа лептон-струйных $t\bar{t}$ -событий. Таким образом, как видно из табл. 3, дальнейший анализ проводился с 52 лептон-струйными событиями, оставшимися после применения критериев отбора, содержащими W-бозон и три и более адронные струи.

Таблица 3. Количество событий, прошедших критерии отбора лептон-струйного канала, с изолированным электроном, изолированным мюоном и их сумма при разной множественности адронных струй. В последней колонке — предсказания Монте-Карло-программы VECBOS [36,48]

Кол-во адронных струй $N_{\rm jet}$	Электрон	Мюон	Электрон и мюон	VECBOS
0	10663	6264	16927	
1	1058	655	1713	$1571\pm^{285}_{227}$
2	191	90	281	$267\pm^{80}_{57}$
3	30	13	43	$39\pm^{12}_{10}$
≥4	7	2	9	$7\pm^{3,2}_{2,2}$

Далее, для лептон-струйных событий необходимо было определить, какие из трех и более адронных струй в событии были инициированы b- или \bar{b} -кварком, т.е. сделать b-«мечение» (b-tagging). Было применено два типа b-мечения. Первый — SLT (soft lepton tag), эффективность которого составляла (16 ± 2) %. Этот метод подразумевает, что внутри адронной струи, инициированной *b*- или *b*-кварком, должен находиться заряженный лептон от распада *b*- или *c*-кварка $(b \rightarrow l + \nu + X)$ или $b \rightarrow c \rightarrow l + \nu + X$, l = e или μ). Нижний предел поперечного импульса лептона внутри струи $p_T > 2$ ГэВ/*c* (рис. 4). Лептоны, прошедшие первый и второй критерии отбора для дилептонного канала, при этом не рассматривались.

Рис. 4. Иллюстрация SLT-метода *b*-мечения (направление первичных сталкивающихся протонов перпендикулярно плоскости рисунка)

Второй метод *b*-мечения — SVX (secondary vertex tag) — это метод, эффективность которого составляла (22 ± 6) %, основан на том, что образовавшийся при адронизации *b*-кварка *B*-мезон, перед тем как распасться, успевает пройти некоторое расстояние L_{xy} (рис. 5) от вершины взаимодействия. Применение этого метода начиналось с рассмотрения адронных струй

Рис. 5. Иллюстрация SVX-метода *b*-мечения (направление первичных сталкивающихся протонов перпендикулярно плоскости рисунка)

с $E_T > 15$ ГэВ и $|\eta| < 2,0$, затем для треков в этих струях с $p_T > 2$ ГэВ/с находился прицельный параметр d_0 , и если $|d_0| / \sigma_{d_0} \ge 3$, то этот трек использовался в алгоритме определения вершины струи. Далее, для этих треков

определялось расстояние от вершины этого трека до оси пучка L_{xy} и погрешность $\sigma_{L_{xy}} (\approx 130$ мкм). В результате адронные струи с $|L_{xy}| / \sigma_{L_{xy}} \ge 3$ считались струями, образованными *b*- или *b*-кварками, т.е. *b*-струями.

Таким образом, из 52 лептон-струйных событий, прошедших критерии отбора с количеством адронных струй ≥ 3 , только 7 было с SLT-мечением и 6 с SVX-мечением, три из этих 13 событий имели как SLT-, так и SVX-мечение (см. табл. 4). Таким образом, с учетом событий с *b*-мечением с помощью обоих методов было выделено 10 лептон-струйных событий.

Tаблица 4. Количество теоретически ожидаемых $t\bar{t}$ -событий N_{expect} и наблюдаемых событий с ожидаемым фоном [36]

Количество событий,	Дилептонные	SVX-	SLT-
масса t-кварка	события	мечение	мечение
$N_{ m expect}, M_{ m top}$ =120 Γэ ${ m B}/c^2$	3,7±0,6	7,7±2,5	6,3±1,3
$N_{\text{expect}}, M_{\text{top}}$ =140 ГэВ/ c^2	$2,2{\pm}0,2$	$4,8{\pm}1,7$	$3,5{\pm}0,7$
$N_{\text{expect}}, M_{\text{top}}$ =160 Γэ \mathbf{B}/c^2	$1,3{\pm}0,1$	2,7±0,9	1,9±0,3
$N_{\text{expect}}, M_{\text{top}}$ =180 Γэ \mathbf{B}/c^2	$0,\!68{\pm}0,\!06$	$1,4{\pm}0,4$	$1,1{\pm}0,2$
Суммарный фон	$0{,}56\pm^{0,25}_{0,13}$	$2,3{\pm}0,3$	3,1±0,3
Кол-во наблюдаемых событий	2	6	7

После применения дополнительного критерия на присутствие четвертой адронной струи с поперечной энергией свыше 8 ГэВ в интервале псевдобыстрот от -2, 4 до +2,4 из этих 10 лептон-струйных событий осталось 7, распределение которых дано на рис. 6, *a* (сплошная линия). Пунктирная линия показывает суммарный ожидаемый вклад смоделированного фона и $t\bar{t}$ -пары в предположении, что масса *t*-кварка равна 175 ГэВ/ c^2 . Точечная линия — распределение фоновых событий от *W*-бозонов в сопровождении нескольких струй. Результаты фитирования 7 лептон-струйных событий методом наименьшего χ^2 дали значение массы *t*-кварка 174 ГэВ/ c^2 .

После этого была проведена некоторая модернизация вершинного детектора, что позволило улучшить его характеристики [1]. Были улучшены также методы *b*-мечения. Теперь в SVX-методе вместо требования количества треков в струе $N_{\text{tracks}} \ge 2$, стало $N_{\text{tracks}} \ge 3$, что увеличило эффективность почти в два раза: с (22 ± 6) % до (42 ± 5) %. В SLT-методе для мюонов интервал псевдобыстрот был увеличен с $|\eta| = 0,6$ до $|\eta| = 1$, что подняло эффективность с (16 ± 2) % до (20 ± 2) %. Таким образом, число лептонструйных событий, содержащих в конечном состоянии W-бозон и не менее четырех адронных струй, прошедших критерии отбора, увеличилось до 88, из которых критерии по *b*-мечению прошли только 19 событий, их фити-

Рис. 6. а) Определение массы *t*-кварка. Сплошная линия — экспериментальные данные (7 событий), штриховая линия — смоделированный фон и ожидаемый вклад $t\bar{t}$ -пар в предположении, что масса *t*-кварка 175 ГэВ/ c^2 ; точечная линия — распределение фона от *W*-бозона и струй фона; δ) сплошная линия — экспериментальные данные (19 событий с *W*-бозоном и 4 (не менее) адронными струями); штриховая линия — сумма смоделированного фона и ожидаемого вклада $t\bar{t}$ -пар в предположении, что масса *t*-кварка 175 ГэВ/ c^2 ; точечная линия — распределение фона [1,36]

рование методом наименьшего χ^2 дало массу *t*-кварка $M_{\rm top} = 176 \ \Gamma$ эВ/ c^2 со статистической погрешностью ±8 Γ эВ/ c^2 и систематической ±10 Γ эВ/ c^2 (рис. 6, δ).

4. МЕТОДЫ ИЗМЕРЕНИЯ МАССЫ *t*-КВАРКА НА ТЭВАТРОНЕ

На тэватроне массу *t*-кварка измеряли двумя основными способами. Одним из них является «шаблонный» («template») метод [21, 22], основанный на сравнении реальных экспериментальных данных с «шаблонными» данными, которые заранее были сгенерированы при различных значениях массы *t*-кварка (рис. 7). Это сравнение осуществляется путем нахождения минимума χ^2 :

$$\chi^{2} = \sum_{l,jets} \frac{[\hat{p}_{T} - p_{T}]^{2}}{\sigma_{p_{T}}^{2}} + \sum_{i=x,y} \frac{[\hat{U}_{i} - U_{i}]^{2}}{\sigma_{U_{i}}^{2}} + \frac{(M_{l\nu} - M_{W})^{2}}{\sigma_{M_{W}}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\sigma_{M_{VD}}^{2}} + \frac{(M_{l\nu j} - M_{top})^{2}}{\sigma_{M_{top}}^{2}} + \frac{(M_{jjj} - M_{top})^{2}}{\sigma_{M_{top}}^{2}}, \quad (2)$$

Рис. 7. а) Распределения инвариантных масс *t*-кварка, полученные с помощью Монте-Карло-генератора для шести различных значений массы *t*-кварка. б) Распределение восстановленного *t*-кварка CDF Run I (гистограмма), фон — заштрихованная область [34]

где первое суммирование проводится по поперечным импульсам изолированного лептона и всех адронных струй с $E_T > 8$ ГэВ и $|\eta| < 2,4$; второе суммирование идет по значениям векторных сумм энергий в вершинах калориметра с вычтенными значениями энергий изолированного лептона и всех адронных струй с $E_T > 8$ ГэВ и $|\eta| < 2,4$. Далее используется $\sigma_{M_W} = 2,1$ ГэВ/ c^2 и $\sigma_{M_{top}} = 2,5$ ГэВ/ c^2 . События со значениями $\chi^2 > 10$ отбрасывались.

Вторым способом определения массы t-кварка является метод матричного элемента [23]. Он основан на том, что матричный элемент дифференциального сечения рождения $t\bar{t}$ -пары зависит от величины массы t-кварка. Поскольку для вычисления весов события использовались матричные элементы лидирующего порядка, то рассматривались только события ровно с четырьмя адронными струями. Этот критерий на адронные струи минимизирует поправки высшего порядка. Вероятность рождения $t\bar{t}$ -события $P(x, M_{top})$ при измеренном наборе переменных x (восемь пространственных углов для адронных струй, трехимпульс лептона и четыре уравнения, учитывающие сохранение энергии и импульса) для данной массы t-кварка определяется сверткой дифференциального сечения с функциями распределения партонов и функцией перехода W(y, x), отображающей измеренные величины x в величины y на партонном уровне:

$$P(x, M_{\rm top}) = \frac{1}{\sigma_{\rm tot}} \int dy dq_1 dq_2 \frac{d\sigma(y, M_{\rm top})}{dy} f(q_1) f(q_2) W(y, x), \qquad (3)$$

где $f(q_i)$ — функции распределения партонов с долей импульса q_i ; $1/\sigma_{tot}$ — нормировка на суммарное сечение. После вычисления $P(x, M_{top})$ для 24 ком-

бинаций всех адронных струй с учетом решений для p_z -компоненты трехимпульса нейтрино вычислялось среднее значение $P(x, M_{top})$. Затем по методу Монте-Карло вычислялась вероятность фонового события $P_{bkg}(x)$ для выделенного набора переменных x.

Если логарифм вероятности оказывался очень малым (меньше 11), то событие отбрасывалось. В противном случае рассчитывался логарифм функции правдоподобия для данной массы *t*-кварка:

$$-\ln L(M_{\rm top}) = -\sum_{i=1}^{N} \ln \left[c_1 P_{t\bar{t}}(x_i, M_{\rm top}) + c_2 P_{\rm bkg}(x_i) \right] + Nc_1 \int A(x) P_{t\bar{t}}(x, M_{\rm top}) dx + Nc_2 \int A(x) P_{\rm bkg}(x) dx \quad (4)$$

и строилось распределение для полученных значений вероятности в зависимости от массы *t*-кварка. По минимуму в этом распределении окончательно определялась масса *t*-кварка (рис. 8).

Рис. 8. а) Распределение логарифма вероятности фона $P_{bkg}(x)$ (см. (3)) для 71 события эксперимента D0 (сплошная линия). δ) Распределение функции правдоподобия – $\ln L$ (4), нормированной на максимальное значение, в зависимости от массы *t*-кварка [34]. ϵ) Распределение $t\bar{t}$ -пар и W+ jets-событий, полученное с помощью Монте-Карлогенератора (заштрихованная область)

В общем, самые точные результаты были получены в лептон-струйном канале распада $t\bar{t}$ -пары. Данные (на 26 июля 2006 г.) измерения массы t-кварка на тэватроне в различных каналах распада $t\bar{t}$ -пары (со статистическими и систематическими погрешностями соответственно) таковы [24]:

$$\begin{split} \text{CDF} &: M_{\text{top}}^{\text{all}-j} = (174 \pm 2, 2 \pm 4, 8) \ \Gamma \mathfrak{sB}/c^2; \ M_{\text{top}}^{l+j} = (170, 9 \pm 1, 6 \pm 2, 0) \ \Gamma \mathfrak{sB}/c^2; \\ M_{\text{top}}^{di-l} &= (164, 5 \pm 3, 9 \pm 3, 9) \ \Gamma \mathfrak{sB}/c^2; \\ \text{D0} &: M_{\text{top}}^{l+j} = (170, 3 \pm 2, 5 \pm 3, 8) \ \Gamma \mathfrak{sB}/c^2; \ M_{\text{top}}^{di-l} &= (178, 1 \pm 6, 7 \pm 4, 8) \ \Gamma \mathfrak{sB}/c^2. \end{split}$$

Усредненное по обоим экспериментам и по всем каналам распада значение массы [25, 40]:

 $M_{\rm top} = 171.4 \pm 1.2 \text{ (stat.)} \pm 1.8 \text{ (syst.)} \Gamma \mathfrak{p} \mathbf{B}/c^2.$

5. ИЗМЕРЕНИЕ МАССЫ *t*-КВАРКА НА LHC

Одной из основных задач, на решение которых нацелен большой адронный коллайдер (LHC), является, безусловно, максимально точное определение массы t-кварка. Прецизионное значение величины этой массы крайне важно для более точного установления области допустимых значений массы бозона Хиггса в СМ, поиск которого является первостепенной целью экспериментов на LHC. Кроме того, необходимы более точные измерения сечений рождения кварковых tt-nap при различных энергиях, поскольку события, содержащие $t\bar{t}$ -пары, будут фоновыми для других, в том числе и поисковых, задач экспериментов ATLAS и CMS. Помимо этого на LHC планируется измерение |V_{tb}|-элемента СКМ-матрицы, электрического заряда t-кварка, его спина и других поляризационных характеристик, вероятностей различных, в том числе и редких (с несохранением аромата нейтральных токов) каналов распада t-кварка, поиск новой физики за пределами Стандартной модели и т.д. Поскольку теоретическое предсказание сечения рождения $t\bar{t}$ -пары при энергии LHC (14 ТэВ в с. ц. м.) велико и составляет 833 пб [26], то естественно, что основные исследования в области топ-физики начнутся и будут проводиться на начальной стадии работы ускорителя LHC.

5.1. Лептон-струйный канал распада $t\bar{t}$ -пары на LHC. Основными фоновыми событиями для лептон-струйного канала распада $t\bar{t}$ -пары на LHC, составляющего 30% от всех $t\bar{t}$ -событий, являются прямое рождение $b\bar{b}$ -квар-ковой пары, прямое образование W- и Z-бозонов в сопровождении адронных струй (W+ jets и Z+ jets) с последующим лептонным распадом W- и Z-бозонов. Фон этот велик — отношение сигнала к фону без учета какихлибо критериев отбора составляет 10^{-4} (табл. 5).

Процесс	σ , пб
Сигнал, $pp \to t\bar{t} \to b\bar{b}W^+W^- \to b\bar{b}(l^+\nu)(q\bar{q})$	~ 250
$pp ightarrow b ar{b} ightarrow l u +$ адронные струи	$2,2.10^{6}$
$pp ightarrow W + { m jets} ightarrow l u +$ адронные струи	$7,8 \cdot 10^{3}$
$pp ightarrow Z + { m jets} ightarrow l^+ l^- +$ адронные струи	$1,2.10^{3}$
$pp \rightarrow WW \rightarrow l \nu +$ адронные струи	17,1
pp ightarrow WZ ightarrow l u+адронные струи	3,4
$pp \rightarrow ZZ + { m jets} \rightarrow l^+ l^- +$ адронные струи	9,2

Таблица 5. Сечение рождения $t\bar{t}$ -пары с распадом по лептон-струйному каналу и сечения фоновых событий при энергии 14 ТэВ [37]

Для выделения этого канала распада $t\bar{t}$ -пары коллаборация ATLAS будет применять следующие стандартные критерии отбора событий:

1. В событии должен присутствовать один изолированный лептон с $p_T > 20$ ГэВ/*c* и в интервале псевдобыстрот $|\eta| < 2.5$.

2. Потерянная поперечная энергия в событии должна удовлетворять условию $E_T^{\rm miss} > 20$ ГэВ.

3. В событии необходимо присутствие четырех адронных струй с $p_T > 40$ ГэВ/*c* в интервале псевдобыстрот $|\eta| < 2.5$, две из которых должны иметь *b*-мечение (т. е. соответствовать *B*-мезонам).

После применения этих критериев отбора отношение сигнала к фону становится на уровне 30.

Одним из методов определения массы *t*-кварка в данном канале является определение массы именно того *t*-кварка (назовем его струйным *t*-кварком), *W*-бозон от распада которого распадается на кварк-антикварковую пару [27]. Возможны два варианта восстановления из данных этого (струйного) *W*-бозона. Первый — если в анализируемом событии только две легкие (от *u*-, *d*-, *s*- или *c*-кварков) адронные струи, то это событие проходит отбор (т. е. считается содержащим струйный *W*-бозон), если инвариантная масса обоих струй находится в пределах $M_{jj} \pm 5\sigma_{jj}$, где $M_{jj} = (79.6 \pm 0.4)$ ГэВ/ c^2 , $\sigma_{jj} = (8.8 \pm 0.5)$ ГэВ/ c^2 . Второй случай отвечает наличию более двух легких струй в анализируемом событии. Тогда выбирается та пара струй, которая дает минимум χ^2 :

$$\chi^{2} = \frac{(M_{jj}(\alpha_{1},\alpha_{2}) - M_{W})^{2}}{\Gamma_{W}^{2}} + \left(\frac{E_{j_{1}}(1-\alpha_{1})}{\sigma_{j_{1}}}\right)^{2} + \left(\frac{E_{j_{2}}(1-\alpha_{2})}{\sigma_{j_{2}}}\right)^{2}, \quad (5)$$

где α_1 и α_2 — некоторые коэффициенты перемасштабирования. Событие отбрасывается, если инвариантная масса восстановленного таким образом W-бозона выходит за пределы 2σ , т. е. когда $|M_W - 80,4| \ge 2\sigma$.

Далее, с помощью выбранного отмеченными выше способами струйного W-бозона необходимо восстановить из данных массу начального t-кварка. Для этого надо правильно выделить тот b-кварк, который образовался от распада искомого t-кварка вместе с данным струйным W-бозоном. Поскольку в лептон-струйном канале распада $t\bar{t}$ -пары присутствуют два b-кварка (точнее, неразличимые в данном случае \bar{b} - и b-кварк), то из двух этих b-кварков выбирается (т. е. считается образованным от распада t-кварка вместе с о струйным W-бозоном) тот, который соответствует наибольшему значению поперечного импульса восстановленного t-кварка. На рис. 9, a для интегральной светимости LHC 10 фм⁻¹ показано распределение (правильно) восстановленных таким способом масс t-кварка (1); 2 — это распределение восстановленной массы t-кварка при неправильно выбранном W-бозоне и 3 — распределение, отвечающее неправильном выбору W-бозона или b-кварка. Точность этого метода определения массы t-кварка можно оценить из наблюдения, что при моделировании анализированных выше лептон-струйных событий была зало-

Рис. 9. *а*) Распределение массы восстановленного струйного *t*-кварка при статистике 10 $\phi \delta^{-1}(I)$; 2 — распределение восстановленной массы *t*-кварка при неправильно выбранном *W*-бозоне; 3 — распределение, отвечающее неправильному выброру *W*-бозона или *b*-кварка. *б*) Зависимость восстановленной массы *t*-кварка от заложенной при моделировании массы *t*-кварка после полного моделирования установки [27]

жена масса *t*-кварка 175 ГэВ/ c^2 , а восстановленная в результате анализа масса равна (176,1 ± 0,6) ГэВ/ c^2 .

На рис. 9, б показана зависимость восстановленной массы *t*-кварка от заложенной при моделировании (сгенерированной) массы *t*-кварка после учета в процедуре анализа полного моделирования установки. Следует отметить хорошую линейность данного метода. Из рис. 10 видно, что для лептонструйного канала распада $t\bar{t}$ -пары основной фоновый вклад W + 4-jets пренебрежимо мал и слабо влияет на «измеренные» значения массы *t*-кварка и среднеквадратичного отклонения σ . Действительно, без учета фона (только сигнал) получено $M_{\rm top} = (176, 1 \pm 0, 6)$ ГэВ/ c^2 и $\sigma = (11, 9 \pm 0, 7)$ ГэВ/ c^2 и $\sigma = (12, 1 \pm 0, 7)$ ГэВ/ c^2 .

Следующий метод определения массы t-кварка предполагает, что в $t\bar{t}$ -событии с лептон-струйным каналом распада этой $t\bar{t}$ -пары струйный (т. е. с адронным распадом W-бозона) t-кварк имеет поперечный импульс больше 200 ГэВ/c [37]. Такой топологии события отвечают только 2% всех $t\bar{t}$ -пар, образованных в протон-протонных столкновениях. Другой топологической особенностью является то, что t-кварки (на самом деле, t- и \bar{t} -кварки) рождаются противоположно направленными, и три адронные струи (две от W-бозона и одна от b-кварка) от распада t-кварка с поперечным импульсом больше 200 ГэВ/c имеют тенденцию перекрываться в калориметре. Критерии отбора лептон-струйного канала при этом немного меняются. Теперь поперечный импульс изолированного лептона (от распада другого, лептонного

t-кварка) должен быть больше 30 ГэВ/*c* и потерянная в событии поперечная энергия (энергия нейтрино) также должна превышать 30 ГэВ/*c*. С учетом этих критериев отбора в год при низкой светимости LHC (10^{33} см⁻²·c⁻¹) следует ожидать примерно 15000 событий такой топологии. Затем в каждом

из таких событий находят две легкие адронные струи, которые имеют наибольший поперечный импульс и инвариантная масса которых удовлетворяет условию на массу Ибозона в виде $|M_{ij} - M_W| \leq 20$ ГэВ/ c^2 . Далее, эти две адронные струи (от распада Wбозона) объединяются с топологически ближайшим b-кварком и восстанавливается кандидат в струйный t-кварк. Если поперечный импульс восстановленного таким образом tкварка оказывается меньше 235 ГэВ/с, то событие отбрасывается как не соответствующее предположению о большом поперечном импульсе начального струйного t-кварка. Общая эффективность всех критериев составляет 2%, т.е. после их наложения на все ttсобытия остается примерно 3600 событий в год при низкой светимости LHC. В результате описанной процедуры определяется также направление вылета из вершины взаимодействия восстановленного *t*-кварка. В дальнейшем собираются инвариантные массы всех вершин

Рис. 10. Распределения ивариантной массы t-кварка (восстановленной по лептон-струйному каналу распада $t\bar{t}$ -пары) и фоновых (W+4-jets) событий с Wбозоном и 4 адронными струями (черная гистограмма) [27]

(tower) в пределах конуса с $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ вокруг направления вылета *t*-кварка, при этом значение ΔR варьируется от 0,8 до 1,8 с шагом 0,1 по полярному углу $\Delta \eta$ и азимутальному $\Delta \phi$. Эта инвариантная масса всех вершин дается формулой

$$m_{\rm clust}^2(\Delta R) = (E^2 - p^2) = \left(\sum_{i=1}^{n(\Delta R)} E_i\right)^2 - \left(\sum_{i=1}^{n(\Delta R)} p_i\right)^2,$$
 (6)

где E_i — суммарная энергия в калориметре для *i*-й вершины, а p_i — ее трехимпульс. Однако собранная инвариантная масса каждой вершины при данной величине $\Delta R \ m_{\rm clust}^{\rm top}(\Delta R)$ растет с увеличением ΔR (рис. 11, *a*, звездочки) из-за вклада так называемой «подкладки» (Underlying Event — UE), которая представляет собой поперечную энергию, выделившуюся в калориметре в каждом событии. Среднее значение по всему интервалу быстрот на одну вершину оказалось равным 42,5 МэВ. Данную величину вычитали из каждой

вершины при восстановлении массы *t*-кварка для данного ΔR , и, как видно из рис. 11, δ (кружки), собранная таким образом (предварительная) масса *t*-кварка практически не зависит от ΔR , и для $\Delta R = 1,4$ значение этой массы равно 133 ГэВ/ c^2 с погрешностью $\pm 0,2\%$. Таким же образом была проведена перекалибровка инвариантной массы вершин для *W*-бозона, в результате чего масса восстановленного *t*-кварка осталась практически независимой от ΔR и равной 173,8 ГэВ/ c^2 с погрешностью $\pm 0,3\%$ (рис. 11, δ).

Рис. 11. *а*) Результат фитирования инвариантной массы $m_{\rm clust}^{\rm top}$ до и после вычитания UE в зависимости от ΔR . *б*) Результат фитирования инвариантной массы $m_{\rm clust}^{\rm top}$ после вычитания UE до и после перекалибровки как функция ΔR [27]

В табл. 6 приведены систематические и статистические погрешности определения массы *t*-кварка обоими описанными выше способами. Наименьшие значения суммарной статистической и систематической погрешности соответствует методу определения массы по адронному (или струйному) *t*-кварку.

Еще один способ определения массы *t*-кварка в лептон-струйном канале распада $t\bar{t}$ -пар основан на том, что *b*-кварк от лептонного *t*-кварка может распасться также на J/ψ -частицу с последующим распадом последней на мюонную пару [37, 39]. При этом инвариантная масса распадающегося таким путем *t*-кварка будет скоррелирована с инвариантной массой системы $\ll J/\psi$ +изолированный лептон» (рис. 12).

Чтобы подавить комбинаторный фон, можно использовать тот факт, что заряженный лептон в *b*-струе от адронного *t*-кварка должен быть того же знака, что и изолированный лептон (от лептонного *t*-кварка). Данный канал имеет относительную вероятность на уровне $5,2 \cdot 10^{-5}$, поэтому этот способ определения массы *t*-кварка будет применим только при высокой светимости LHC (10^{34} см⁻²·с⁻¹), когда ожидается образование примерно 2700 J/ψ -частиц в год в лептон-струйном канале распада $t\bar{t}$ -пар. Чтобы выделить

Таблица 6. Сравнение систематических и статистических погрешностей определения массы *t*-кварка по восстановленному адронному *t*-кварку и по адронному *t*-кварку с высоким поперечным импульсом в лептон-струйном канале распада $t\bar{t}$ -пар [37]

Источник погрешности	Адронный t -кварк, $\delta M_{\rm top}$, ГэВ/ c^2	Адронный <i>t</i> -кварк с высоким p_T , δM_{top} , ГэВ/ c^2
Масштабирование энергии		
легких адронных струй (1%)	0,2	
Масштабирование энергии		
<i>b</i> -струй (1%)	0,7	
Фрагментация <i>b</i> -кварка	0,1	0,3
Излучение в начальном состоянии	0,1	0,1
Излучение в конечном состоянии	1,0	0,1
Комбинаторный фон	0,1	_
Перемасштабирование массы	—	0,9
UE (±10%)	—	1,3
Общая погрешность	1,3	1,6
Статистическая погрешность	0,05	0,2

Рис. 12. Схема распада $t\bar{t}$ -пары по лептон-струйному каналу с образованием J/ψ -частицы

именно этот J/ψ -канал, необходимо присутствие изолированного лептона с $p_T > 30$ ГэВ/с и $|\eta| < 2,4$, трех неизолированных мюонов с $p_T > 3$ ГэВ/с и $|\eta| < 2,4$, а также чтобы инвариантная масса двух из них (с противоположными зарядами) была сравнима с массой J/ψ -частицы. После применения этих критериев отбора останется около 430 событий в год (при высокой светимости LHC), однако при этом фон от других событий становится пренебрежимо малым. Основным остается фон от неправильных комбинаций J/ψ с изолированным лептоном. На рис. 13, *а* показано распределение инвариантной массы правильной комбинации системы « J/ψ +изолированный лептон». Среднее значение инвариантной массы системы « J/ψ +изолированный лептон» составляет 68,1 ГэВ/ c^2 с шириной пика 22,4 ГэВ/ c^2 и статистической погрешностью ± 0.5 ГэВ/ c^2 (заложенная в генератор анализируемых событий масса *t*-кварка при этом равна 175 ГэВ/ c^2).

Рис. 13. а) Распределение инвариантной массы правильной комбинации системы « J/ψ +изолированный лептон» при заложенной в генератор событий массе *t*-кварка 175 ГэВ/ c^2 . б) Зависимость инвариантной массы системы « J/ψ + изолированный лептон» от заложенной в генератор событий массы *t*-кварка [38, 39]

На рис. 13, δ показана линейная зависимость инвариантной массы системы « J/ψ +изолированный лептон» от заложенной в генератор исследуемых событий массы *t*-кварка. Таким образом, за пять лет работы LHC при высокой светимости с помощью данного метода будет достигнута статистическая неопределенность в измерении массы *t*-кварка на уровне 0,8–0,9 ГэВ/ c^2 .

5.2. Дилептонный канал распада $t\bar{t}$ -пары на LHC. Дилептонный канал распада $t\bar{t}$ -пары составляет ~5% от всех $t\bar{t}$ -событий, всего ожидается около 400 тыс. событий в год при низкой светимости LHC [35, 37]. После применения следующих критериев отбора для данного канала:

1) в событии должно быть два противоположно заряженных изолированных лептона с $p_T > 20$ ГэВ/с и $|\eta| < 2.5$;

2) потерянная поперечная энергия удовлетворяет условию $E_T^{\text{miss}} > 40 \ \Gamma \Im B$;

3) две адронные струи должны быть идентифицированы как инициированые *b*-кварками с $p_T > 25 \ \Gamma$ эВ/с и $|\eta| < 2.5$.

Остается примерно 80 тыс. дилептонных $t\bar{t}$ -событий при отношении сигнала к фону на уровне 10. Основной проблемой восстановления массы t-кварка по данному каналу является наличие двух неидентифицируемых нейтрино от распадов обоих t-кварков. При помощи решения шести уравнений

относительно трех импульсов обоих нейтрино при известных значениях масс Wбозона и t-кварка можно определить так называемый вес каждого решения как функцию вырьируемой массы t-кварка. Если решений получается несколько, то решение с наибольшим весом считается отвечающим «правильной» массе t-кварка.

На рис. 14 показаны значения весов решений при различных предположениях о массе *t*-кварка. Та масса *t*-кварка, что соответствует максимальному значению веса, и считается в данном методе реально измеренной массой *t*-кварка. При этом эффективность метода составляет 6,5 %, статистическая погреш-

Рис. 14. Значения весов решений при различных предположениях о массе t-кварка, когда последняя восстановлена в дилептонном канале распада $t\bar{t}$ -пары [27]

ность 0,04 ГэВ/ c^2 и суммарная систематическая погрешность 1,7 ГэВ/ c^2 .

5.3. Мультиструйный канал распада $t\bar{t}$ -пары на LHC. Сечение мультиструйного канала распада $t\bar{t}$ -пары на LHC составляет 370 пб, т.е. при

низкой светимости LHC ожидается порядка четырех миллионов таких событий [35, 37]. Главным достоинством данного канала является то, что в нем отсутствуют большие потери поперечного импульса, но существенным недостатком является так называемый квантовохромодинамический (КХД) или чисто адронный фон. Без наложения каких-либо кинематических критериев отбора событий отношение сигнала к фону составляет порядка 10-8. Если потребовать, чтобы 1) в событии было 6 или более адронных струй с $p_T > 40$ ГэВ/с и $|\eta| < 3,0; 2)$ из этих струй две или более были бы инициированы *b*-кварками с $|\eta| < 2,5$, то отношение сигнала к фону становится уже 1/19. Отбирая пары легких адронных струй для

Рис. 15. Распределение восстановленной инвариантной массы t-кварка в мультиструйном канале распада $t\bar{t}$ -пары и КХД-фона [27]

восстановления W-бозонов по методу наименьшего χ^2 (см. выше), можно добиться увеличения отношения сигнала к фону до 1/3. Далее, выбирая правильные комбинации W-бозона и b-кварка, после применения критерия на

восстановленную массу *t*-кварка в пределах от 130 до 200 Γ эB/ c^2 можно получить отношение сигнала к фону, равное 6. И наконец, условие, что поперечный импульс восстановленной пары $t\bar{t}$ -кварков был больше 200 Γ эB/c, оставляет около 3300 событий в год при низкой светимости LHC, но увеличивает отношение сигнала к фону до 18.

На рис. 15 показано распределение инвариантной массы *t*-кварка и КХДфона. Эффективность определения массы *t*-кварка по мультиструйному каналу составляет 0,08%, при этом статистическая погрешность 0,18 ГэВ/ c^2 , а суммарная систематическая погрешность 3 ГэВ/ c^2 .

6. ФИЗИКА t-КВАРКА НА РАННЕЙ СТАДИИ РАБОТЫ LHC

Считается, что самым лучшим каналом для исследования топ-физики в начале работы LHC является лептон-струйный канал распада $t\bar{t}$ -пары [28,29, 39]. В продуктах распада $t\bar{t}$ -пары по данному каналу, во-первых, содержится

Рис. 16. *а*) Распределения сигнал + фон и только фон для адронного *t*-кварка, собранного из системы трех адронных струй, имеющих самый большой поперечный импульс, без применения *b*-мечения. *б*) Распределения сигнал + фон и только фон для *W*-бозона, собранного из двух адронных струй, имеющих самый большой поперечный импульс. *в*) Распределения сигнал + фон и фон, когда масса восстановленного *W*-бозона составляет $M_W \pm 20$ ГэВ/*c*² [29]

изолированный лептон, что является полезным для опробования алгоритмов идентификации лептонов и измерения их кинематических параметров. Во-

вторых, имеются две адронные струи от легких кварков, из которых можно восстановить инвариантную массу W-бозона, что полезно для калибровки калориметра. И, в-третьих, для отработки процедуры *b*-мечения важно присутствие двух адронных струй, инициированных *b*-кварком. Наличие потерянной поперечной энергии, обусловленной нейтрино, также важная характеристка лептон-струйного канала распада $t\bar{t}$ -пары.

Кроме того, данный канал будет удобным для восстановления адронного *t*-кварка без применения специальной процедуры идентификации *b*-струй, т. е. без *b*-мечения. Так, на рис. 16, *a* показаны распределения сигнал + фон, а также только фона для адронного *t*-кварка, собранного из системы трех адронных струй, имеющих самый большой поперечный импульс, без применения *b*-мечения. На рис. 16, *б* показано распределение сигнал + фон, а также только фона для *W*-бозона, собранного из двух адронных струй, имеющих самый большой поперечный импульс. Если применить критерий отбора для этого *W*-бозона, т. е. отбрасывать те события, в которых его восстановленная масса не попадает в область $M_W \pm 20$ ГэВ/ c^2 , то получится более узкий пик в области массы *t*-кварка в распределении сигнал+фон (рис. 16, *s*).

7. ИЗМЕРЕНИЕ ЗАРЯДА t-КВАРКА НА УСТАНОВКЕ ATLAS

В эксперименте D0 на протон-антипротонном коллайдере тэватрон с энергией в с. ц. м. 1,8 ТэВ была сделана первая попытка прямого измерения электрического заряда *t*-кварка. Он оказался равным $Q_{top} = +2e/3$ на уровне значимости 92 % [30]. Заряд *t*-кварка определяется посредством измерения заряда — «инициатора» *b*-струи. Для этого есть, по крайней мере, два способа.

Метод взвешивания [31], который заключается в определении взвешенной суммы зарядов всех адронов в данной *b*-струе:

$$Q_{b-\text{jet}} = \frac{\sum_{i}^{N} q_{i} |\mathbf{j} \cdot \mathbf{p}_{i}|^{k}}{\sum_{i}^{N} |\mathbf{j} \cdot \mathbf{p}_{i}|^{k}},$$
(7)

где N — количество адронов в *b*-струе; q_i и p_i — заряд и импульс *i*-го адрона; **j** — направление оси *b*-струи; k — добавочный экспоненциальный коэффициент. Данный способ применялся на установке D0 при определении заряда *b*-струи в семнадцати лептон-струйных событиях. Добавочный экспоненциальный коэффициент k определялся при помощи моделирования установки ATLAS [30]. Метод полулептонного распада *В*-мезона основан на определении заряда *b*-струи посредством определения заряда неизолированного лептона (продукт распада *В*-мезона) внутри этой струи:

$$b \to c, u + l^- + \bar{\nu}, \quad \bar{b} \to \bar{c}, \bar{u} + l^+ + \nu$$

т.е. в *b*-струе, инициированной *b*-кварком, должны присутствовать отрицательно заряженные лептоны, а в *b*-струе, инициированной \bar{b} -кварком, — наоборот, положительно заряженные лептоны. Но из-за осцилляций B^0 -мезонов в \bar{B}^0 -мезоны, а также полулептонного распада *D*-мезона внутри *b*-струи, в *b*-струе появляется лептон со знаком заряда, противоположным знаку заряда лептона от распада *B*-мезона.

Рис. 17. Зависимость величины переменной ϵ и ее статистической погрешности от критерия на поперечный импульс p_T неизолированного мюона внутри *b*- или \bar{b} -струи, восстановленных в лептон-струйном канале распада $t\bar{t}$ -пары (знак ϵ всегда отрицательный для *t*-кварка и положительный для экзотического кварка)

В работе [32] исследована возможность восстановления заряда *t*-кварка методом полулептонного распада *B*-мезона в лептон-струйных событиях на LHC с помощью установки ATLAS. Кроме того, одной из целей этого исследования было рассмотрение гипотезы существования экзотического тяжелого кварка с зарядом, не равным заряду *t*-кварка ($Q \neq +2/3$). Было сделано предположение, что экзотический тяжелый кварк и *t*-кварк отличаются только зарядом, т.е. $Q_{\rm exot} = -4/3$. Основной модой распада экзотического тяжелого кварка является распад на *b*-кварк и *W*⁻-бозон, в то время как *t*-кварк распадается на *b*-кварк и *W*⁺-бозон:

$$\begin{array}{ll} t^{+2/3} \to b^{-1/3} + W^{+1}, & Q_{\rm exot}^{-4/3} \to b^{-1/3} + W^{-1}, \\ \bar{t}^{-2/3} \to \bar{b}^{+1/3} + W^{-1}, & \bar{Q}_{\rm exot}^{+4/3} \to \bar{b}^{+1/3} + W^{+1}. \end{array}$$

Для того чтобы проверить гипотезу об «экзотическом» тяжелом кварке, была введена переменная ϵ :

$$\epsilon = \frac{N(l^+) - N(l^-)}{N(l^+) + N(l^-)},\tag{8}$$

где $N(l^{-})$ — количество *b*-струй с отрицательно заряженным лептоном внутри, а $N(l^{+})$ — количество *b*-струй с положительно заряженным лептоном внутри.

Хотя величина переменной ϵ зависит от типа генератора Монте-Карло (метод адронизации и т. д.), но его знак всегда отрицательный для $t\bar{t}$ -событий и всегда положительный для $Q_{\rm exot}\bar{Q}_{\rm exot}$ -событий (рис. 17). Анализ 300 тыс. лептон-струйных событий позволил сделать вывод о том, что после нескольких дней работы LHC можно будет подтвердить или опровергнуть гипотезу об экзотическом тяжелом кварке на уровне 5σ .

ЗАКЛЮЧЕНИЕ

Исследование свойств самой тяжелой из элементарных частиц — *t*-кварка, несомненно, имеет фундаментальное значение как для проверки Стандартной модели физики частиц, так и для установления важных характеристик различных современных моделей новой физики, таких, например, как суперсимметрия (SUSY). Считается, что если бы *t*-кварк не оказался столь тяжелым, то SUSY, по крайней мере, в ее минимальной версии — MSSM, имела бы уже серьезные проблемы, обусловленные ненаблюдением на LEP II легкого SUSY-бозона Хигтса.

Одна из главнейших, первоочередных задач физики *t*-кварка — это прецизионное определение его массы. С другой стороны, необходимо быть уверенным в том, что заряд частицы, обладающей массой *t*-кварка, в точности соответствует ожидаемому заряду *t*-кварка в Стандартной модели (т. е. равен 2/3 заряда протона). Такая информация будет важной и независимой проверкой Стандартной модели.

В настоящее время единственным источником данных, позволяющим напрямую исследовать свойства t-кварка, является протон-антипротонный коллайдер тэватрон. Трудно переоценить важность работы этого ускорителя для современной физики частиц высоких энергий. На нем коллаборации CDF и D0 уже получили наиболее точные значения для массы t-кварка, и уже сделаны первые успешные попытки определения заряда t-кварка. Однако имеющаяся статистика и доступная область энергий тэватрона все же еще недостаточна для достижения необходимого уровня точности в определении характеристик этого кварка.

Изучение физики *t*-кварка в целом затрагивает такие области и проблемы, как *b*-физика, физика лептонов, восстановление адронных струй и восстано-

вление потерянной поперечной энергии, которые также применяются в таких исследованиях, как, например, суперсимметрия [33].

Как известно, вся физическая общественность ожидает в ближайшем будущем начала работы большого адронного коллайдера LHC в ЦЕРН. Беспрецедентная научная программа в области фундаментальной физики ждет своего выполнения на этом коллайдере. Одной из первоочередных задач будет именно прецизионное определение свойств *t*-кварков. На этом пути благодаря уникальной статистике (недаром LHC считают фабрикой *t*-кварков) будет наиболее точно измерена масса *t*-кварка, определен его заряд, и другие его важные характеристики. Данная информация будет использоваться (в качестве нормировок, калибровок, контролируемого фона и т. п.) при последующих исследованиях в широком спектре таких важнейших фундаментальных задач, как поиск бозонов Хиггса, поиск и исследование суперсимметрии, дополнительных размерностей, черных дыр и т. п.

Итак, изучение свойств *t*-кварка на LHC имеет первостепенное значение: во-первых, эти исследования позволят наиболее точно установить параметры Стандартной модели. Во-вторых, *t*-кварк обещает стать одним из главных средств поиска новой физики, и, в-третьих, в силу огромного количества события с *t*-кварками будут представлять собой основной фон для последующих фундаментальных исследований на LHC. Все это объясняет особый интерес к физике *t*-кварка в преддверии запуска LHC.

В настоящей работе затронуты далеко не все вопросы, касающиеся исследований в области физики t-кварка. Мы кратко остановились на история обнаружения t-кварка, более подробно изложили процедуру его открытия и первого прямого измерения его массы на установке CDF (FNAL) в 1995 г., рассмотрели основные каналы и методы обнаружения t-кварка. Далее мы обсудили способы более точного, прецизионного, измерения массы t-кварка в различных каналах распада $t\bar{t}$ -пары на протон-протонном коллайдере LHC с энергией в с.ц.м. 14 ТэВ. Мы также кратко обсудили некоторые возможности исследований в области топ-физики на начальной стадии работы ускорителя LHC.

СПИСОК ЛИТЕРАТУРЫ

- Abe F. et al. Observation of Top Quark Production in pp̄ Collisions with the Collider Detector at Fermilab // Phys. Rev. Lett. 1995. V. 74. P. 2626.
- 2. Pakvasa S., Sugawara H. // Phys. Lett. B. 1979. V. 82. P. 105.
- 3. Preparata G. // Ibid. P. 398.
- 4. Mahanthappa K. T., Sher M. A. // Ibid. V. 86. P. 294.
- 5. Behrend H. J. et al. // Phys. Lett. B. 1984. V. 144. P. 297.

- 6. Bartel W. et al. // Phys. Lett. B. 1981. V. 99. P. 277.
- 7. Adeva B. et al. // Phys. Lett. B. 1985. V. 152. P. 439.
- 8. Berger C. et al. // Phys. Lett. B. 1979. V. 86. P. 413.
- 9. Althoff M. et al. // Phys. Lett. B. 1984. V. 138. P. 441.
- 10. Sagawa H. et al. // Phys. Lett. B. 1988. V. 60. P. 93.
- 11. Abe F. et al. // Phys. Lett. B. 1990. V. 234. P. 382.
- 12. Decamp D. et al. // Ibid. V. 236. P. 511.
- 13. Abreu P. et al. // Ibid. V. 242. P. 536.
- 14. Akrawy M. Z. et al. // Ibid. V. 236. P. 364.
- 15. Abrams S. et al. // Phys. Lett. B. 1989. V. 63. P. 2447.
- 16. Akesson T. et al. // Z. Phys. C. 1990. Bd. 46. S. 179.
- 17. Abe F. et al. // Phys. Rev. Lett. 1992. V. 68. P. 447.
- 18. Abe F. et al. // Phys. Rev. D. 1992. V. 45. P. 3921.
- 19. Abachi S. et al. // Phys. Rev. Lett. 1994. V. 72. P. 2138.
- Olshevski A. Precision Test of the Standard Model, Electroweak Review Writeup // Europhysics Conf. HEP. Brussels, 1995.
- 21. Affolder T. et al. // Phys. Rev. D. 2001. V. 64. P. 032002.
- 22. Affolder T. et al. // Ibid. V. 63. P. 032003.
- 23. Abazov V. M. et al. // Nature. 2004. V. 429. P. 638.
- 24. *CDF Collab. official web page.* http://www-cdf.fnal.gov/physics/new/top/top.html
- 25. *The Tevatron Electroweak Working Group*. Combination of CDF and DØ Results on the Mass of the Top Quark. hep-ex/0608032. 2006.
- 26. Bonciani R. et al. // Nucl. Phys. B. 1998. V. 529. P. 424.
- Etienvre A. I. http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/Conferences/2006/ Top-06_Etienvre.pdf; Report at TOP-2006. Coimbra, Portugal.
- 28. Barisonzi M. Top Physics at ATLAS. hep-ex/05008008. 2005.
- 29. Pallin D. Top at the LHC. Report at TOP-2006. Coimbra, Portugal.
- Abazov V. M. et al. (D0 Collab.) Experimental Discrimination between Charge 2e/3 Top Quark and Charge 4e/3 Exotic Quark Production Scenarios. hep-ex/0608044. 2007.
- 31. Barate R. et al. (ALEPH Collab.) // Phys. Lett. B. 1998. V. 426. P. 217.
- 32. *Bednyakov V. et al.* Measurement of the Charge of the Top Quark at the ATLAS Detector. ATLAS Internal Note ATL-COM-PHYS-2006-048. 2006.
- 33. Bednyakov V. et al. Search for Gluinos with ATLAS at LHC. hep-ex/0608060. 2006.
- 34. Wagner W. Top Quark Physics in Hadron Collisions. hep-ph/0507207. 2005.

- The ATLAS Collab. ATLAS Technical Design. Report 15. V. II. CERN-LHCC 99-015. 1999.
- 36. Abe F. et al. Evidence for Top Quark Production in $p\bar{p}$ Collisions at $\sqrt{S} = 1.8$ TeV // Phys. Rev. Lett. 1994. V. 73. P. 225.
- 37. Borjanovic I. et al. Investigation of Top Mass Measurements with the ATLAS Detector at LHC. hep-ex/0403021 v1. 2004.
- 38. Beaudette F. Top Physics Prospects at LHC. hep-ex/0506056. 2005.
- 39. Weiser C. Top Physics at the LHC. hep-ex/0506024. 2005.
- Whiteson D. Precision Measurements of the Top Quark Mass at the Tevatron. hepex/0605106. 2006.
- 41. Balantekin A. B. Review of Particle Physics (PDG) // Nucl. Part. Phys. 2006. V. 33. P. 1.
- Jezabek M., Kuhn J. H. QCD Corrections to Semileptonic Decays of Heavy Quarks // Nucl. Phys. B. 1989. V. 314. P. 1.
- 43. Budagov J. A., Glagolev V. V., Suslov I. A. Review of the Top Quark Mass Measurements at the CDF in $p\bar{p}$ at $\sqrt{s} = 1.96$ TeV // ЭЧАЯ. 2007. Т. 38, вып. 3. С. 734–770.
- Ashmanskas W. et al. The CDF Silicon Vertex Tracker // Nucl. Instr. Meth. A. 2004. V. 518. P. 532–536.
- 45. Ashmanskas W. et al. CDF Silicon Vertex Tracker: Tevatron Run II Preliminary Results // Письма в ЭЧАЯ. 2002. № 5[114]. С. 12–22.
- Ashmanskas W. et al. The CDF Silicon Vertex Tracker // Nucl. Instr. Meth. A. 2002. V. 477. P. 451–455.
- Ashmanskas W. et al. The CDF Silicon Vertex Tracker: Online Precision Tracking of the CDF Silicon Vertex Tracker // Nuovo Cim. A. 1999. V. 112, No. 11. P. 1239–1243.
- 48. *Berends F.A. et al.* On the Production of a W and Jets at Hadron Colliders // Nucl. Phys. B. 1991. V. 357. P. 32–64.