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Accurate assessment of the value of the incompressibility coefˇcient, K∞, of symmetric nuclear
matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend
our knowledge of the EOS in the vicinity of the saturation point. We review the current status
of K∞, as determined from experimental data on isoscalar giant monopole and dipole resonances
(compression modes) in nuclei, by employing the microscopic theory based on the Random Phase
Approximation (RPA). The importance of full self-consistent calculations is emphasized. In recent
years, the comparison between RPA calculations based on either nonrelativistic effective interactions,
or relativistic Lagrangians, has been pursued in great detail. It has been pointed out that these two
types of models embed different ansatz for the density dependence of the symmetry energy. This fact
has consequences on the extraction of the nuclear incompressibility, as it is discussed. The comparison
with other ways of extracting K∞ from experimental data is highlighted.
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INTRODUCTION

Our understanding of the structure of the ground state and the excited states
of atomic nuclei, is still not fully satisfactory. At the same time, there is need
of theoretical progress along this line if the existing or planned radioactive beam
facilities will provide us with new experimental data. These data will concern
nuclei far from the stability valley; consequently, a uniˇed description of usual
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nuclear matter as well as of neutron-rich (or proton-rich) matter will be cal-
led for.

For light systems, the so-called ab-initio methods, which start from the bare
nucleonÄnucleon (NN) interaction, can be applied. Highly sophisticated trial
wave functions allow using the variational method and extracting a fairly good
description of these systems. Alternatively, the so-called Green's Function Monte
Carlo (GFMC) approach can be used. But all these methods cannot be applied
to ˇnite nuclei having mass number A greater than ≈ 10Ä15. Unfortunately,
only this kind of nuclei allows determining (yet with many warnings) the ba-
sic features of the equation of state (EOS) of nuclear matter, as we discuss
below.

The present review is devoted to the extraction of the nuclear incompress-
ibility coefˇcient from the measurement of the compressional modes in ˇnite
nuclei. Compressional modes include the Isoscalar Giant Monopole Resonance
(ISGMR) and Isoscalar Giant Dipole Resonance (ISGDR), which lie between 10
and 30 MeV in nuclei ranging from 90Zr to 208Pb. In these nuclei, the ISGMR
corresponds really to a well-deˇned single peak. The ISGDR is associated with
several structures, and the ambiguities which derive from this will be discussed
in the following. In lighter nuclei, even the ISGMR is too much fragmented to
allow discussing about a single compressional mode.

If we are, accordingly, bound to discuss relatively high-energy excitations of
heavy systems, then not only the fully ab-initio methods that we have mentioned,
but also other microscopic models like the shell model are completely ruled out.
The most microscopic models that we can use are the mean ˇeld models based on
effective interactions, either in the nonrelativistic or relativistic framework. These
models are the theoretical basis for the analysis done in the following Sections.
They can be viewed as approximate realizations of a Density Functional Theory
(DFT) for atomic nuclei.

In the past, previous authors have attempted either a direct extraction of the
nuclear incompressibility from experimental data (without resorting to theory),
or an extraction based on other observables than the compressional modes. The
limitations of these approaches are discussed below. In fact, these issues have
been already discussed since ten years or more. Already in the celebrated review
paper by J. P. Blaizot [1] these points have been dealt with. Further developments
will be mentioned here, when discussing the relevant bibliographic references.
What does it make a new review on the subject quite timely? We answer this
question in this Introduction, before giving a brief outline of the following of the
present paper.

Only since few years, the relativistic mean ˇeld (RMF) calculations have
reached a reliability or accuracy that is comparable to that of the nonrelativistic
models. During the eighties, no relativistic model could describe satisfactorily
the compressional modes and the nuclear incompressibility. Later, signiˇcant
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progress has been made. It has been understood that only by adding nonlinear
meson self-interaction terms to the effective Lagrangian of the original Walecka
model (cf. Subsec. 2.2) the incompressibility can assume reasonable values. For
some time, there has been discussion about the proper way to perform relativistic
Random Phase Approximation (RPA) and/or Time-Dependent Relativistic Mean
Field (TDRMF) calculations, and afterwards it has been concluded that the inclu-
sion of the negative-energy Dirac sea states is necessary. During the last years,
it has been pointed out that from the relativistic mean ˇeld calculations a signiˇ-
cantly larger value of nuclear incompressibility emerges than in the nonrelativistic
framework.

This has motivated several debates. It would be not physically sound to
admit that some speciˇc effect related to special relativity comes in, since one
is concerned to rather low energies (or momenta) and low densities (very close
to the saturation density). In fact, for many observables ranging from nuclear
masses to other types of giant resonances, and to rotational bands up to their
endpoint, the nonrelativistic and relativistic pictures look very consistent with
each other.

Recently, the following conclusions have been reached: (i) some previ-
ous nonrelativistic RPA calculations were not accurate enough to allow a pre-
cise determination of the nuclear incompressibility; (ii) the discrepancy be-
tween nonrelativistic and relativistic determinations of the nuclear incompress-
ibility is associated with the detailed structure of the two classes of nuclear
energy functionals. This amounts to say that there is much richer physics than
it has been discussed in earlier papers on the subject, and these new aspects
have emerged in recent years. This is the main motivation for the present
review.

At the same time, the experimental measurements have also undergone sig-
niˇcant progresses. The determination of the main features of the ISGMR has
become much more accurate than in the past. The uncertainties about the energy
location of the ISGDR have been attacked. New chains of isotopes have been
measured, and some others have been measured with improved accuracy. This
is an important part of the new impetus which characterizes the ˇeld. Although
this is a theoretical review, we shall mention the relevant experimental papers and
discuss their impact as much as possible.

In summary, the aim of this review is to assess what conclusions about the
nuclear incompressibility can be reached by confronting the most recent mean
ˇeld calculations Å both in the nonrelativistic and relativistic versions. It will
be concluded that the extraction of the incompressibility brings in other physics
parameters embedded in the energy functionals, like, for instance, the associated
values of the symmetry energy. Part of the results reviewed here have been
already summarized in [2Ä4]. The present topic has been also touched upon
(brie�y) in [5].
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The outline of the following Sections is as follows. First, we deˇne brie�y in
Sec. 1 the object of our study, namely, the nuclear incompressibility K∞ and its
basic relation with the energy of symmetric nuclear matter. Then, we describe the
models which give a physically sound representation of the total energy either in
symmetric nuclear matter (which cannot be measured) or in ˇnite nuclei (whose
properties can be measured). These are the self-consistent mean ˇeld models:
we remind their basic features in Sec. 2 and we touch brie�y upon how they are
used in actual calculations in Sec. 3. Having deˇned our tools, we turn to the
main issue, namely how to relate K∞ with some sensitive measurable quantity, in
Sec. 4. We will conclude that, although other lines of research can be extremely
useful, the connection of K∞ with the ISGMR and, to some extent, the ISGDR, is
by far the best case. Then, we will review the experimental situation concerning
these modes in Sec. 5. The extraction of K∞ from experiment, based on the
ISGMR data in 208Pb and on different RPA calculations, is analyzed in Sec. 6;
and the case of other nuclei, in Sec. 7. The complementary case of the ISGDR
data is then discussed in Sec. 8. Finally, we draw conclusions and propose some
outlook in the last section.

1. DEFINITION OF THE NUCLEAR INCOMPRESSIBILITY

We usually deˇne the compressibility as

χ = − 1
V

(
∂P

∂V

)−1

, (1)

and this quantity has the dimension of 1/pressure. Often, the inverse quantity
χ−1 is considered. Values of χ−1 are 2.2 · 109 for water and 1.6 · 1011 for steel
if expressed by using Pascal, that is, N/m2 (the standard international units).

We consider a system at zero temperature in which the pressure is related to
the total energy E by

P = −∂E

∂V
, (2)

so that

χ−1 = V
∂2E

∂V 2
. (3)

If we introduce the density ρ as single variable and we consider the number of
particles A as ˇxed (ρ = A/V ), since

∂

∂V
= − A

V 2

d

dρ
,
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we obtain

P = ρ2 d(E/A)
dρ

, (4)

χ−1 = ρ3 d2(E/A)
dρ2

. (5)

In the case of nuclear matter at zero temperature, it is preferred to introduce
a quantity displaying a more direct relationship with the behavior of E/A around
the saturation point. This latter is known empirically to be ρ0 = 0.166 fm−3 and
it corresponds to the minimum point of E/A. Around this minimum,

E

A
(ρ) =

E

A
(ρ0) +

1
18

K∞

(
ρ − ρ0

ρ0

)2

+ . . . , (6)

where

K∞ = 9ρ2
0

d2(E/A)
dρ2

∣∣∣∣∣
ρ0

(7)

is the so-called compression modulus of nuclear matter. Sometimes it is also
called nuclear incompressibility coefˇcient, or, brie�y, nuclear incompressibility.
It can be simply related to χ−1 by

K∞ =
9
ρ0

χ−1. (8)

K∞ has been deˇned so to have dimension of energy. Since, as we discuss in the
following of this review, we accept nowadays values of K∞ which are around
250 MeV, one can deduce that nuclear matter is 22 orders of magnitude more
incompressible than steel.

Instead of the density, the Fermi momentum kF is often used as independent
variable. Since an elementary calculation shows that

ρ =
2

3π2
k3

F , (9)

then Eq. (7) is equivalent to

K∞ = k2
F

d2(E/A)
dk2

F

∣∣∣∣∣
kF 0

. (10)

In fact, K∞ has been directly associated with the curvature of E/A as a function
of the Fermi momentum, and this explains the origin of the factor 9 in Eq. (7).
We remind here that the empirical value of kF 0 is 1.35 fm−1.

Nuclear matter is a uniform system in which the energy per particle can be
simply related to the energy density E by E/A=E/ρ. Every nuclear model which
provides an energy density for inˇnite matter, provides as well a value for the
nuclear incompressibility.
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2. MEAN FIELD MODELS

2.1. Nonrelativistic Effective Interactions. It appears evident from the dis-
cussion in Introduction that only models which describe at the same time ˇnite
nuclei and inˇnite matter, by using the density as a basic variable, can be used to
attack the problem of the determination of K∞. At present, only the mean ˇeld
models are available for this aim. Nonrelativistic mean ˇeld models start from an
effective interaction Veff . The expectation value of Heff = T + Veff (where T is
the kinetic energy) on an independent-particle type wave function (i.e., a Slater
determinant) provides the energy functional E[ρ].

Among the most widely used effective interactions, there are those introduced
by T.H. R. Skyrme [6]. They have the form

VSkyrme = t0 (1 + x0Pσ) δ(r1 − r2)+

+
1
2

t1 (1 + x1Pσ)
(
k†2 δ(r1 − r2) + δ(r1 − r2) k2

)
+

+ t2 (1 + x2Pσ)k† · δ(r1 − r2) k+

+
1
6

t3 (1 + x3Pσ) δ(r1 − r2) ρα

(
r1 + r2

2

)
+

+ iW0 (σ1 + σ2) · k† × δ(r1 − r2)k, (11)

where k is the relative momentum operator, k =
i

2
(∇1 −∇2), and k† is its

adjoint; Pσ is the spin-exchange operator
(
1 +

σ1 · σ2

2

)
. The Skyrme interaction

is characterized, in its standard form, by ten adjustable parameters (ti, xi, α and
W0). Many parameter sets have been ˇtted since the pioneering works [7, 8].
Although, as it is repeated by many authors, there exist a huge number of Skyrme
parameter sets available on the market, a limited number of them can perform
reasonably well if they are tested against many different observables. The big
advantage of a zero range force lies in the fact that it produces a local energy
functional. Of course, in systems which are not spin (or isospin) saturated, spin (or
isospin) densities enter the energy functional. Because of the velocity dependence
other kinds of local functions (like the kinetic energy density τ , the gradient of
the density ∇ρ, and the spin-orbit density J) are involved. Therefore, although
we often denote the energy functional simply as E[ρ], we mean nonetheless
that there is dependence on other kinds of local densities. For details, one can
consult the review paper [9], where the fact that the dependence on different local
densities can simulate the ˇnite-range effects is also discussed (cf. Sec. I.D).
Within the Skyrme framework, to not spoil the locality of the resulting HartreeÄ
Fock equations, the exchange Coulomb term is often treated by using the Slater
approximation.
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Another kind of effective interaction is the ˇnite-range Gogny force [10,11],
which reads

VGogny =
2∑

j=1

exp
(
|r1 − r2|

μj

)2 (
Wj + BjPσ − HjPτ − MjPσPτ

)
+

+ t3
(
1 + x0Pσ

)
δ(r1 − r2) ρα

(
r1 + r2

2

)
+

+ iW0(σ1 + σ2) · k† × δ(r1 − r2) k, (12)

where Pσ has been deˇned above and Pτ is the analogous isospin-exchange
operator. The interaction includes the sum of two Gaussians with space, spin
and isospin exchange mixtures, a term with explicit density dependence, and a
spin-orbit term. Wj , Bj , Hj , Mj , μj , t3, x0, α, and W0 are the adjustable
parameters of the interaction.

The Gogny interaction is meant to be used within the framework of HartreeÄ
FockÄBogoliubov (HFB) theory [12]. The Skyrme force is used in HartreeÄ
Fock (HF) calculations, and extensions to the open-shell isotopes are made by
supplementing it with an independent pairing force. Often a zero-range, density-
dependent pairing force is introduced, whose parameters are ˇtted by requiring
that the empirical values of the pairing gaps Δ are reproduced (along a given
isotope chain). In the following of this review paper we will mainly be concerned
with calculations which do not include pairing: even in the case of the Gogny
force, we will mainly refer to simple HF calculations.

The parameters of the effective interactions are ˇtted by using as benchmark
a limited number of properties of inˇnite matter (like the saturation point) and of
ˇnite nuclei (total energies and charge radii of few selected isotopes).

The total energy is calculated by taking the expectation value of the effective
Hamiltonian

H = T + Veff (13)

over an independent-particle state |Φ〉, that is, a Slater determinant,

E = 〈Φ|H |Φ〉. (14)

|Φ〉 is associated with a given one-body set of densities ρ, τ , J as well as their
spin and isospin generalizations (in fact, if the system is described within the
independent-particle approximation, the two-body density is simply factorized in
terms of one-body densities).

In ˇnite nuclei, the optimal Slater determinant emerges from the numerical
solution of the HF equations. Total energies, as well as radii and expectation
values of other observables, can be extracted from this solution.
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The calculation of inˇnite matter is simpler: namely, it is analytic since the
total density is simply a number and the functional is a simple function. The
nuclear incompressibility (7) is straightforward to calculate and sometimes it is
used as an additional constraint when ˇtting the force parameters. Asymmetric
nuclear matter can also be calculated. When dealing with it, the energy per particle
is split in a part which corresponds to symmetric matter and an asymmetry term
which is taken to be quadratic in the asymmetry parameter

ρ−
ρ

≡ ρn − ρp

ρ
,

where ρn (ρp) is the neutron (proton) density. The energy per particle is in fact
written as

E

A
=

E

A
(ρ) + S(ρ)

(
ρ−
ρ

)2

, (15)

where the ˇrst term in the r.h.s. is the energy in symmetric matter and the second
term deˇnes the so-called symmetry energy S. The behavior of S is very much
under debate, especially in connection with the study of nuclei far from stability
and neutron stars (cf., e.g., [13]). Already at saturation density ρ0, its value and
its derivatives are quite uncertain; extrapolations at higher (or lower) densities are
even more critical. The value of S at saturation density, S(ρ0), will be denoted
by J Å but other authors use the notations aτ or a4.

Fig. 1. Energy per particle in symmetric nuclear matter (a) and symmetry energy (b)
calculated as a function of the density ρ. The results corresponding to two of the most
widely used functionals, namely the Skyrme SLy4 parametrization [14] and the relativistic
mean ˇeld set NL3 [15], are displayed

In Fig. 1 we compare the behavior of the total energy in symmetric matter
E

A
(ρ) (Fig. 1, a), and of the symmetry energy S(ρ) (Fig. 1, b), obtained by using
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two different models. One is the Skyrme parameter set SLy4 introduced in [14]:
it is one of the most recent sets, and it has been ˇtted by including the constraints
which had been already taken into account for previous sets, as well as by trying
to reproduce ab-initio calculations of pure neutron matter performed with bare
forces. The other functional whose results are shown is the relativistic mean ˇeld
parametrization [15], that is, the parameter set NL3. Relativistic functionals are
discussed in the next subsection.

It is clear from the ˇgure that the behavior of effective functionals well
above the saturation density is far from being under control. As it can be
expected, ˇtting the saturation properties of symmetric matter, as well as few
nuclei in their ground state, cannot constrain the overall properties of the effective
functionals.

2.2. The Relativistic Mean Field. In the relativistic framework, the nu-
cleus is described in terms of Dirac particles which mutually exchange effective
mesons. The simplest model of this kind, is the one introduced by B.D. Serot
and J. D.Walecka twenty years ago [16]. In it, only a scalar meson σ and a
vector meson ω (both isoscalar) are introduced: the ˇrst simulates the short-
range attraction which in reality is made up with correlated two-pion (or more
pion) exchange, while the second meson produces a repulsive effect. Saturation
in nuclear matter is obtained through the balance of these very strong attrac-
tive and repulsive terms. In symmetric inˇnite nuclear matter, the spin and
isospin terms are assumed to average out. There is no attempt to relate the
masses and coupling constants of the effective mesons with more fundamental
theories.

The original Walecka model is very important since it opened up the way
to more systematic investigations of nuclear matter and ˇnite nuclei. In order
to describe the asymmetry degree of freedom, the isovector vector ρ meson is
introduced. Besides the lack of the isovector degree of freedom, the original
Walecka model suffers from other drawbacks: we mention of course, in the spirit
of the present paper, the unrealistically large value of K∞.

Nowadays, the standard ˇnite-range meson RMF model is deˇned by the
Lagrangian density

L = Lfree nucl + Lfree meson + Lint. (16)

The ˇrst term is the Lagrangian density of the free nucleons

Lfree nucl = ψ̄ (iγμ∂μ − m)ψ, (17)

where ψ is a Dirac spinor and m is the nucleon mass. Lfree meson is the La-
grangian density of the free meson ˇelds (and the electromagnetic ˇeld) which
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reads

Lfree meson =
1
2
∂μσ∂μσ − 1

2
m2

σσ2 − 1
4
ΩμνΩμν +

1
2
m2

ωωμωμ−

− 1
4
RμνRμν +

1
2
m2

ρρμρμ − 1
4
FμνFμν . (18)

In this equation, the meson masses appear with obvious notation, while Ωμν , Rμν ,
and Fμν are ˇeld tensors, i.e.,

Ωμν = ∂μων − ∂νωμ,
Rμν = ∂μρν − ∂νρμ,
Fμν = ∂μAν − ∂νAμ,

(19)

where R and ρ are isovector quantities. The mesonÄnucleon interactions are
included in

Lint = −ψ̄Γσσψ − ψ̄Γμ
ωωμψ − ψ̄Γμ

ρρμψ − ψ̄Γμ
e Aμψ. (20)

The vertices read

Γσ = gσ, Γμ
ω = gωγμ, Γμ

ρ = gρτγμ, Γμ
e = e

1 − τz

2
γμ, (21)

with the coupling parameters gσ, gω, gρ, and e.
In order to describe correctly the interactions in the nuclear medium, this

model should be further improved. One way is to add nonlinear meson self-
interaction terms. We can write them for the σ meson, namely

U(σ) =
1
3
g2σ

3 +
1
4
g3σ

4. (22)

In this way, the free parameters are eight. An example of parameter set is the
one already quoted, namely NL3.

An alternative way to take into account the medium dependence of the effec-
tive Lagrangian, is to use density-dependent coupling constants. In principle, this
may allow connecting the effective Lagrangian with more basic calculations like,
e.g., the DiracÄBréuckner approach. In practice, however, the density dependence
of the coupling constants is assumed to have a given functional form with free
parameters which must be ˇxed. For details, the reader can consult the references
quoted in [17]. One more class of models are the so-called point-coupling (PC)
models, in which the mesonic degrees of freedom are integrated out and nucleonÄ
nucleon couplings are introduced [18]. These models could be the most suitable
for comparisons with the nonrelativistic Hamiltonians (in particular, with those
including the Skyrme effective interaction (11)) Å however, applications to the
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compressional modes have been carried out by using only the ˇnite-range me-
son exchange Lagrangians, or those characterized by density-dependent coupling
constants. The results, to be discussed in the next sections, are in either cases of
comparable quality and features.

The parameters of all models are determined in a similar way as in the
nonrelativistic theories. That is, properties of nuclear matter and binding ener-
gies/charge radii of magic isotopes are used as input. The discussion carried
out in the previous subsection, concerning the determination of the total energy
and other properties of the ground state of ˇnite nuclei and inˇnite matter, ap-
plies as well to the present case. Within the standard RMF framework, however,
calculations are performed at the Hartree level.

The real advantage of the RMF models should consist in the fact that in
the covariant framework, one has better hopes to get eventually contact with
more fundamental theories like QCD, or one of its low-energy approximations.
In fact, this has been the aim of recent works, which are anyway outside the
aim of the present review. The advantage of models like Skyrme or Gogny,
lies in the fact that they have been exploited for longer time and their link
with the nuclear phenomenology has been more deeply established. Probably,
only a severe confrontation between the two classes of approaches may shed
light on basic issues of nuclear science, like the determination of the parameters
of the EOS.

We conclude this subsection by reminding that, because of parity conserva-
tion, in the RMF models there is no direct contribution from the pion ˇeld at the
Hartree level. Recently, there have been new attempts to implement a relativistic
HartreeÄFock (RHF) scheme [19] in which the role of the pion ˇeld can be dis-
cussed. Applications to the compressional modes through relativistic RPA based
on RHF have still to be performed.

3. EXCITED STATES FROM THE MEAN FIELD MODELS

HF and RPA calculations, respectively for the ground state and the vibrational
excitations of nuclei, are described in textbooks [12, 20]. We already touched
upon the HF formalism in the previous section. In the present section we will
add some key features of the RPA calculations (those which are more relevant
for the following discussion).

3.1. The Random Phase Approximation. The Random Phase Approxima-
tion (RPA) Å as well as its extension to the case of open-shell nuclei, the Quasi-
particle Random Phase Approximation (QRPA) Å is aimed at the description of
small amplitude, collective nuclear excitations. The RPA (QRPA) represents the
small amplitude limit of the time-dependent HF (HFB) theory. One can start from
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the time-dependent HF equations as in [12]:

i�
∂ρ

∂t
= [h(t) + f(t), ρ(t)]. (23)

In this equation an external perturbing ˇeld f is supposed to act on the nucleus.
The induced density variation (which, in turn, produces a variation of the HF
Hamiltonian h, since this depends on the density) is assumed to be small enough
so that linear response theory can be applied. External ˇeld f(t) is harmonic,
that is,

f(t) = fe−iωt + h.c.; (24)

accordingly, the variations of the density δρ and of the Hamiltonian δh,

δh =
∂h

∂ρ
δρ, (25)

will carry the same frequency. The linearization of Eq. (23) leads to

�ω δρ = [δh, ρ0] + [h0, δρ] + [f, ρ0], (26)

where the subscript 0 denotes unperturbed (i.e., ground-state) quantities.
We can obtain the RPA equations in conˇguration space, in which the limit

of zero external ˇeld is assumed (the nuclear vibrations must sustain themselves)
so that the last term in the r.h.s. of Eq. (26) does not contribute. We accomplish
this by taking the matrix elements of the other terms in Eq. (26) between 〈ph|
and |0〉, and then also between 〈0| and |ph〉, where p and h label particle and
hole states, respectively. Inserting a completeness relation in terms of a sum over
all conˇgurations labeled by p′h′, the RPA matrix equations ˇnally read(

Aph,p′h′ Bph,p′h′

−Bph,p′h′ −Aph,p′h′

) (
Xp′h′

Yp′h′

)
= E

(
Xph

Yph

)
. (27)

A and B are deˇned as

Aph,p′h′ = (εp − εh) δ(pp′)δ(hh′) +
∂hph

∂ρph
,

Bph,p′h′ =
∂hph

∂ρhp
,

(28)

where ε are HF energies. Here and in the following of this review, we refer to
self-consistent calculations as those in which the residual interaction is derived
from the mean ˇeld Hamiltonian h according to the above formulas, without
approximations.
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The solution of the eigenvalue problem (27) determines the energies En of
the excited vibrational states |n〉 and the corresponding wave functions expressed

in terms of the so-called forward and backward amplitudes X
(n)
ph and Y

(n)
ph ,

|n〉 =
∑
ph

(
X

(n)
ph a†

pah + Y
(n)
ph a†

hap

)
|0〉, (29)

where a† (a) is a creation (annihliation) operator. In spherical nuclei (we do
not discuss deformed systems in the present review), the RPA equations are
expressed in the angular momentum coupled representation: that is, they are
written in a subspace with given angular momentum and parity, Jπ. The principal
source of arbitrariness in the matrix representation of RPA is the truncation
of the basis. In realistic applications it is, therefore, necessary to verify the
stability of the results with respect to variations of parameters that determine the
discretization and truncation of the basis. The discretization can be realized by
using a harmonic oscillator expansion or by setting the nucleus inside a box; the
harmonic oscillator parameter or the box size are numerical parameters, as well
as the upper energy limit for unperturbed energies of the ph conˇgurations (often
referred to as ®energy cutoff¯).

The strength function associated with the excitation operator F is deˇned as

S(E) =
∑

n

|〈n|F |0〉|2δ(E − En). (30)

The value of the transition amplitude 〈n|F |0〉 depends on the collectivity of the
state |n〉 which is expressed by the X and Y amplitudes. Somewhat equivalent
information is provided, in the coordinate space, by the so-called transition density
of the state |n〉, which is deˇned as the off-diagonal matrix element of the density
operator,

δρ(n)(r) = 〈n|
∑

i

δ(r − ri)|0〉. (31)

Assuming spherical symmetry, the transition density reads

δρ
(n)
JM (r) = δρ

(n)
J (r)Y ∗

JM (r̂). (32)

There exists alternative formulations of RPA. In the Green-function ap-
proach [21], one evaluates the RPA Green function G, given by

G = G0(1 + V G0)−1, (33)

where G0 is the free ph Green function and V is the residual interaction deˇned,
as above, by

V (r1, r2) =
δh(r1)
δρ(r2)

. (34)
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The Green function approach allows treating the continuum in a proper way.
Although the exact solution of RPA in the continuum may be crucial if one treats
weakly bound nuclei or if one is interested in the particle decay of states which
lie above the threshold, discrete RPA can nonetheless reproduce the main integral
properties of giant resonances in stable nuclei.

3.2. Operators and Sum Rules. In the case of the isoscalar monopole
excitation, we deal with the operator

Fmonopole =
A∑

i=1

r2
i . (35)

This operator does not carry any angular momentum, that is, it corresponds to
Jπ = 0+. The macroscopic picture for a state excited by this operator, is that of
an overall compression of the whole nucleus (the so-called ®breathing mode¯).
As we will see, this macroscopic picture is, to some extent, reasonable in nuclei
like 208Pb where the monopole strength function is associated with a single peak
(whereas it breaks in lighter nuclei).

In the case of the Jπ = 1+ isoscalar dipole, the operator is

Fdipole =
A∑

i=1

r3
i Y1m(r̂i). (36)

This is the so-called ®overtone¯ with respect to

Ftransl =
A∑

i=1

riY1m(r̂i) (37)

which corresponds to a translation of the whole system and, consequently, is not
associated with any internal excitation. The spurious translational state, which
should collect all the strength of the operator (37) and should lie at zero energy,
is discussed in the next Subsec. 3.3. The macroscopic picture associated with the
isoscalar dipole excitation operator (36) corresponds to a nonisotropic compres-
sion mode. It is hard to take this picture literally, in view of the large degree of
fragmentation displayed by the spectrum of all nuclei which have been studied.

In both cases (monopole and dipole), our discussion below will rely heavily
on considerations concerning moments of the strength function (30), or sum rules.
These moments are deˇned as

mk =
∫

dE EkS(E). (38)

The nonenergy-weighted sum rule m0 and energy-weighted sum rule m1 deˇne
the centroid energy

E0 =
m1

m0
. (39)
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The energy-weighted sum rule (EWSR) is very important because it can be shown
(at least in the case of nonrelativistic RPA or QRPA) that its value equals one
half of the ground-state expectation value of the double commutator

m1 =
1
2
[F, [H, F ]]. (40)

This is the well-known Thouless theorem, which has been shown to hold in the
case of self-consistent HF plus RPA calculations (and also HFB plus QRPA).

In addition to E0, another quantity which can be deˇned is what is called
often constrained energy, namely

E−1 =
√

m1

m−1
. (41)

Its interest derives from the fact that it can be derived without resorting to a
full RPA calculation: m1 can be taken from the double commutator (40), and
m−1, from the so-called dielectric theorem [22]. If one performs a constrained
HartreeÄFock (CHF) calculation, that is, if one minimizes the expectation value of

H + λF, (42)

where λ is a Lagrange multiplier, then it can be shown that

m−1 = −1
2

∂〈F 〉
∂λ

=
1
2

∂2〈H〉
∂λ2

. (43)

In order to obtain accurate values of the above-mentioned sum rules and, in
particular, to respect the Thouless theorem and the dielectric theorem, full self-
consistency is quite important. We repeat here that self-consistency means, in the
present context, that the ph interaction to be used in RPA is derived from the mean
ˇeld without any approximation. Only recently, full self-consistent calculations
using the Skyrme interaction have become available [23Ä28]. Previously, some
terms of the residual ph interaction were usually neglected: in most cases, the
two-body Coulomb and two-body spin-orbit terms. As we discuss in Sec. 6, this
approximation affects the ISGMR centroid energies by few hundreds of keV and
this has consequences on the determination of K∞.

Of course, other kind of approximations are involved in the actual implemen-
tation of RPA. So, one may wonder if these approximations (like the continuum
discretization, the model space truncation and the numerical uncertainties) affect
as well the values of the RPA sum rules. In [2], it has been already mentioned
(cf. Table 1) that those approximations do not affect the accuracy with which the
dielectric theorem is satisˇed by more than about 1%.

In Fig. 2, we show our results for the monopole centroid energies in the
case of 40Ca (obtained by employing the force SLy4 [14]). The results are
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Fig. 2. a) Values of m−1 from RPA calculations, within different approximations, com-
pared with the ®exact¯ value from the dielectric theorem (43) which corresponds to the
area between the horizontal lines. b) Values of the energies E0 and E−1. All values refer
to 40Ca calculated with the Skyrme force SLy4, and are functions of the cutoff energy set
in the RPA calculation

shown as a function of the energy cutoff for the particle-hole conˇgurations.
In Fig. 2, a the CHF value for m−1, with a numerical error bar∗, is marked by
the two horizontal lines. Only the calculation with the full residual interaction
(labelled by ®Complete¯) lies within this range. When the two-body Coulomb
and spin-orbit terms in the residual ph force are omitted, the m−1 sum rule
is overestimated. To provide another example, in the case of 208Pb with the
interaction SGII [29], and employing a box of 20 fm, the value of m−1 from
RPA is 226.32 fm4/MeV, in excellent agreement with the result from CHF which
is 225.92 fm4/MeV.

∗If m−1 has to be extracted from Eq. (43), an extremely small value of λ has to be employed,
so that the variations involved are subject to percentual errors of a few %.
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We end this subsection by mentioning another quantity that is sometimes
used, namely the so-called scaled energy,

E3 =
√

m3

m1
. (44)

Also in this case, we refer the reader to [22] for details. The cubic energy-
weighted sum rule m3 can be calculated by making the following transformation
on the ground-state wave function,

|0〉 → |λ〉 ≡ eλ[H,F ]|0〉, (45)

where λ is a real parameter. Then

m3 =
∂2

∂λ2
〈λ|H |λ〉|λ=0 . (46)

In the case of the Skyrme Hamiltonian, when F is the monopole operator (35),
one can derive the following expression:

m3 =
2

m2
[2T + Eδ + 20 (Efin + Es.o) + (3α + 2) (3α + 3)Eρ] , (47)

where the quantities T , Eδ , Efin, Es.o, and Eρ are, respectively, the contributions
to the ground-state HF energy arising from the kinetic part, the t0 part of the
two-body interaction, the t1 and t2 terms, the spin-orbit and the t3 contributions
(cf. Eq. (11)). Their expressions can be found in [22]. We do not discuss
the derivation of m3 in detail, since we will not use the scaled energy in the
further discussion. The main reason is that m3 is clearly sensitive to high-lying
strength and if one wishes to compare with experiment, one needs to remember
that high-lying strength lies in a region of very large background. This makes
the experimental extraction of m3 rather questionable.

We end this subsection by referring the reader also to [30] in order to ˇnd
deep and complete discussions on the sum rules and their role in the analysis of
collective vibrational states.

3.3. The Spurious Dipole State. It is well known that the mean ˇeld solution
of the nuclear Hamiltonian, although rather successful in practice, breaks impor-
tant symmetries (cf., e.g., Chapter 11 of [12]). One of these symmetries, strictly
related with the discussion of the present paper, is the translational symmetry. Of
course, this symmetry is inherent in the nuclear Hamiltonian; but the HF solution
breaks it, in keeping with the fact that it is a localized solution. Many discussions
have been devoted to this problem, and accounting for all of them is well beyond
our purpose here. We merely quote that it has been demonstrated that within an
ideal, fully self-consistent HF-RPA calculation, the translational symmetry must
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be fully restored [31]. This means that the whole strength of the operator (37)
should be concentrated in a single state lying at zero energy. This state is called
spurious since it does not correspond to any excitation of the system.

This ideal symmetry restoration could be obtained if practical calculations
were implemented without any approximation. This hypothetical condition is of
course never met. In practice, the spurious state is found at energy different
from zero, and it is not orthogonal to the other, physical states. The position in
energy is not a serious problem. In fact, a small renormalization of the residual
interaction (achieved by multiplying the residual ph interaction by a parameter
gph which differs only by few percent from one) can set the state arbitrarily close
to zero, which means few eV in actual calculations. Anyway, even if the spurious
state remains at few hundreds keV, it can be easily identiˇed if it exhausts most
of the strength of the operator (37), and eliminated from the IS dipole spectrum.
But the real problem comes from the fact that since the wave function of this
nonideal, inaccurate spurious state does not coincide with that of the true spurious
state, part of the spurious components are found in the other dipole states. Then,
the whole dipole spectrum must be corrected.

One possible solution consists in projecting away explicitly the spurious
components from every state, before calculating its strength. The spurious state
exact wave function is known. In conˇguration space, its X and Y components
are, respectively, the ph and hp matrix elements of the total momentum operator

(cf., e.g., [32]). Its radial transition density, δρ
(spurious)
1− (r) (cf. Eq. (32)), is

proportional to the radial derivative of the ground-state density, dρ0/dr [33]. If
we call |SS〉 the wave function of the (exact) spurious state, starting from the
RPA eigenstates |n〉, it is possible to build a new set of states |n′〉 in which the
spurious component has been removed (cf. also [34]). We write

|n′〉 = N (|n〉 − an|SS〉) , (48)

where N is a normalization constant. The unknown quantity an is found by
imposing that the state |n′〉 carries no strength associated with the translational
operator (37), that is,

〈n′|Ftransl|0〉 = 0. (49)

An equivalent procedure [35] consists in using instead of (36) the modiˇed
operator

F
(eff)
dipole =

A∑
i=1

(
r3
i − ηri

)
Y1m(r̂i), (50)

where η =
5
3
〈r2〉. Both procedures should ensure that the calculated strength

function is free from spurious components (cf. also the related deep discussions
in [36,37]).
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4. EXTRACTION OF THE NUCLEAR INCOMPRESSIBILITY

4.1. The General Framework. Many attempts have been done to extract the
correct value of the nuclear incompressibility. This quantity cannot be determined
directly by means of experiment. Theory should provide a clear correlation
between the value of K∞ and the value of some other observable which can be
directly measured. We brie�y review, in what follows, different approaches along
these lines and underline their limits.

In [38], it was concluded that neither nuclear masses, nor nuclear radii, nor
heavy-ion collisions, nor neutron stars, are able to provide error bars smaller
than 50Ä100 MeV on K∞: they basically leave this quantity free in the large
interval ≈ 200Ä300 MeV. But, according to [38], the supernova explosion would
require lower values of K∞ (below ≈ 180 MeV). On the other hand, the authors
of [39] claim that a quite accurate value of K∞ can be extracted from their ˇt
of a ThomasÄFermi model for cold nuclear matter. This value, K∞ = 234 MeV,
is quite similar to those deduced from the ISGMR using standard Skyrme and
Gogny interactions. The liquid drop model (LDM) expansions of binding energy
and incompressibility carried out in [40] lead instead to K∞ = (288± 20) MeV.

While it is certainly true that one should aim at a uniˇed understanding of
the nuclear EOS, so that all physical quantities can be extracted from a unique set
of parameters of this EOS, the present short discussion already highlights the fact
that this global and ambitious goal has not yet been reached. In fact, in the case
of many of the observables which have been mentioned, there is not a deˇnite
correlation with the value of K∞. One might argue that the realistic values of
the observables can be reproduced by changing the value of K∞ and, at the same
time, some other of the different parameters which enter the nuclear EOS. Before
trying to state a conclusion about the proper value of K∞, one should prove
a) that there is a clear-cut correlation between a given observable and the value
of K∞, and b) what changes if other ingredients of the model are changed.

In this respect, the situation is much advanced concerning the correlation
between K∞ and the energies of the compression modes which characterize the
ˇnite nuclei, especially the ISGMR. In fact, it was ˇrst proven in [41] that,
within the mean ˇeld calculations, the correlation between the ISGMR energy
and K∞ is quite clear and accurate, at least in nuclei like Sn and Pb. However,
as mentioned in Introduction, when the RMF calculations have become available,
it was proven that the correlation between K∞ and the ISGMR energy is present
in these models as well, but points to a different value of K∞ as compared to the
nonrelativistic case. This issue will be the focus of the discussions carried out in
the next sections.

Before entering into details of the relationship between the energies of the
compressional modes and K∞, we should mention that independent attempts of
ˇnding a unique correlation between K∞ and selected experimental data have
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been done by studying in detail speciˇc cases of nuclear reactions. The simplest
case is elastic scattering. Intermediate energy protonÄnucleus or nucleusÄnucleus
collisions (at several tenths of MeV per nucleon) can be studied microscopically
by using the Distorted Wave Born Approximation (DWBA). Microscopic NN
interactions can be used within the framework of the folding model. Starting
from the original M3Y interaction developed by the Michigan group, interactions
which do include a density dependence have been developed. These interactions
are able to provide saturation of nuclear matter, and realistic values of K∞. The
authors of [42, 43] have shown that the study of α nucleus and nucleusÄnucleus
refractive scattering is instrumental to determine the value of K∞. The values
of K∞ associated with the parameter sets which reproduce those experimental
elastic scattering differential cross sections, namely K∞ around 230Ä260 MeV,
are quite similar to those extracted from the ISGMR and discussed below.

At the other extreme of the variety of nuclear reactions, compared to the
®gentle¯ case of elastic scattering, we ˇnd high-energy heavy-ion collisions. The
many observables which can be extracted from these experiments can be analyzed
by means of transport models. They also include, through the NN interaction or
in some equivalent way, basic parameters of the EOS like the nuclear incom-
pressibility. Therefore, one can study what value of K∞ can be extracted (see,
e.g., [44]). In this case, the conclusions reached by different groups do not
converge yet to a narrow interval of values of K∞.

4.2. The Extraction from Compressional Modes: Macroscopic Approaches.
Well before the correlation shown in [41] between the RPA monopole energies
and the value of K∞, much attention had been paid to the possibility to link this
latter quantity and the breathing mode properties. The energies of the breathing
mode are measured in ˇnite nuclei. If there are not ambiguities about the value of
EISGMR, there is nonetheless a well deˇnite problem in relating this energy and
the corresponding incompressibility of the ˇnite system with the value of K∞.

As we discuss in the next section, the monopole strength distributions have
been measured in many nuclei, ranging from the very light to the heavy ones.
In fact, what is measured is the reaction cross section and we assume, for the
moment, that there exists (at least approximately) a proportionality between cross
sections and monopole strength (this topic is discussed in Sec. 5). Light nuclei are
not at all suited for the extraction of the incompressibility, as the cross section,
or strength distributions, look highly fragmented. The result of a theoretical
calculation of the monopole strength function in 40Ca, done within HF-RPA
employing the SLy5 Skyrme force, is displayed in Fig. 3. Clearly, it is not
possible to identify a single value of energy as EISGMR. We need cases in which
the monopole strength is associated with a single peak. The 208Pb isotope is, in
this sense, a favourable case; also the Sn isotopes display the same feature.

In ˇnite nuclei we cannot deˇne the incompressibility according to (7). The
density is not a number but a function of r and the energy per particle is a
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Fig. 3. Monopole strength function, calculated using RPA with the Skyrme force SLy5 [14]
in the nucleus 40Ca. The fragmentation of the strength is evident: it is not possible to
identify a single energy value as associated to the collective ISGMR

functional. However, we can consider a simple variation of the density, that
is, a variation only of its second moment 〈r2〉. Accordingly, we transform the
derivative with respect to ρ in Eq. (7) ˇrst into a derivative with respect to the
volume V , and then with respect to 〈r2〉. The result is

KA = 4〈r2〉20
d2(E/A)
d〈r2〉2

∣∣∣∣∣
〈r2〉0

. (51)

If we write

H ′ = H + λF, (52)

where F is a generic operator, and we minimize the expectation value of H ′ for
a ˇxed value of λ, then

d〈H ′〉
d〈F 〉 = 0 =

d〈H〉
d〈F 〉 + λ ⇒ d〈H〉

d〈F 〉 = −λ. (53)

We denote 〈H〉 by E, and the above equation together with the dielectric theorem
(43) implies

d2E

d〈F 〉2 = − dλ

d〈F 〉 = −
(

d〈F 〉
dλ

)−1

=
1

2m−1
. (54)

If we specialize to F =
∑

i

r2
i as in Eq. (35), and we consider that the corre-

sponding EWSR is

m1 =
2�

2

m
〈r2〉0, (55)
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as it can be easily proven by evaluating the double commutator (40), then

KA = 4〈r2〉20
d2(E/A)
d〈r2〉2

∣∣∣∣∣
〈r2〉0

=
2〈r2〉20
Am−1

=
m〈r2〉0
A�2

m1

m−1
. (56)

If we identify the constrained energy, whose squared value m1/m−1 appears in
the above formula, with EISGMR, then

EISGMR =

√
�2AKA

m〈r2〉0
(57)

as in Eq. (3.48) of [1]. The identiˇcation of the monopole energy with the
constrained energy does make sense, as it has been stressed above, if there is a
single monopole peak and no fragmentation of the monopole strength.

In the macroscopic approach, K∞ can be viewed as the leading term of an
expansion of KA as a function of A. In keeping with the associated quadratic
relationship (57) between K∞ and EISGMR, the relative error on K∞ is twice
the relative error on the monopole energy,

δK∞
K∞

∼ 2
δE

E
. (58)

There have been indeed several attempts [45] in the past to determine K∞
simply by the following procedure. A semiempirical expansion in power of A−1/3

of the nucleus incompressibility coefˇcient, KA, has been assumed:

KA = K∞ + KsurfA
−1/3 + KcurvA

−2/3+

+
(
Kτ + Kτ,surfA

−1/3
)

δ2 + KCoulZ
2A−4/3 + . . . (59)

This expansion is analogous to the semiempirical mass formula and includes, in
addition to the volume term (K∞), surface, curvature, symmetry, and Coulomb
terms (in the formula, δ = (N−Z)/A). Using values of KA associated with
the experimental data of various sets of nuclei, Eq. (59) has been used for a
least-square ˇt of the unknown coefˇcients of the r.h.s. All these attempts have
proven to be unsatisfactory: the ISGMR data are few, and the parameters may
hide correlations among themselves (cf. also [46]).

We should mention that also theoretical approaches along the line of Eq. (59)
have been tried. In [47], ThomasÄFermi calculations have been performed for
nuclei with very large A by using Skyrme forces, in an attempt to analyze both the
convergence of K∞ to its expected value, and the behavior of the other parameters
included in (59). Unfortunately, it has been shown that such an analysis requires
values of A which are larger than several thousands.



THE COMPRESSION MODES IN ATOMIC NUCLEI 579

4.3. Microscopic Approaches. Given the difˇculty mentioned in the previous
subsection, namely the impossibility of getting accurate values of K∞ from the
ˇt of the coefˇcients of Eq. (59), more microscopic approaches are nowadays
preferred. It is generally believed that the link between the monopole energy and
K∞ should be provided by the microscopic energy functionals. A functional (or a
class of functionals) is associated with the value of K∞, as well as with values of
monopole energies in ˇnite nuclei obtained by means of self-consistent HF plus
RPA calculations (or Hartree plus RPA in the case of the RMF framework). For
different nuclei, it has been shown that EISGMR is well correlated with the value
of K∞ associated with the effective functional (cf., e.g., [41,48]). In connection
with the experimental ˇndings, this correlation can be used to extract an accurate
value for K∞.

In fact, this extraction proceeds as follows.
• Using a set of different parametrizations (within a given class of energy

functionals) characterized by different values of K∞, self-consistent RPA calcu-
lations of the ISGMR are performed in a given nucleus. If the monopole strength
has only one peak, the quantity EISGMR is well deˇned and a relation of the type

EISGMR = a
√

K∞ + b (60)

is interpolated∗.
• The experimental value of EISGMR is then inserted in Eq. (60) and the

value of K∞ is deduced.
4.4. Is the Microscopic Approach Completely Sound? The nuclei which

can be chosen in order to make the link between the monopole energy and
K∞, through the concept of an energy functional, must be not super�uid: the
pairing part of the functional has not been taken into account in our previous
considerations. This explains why most of the works carried out so far have been
focused essentially on 208Pb.

Even in this case, criticisms about the soundness of the procedure described
in the previous subsection can be raised, mainly because the mean-ˇeld approx-
imation is known to be unable to provide a complete description of the nuclear

∗The interpolation should be guided by the above equation (59), so that one should better write

KA = a′K∞ + b′. (61)

But, for instance, in [41], the explicit form of Eq. (61) in the case of 208Pb is given by
KA = 0.64K∞ − 3.5 (MeV). The second term of the r.h.s. is much smaller than the ˇrst
term. Consequently, even if in principle the last formula together with Eq. (57) would lead to
EISGMR = 1.16

√
0.64K∞ − 3.5, this latter equation can be approximated by 0.93

√
K∞, by ne-

glecting the second term under the square root. This explains why, in most cases, Eq. (60) is employed:
in practice, Eqs. (60) and (61) are equivalent.
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dynamics. The spreading width of the ISGMR can only be explained if the cou-
pling of the RPA states with more complicated conˇgurations of 2 particleÄ2 hole
(2p−2h) type, is considered.

One reason why we believe that the discussion carried out so far is physically
sound, is that it has been shown in [49] that inclusion of the mentioned coupling
shifts the ISGMR in 208Pb downwards in energy only by ≈ 500 keV (reproducing
at the same time the ISGMR width), and this latter number is smaller than the
uncertainties on the ISGMR energy which are discussed in the next section. This
is not a numerical accident, rather a consequence of cancellations which arise
when all diagrams corresponding to the coupling between 1p−h and 2p−2h
states are included (cf. [50] and references therein).

There is a more fundamental point to mention here. If we wished to discuss
the ISGMR in ˇnite nuclei by using an approach similar to that of [49] (which
couples the ISGMR with states including a 1p−1h pair plus a collective, mainly
surface, vibration), we should describe the inˇnite matter and its compressibility
at the same level. Such a scheme has not yet been developed.

5. EXPERIMENTAL EVIDENCE ON THE ISGMR AND ISGDR

In the last three decades, a signiˇcant amount of experimental work has been
carried out to identify the properties of the compressional modes, the ISGMR
and ISGDR. The main experimental tool is α-particle inelastic scattering. In fact,
α particles are very selective in exciting states with no variation of S and T in
the target nucleus (ΔS = ΔT = 0). The aim is the precise determination of
the strength distribution or at least of its main moments. Since the beginning,
the main obstacles to this precise determination have been the presence of other
multipole excitations in the same energy region as well as of a nonnegligible
background.

In the case of the ISGMR (ΔL = 0), the angular distribution is strongly
peaked at 0◦. The recent experimental developments have made it possible to
determine E0 (cf. Eq. (39)) with an error of ≈ 0.1−0.3 MeV [51, 52]. Using
the relation (58), and the experimental energy of the ISGMR in 208Pb, E0 =
(13.96 ± 0.20) MeV, one has an uncertainty of 6Ä9 MeV on K∞. We point
out here that the theoretical calculations have an associated error which should
also be added (quadratically) to the experimental error. If we estimate this error
to be also of the order of 0.2 MeV as in [2], then the total uncertainty on K∞
is obtained by summing quadratically the two independent ones, and one gets
8Ä13 MeV.

The ISGMR has been identiˇed in many nuclei, from the light to the heavy
ones. In the light nuclei the strength is very fragmented and only in the medium-
heavy nuclei it corresponds to a single peak of energy ∼ 80A−1/3 MeV.
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The main issue here is not the experimental accuracy, rather the level of
comparison between experiment and theory. Whereas, as it is discussed above
(cf. Sec. 3), it is customary in the theoretical works to calculate the strength
function S(E), in the analysis of experimental data of the excitation cross section
σ(E) one carries out Distorted Wave Born Approximation (DWBA) calculations
with a transition potential δU obtained from a collective model transition density
δρcoll, using the folding model (FM) approximation. This may be a source of
uncertainties, especially if most of the strength is not collective. Accordingly,
it is important to examine the relation between S(E) and the excitation cross
section σ(E) of the ISGMR and the ISGDR, obtained by α scattering, using the
folding model DWBA method with δρ obtained from self-consistent HF-RPA.

The DWBA has been quite instrumental in providing a theoretical description
of low-energy scattering reactions and is widely used in analyzing measured cross
sections of scattered probes. The folding model approach [53] to the evaluation
of optical potentials appears to be quite successful and, at present, is extensively
used in theoretical descriptions of α-particle scattering [54]. The main advantage
of this approach is that it provides a direct link to the description of α-particle
scattering reactions based on microscopic HF-RPA results.

The DWBA differential cross section for the excitation of a giant resonance
by inelastic α scattering is

dσDWBA

dΩ
=

( μ

2π�2

)2 kf

ki
|Tfi|2 , (62)

where μ is the reduced mass, and ki and kf are the initial and ˇnal linear momenta
of the α-nucleus relative motion, respectively. The transition matrix element Tfi

is given by

Tfi = 〈χ(−)
f Ψf |V |χ(+)

i Ψi〉, (63)

where V is the α-nucleon interaction; Ψi and Ψf are the initial and ˇnal states

of the nucleus, and χ
(+)
i and χ

(−)
f are the corresponding distorted wave func-

tions of the α-nucleus relative motion, respectively. To calculate Tfi, Eq. (63),
one can adopt the following approach which is usually employed by experimen-
talists. First, assuming that Ψi and Ψf are known, the integrals in (63) over
the coordinates of the nucleons are carried out to obtain the transition potential

δU ∼
∫

Ψ∗
fV Ψi. Second, the cross section (62) is calculated using a certain

DWBA code with δU and the optical potential U(r) as input.
Within the FM approach, the optical potential U(r) is given by

U(r) =
∫

dr′V (| r − r′|, ρ0(r′))ρ0(r′), (64)

where V (| r − r′|, ρ0(r′)) is the α-nucleon interaction, which is generally complex
and density-dependent, and ρ0(r′) is the ground state HF density of a spherical
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target nucleus. To obtain the results given in the following, both the real and
imaginary parts of the α-nucleon interaction were chosen to have Gaussian forms
with density dependence [54], and parameters determined by a ˇt to the elastic
scattering data. The radial form δUL(r, E) of the transition potential, for a state
with the multipolarity L and excitation energy E, is obtained from:

δU(r, E) =
∫

dr′δρL(r′, E)

[
V (| r− r′ |, ρ0(r

′
))+

+ ρ0(r′)
∂V (| r − r′ |, ρ0(r′))

∂ρ0(r′)

]
, (65)

where δρL(r′, E) is here the transition density for the considered state (with a
slight change of notation compared to our previous discussion).

We point out that within the ®microscopic¯ folding model approach to the
α-nucleus scattering, both ρ0 and δρL, which enter Eqs. (64) and (65), are ob-
tained from the self-consistent HF-RPA calculations. Within the ®macroscopic¯
approach, one adopts collective transition densities, δρcoll, which are assumed to
have energy-independent radial shapes and are obtained using a collective model.
We stress that for a proper comparison between experimental and theoretical re-
sults for S(E), one should adopt the ®microscopic¯ folding model approach in
the DWBA calculations of σ(E).

6. NUCLEAR INCOMPRESSIBILITY FROM THE ISGMR IN 208Pb

The ˇrst experimental identiˇcation of the ISGMR in 208Pb at excitation
energy of E0 = 13.7 MeV already triggered HF plus RPA calculations using
existing or modiˇed effective interactions. Those having K∞ = (210± 30) MeV
gave results in agreement with experiment [1]. However, in these early investiga-
tions, the experimental uncertainties for E0 were relatively large, and especially,
only a limited class of effective interactions is explored. The RMF framework
was not available for confrontation with Skyrme or Gogny calculations, and many
of these latter calculations were not fully self-consistent. Consequently, we accept
nowadays larger values for K∞ extracted from 208Pb, as we discuss in detail in
this section.

In recent years, it was clariˇed that relativistic RPA calculations must be
performed with the inclusion of the negative-energy states of the Dirac sea.
These calculations [56] yield a value of K∞ = 250−270 MeV, as one can
see in Fig. 4. They are performed by using Lagrangians with density-dependent
mesonÄnucleon coupling constants. They conˇrm results previously obtained
within the framework of the Lagrangians having density-independent coupling



THE COMPRESSION MODES IN ATOMIC NUCLEI 583

Fig. 4. Results for the ISGMR calculated within RRPA or RQRPA in different nuclei.
Effective Lagrangians with density-dependent mesonÄnucleon vertex functions have been
employed. Taken from [56]

constants and nonlinear meson self-interactions [55]. At the same time, both
continuum [57] and discrete [58] HF-RPA calclations based on Skyrme still
conˇrmed the previous result of K∞ about 220 MeV. Note that, in keeping with
an expected total uncertainty on K∞ of about 8Ä13 MeV (mentioned previously
in Sec. 5), a discrepancy in the predictions from relativistic and nonrelativistic
models of 30Ä50 MeV is quite signiˇcant. This model dependence of K∞ has
been explained, to a good extent, in the most recent works of [2, 59,60].

First, the effects of common violations of self-consistency in the HF-RPA
calculations of various giant resonances were investigated in detail (cf., e.g., [23Ä
28]). The main source of self-consistency violation is the neglect of the spin-orbit
and Coulomb terms in the residual interaction. Other approximations which are
usually made in the HF-RPA framework (continuum discretization, model space
truncation) have been proven to be not crucial and to not produce additional
inaccuracies, as discussed in Sec. 3. It is found that the effects of the violation
due to the neglect of the p−h spin-orbit or Coulomb interactions in the RPA
calculations are most signiˇcant for the ISGMR. In 208Pb the shift in the centroid
energy E0 is about 0.8 MeV, which is 3 times larger than the experimental
uncertainty (cf. [2, 27]). We note that a shift of 0.8 MeV in E0 corresponds
to a shift of about 25 MeV in K∞. In fact, this shift completely solves the
issue of a previously advocated disagreement between values of K∞ extracted
from Skyrme and Gogny calculations. Fully self-consistent Skyrme calculations
employing existing parameterizations do not point any more to the value of about
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Fig. 5. Constrained ISGMR energies E−1 (cf. Eq. (41)) in 208Pb obtained by using the
Skyrme forces built in [60], and having α = 1/6 (a) or α = 0.3563 (b). The two horizontal
lines denote the experimental upper and lower bounds. See the text for a discussion

210 MeV quoted in [1], but to about 235 MeV in clear agreement with the Gogny
based extraction of K∞.

We then discuss the proper comparison between the predictions of the rel-
ativistic and the nonrelativistic models. To this aim, parameter sets for Skyrme
interactions were generated in [59] by a least-square ˇtting procedure using the
same experimental data for the bulk properties of nuclei considered in [15] for
determining the NL3 parameterization of the effective Lagrangian used in the
RMF models. Further, the values of the symmetry energy at saturation (J) and
the charge r.m.s. radius of the 208Pb nucleus were constrained to be very close to
37.4 MeV and 5.50 fm, respectively, as obtained with the NL3 interaction, and
K∞ was ˇxed in the vicinity of NL3 value of K∞ = 271.76 MeV. In particular,
the Skyrme interactions SK272 and SK255, having K∞ = 272 and 255 MeV,
respectively, were generated in [59]. The new Skyrme interaction SK255 yields
for the ISGMR centroid energies (E0) values which are close to the RRPA re-
sults obtained for the NL3 interaction, in good agreement with experimental data,
despite it has larger K∞ than other Skyrme sets.

In order to understand this result, a more systematic analysis has been made
in [60]. In this work, a larger set of new Skyrme forces has been generated,
built with the same protocol used for the Lyon forces [14] and spanning a wide
range of values for K∞, for the symmetry energy at saturation J and its density
dependence. The main conclusions reached in that work are the following. The
ISGMR energies, calculated by means of CHF, and consequently the extracted
value of K∞, depend on a well-deˇned parameter (Ksym), which controls the
slope of the symmetry energy curve as a function of density. In fact, it has been
shown that there is a correlation between the values of the symmetry energy at
saturation J and its slope. The Skyrme forces having a density dependence char-
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acterized by an exponent α = 1/6, like SLy4, predict K∞ around 230Ä240 MeV.
If this exponent is increased to values of the order of 1/3, and consequently the
slope of the symmetry energy curve is made stiffer, one can produce forces which
are compatible with K∞ around 250Ä260 MeV. This result, obtained within the
framework of a different protocol for ˇtting the Skyrme parameters, is nonethe-
less in full agreement with the result of [59]. The main results of [60] are shown
in Fig. 5. It has to be noted that a further increase of α, and accordingly of
K∞, would become difˇcult to obtain since the effective mass m∗ would become
too small.

One thus can make the clear and strong conclusion that the difference in
the values of K∞ obtained in the relativistic and nonrelativistic models is not
due to model dependence. It is mainly due to the different behavior of the
symmetry energy within these models (cf. also [61]). One can quote a value
of K∞ = (240 ± 20) MeV which is somewhat larger than what was previously
advocated [1].

7. THE ISGMR IN OTHER MEDIUM-HEAVY NUCLEI

We can better express the idea outlined at the end of the previous section
by using Eq. (59) as a guideline. For the sake of simplicity, we rewrite it by
neglecting the curvature term and the splitting of the symmetry term into a
volume and surface contribution. Two different models (e.g., nonrelativistic and
relativistic versions of the mean ˇeld) can provide the same value of KA, so that

KA = Knonrel
∞ + Knonrel

surf A−1/3 + Knonrel
τ δ2 + Knonrel

Coul Z2A−4/3 + . . . ,

KA = Krel
∞ + Krel

surfA
−1/3 + Krel

τ δ2 + Krel
CoulZ

2A−4/3 + . . .
(66)

The Coulomb contribution does not change much from a nonrelativistic to a
relativistic description. However, the surface and symmetry parts (let alone the
neglected curvature contribution) could change from one model to the other, so
that the extracted K∞ is also different. This puts in a different perspective the
original discussion of [1].

Not so much has been done so far, in order to solve this issue of disentan-
gling the different contributions to the nuclear incompressibility. In [62] it has
been claimed that the surface contribution should be approximately proportional
to the volume one (similarly to what is known to hold for the corresponding co-
efˇcients in the mass formula), but this conclusion is based only on semiclassical
calculations.

In order to explore the role of the symmetry term in the above expression,
one should abandon the idea of extracting the value of K∞ from the ISGMR data
in a single system, like 208Pb, and consider, for instance, an isotopic chain. The
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Sn isotopes are among the longest isotopic chains of spherical nuclei. Therefore,
a recent experiment has been performed, using inelastic scattering of α particles
at forward angles, at RCNP, Osaka. The results have been reported in [63, 64].
From the cross sections, the strength distributions have been extracted by using
the multipole decomposition analysis (cf. Sec. 5). Values of the energies E0,
E−1 and E3 (cf. 3.2) are extracted in the interval 10.5Ä20.5 MeV and reported
here in Table 1.

Table 1. Ratios of moments of the ISGMR strength distributions (as deˇned here
in 3.2) extracted from the experimental data in [63, 64]. They are evaluated in the
energy interval between 10.5 and 20.5 MeV

Nucleus E0 E−1 E3

112Sn 16.2± 0.1 16.1± 0.1 16.7± 0.2
114Sn 16.1± 0.1 15.9± 0.1 16.5± 0.2
116Sn 15.8± 0.1 15.7± 0.1 16.3± 0.2
118Sn 15.8± 0.1 15.6± 0.1 16.3± 0.1
120Sn 15.7± 0.1 15.5± 0.1 16.2± 0.2
122Sn 15.4± 0.1 15.2± 0.1 15.9± 0.2
124Sn 15.3± 0.1 15.1± 0.1 15.8± 0.1

From the monopole energies reported in the Table a ˇt of the quantity Kτ has
been attempted, by assuming that in Eq. (66) all other terms than the symmetry
one are smooth and can be taken as constant along the Sn chain. The ˇt of

KA = a + Kτδ2, (67)

with δ = (N−Z)/A, gives a value Kτ = −440±60. The main problem emerging
here is that the calculations of [60] reproduce the ISGMR energy in 208Pb using
interactions characterized by K∞ = (230−240) MeV and by values Kτ which are
well compatible with −440 ± 60; but the same calculations tend to overestimate
the experimental ISGMR energies in all the stable even Sn isotopes by almost
1 MeV. Also RMF calculations done along the line of [65] overestimate, although
somewhat less, the experimental ˇndings. Another problem is that the results of
the Osaka experiment are not compatible with those of [51,66] performed by the
Texas group.

Summarizing, whereas accurate experimental data for the ISGMR in different
nuclei are of paramount importance in order to disentangle the different contri-
butions to the nuclear incompressibility, the present availability of results for the
stable Sn nuclei does seem, at present, to add problems instead of solving them.
Whether this is due to the neglect of the consideration of the surface or curvature
contributions, or to pairing or anharmonic effects, it is still not understood.
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8. THE ISGDR PROBLEM

The study of the isoscalar giant dipole resonance is very important since
this compression mode provides an independent source of information on K∞.
Early experimental investigation of the ISGDR in 208Pb resulted in a value of
EISGDR ∼ 21 MeV for the centroid energy [67]. It was ˇrst pointed out in [68]
that corresponding HF-RPA results for EISGDR, obtained with interactions ad-
justed to reproduce experimental values of EISGMR, are higher than the experi-
mental value by more than 3 MeV and thus this discrepancy between theory and
experiment raises some doubts concerning the unambiguous extraction of K∞
from the energies of compression modes. A similar result for EISGDR in 208Pb
was obtained in more recent experiments [69, 70]. Therefore, the value of K∞
deduced from these early experimental data on ISGDR is signiˇcantly smaller
than that deduced from ISGMR data.

It must be stressed that, in contrast with the ISGMR which presents a sin-
gle peak, as a rule, in heavy nuclei, the dipole response displays a low-lying,
fragmented part which lies below the giant resonance. This is a systematic fea-
ture of experimental and theoretical results in a number of isotopes. Different
theoretical calculations [34, 71] agree in indicating that the low-lying strength is
not collective. In fact, while the centroids of the high-energy region, if calcu-
lated with interactions associated with different values of K∞, scale with these
values, the centroids of the low-energy region do not. The understanding of the
detailed nature of this low-energy component of the ISGDR, represents a great
challenge both for experimental and theoretical studies. As far as the giant reso-
nance centroid is concerned, discrete and continuum [72] RPA results are in good
agreement with each other in 208Pb. Coupling with 2p − 2h-type conˇgurations
is in this case relevant, as it produces a conspicuous spreading width of about
6 MeV [73].

In [36], numerical calculations were carried out for the strength function of
the ISGDR, as well as for the cross section σ(E) for inelastic α-particle scatter-
ing. This latter calculation has been carried out within the single-folding DWBA
approach, by employing density-dependent Gaussian α-nucleon interactions, ˇt-
ted to elastic scattering data. Comparing this microscopically calculated cross
section with experimental data should be, in principle, a better procedure than
using experimental centroids of the strength distribution. In fact, experimentalists
extract strength distributions by assuming collective model transition densities
δρcoll in the whole energy range, whereas we have just discussed that the low-
lying strength does not correspond to a collective ISGDR state. In [36] it was
found that the shift in the centroid energy, associated with this artiˇcial use of
constant, collective δρcoll, is nonetheless small (a few percent) and similar in
magnitude to the current experimental uncertainties. On the other hand, it was
pointed out that, in the calculation of [36], the maximum cross section for the
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ISGDR decreases strongly at high energy and may even drop below the exper-
imental sensitivity for excitation energies above 30 MeV. This high excitation
energy region contains about 20% of the EWSR. This missing strength leads to a
reduction of about 3.0 MeV in the ISGDR energy which can signiˇcantly affect
the comparison between theory and experiment. This may be one of the reasons
why it is still difˇcult, in practice, to compare values for K∞ extracted from the
ISGMR and the ISGDR.

Table 2. Fully self-consistent HF-RPA results [27] for the ISGDR centroid energy
(in MeV) in 90Zr and 208Pb, obtained using the interactions SGII and SK255 [59],
compared with the RRPA results obtained with the NL3 interaction [15]. Also given
are the values of K∞, and of the symmetry energy at saturation, J . The range of
integration is given in the second column

Nucleus E1 − E2 Experiment NL3 SGII SK255
90Zr 18Ä50 25.7 ± 0.7 32 28.8 29.2

26.7 ± 0.5
26.9 ± 0.7

208Pb 16Ä40 19.9 ± 0.8 26.0 24.1 24.5
22.2 ± 0.5
22.7 ± 0.2

K∞, MeV 272 215 255
J , MeV 37.4 26.8 37.4

In Table 2 we provide the results of fully self-consistent HF-RPA calculations
for the ISGDR centroid energy. The SGII result in 208Pb compares well with
23.9 MeV obtained using discrete RPA in [34] and with 23.4 MeV obtained using
continuum RPA in [37]. Note that the HF-RPA values for EISGDR are larger than
the corresponding experimental values of the early measurements of [67, 69, 70]
by more than 3 MeV. The more recent results of [51, 52, 74, 75], seem to better
agree. Other results of (α,α′) inelastic scattering experiments performed on
different targets can be found in [76Ä79].

CONCLUSIONS

The present review paper attempts to give an overview of our present un-
derstanding of the compressional modes in ˇnite nuclei, in particular as far as
the correlations with basic parameters of the nuclear equation of state (EOS) are
concerned. The EOS of symmetric nuclear matter is known to display saturation,
that is, there exists a minimum in the energy per particle E/A as a function of the
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density ρ. The curvature around this minimum is directly related to the nuclear
matter incompressibility K∞. Only the compressional modes of ˇnite nuclei may
shed light on this curvature, in keeping with the fact that a direct determination
is not really feasible.

The interest in this quantity is of course not recent. In the seventies and
eighties, a ˇrst generation of experiments have triggered the ˇrst attempts to
determine the value of K∞. The possibility of accelerating isoscalar projectiles
like α particles at sufˇciently high energy, and of detecting small angle inelastic
scattering, has paved the way for a systematic determination of the properties of
the ISGMR and ISGDR in many nuclei along the periodic table. Unfortunately,
the experimental data alone do not allow a direct extraction of the value of
K∞. In fact, the so-called macroscopic approaches, based on a formula which
expresses the ˇnite nucleus incompressibility KA in terms of volume, surface,
symmetry, and Coulomb contributions (like in the mass formula) have been
shown to be unreliable and have been soon abandoned. The microscopic way,
that is, the idea that the correct value of K∞ is that associated with a microscopic
energy functional which reproduces the monopole energy in ˇnite nuclei, has
emerged. The ˇrst conclusion from this approach pointed to a value of K∞
around 220 MeV.

The topic has regained interest in recent years. On the one hand, the exper-
imental techniques allow nowadays a much better determination of the moments
of, e.g., the ISGMR strength function. Also the theoretical calculations have been
improved and it has been demonstrated that some of the early ones suffer from
the lack of full self-consistency. These include some of the calculations which
pointed out to the previous value of 220 MeV. More importantly, the concept
of a unique correlation between the monopole energy in a nucleus and the value
of K∞ has been shown to be not valid. In fact, the relativistic mean ˇeld ap-
proaches have now become as reliable as the nonrelativistic ones, but within this
kind of models larger values of K∞ are usually extracted, as a rule, than within
the nonrelativistic ones.

Recently, some consensus has been reached on few new ideas. First, the
nonrelativistic functionals, no matter whether based on Skyrme of Gogny effective
forces, point consistently to a value of K∞ between 230 and 240 MeV. This is
somewhat larger than the value which has been proposed so far.

The other important point is that, if the relativistic functionals point to val-
ues which are at least around 250 MeV, this is not certainly due to fundamental
reasons. It is possible to build Skyrme forces which mimick the same behavior
as the relativistic functionals. The compressibility of ˇnite nuclei is of course as-
sociated with contributions not only from the volume (this contribution coincides
with K∞) but also from surface, symmetry, etc. Therefore, different classes of
functionals may consistently reproduce the ISGMR even if they are associated
with different values of K∞. The relativistic functionals, which successfully



590 COL
O G.

reproduce many nuclear properties having stiffer symmetry energy as compared
with the nonrelativistic ones, point to values of K∞ around 250Ä270 MeV.

One can conclude that the remaining uncertainty on K∞, which we would set
at present in the range (240±20) MeV, is mainly related to the lack of understand-
ing of the global features of the functionals, mainly of their density dependence.
Softer (stiffer) symmetry energies are, e.g., associated with less (more) negative
values of the symmetry contribution to the ˇnite nucleus compressibility and,
consequently, to smaller (larger) values of K∞.

This conclusion has mainly been reached by studying the ISGMR in 208Pb.
Other nuclei, like the Sn isotopes, which have been analyzed with the hope of
clarifying this issue, have indeed caused more trouble. The different contribu-
tions to the compressibility should be carefully reexamined in order to have better
insight into this longstanding problem. Last but not least, we still lack a uniˇed
picture from the ISGMR and the ISGDR. The main problem has been, so far, the
presence of noncollective and noncompressional isoscalar dipole stength. Proba-
bly, independent progresses concerning our general understanding of the nuclear
energy functionals may provide new insight into these problems.
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