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CP VIOLATION AND UNITARITY TRIANGLE TEST
OF THE STANDARD MODEL

S. M. Bilenky

Joint Institute for Nuclear Research, Dubna

Phenomenological issues of the CP violation in the quark sector of the Standard Model are
discussed. We consider quark mixing in the SM, standard and Wolfenstein parameterization of the
CKM mixing matrix and unitarity triangle. We discuss the phenomenology of the CP violation in
K0

L and B0
d(B̄0

d) decays. The standard unitarity triangle ˇt of the existing data is discussed. In
Appendix A we compare the K0 � K̄0, B0

d,s � B̄0
d,s, etc., oscillations with neutrino oscillations.

In Appendix B we derive the evolution equation for M0 − M̄0 system in the WeisskopfÄWigner
approximation.
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INTRODUCTION

Soon after it was discovered that invariance under the space inversion P
and invariance under the charge conjugation C (invariance under the change
particles � antiparticles) are violated [1] (1957), Landau [2] and Lee and Yang [3]
suggested that the Hamiltonian of the weak interaction is invariant under the
combined CP transformation. One of the consequences of this suggestion was
the theory of the two-component neutrino [2Ä4] according to which the neutrino
is left-handed (or right-handed) particle and antineutrino is right-handed (or left-
handed) particle.

The helicity of the neutrino was measured in spectacular experiment [5]
performed in 1958. This experiment conˇrmed the theory of the two-component
neutrino. It was established that neutrino is left-handed particle.

The conˇrmation of the theory of the two-component neutrino strengthened
belief in the hypothesis of the CP invariance of the Hamiltonian of the weak
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interaction. All existing data at the end of ˇfties and beginning of sixties were in
agreement with this hypothesis.

It was a big surprise for the physics community when in the experiment
performed by Christenson, Cronin, Fitch, and Turlay [6] in 1964 the decay
K0

L → π+π− was observed. The observation of this decay was a proof that CP
is violated∗.

The discovery of the CP violation was announced at the Rochester confer-
ence in Dubna in 1964. In 1980, Cronin and Fitch were awarded the Nobel Prize
for this discovery.

The observed violation of P and C in the β decay and other weak decays
was large. Discovered by Cronin, Fitch and others, effect of the violation of CP
was very small. They found that the ratio of the modulus of the amplitudes of the
CP -forbidden decay K0

L → π+ +π− and the CP -allowed decay K0
S → π+ +π−

was about 2 · 10−3.
The ˇrst problem was to understand what interaction is responsible for the

CP violation in K0
L → π + π decays. Many hypotheses were put forward. One

of the most viable ideas was proposed by Wolfenstein [7]. He noticed that it is
possible to explain the observed violation of the CP in decays of K0

L meson if
we assume that there exists a new |ΔS| = 2 interaction, which is characterized
by a very small effective interaction constant GSW � 10−9 GF (GF is the Fermi
constant). This interaction was called the superweak interaction.

Measurable parameters characterizing violation of CP in KL → π+π decays
are η+− and η00. These parameters are, correspondingly, ratios of the amplitudes
of the decays K0

L → π+ + π− and K0
S → π+ + π− and K0

L → π0 + π0 and
K0

S → π0 + π0. If the superweak interaction is responsible for the violation of
the CP in K0

L → π + π decays, in this case

η+− = η00. (1)

It took many years of enormous experimental efforts [8, 9] in order to check the
relation (1). It was proved that the relation (1) is not valid. Thus, superweak
interaction as a possible source of the CP violation in the neutral kaon decays
was excluded by these experiments.

At the time when experiments [8, 9] were completed, the Glashow [10],
Weinberg [11], Salam [12] Standard Model (SM) was established by numerous

∗In fact, let us consider decays of short-lived and long-lived kaons (K0
S and K0

L) into π+ +π−

in the rest frame of the kaon. Because spin of the kaon is equal to zero, ˇnal pions have equal to zero
orbital momentum. Thus, we have P |π+π−〉 = |π+π−〉, C|π+π−〉 = |π−π+〉 = |π+π−〉 and
CP |π+ π−〉 = |π+ π−〉. The decay KS → π+ + π− is the main decay mode of the short-lived
kaon. If CP is conserved, |KS〉 is the state with CP parity equal to 1. The CP parity of the
orthogonal state KL must be equal to −1 and hence decay KL → π+ + π− must be forbidden in
the case of the CP conservation.
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experiments. The expected in the SM violation of the relation (1) is very small
(see [13]). The data of the experiments [8, 9] were in agreement with the SM.

In 1973, Kobayashi and Maskawa [14] considered CP violation in the frame-
work of the Standard Model. In the Standard Model, violation of the CP is
determined by phases in the unitary mixing matrix. In 1973, only two families of
leptons and quarks were known. It was demonstrated in [14] that it is impossible
to violate CP in this case. It was shown in [14] that in order to explain observed
CP violation we need to assume that (at least) six quarks exist. Kobayashi and
Maskawa obtained the ˇrst parametrization of the mixing matrix in the case of
three families. They showed that this matrix is characterized by three mixing
angles and one CP phase.

During more than 30 years the investigation of the CP violation was limited
by the system of neutral kaons (see book [15]). During last 8 years with the
BaBar and Belle experiments at the asymmetric B factories at the SLAC and
KEK, a new era in the investigation of the CP violation started (see book [16]).
In these experiments numerous effects of the CP violation in different decays of
the neutral and charged Bd mesons were observed. This allowed one to perform
the unitarity triangle test of the SM. All existing at present data are in good
agreement with the SM and the assumption that only three families of quarks exist
in nature.

In this review we will consider some phenomenological aspects of the prob-
lem of the CP violation in the quark sector. In Sec. 1 we consider the SM Higgs
mechanism of the mixing of quarks. In Sec. 2 we consider in detail the quark
mixing matrix and the CP violation. In Sec. 3 we derive the standard para-
metrization of the CKM mixing matrix. In Sec. 4 we discuss the values of the
modulus of the elements of the CKM matrix. In Sec. 5 we consider Wolfenstein
parametrization of the CKM matrix elements and the unitarity triangle. In Sec. 6
we obtain eigenstates and eigenvalues of the effective Hamiltonian of K0 − K̄0,
B0−B̄0, etc., systems. In Sec. 7 we consider in detail phenomenology of the CP
violation in decays of K0

L. In Sec. 8 we consider the CP violation in B0 − B̄0

decays. In Sec. 9 we present results of the unitarity triangle test of the Standard
Model. In Appendix A we compare K0 � K̄0, B0 � B̄0, etc., oscillations
with neutrino oscillations. In Appendix B we derive in the WeisskopfÄWigner
approximation the evolution equation for K0 − K̄0, B0 − B̄0, etc., system.

Last years, in connection with appearance of the B factories, several books [18,
48], many reviews [13, 16, 20Ä27] and hundreds of papers on the CP violation
were published. In these books and reviews many details and many references
on original papers can be found.

I tried to discuss here some basic questions and to derive different relations.
I hope that this review will be useful for those who start to study this exciting
ˇeld of physics.
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1. QUARK MIXING IN THE STANDARD MODEL

The Standard Model of the electroweak interaction is based on the following
principles (see, for example, [28,29]):

1. The local gauge SUL(2)×UY (1) symmetry of the Lagrangian of the ˇelds
of massless quarks, leptons, gauge vector bosons, and scalar Higgs bosons.

2. The spontaneous symmetry breaking. Due to the spontaneous breaking of
the local SUL(2) × UY (1) symmetry the masses of W± and Z0 bosons, mass
terms of quarks and leptons and mass of the Higgs boson are generated.

3. Uniˇcation of the weak and electromagnetic interactions.
We will consider the quark sector of the Standard Model. The theory is

based on the assumption that three families of quarks and leptons exist, and the
left-handed quark ˇelds are transformed as SUL(2) doublets∗

ψ1L =
(

u′
L

d′L

)
, ψ2L =

(
c′L
s′L

)
, ψ3L =

(
t′L
b′L

)
, (2)

and the right-handed ˇelds of quarks q′R (q = u, d, c, s, t, b) are the singlets of the
group.

The requirements of the local gauge SUL(2) × UY (1) invariance ˇx the
Lagrangian of the interaction of quarks and vector bosons in the form of the
sum of the charged current (CC), neutral current (NC), and electromagnetic (EM)
parts:

LCC
I = − g

2
√

2
jCC
α Wα + h.c.,

LNC
I = − g

2 cos θW
jNC
α Zα, (3)

LEM
I = −e jEM

α Aα,

where

jCC
α = 2

3∑
i=1

ψ̄iL
1
2
(τ1 + iτ2)γαψiL = 2[ū′

Lγαd′L + c̄′Lγαs′L + t̄′Lγαb′L] (4)

is the quark charged current,

jNC
α = 2

3∑
i=1

ψ̄iL
1
2
τ3γαψiL − 2 sin2 θW jEM

α (5)

is the quark neutral current, and

jEM
α =

∑
q=u,d,c,...

eqq̄
′γαq′ (6)

∗The meaning of primes will be clear later.
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is the electromagnetic current. Here Wα is the ˇeld of W± bosons, Zα is the
ˇeld of Z0 bosons, Aα is the electromagnetic ˇeld, g is the electroweak constant,
θW is the weak angle, eq = 2/3,−1/3 are the quark charges in the unit of the
proton charge, and h.c. means hermitian conjugate.

In the total Lagrangian of the Standard Model the following SUL(2)×UY (1)
invariant Lagrangians of the Yukawa interaction of quarks and Higgs ˇelds enter:

Ldown
Y = −

√
2

v

∑
i=1,2,3 q=d,s,b

ψ̄iLMdown
iq q′Rφ + h.c. (7)

and

Lup
Y = −

√
2

v

∑
i=1,2,3 q=u,c,t

ψ̄iLMup
iq q′Rφ̃ + h.c. (8)

Here Mdown and Mup are complex 3 × 3 matrices, φ =
(

φ+

φ0

)
is the Higgs

doublet, φ̃ = iτ2φ
∗, and v is the constant (vacuum expectation value of the Higgs

ˇeld).
If we choose

φ(x) =

⎛
⎝ 0

v + χ(x)√
2

⎞
⎠ , (9)

where χ(x) is the ˇeld of neutral Higgs bosons, the symmetry will be spon-
taneously broken. For the mass terms of up and down quarks we obtain the
following expressions:

Lup
m = −U ′

LMupU ′
R + h.c., Ldown

m = −D′
LMdownD′

R + h.c., (10)

where

U ′
L,R =

⎛
⎝ u′

L,R

c′L,R

t′L,R

⎞
⎠ , D′

L,R =

⎛
⎝ d′L,R

s′L,R

b′L,R

⎞
⎠ . (11)

The complex matrices Mup and Mdown can be diagonalized by the biunitary
transformations

Mup = V up
L mup V up†

R , Mdown = V down
L mdown V down†

R . (12)

Here V up
L,R and V down

L,R are unitary matrices, and mup and mdown are diagonal
matrices with positive diagonal elements.



1250 BILENKY S.M.

From (10) and (12) we ˇnd

Lup
m = −ŪmupU, Ldown

m = −D̄mdownD. (13)

Here

U = UL + UR =

⎛
⎝ u

c
t

⎞
⎠ , D = DL + DR =

⎛
⎝ d

s
b

⎞
⎠ , (14)

mup =

⎛
⎝ mu 0 0

0 mc 0
0 0 mt

⎞
⎠ , mdown =

⎛
⎝ md 0 0

0 ms 0
0 0 mb

⎞
⎠ (15)

and
UL,R = V up†

L,RU ′
L,R, DL,R = V down†

L,R D′
L,R. (16)

From (13), (14), and (16) we obtain the standard mass terms for up and down
quarks

Lup
m (x) = −

∑
q=u,c,t

mqq̄(x)q(x), Ldown
m (x) = −

∑
q=d,s,b

mq q̄(x)q(x). (17)

Thus, q(x) is the ˇeld of the q quarks with the mass mq (q = u, d, c, s, t, b). The
left-handed and right-handed ˇelds of quarks with deˇnite masses and primed
quark ˇelds, which have deˇnite transformation properties, are connected by the
unitary transformations (16).

Let us consider now the charged current of the quarks. From (4) and (16)
we ˇnd

jCC
α = 2Ū ′

Lγα D′
L = 2ŪLγαV DL = 2[ūLγαdmix

L + c̄Lγαsmix
L + t̄Lγαbmix

L ]. (18)

Here
V = (V up

L )†V down
L (19)

and

dmix
L =

∑
d1=d,s,b

Vud1d1L, smix
L =

∑
d1=d,s,b

Vcd1d1L, bmix
L =

∑
d1=d,s,b

Vtd1d1L. (20)

From (19) it follows that V is a unitary matrix∗

V †V = 1. (21)

∗We assume that there are no additional heavy families of quarks.



CP VIOLATION AND UNITARITY TRIANGLE TEST OF THE STANDARD MODEL 1251

From (18) and (20) we conclude that ˇelds of down quarks enter into CC of the
SM in the form of the ®mixed¯ combinations dmix

L , smix
L , bmix

L . The unitary 3×3
mixing matrix V is called Cabibbo [30]ÄKobayashiÄMaskawa [14] (CKM) mixing
matrix. We will see later that the violation of the CP invariance is determined
in the SM by the matrix V .

Let us consider now the electromagnetic current. From (6) we have

jEM
α =

2
3
(Ū ′

LγαU ′
L + Ū ′

RγαU ′
R) − 1

3
(D̄′

LγαD′
L + D̄′

RγαD′
R). (22)

Taking into account the unitarity of the matrices V up
L,R and V down

L,R , we ˇnd

jEM
α =

2
3
(ŪLγαUL + ŪRγαUR) − 1

3
(D̄LγαDL + D̄RγαDR) =

=
∑

q=u,d,c,...

eqq̄γαq, (23)

where eu,c,t = 2/3 and ed,s,b = −1/3. Thus, we come to the standard expression
for the electromagnetic current which is diagonal in the quark 	avors.

Let us consider the neutral current. We have

jNC
α = 2

3∑
i

ψ̄iL
1
2
τ3γαψiL − 2 sin2 θW jEM

α =

= Ū ′
LγαU ′

L − D̄′
LγαD′

L − 2 sin2 θW jEM
α =

=
∑

u1=u,c,t

ū1Lγαu1L −
∑

d1=d,s,b

d̄1Lγαd1L − 2 sin2 θW jEM
α . (24)

Thus, the neutral current of the SM is also diagonal in the quark 	avors∗. Only
the charged current changes 	avor of the quarks (s → u + W−, etc.). We will
show later that the electromagnetic and NC interactions of the SM automatically
conserve CP . The CP invariance can be violated only by the 	avor-changing
CC interaction.

2. MIXING MATRIX

We will consider here general properties of the unitary mixing matrix V .
Let us calculate ˇrst the number of the angles and phases which characterize the
unitary mixing matrix V in the general n × n case.

∗Notice, however, that 	avor changing neutral current is induced by the charged current in the
higher orders of the perturbation theory.
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The unitary matrix V can be presented in the form V = eiH , where H is
the hermitian matrix. Such matrix is characterized by n (diagonal elements) +

2
(

n2 − n

2

)
(nondiagonal elements) = n2 real parameters.

The number of the angles which characterize n × n unitary matrix coincides
with the number of parameters which characterize n × n orthogonal matrix O
(OT O = 1). Such matrix can be presented in the form O = eA, where AT = −A.

The antisymmetric matrix A is characterized by
n(n − 1)

2
(nondiagonal elements)

real parameters. Thus, the number of the angles which characterize the unitary
matrix is equal to

nangles =
n(n − 1)

2
. (25)

Other parameters of the matrix V are phases. The number of the phases is
equal to

nphases = n2 − n(n − 1)
2

=
n(n + 1)

2
. (26)

The number of physical phases, which characterize mixing matrix, is signiˇcantly
smaller than nphases.

The mixing matrix enters into CC together with the quark ˇelds:

jCC
α = 2

∑
u1=u,c,td1=d,s,b

ū1LγαVu1d1d1L. (27)

The free Lagrangian of quark ˇelds is invariant under the transformation

q(x) → eiαq q(x), q = u, d, . . . (28)

where αq is an arbitrary constant phase. We will take this fact into account in
the calculation of the number of physical phases in the mixing matrix V .

The unitary matrix can be presented in the form

V = S†(α)Ṽ S(β), (29)

where S(α) and S(β) are diagonal phase matrices (Su1u2(α) = δu1u2 eiαu1 ;
Sd1d2(β) = δd1d2 eiβd1 ) and Ṽ is a unitary matrix. There are 2(n − 1) + 1
independent phases αu1 and βd1

∗.
The phase factors eiαu1 and eiβd1 can be included into quark ˇelds. Thus, the

number of measurable, physical phases which characterize unitary mixing matrix

∗We must take into account that only difference of common phases of S(β) and S(α) enters
into (29).
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Ṽ is equal to

nphys
phases =

n(n + 1)
2

− (2n − 1) =
(n − 1)(n − 2)

2
. (30)

Let us obtain now the constraints on the mixing matrix which follow from the
requirements of the CP invariance of the CC interaction. For the CC Lagrangian
we have

LCC
I (x) = − g√

2

∑
u1=u,c,t d1=d,s,b

ū1L(x)γαVu1 d1d1L(x)Wα(x)−

− g√
2

∑
u1=u,c,t d1=d,s,b

d̄1L(x)γαV ∗
u1 d1

u1L(x)W †
α(x), (31)

where V is the 3 × 3 unitary CKM mixing matrix (we suppressed tilde).
The CP is conserved if Lagrangian satisˇes the following condition:

VCPLCC
I (x)V −1

CP = LCC
I (x′), (32)

where VCP is the operator of the CP conjugation and x′ = (x0,−x).
For the left-handed quark ˇeld qL(x) we have

VCP qL(x)V −1
CP = e−2iαq γ0Cq̄T

L (x′). (33)

Here αq is an arbitrary phase and C is the matrix of the charge conjugation,
which satisˇes the relations

CγT
α C−1 = −γα, CT = −C. (34)

Taking into account that phases of quark ˇelds are arbitrary, we can include phase
factor eiαq into the ˇeld q(x). We obtain in this case

VCP qL(x)V −1
CP = γ0Cq̄T

L(x′). (35)

From (34) and (35) we also have

VCP q̄L(x)V −1
CP = −qT

L(x′)C−1γ0. (36)

Let us consider now the current ū1L(x)γαd1L(x). From (34), (35), and (36) we
ˇnd

VCP ū1L(x)γαd1L(x)V −1
CP = −uT

1L(x′)C−1γ0γαγ0Cd̄1L(x′) =
= −δαd̄1L(x′)γαu1L(x′). (37)
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Here δ = (1,−1,−1,−1) is the sign factor. Notice that in the relation (37) we
took into account anticommutator properties of the fermion ˇelds.

Under the CP transformation the ˇeld of the vector W± bosons is trans-
formed as follows:

VCP Wα(x)V −1
CP = −e−2iβW δαW †

α(x′), (38)

where βW is an arbitrary phase. Taking into account that phase of the nonher-
mitian Wα(x) ˇeld is arbitrary, we can include phase factor eiβW into the W
ˇeld. In this case we have

VCP Wα(x)V −1
CP = −δαW †

α(x′). (39)

With the help of (31), (37), and (39) we ˇnd

VCP LCC
I (x)V −1

CP = − g√
2

∑
u1,d1

d̄1L(x′)γαVu1 d1 u1L(x′)W †
α(x′)−

− g√
2

∑
u1,d1

ū1L(x′)γαV ∗
u1 d1

d1L(x′)Wα(x′). (40)

From (31), (32), and (40) we conclude that in the case of the CP invariance the
CKM mixing matrix V is real:

Vu1 d1 = V ∗
u1 d1

. (41)

We will comment now this condition. The ˇrst term of the CC Lagrangian (31)
is responsible for the 	avor-changing transition

d1 → u1 + W−, d1 = d, s, b, u1 = u, c, t. (42)

Amplitude of this transition is equal to Vu1 d1 . The second term of the Lagran-
gian (31) is responsible for the CP -conjugated transition

d̄1 → ū1 + W+, d̄1 = d̄, s̄, b̄, ū1 = ū, c̄, t̄. (43)

Because the Lagrangian is hermitian, the amplitude of the transition (43) is equal
to V ∗

u1 d1
. If the CP invariance holds, the amplitude of transition (42) is equal to

the amplitudes of CP -conjugated transition (43).
As we have shown the number of the physical phases in the CKM mixing

matrix is given by (30). For n = 2 the mixing matrix is real. Thus, for
two families of quarks the unitarity of the mixing matrix assures invariance of the
Lagrangian of interaction of the quarks and W bosons under CP transformation∗.

∗In order to explain in the framework of the SM observed violation of the CP invariance we
need to assume that (at least) three families of quarks exist in nature. This was original argument
of Kobayashi and Maskawa [14] in favor of the existence of the third family of quarks. When this
argument was presented, only two families of quarks were known.
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For n = 3 the number of measurable phases in the mixing matrix is equal to
one∗. It follows from (41) that in the case of the CP invariance this phase must
be equal to zero.

We have considered the CC part of the SM interaction Lagrangian. Let us
discuss now the neutral current and electromagnetic interactions. From (34), (35),
and (36) for the left-handed current we have

VCP q̄L(x)γαqL(x) V −1
CP = −δαq̄L(x′)γαqL(x′). (44)

Analogously, for right-handed current we obtain

VCP q̄R(x)γαqR(x)V −1
CP = −δαq̄R(x′)γαqR(x′). (45)

Taking into account that

VCP Zα(x)V −1
CP = −δαZα(x′), VCP Aα(x)V −1

CP = −δαAα(x′) (46)

from (3), (23), and (24) we ˇnd

VCPLNC
I (x)V −1

CP = LNC
I (x′), VCPLEM

I (x)V −1
CP = LEM

I (x′). (47)

Thus, the SM Lagrangians of the NC and electromagnetic interactions are auto-
matically invariant under CP transformation. This is connected with the fact that
the electromagnetic and neutral current interactions of the SM are diagonal in the
quark 	avors.

We have chosen CP phase factors of quark and W ˇelds equal to one
and determined CP transformations by the relations (35) and (39). In this case
CKM matrix is characterized by three angles and one phase responsible for the
violation of the CP invariance. It is of interest to characterize CP violation in a
rephrasing-invariant way [31].

Let us consider quantities

Qd1d2
u1u2

= Vu1d1Vu2d2V
∗
u1d2

V ∗
u2d1

(48)

invariant under phase transformation

Vuidk
→ e−iαui Vuidk

eiβdk , (49)

∗The minimal number of families at which the CC Lagrangian of the SM can violate CP is
equal to three. This minimal number is equal to the number of SM families of quarks and leptons
which exist in nature. In fact, it was established by the experiments on the measurement of the width
of the decay Z → ν + ν̄ that the number of 	avor neutrinos is equal to three (see [32]). This means
that the number of the lepton families is equal to three. For the SM to be renormalizable, the number
of the quark families must be also equal to three.
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where αui and βdk
are arbitrary phases. It is evident that

(Qd1d2
u1u2

)∗ = Qd2d1
u1u2

= Qd1d2
u2u1

. (50)

If we determine the CP conjugation by the relations (33) and (38) with arbi-
trary CP phases of the quark and W ˇelds from the CP invariance of the CC
Lagrangian, we ˇnd

e2iαu1 Vu1d1 e−2iαd1 e−2iβW = V ∗
u1d1

. (51)

It follows from (48) and (51) that in the case of the CP invariance the quantities
Qd1d2

u1u2
are real:

Qd1d2
u1u2

= V ∗
u1d1

V ∗
u2d2

Vu1d2Vu2d1 = (Qd1d2
u1u2

)∗. (52)

Let us introduce the quantities

Jd1d2
u1u2

= Im Qd1d2
u1u2

. (53)

In the case of the CP invariance we have

Jd1d2
u1u2

= 0. (54)

In the general case of the CP violation from (50) we obtain the following
relations:

Jd1d2
u1u2

= −Jd2d1
u1u2

, Jd1d2
u1u2

= −Jd1d2
u2u1

. (55)

Thus, Jd1d2
u1u2

�= 0 only if d1 �= d2 and u1 �= u2.
Further, from the unitarity of the mixing matrix we ˇnd∑

d1

Qd1d2
u1u2

= δu1u2Vu2d2V
∗
u1d2

,
∑
u1

Qd1d2
u1u2

= δd1d2Vu2d2V
∗
u2d1

. (56)

From these relations we have∑
d1

Jd1d2
u1u2

= 0,
∑
u1

Jd1d2
u1u2

= 0. (57)

Let us consider ˇrst the simplest case of two families. We have in this case

Jds
uc = 0. (58)

This result corresponds to the absence of the physical phases in the mixing matrix
for n = 2.

We will consider now the case of three families. From the ˇrst relation (57)
we have

Jsd
u1u2

+ Jbd
u1u2

= 0, Jds
u1u2

+ Jbs
u1u2

= 0, Jdb
u1u2

+ Jsb
u1u2

= 0. (59)
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It follows from (59) and (55) that the following cycling relations hold:

Jds
u1u2

= Jsb
u1u2

= Jbd
u1u2

. (60)

From the second relation (57) we obtain the following equations:

Jd1d2
cu + Jd1d2

tu = 0, Jd1d2
uc + Jd1d2

tc = 0, Jd1d2
ut + Jsd

ct = 0. (61)

From these relations and (55) we ˇnd

Jd1d2
uc = Jd1d2

ct = Jd1d2
tu . (62)

From (60) and (62) we obtain the following relations:

Jds
uc = Jds

ct = Jds
tu = Jsb

uc = Jbd
uc = . . . = J. (63)

Other nonzero Jd1d2
u1u2

differ from J by sign (Jbs
uc = −J , etc.). Thus, in the case

of three families there exists only one independent rephrasing invariant quantity.
This result is determined by the fact that for n = 3 there is only one physical
phase in the mixing matrix. The quantity J is called Jarskog invariant.

3. STANDARD PARAMETRIZATION OF THE CKM MIXING MATRIX

Several parametrizations of the unitary CKM mixing matrix V were proposed
in literature. We will obtain here the so-called standard parametrization [32] which
is based on the three Euler rotations.

Let us consider three orthogonal and normalized vectors

|d〉, |s〉 and |b〉. (64)

In order to obtain three general ®mixed¯ vectors we will perform the three Euler
rotations. The ˇrst rotation will be performed at the angle θ12 around the vector
|b〉. New orthogonal and normalized vectors are

|d〉′ = c12 |d〉 + s12 |s〉,
|s〉′ = −s12 |d〉 + c12 |s〉,
|b〉′ = |b〉,

(65)

where c12 = cos θ12 and s12 = sin θ12. In the matrix form Eqs. (65) can be
written as follows:

|D〉′ = V ′|D〉. (66)

Here

|D〉′ =

⎛
⎝ |d〉′

|s〉′
|b〉′

⎞
⎠ , |D〉 =

⎛
⎝ |d〉

|s〉
|b〉

⎞
⎠ (67)
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and

V ′ =

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ . (68)

Let us perform now the second rotation at the angle θ13 around the vector |s〉′.
At this step we will introduce the CP phase δ, connected with the rotation of
the vector of the third family |b〉. We will obtain the following three orthogonal
vectors:

|d〉′′ = c13 |d〉′ + s13 e−iδ |b〉′,
|s〉′′ = |s〉′,
|b〉′′ = −s13 eiδ |d〉′ + c13 |b〉′.

(69)

In the matrix form we have

|D〉′′ = V ′′|D〉′. (70)

Here

V ′′ =

⎛
⎝ c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎠ . (71)

Finally, let us perform rotation around the vector |d〉′′ at the angle θ23. New
orthogonal vectors are

|d〉′′′ = |d〉′′,
|s〉′′′ = c23| s〉′′ + s13 |b〉′′,
|b〉′′′ = −s23 |s〉′′ + c23 |b〉′′.

(72)

We have
|D′′′〉 = V ′′′|D′′〉. (73)

Here

V ′′′ =

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠ . (74)

From (66), (70), and (73) we ˇnd

|D′′′〉 = V |D〉, (75)

where
V = V ′′′V ′′V ′. (76)

It is obvious that V is the unitary matrix.
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Thus, the general 3×3 unitary mixing matrix has the form

V =

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ . (77)

From (77) we ˇnd

V =

⎛
⎝ c13c12 c13s12 s13 e−iδ

−c23s12 − s23c12s13 eiδ c23c12 − s23s12s13 eiδ c13s23

s23s12 − c23c12s13 eiδ −s23c12 − c23s12s13 eiδ c13c23

⎞
⎠ . (78)

In the standard parametrization the 3×3 mixing matrix is characterized by three
Euler angles θ12, θ23, and θ13 and one phase δ. We have seen before that in the
case of the CP conservation V ∗ = V . Thus, in this case δ = 0.

Let us calculate in the standard parametrization of the CKM mixing matrix
the invariant J given by (63). From (78) we have

J = c12c23c
2
13s12s23s13 sin δ. (79)

As we have seen in the previous section in the case of the CP conservation
the Jarlskog invariant J is equal to zero. It follows from experimental data that
all mixing angles are different from zero (see below). The rephrase invariant
condition of the CP conservation has the form: sin δ = 0.

4. MODULUS OF THE ELEMENTS OF CKM MATRIX

The values of the modulus of the CKM matrix elements were determined
from the data of different experiments (see [33]).

The highest accuracy was reached in the measurement of the element |Vud|.
There are three sources of information about this element: i) The superallowed
0+ → 0+ β decay of nuclei. ii) The neutron decay. iii) The β decay of pion
π+ → π0e+νe.

Only vector current gives contribution to the matrix element of the 0+ → 0+

β transition. From the isotopic invariance and the hypothesis of the conserved
vector current CVC it follows that matrix element of 0+ → 0+ transition between
components of isotopic triplet is given by

|〈p′|Vα|p〉| = N |Vud|
√

2(p + p′)α, (80)

where p and p′ are momenta of initial and ˇnal nuclei and N is the normalization
factor. The nuclear Coulomb effects and radiative corrections, which violate this
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relation, must be taken into account. From the most precise measurements of ft
values∗ of nine nuclei the following average value was obtained [34,35]:

|Vud| = 0.97377± 0.00027. (81)

It is necessary to notice, however, that the Q value of 46V was recently remea-
sured [35]. The new value leads to an increase of the f factor which gives 2.7σ
decrease of the value of |Vud| with respect to the average value (81).

The element |Vud| can be determined also from data of the experiments on the
measurements of the lifetime of the neutron τn and from the ratio of the nucleon
weak axial and vector constants gA. The constant gA can be obtained from the
data of the experiments on the measurement of the asymmetry of electrons in the
decay of polarized neutrons. From the world averages values of τn and gA [32]

τn = (885.7 ± 0.8) s, gA = −1.2695± 0.0029 (82)

for the element |Vud| it was found the value [37]

|Vud| = 0.9746± 0.0004± 0.0018± 0.0002. (83)

Here the ˇrst (second) error is due to the error of τn (gA) and the third error is
due to the uncertainty in the calculations of radiative corrections. As is seen from
(83) the dominant uncertainty is due to the error of the constant gA.

Finally, the value of the element |Vud| was obtained from the measurement
of the branching ratio of the decay π+ → π0e+νe. Only vector CC current
gives contribution to the hadronic matrix element of this process. From the CVC
and isotopic invariance it follows that matrix element of the hadronic vector
current is given by the relation (80). The problem of the calculation of the
radiative corrections is much more simpler in the pion case than in the nuclear
case. However, the branching ratio of the pion β decay is very small (B(π+ →
π0e+νe) � 10−8). As a result, the accuracy of the determination of the element
|Vud| from the measurement of this branching ratio is much worse than from the
measurement of the ft values of the nuclear 0+ → 0+ β decays. In [36] it was
found the value

|Vud| = 0.9728± 0.0030. (84)

The value of the element |Vus| was obtained from the measurement of the
widths of the decays KL → π±l∓νl (l = e, μ) and K+ → π0e+νe. Only CC
vector current gives contribution to the hadronic part of the matrix elements of
these decays. The matrix element is characterized by two form factors and has
the form

〈p′|Vα|p〉 = NVud

(
f+(Q2)(p + p′)α + f−(Q2)(p − p′)α

)
. (85)

∗The ft value is the product of the phase-space integral f and the half-life of a nucleus t.



CP VIOLATION AND UNITARITY TRIANGLE TEST OF THE STANDARD MODEL 1261

Here p and p′ are momenta of kaon and pion; Q2 = −(p′ − p)2, and N is the
standard normalization factor. Taking into account the results of the measurements
of the form factors f±(Q2) and recent measurements of the branching ratios of the
decays KL → πeν and KL → πμν [38Ä40], for the element |Vus| the following
value was found [37]:

|Vus| = 0.2257± 0.0021. (86)

This result was obtained with the chiral perturbation value [41] f+(0) = 0.961±
0.008 used.

The value of the parameter |Vus| can be also obtained from the measurement
of the widths of the decays K+ → μ+νμ and π+ → μ+νμ. Using for the ratio
of the decay constants the value

fK

fπ
= 1.198+0.016

−0.005 ± 0.003, (87)

which was obtained in the lattice calculations [42], for the matrix element |Vus|
it was found [37]

|Vus| = 0.2245+0.0012
−0.0031. (88)

The value of the element |Vus| can be also inferred from the analysis of data
on the investigation of the hyperon decays. From these data it was found [43]

|Vus| = 0.2250± 0.0027. (89)

Finally, information about the value of the parameter |Vus| can be obtained from
the data of the experiments on the investigation of the decays τ± → ντ +
hadrons (S = ±1). From these data the following value of the matrix element
|Vus| was found [44]:

|Vus| = 0.2208± 0.0034. (90)

Thus, the values of the element |Vus|, determined from the different experimental
data and with different theoretical inputs, are compatible.

From the unitarity of the CKM matrix V we have

|Vud|2 + |Vus|2 + |Vub|2 = 1. (91)

The last term gives negligible contribution to this relation (see later). From (83)
and (86) it was found [37]

|Vud|2 + |Vus|2 + |Vub|2 = 0.9992± 0.0005± 0.0009, (92)

where the ˇrst error is due to the error of |Vud| and the second one is due to the
error of |Vus|. Thus, the values (83) and (86) of the parameters |Vud| and |Vus|
saturate the unitarity relation (91).
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The element |Vcd| can be determined from the data on the production of the
muon pairs in the processes of interaction of νμ and ν̄μ with nucleons∗. From
these data it was found the value [33]

|Vcd| = 0.230 ± 0.011. (93)

The element |Vcd| can also be obtained from the data on the study of the decays
D → πlνl if the corresponding form factors are known. Using lattice calculations
of the form factors [45] it was found [46]

|Vcd| = 0.213± 0.008 ± 0.021, (94)

where the dominant error is the theoretical one.
The value of the element |Vcs| was determined from the data on the inves-

tigation of the decays D → Klνl. Using the lattice calculations of the form
factors [45] it was found the value [46]

|Vcs| = 0.957 ± 0.017± 0.093, (95)

where the second (theoretical) error is the largest one.
A model independent information about the element |Vcs| can be obtained

from the data on the study of the decay W+ → c + s̄. From the LEP data it was
found the value [47]

|Vcs| = 0.94+0.32
−0.26 ± 0.13. (96)

The value of the element |Vcb| was determined from the data on the inves-
tigation of the semileptonic inclusive decays B̄ → Xclν̄l and exclusive B̄ →
D(D∗)lν̄l decays. Analysis of the inclusive data is based on the operator product
expansion theory [48, 49]. From the LEP and B-factories data it was found the
following average value [50]:

|Vcb| = (41.7 ± 0.7) · 10−3. (97)

An analysis of the exclusive data is based on the heavy quark effective theo-
ry [51,52]. The average value

|Vcb| = (40.9 ± 1.8) · 10−3 (98)

which was found from the analysis of the exclusive data [50] is compatible
with (97).

The value of the element |Vub| can be obtained from the study of semileptonic
inclusive decay

B̄ → Xulν̄l (99)

∗One muon is produced in a process of interaction of neutrino (antineutrino) with nucleon; and
another, in the decay of the produced charmed particle.
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and exclusive decay
B̄ → πlν̄l. (100)

The suppression of the background from the CKM enhanced inclusive decay B̄ →
Xclν̄l is the main problem in the investigation of the decay (99). The following
average value of |Vub| was obtained from different inclusive measurements [50]:

|Vub| = (4.40 ± 0.20 ± 0.27) · 10−3 (inclusive). (101)

In the exclusive decay (100) both ˇnal charged particles are detected. This leads
to the better suppression of the background than in the inclusive case. However,
the branching ratio of the exclusive decay (which is known at present with the
accuracy ∼ 8%) is much smaller than the branching ratio of the inclusive decay.
The hadronic matrix element of the process (100) is given by

〈p′|Vα|p〉 =

= NVub

(
f+(q2)

(
p + p′ − m2

B − m2
π

q2

)
qα + f0(q2)

m2
B − m2

π

q2
qα

)
, (102)

where q = p − p′ and f+(q2), f0(q2) are the form factors.
The calculation of the form factors f+(q2) and f0(q2) is the main problem in

the determination of |Vub| from the exclusive data. Using the most precise lattice
calculations [54,58] the following value was found [50]:

|Vub| = (3.84+0.67
−0.49) · 10−3 (exclusive). (103)

This value is compatible with (101). From (101) and (103) the following weighted
average of the matrix element |Vub| was obtained [50]:

|Vub| = (4.31 ± 0.39) · 10−3 (exclusive). (104)

The element |Vtd| can be determined from the measurement of the mass difference
of B0

d mesons. The major contribution to the box diagram which determines
mass differences Δmq (q = d, s) gives the virtual t quark. We have (see, for
example, [13])

Δmq =
G2

F

6π2
mBq m

2
W (f2

Bq
B̂Bq )ηBS0(xt)|VtbV

∗
tq|2. (105)

Here fBq is the decay constant and B̂Bq is the so-called B factor. The factor ηB

is due to short distance QCD corrections (ηB = 0.55 ± 0.01), and S0(xt) is the
known function of xt = m2

t /m2
t .

For the mass difference Δmd the following value was obtained [55]:

Δmd = (0.507 ± 0.004) ps−1. (106)
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Assuming |Vtb| = 1 and taking into account the lattice result [56,57]

fBd

√
B̂Bd

= (244 ± 11 ± 24) MeV (107)

for the element |Vtd| it was found the value [58]

|Vtd| = (7.4 ± 0.8) 10−3. (108)

Recently the mass difference of B0
s mesons was measured. Using the CDF

value [59]
Δms = (17.31+0.33

−0.18 ± 0.07) ps−1 (109)

and the lattice result

fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.21 ± 0.04+0.04
−0.01 (110)

it was obtained [59]
|Vtd|
|Vts|

= 0.208+0.008
−0.006. (111)

The value of the element |Vts| can be found from the unitarity relation VcbV
∗
cs +

VtbV
∗
ts + VubV

∗
us = 0. It was obtained [33]

|Vts| = (40.6 ± 2.7) · 10−3. (112)

Finally, an information about the element |Vtb| can be inferred from the measure-

ment of the ratio
B(t → Wb)∑

q=d,s,b

B(t → Wq)
= |Vtb|2. From the Fermilab data [60, 61]

it was found the following 95% CL lower bound [33]:

|Vtb| > 0.78. (113)

5. WOLFENSTEIN PARAMETERS. UNITARITY TRIANGLE

From the values of the modulus of elements of the CKM matrix, which we
discussed in the previous section, it follows that quark mixing angles are small
and there exists a hierarchy of mixing between different families. In fact, in the
standard parametrization of the CKM matrix we have

Vud = c13c12, Vus = c13s12, Vcb = c13s23, Vub = s13 e−iδ. (114)
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From these relations we ˇnd

s12 =
|Vus|√

|Vud|2 + |Vus|2
, s23 =

|Vcb|√
|Vud|2 + |Vus|2

, s13 = |Vub|. (115)

From (81), (86), (97), (101), and (115) for the parameters sik we ˇnd

s12 ∼ 2 · 10−1, s23 ∼ 4 · 10−2, s13 ∼ 4 · 10−3. (116)

Let us introduce the parameter
λ = s12. (117)

We have

s23 � λ2, s13 � 1
2
λ3. (118)

Thus, there exists a hierarchy of angles of the mixing between different quark
families. The strength of the coupling between the families is determined by the
degree of the parameter λ.

Wolfenstein [62] proposed a parametrization of the mixing matrix which
takes into account this hierarchy. Instead of s12, s23, and s13 e−iδ he introduced
four real parameters λ, A, ρ and η by the following relations:

s12 = λ, s23 = Aλ2, s13 e−iδ = Aλ3(ρ − iη). (119)

Let us develop elements of the CKM matrix over the small parameter λ. Keeping
terms of the order of λ5 for the CKM mixing matrix V we have

V =

⎛
⎜⎜⎜⎝

1−1

2
λ2−1

8
λ4 λ Aλ3(ρ−iη)

−λ+
1

2
A2λ5(1−2(ρ+iη)) 1−1

2
λ2−1

8
λ4(1+4A2) Aλ2

Aλ3

(
1−
(
1−1

2
λ2

)
(ρ+iη)

)
−Aλ2+

1

2
Aλ4(1−2(ρ+iη)) 1−1

2
A2λ4

⎞
⎟⎟⎟⎠ . (120)

We will obtain now the so-called unitarity triangle relation. This relation follows
from the condition of the unitarity of the mixing matrix

V †V = 1. (121)

For the three families of the quarks from (121) we have∑
u1=u,c,t

V ∗
u1d1

Vu1d2 = δd1d2 . (122)

From (122) we obtain the following relations:∑
u1=u,c,t

|Vu1d|2 = 1,
∑

u1=u,c,t

|Vu1s|2 = 1,
∑

u1=u,c,t

|Vu1b|2 = 1 (123)
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and ∑
u1=u,c,t

Vu1dV
∗
u1s = 0,

∑
u1=u,c,t

Vu1sV
∗
qb = 0,

∑
u1=u,c,t

Vu1dV
∗
u1b = 0. (124)

Let us consider the relations (124). In the ˇrst relation, the ˇrst and the second
terms are of the order λ and the third one is of the order λ5. Thus, in this relation
the main contribution is given by the terms which connect only two families (the
ˇrst and the second). In the second relation (124), the ˇrst term is of the order
λ4 and the second and the third terms are of the order λ2. In this relation the
main contribution is also given by the terms which connect only two families (the
second and the third). The only relation in which all terms are of the same (λ3)
order is the third relation (124). It has the form

VudV ∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (125)

Let us now expand different terms of (125) over the powers of the small parameter
λ. We have [63]

VudV
∗
ub = c13c12s13 eiδ = Aλ3(ρ̄ + iη̄) + O(λ7), (126)

where

ρ̄ =
(

1 − 1
2
λ2

)
ρ, η̄ =

(
1 − 1

2
λ2

)
η. (127)

For the second term of the relation (125) we ˇnd

VcdV
∗
cb = (−s12c23 − c12s23s13 eiδ)c13s23 = −Aλ3 + O(λ7). (128)

Finally, for the third term of (125) we obtain

VtdV
∗
tb = (s23s12 − c23c12s13 eiδ) c13c23 =� Aλ3(1− (ρ̄ + iη̄)) + O(λ7). (129)

We see from the relations (126), (128), and (129) that up to small terms of the
order of λ7 all terms in (125) are proportional to Aλ3.

Let us rewrite the relation (125) in the form

VudV
∗
ub

(−VcdV ∗
cb)

+
VtdV

∗
tb

(−VcdV ∗
cb)

= 1. (130)

We have∗
VudV ∗

ub

(−VcdV ∗
cb)

= ρ̄ + iη̄ =
√

ρ̄2 + η̄2 eiγ (131)

∗It is obvious that the ratios of the products of the CKM matrix elements in (130) are invariant
under phase transformation (49).
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and
VtdV

∗
tb

(−VcdV ∗
cb)

= 1 − (ρ̄ + iη̄) =
√

(1 − ρ̄)2 + η̄2 e−iβ . (132)

Thus, the unitarity relation (130) takes the form

(ρ̄ + iη̄) + (1 − (ρ̄ + iη̄)) = 1. (133)

Fig. 1. The unitarity triangle. The
angles α ≡ φ2, β ≡ φ1, γ ≡ φ3 are
shown

This relation can be presented as a triangle
in the complex (ρ̄, η̄) plane (see Fig. 1). It is
called the unitarity triangle.

From (132) and (133) for the angles γ
and β we have∗

γ = arg
(
−VudV

∗
ub

VcdV ∗
cb

)
,

(134)

β = arg
(
−VcdV

∗
cb

VtdV ∗
tb

)
.

From (78) and (131) it follows that the
angle γ coincides with the CKM angle δ. For
the angle α we ˇnd

α = π − β − γ = arg
(
− VtdV

∗
tb

VudV ∗
ub

)
. (135)

The square of the unitarity triangle is equal to

S̃ =
1
2

1 · η̄.

From (131) we ˇnd

−VudVcbV
∗
ubV

∗
cd

|Vcd|2|Vcb|2
= ρ̄ + iη̄. (136)

From this relation we have

η̄ =
J

|Vcd|2|Vcb|2
, (137)

where J is the Jarskog invariant (63). Thus, the square of the unitarity triangle
is given by

S̃ =
1
2

J

|Vcd|2|Vcb|2
. (138)

∗Other notations for the angles of the unitarity triangle, which are often used in literature, are:
φ1 ≡ β; φ2 ≡ α; φ3 ≡ γ.
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For the square of the unitarity triangle, given by the relation (130), we have [31]

S =
1
2

J. (139)

The relations (124) are conditions of orthogonality of the columns of the matrix V .
Additional three relations can be obtained from the conditions of orthogonality of
the matrix V lines. We can easily see that the only relation in which all terms
are of the same λ3 order is the condition of the orthogonality of the ˇrst and the
third lines: ∑

d1=d,s,b

Vud1V
∗
td1

= 0. (140)

This relation after expansion of different terms over the powers of the parameter λ
also takes the form of relation (133).

6. EIGENSTATES AND EIGENVALUES OF THE EFFECTIVE
HAMILTONIAN OF THE M0 − M̄0 SYSTEM

We will obtain here eigenstates and eigenvalues of the effective 2 × 2 non-
hermitian Hamiltonian H of the M0 − M̄0 system (M0 = K0, B0

d,s, . . .) which
we derived in Appendix B. We have

HaH,L = μH,LaH,L. (141)

Here

μH,L = mH,L − i

2
ΓH,L (142)

and

aH,L =
(

aH,L(1)
aH,L(2)

)
. (143)

If the wave function at the initial time t = 0 is equal to aH,L, at t � 0 we have

aH,L(t) = e−imH,Lt− 1
2ΓH,LtaH,L. (144)

Thus, mH,L and ΓS,L are masses and total decay widths of M0
H,L bosons, particles

which are described by the functions aH,L. We will use the index H for the
heavier particle and the index L for the lighter particle. Thus, we have mH > mL.
For the vectors of the states of M0

H,L we have

|M0
H,L〉 =

∑
α=1,2

aH,L(α)|α〉, (145)
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where |1〉 ≡ |M0〉 and |2〉 ≡ |M̄0〉 are states of M0 and M̄0 particles (in the rest
frame system).

Assuming the CPT invariance of the Hamiltonian, we can present the effective
Hamiltonian of the M0 − M̄0 system in the form

H = H11 + Hnd, (146)

where

Hnd =
(

0 H12

H21 0

)
. (147)

From (146) and (147) we have

HndaH,L = κH,LaH,L. (148)

Here
κH,L = μH,L − H11. (149)

For the eigenvalues κS,L of the Hamiltonian Hnd we obviously have

κH,L = ∓
√

H12H21. (150)

Further from (148) and (150) we ˇnd that aH,L(2) and aH,L(1) are connected by
the relation

aH,L(2) = ∓
√

H21

H12
aH,L(1), (151)

where aH,L(1) is an arbitrary constant.
Equation (141) has the following solutions:

aH,L =
(

1
∓

√
H21/H12

)
aH,L(1) (152)

with
μH,L = H11 ∓

√
H12H21. (153)

Three physical complex parameters μH,L (masses and total decay width of M0
H,L)

and parameter
√

H21/H12, which characterize mixing of M0 and M̄0, correspond
to three complex matrix elements of the matrix H (H11, H12, and H21).

Let us choose

aH,L(1) =
√

H12√
|H12| + |H21|

= p. (154)

We have

aH,L =
(

p
∓q

)
, (155)
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where

q =
√

H21√
|H12| + |H21|

. (156)

With this choice we have

|p|2 + |q|2 = 1 and (a†
H,LaH,L) = 1. (157)

The states of M0
H,L are given by the following relations:

|M0
H〉 = p|M0〉 − q|M̄0〉, |M0

L〉 = p|M0〉 + q|M̄0〉. (158)

If CP is conserved, in this case H21 = H12 and q = p. For the eigenstates of
the Hamiltonian we have

|M0
2,1〉 =

1√
2
(|M0〉 ∓ |M̄0〉). (159)

Let us make the following remark. We have chosen phases of the states |M0〉
and |M̄0〉 in such a way that (see Appendix B)

CP |M0〉 = |M̄0〉. (160)

The states |M0〉 and |M̄0〉 are eigenstates of the Hamiltonians of the strong and
electromagnetic interactions. These interactions conserve quark 	avors. This
means that it is impossible to distinguish states |M0〉 and |M̄0〉 from the states

|M0〉′ = eiα |M0〉, |M̄0〉′ = e−iα |M̄0〉, (161)

where α is an arbitrary phase.
If for the states of M0 and M̄0 we will use |M0〉′ and |M̄0〉′, in this case

we have
p′ = e−iα p, q′ = eiα q. (162)

The states of M0
H,L are invariant under the change of the basis. In fact, we have

|M0
H,L〉′ = p′|M0〉′ ∓ q′|M̄0〉′ = p|M0〉 ∓ q|M̄0〉 = |M0

H,L〉. (163)

7. CP VIOLATION IN THE DECAYS OF K0
L MESON

The observation of the decay K0
L → π+π− marked the discovery of the CP

violation [6]. During more than 30 years the study of decays of neutral kaons
was the only source of the information about the CP violation. In this section
we will consider in some detail the effects of the CP violation in the decays of
K0

L mesons (see [64]).
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Branching ratios for main decay channels of K0
S,L mesons

K0
S-decay channels Branching ratio, % K0

L-decay channels Branching ratio, %

K0
S → π+π− 68.95 ± 0.14 K0

L → π+e−νe 38.8 ± 0.27
K0

S → π0π0 31.05 ± 0.14 KL → π+μ−νμ 27.19 ± 0.25
K0

S → π+π−π0 (3.2 ± 1.2)10−7 K0
L → 3π0 21.05 ± 0.23

Å Å K0
L → π+π−π0 12.59 ± 0.19

The branching ratios of main decay modes of K0
S,L mesons are presented in

the Table [32].
As is seen from the Table, K0

S meson decays mainly into two pions, and K0
L

meson decays mainly into three particles: three pions and pion, lepton, neutrino.
Because the phase-space factor in the case of the decay into two particles is much
larger than in the case of the decay into three particles, the time of life of KL is
much larger than the time of life of KS [32]:

τL =
1

ΓL
= (5.18±0.04) ·10−8 s, τS =

1
ΓS

= (0.8953±0.006) ·10−10 s. (164)

For the ratio of the widths of K0
S and K0

L we have

ΓS

ΓL
� 580. (165)

For the masses of K0
S and K0

L it was found the value [32]

mS,L = (497.648± 0.022) MeV. (166)

For the difference of the masses of K0
L and K0

S mesons the following value was
found [32]:

Δm = mL − mS = (0.5992± 0.0010) · 1010
� s−1 =

= (3.483± 0.006) · 10−12 MeV. (167)

Let us notice the following approximate empirical relation:

1
2

ΓS � Δm. (168)

We will consider the CP -forbidden decays

K0
L → π+ + π− and K0

L → π0 + π0. (169)
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For the states of KL,S mesons we have

|K0
L〉 = p |K0〉 − q |K̄0〉, |K0

S〉 = p |K0〉 + q |K̄0〉, (170)

where the parameters p and q are given by (154) and (156), respectively.
The |K0

L,S〉 states can be presented in another form. Let us introduce the
complex parameter ε̄ ∗

ε̄ =
1 − q/p

1 + q/p
=

p − q

p + q
. (171)

From (170) and (171) for the normalized |K0
L,S〉 states we ˇnd

|K0
L,S〉 =

1√
2 (1 + |ε̄|2)

[(1 + ε̄)|K0〉 ∓ (1 − ε̄)|K̄0〉]. (172)

If CP is conserved, in this case ε̄ = 0 and for the states of the long-lived and
short-lived kaons we have

|K0
2,1〉 =

1√
2
(|K0〉 ∓ |K̄0〉). (173)

The states |K0
2,1〉 are eigenstates of the operator of the CP conjugation:

CP |K0
2,1〉 = ∓|K0

2,1〉. (174)

The states |K0
L,S〉 can be presented in the form

|K0
L〉 =

1√
(1 + |ε̄|2)

(|K0
2 〉 + ε̄| K̄0

1〉),
(175)

|K0
S〉 =

1√
(1 + |ε̄|2)

(|K0
1 〉 + ε̄| K̄0

2 〉).

Let us introduce the measurable parameters

η+− =
〈π+π−|T |K0

L〉
〈π+π−|T |K0

S〉
, η00 =

〈π0π0|T |K0
L〉

〈ππ|T |K0
S〉

, (176)

which characterize the CP violation in the decays (169)∗∗. In (176), T matrix is
connected with the S matrix by the relation S = 1 + iT .

∗The parameter ε̄ characterizes CP violation in the K0
L,S states. Let us stress, however, that ε̄

depends on arbitrary phases of the |K0〉 and |K̄0〉 states.
∗∗In fact, the states |π+π−〉 and |π0π0〉 are eigenstates of the operator of the CP conjugation

with eigenvalues equal to 1. If CP is conserved, the state of the long-lived kaon is |K0
2〉, which

is eigenstate of CP with eigenvalue equal to −1. Thus, in the case of the CP conservation
η+− = η00 = 0.
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The complex parameters η+− and η00 can be presented in the form

η+− = |η+−| eiφ+− , η00 = |η00| eiφ00 . (177)

From the analysis of the experimental data it was found [32]

|η+−| = (2.288± 0.014) · 10−3, |η+−| = (2.276 ± 0.014) · 10−3,
(178)

φ+− = (43.52± 0.06)◦, φ+− = (43.50 ± 0.06)◦.

The spin of the kaon is equal to zero, Thus, in the K0
L,S decays two pions are

produced in the S state. Total isotopic spin I of two pions takes the values
0, 1, 2. However, from the BoseÄEinstein statistics it follows that the state with
I = 1 is forbidden. Hence, the states of two pions, produced in the decays of
KL,S are superpositions of states with the total isotopic spin equal to 0 and 2.
We have

|π+π−〉 =

√
2
3
|0〉 +

√
1
3
|2〉,

|π0π0〉 =

√
1
3
|0〉 −

√
2
3
|2〉,

(179)

where |I〉 is the state of the two pions with the angular momentum equal to zero
and the total isotopic spin equal to I .

The presentation of the states of two pions as a superposition of states with
deˇnite total isotopic spin will allow us to take into account the approximate
|ΔI| = 1/2 rule, which is valid for the nonleptonic decays of the strange particles.
For example, according to this rule the ratio of the total widths of the decays
KS → π+π− and KS → π0π0 must be equal to 2. We see from the Table that
this prediction is satisˇed with the accuracy of about 10%.

Let us consider now the parameters η+− and η00. From (176) and (179) we
have

η+− =
〈0|T |K0

L〉 + 1/
√

2 〈2|T |K0
L〉

〈0|T |K0
S〉 + 1/

√
2 〈2|T |K0

S〉
. (180)

The amplitude 〈0|T |K0
S〉 is CP -allowed and is allowed by the |ΔI| = 1/2) rule.

If we divide numerator and denominator of (180) by this ®large¯ amplitude in
the linear over small parameters approximation we ˇnd

η+− � ε + ε′, (181)

where

ε =
〈0|T |K0

L〉
〈0|T |K0

S〉
(182)
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and

ε′ =
1√
2

(
〈2|T |K0

L〉
〈0|T |K0

S〉
− ε

〈2|T |K0
S〉

〈0|T |KS〉

)
. (183)

Analogously, for η00 we obtain

η00 � ε − 2 ε′, (184)

Thus, we can characterize the CP violation in the decays (169) by the parameters
ε and ε′∗. From (183), we can expect that |ε′| � |ε|. As we will see later,
experimental data conˇrm this expectation.

All existing data on the investigation of effects of the CP violation in decays
of K0

L are described by the Standard Model with three families of quarks. It is
interesting, however, to mention other alternatives. Historically the hypothesis of
a superweak interaction [7] was important. It was suggested in [7] that effects
of the CP violation in the decays (169) can be explained by existence of a new
interaction which violates CP and changes the strangeness by two units.

In order to explain the idea of the superweak model, let us consider the
relation (171). Taking into account (154) and (156) we ˇnd

ε̄ =
H12 − H21

(
√

H12 +
√

H21)2
. (185)

Obviously we have

(
√

H12 +
√

H21)2 = ε̄2(
√

H12 +
√

H21)2 + 4
√

H12H21. (186)

From (153) and (186) we ˇnd

(
√

H12 +
√

H21)2 = −2(λL − λS)
1 − ε̄2

. (187)

Thus, we have
ε̄

1 − ε̄2
= − H12 − H21

2(λL − λS)
. (188)

Taking into account that |ε̄| ∼ 2 · 10−3 and ΓL/ΓS � 1, from (188) we ˇnd the
following relation:

ε̄ � − H12 −H21

2
(

Δm +
i

2
ΓS

) , (189)

where Δm = mL − mS .

∗Let us notice that parameters ε and ε′ do not depend on arbitrary phases of |K0〉 and |K̄0〉.
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It is shown in Appendix B that in the effective Hamiltonian H enters linear
in the interaction term (see (B.32)). Taking into account that the usual weak
interaction Hamiltonian changes the strangeness by one unit, we have

〈K0|HW |K̄0〉 = 〈K0|HSW|K̄0〉 �= 〈K̄0|HSW|K0〉, (190)

where HSW is a Hamiltonian which violates CP and changes the strangeness by
two units. It is evident from (189) that if such interaction exists, the parameter ε̄
is different from zero.

In order to estimate the effective constant GSW, which characterizes the in-
teraction HSW, we will use the relation (189). Taking into account that Δm �
1
2

ΓS we have

|ε̄| � GSW

G2
F m2

K

≈ 10−3, (191)

where GF � 10−5 1
m2

p

is the Fermi constant and mK is the mass of the kaon.

Thus, effects of the CP violation in the decays of KL can be explained if the
constant of |ΔS| = 2 interaction which violates CP is given by GSW ≈ 10−9 GF ,
i.e., is much smaller than the Fermi constant. This is the reason why this
interaction is called superweak.

Let us consider the parameters η+− and η00 in the case of the superweak
interaction. From (175) and (176) we have

η+− =
〈π+π−|T |K2〉 + ε̄〈π+π−|T |K1〉
〈π+π−|T |K1〉 + ε̄〈π+π−|T |K2〉

. (192)

In the superweak model 〈π+π−|T |K2〉 � 0. We have

η+− = ε̄. (193)

Analogously, for the decay KL → π0π0 we ˇnd

η00 = ε̄. (194)

Thus, if the superweak interaction is the origin of the effects of the CP violation,
observed in the decays KL → ππ, we would have

η+− = η00. (195)

From (181), (184), and (195) we conclude that in case of the superweak
interaction ε′ = 0.

Taking into account linear in ε′/ε terms, from (181) and (184) we have in
the general case

|η+−|2 � |ε|2
(

1 + 2 Re
ε′

ε

)
, |η00|2 � |ε|2

(
1 − 4 Re

ε′

ε

)
. (196)
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From this relations we ˇnd

Re
ε′

ε
=

1
6

(
1 − |η00|2

|η+−|2

)
. (197)

The ratio |η00|2/|η+−|2 was measured in spectacular NA48 [8] and KTeV [9]
experiments. It was found from the data of these experiments that

Re
ε′

ε
= (14.7±2.2)·10−4 (NA48), Re

ε′

ε
= (20.7±2.8)·10−4 (KTeV). (198)

Thus, it was proved that the parameter ε′ is different from zero and is much
smaller than the parameter ε. Therefore, it was proved that effects of the CP
violation, observed in the decays (169), cannot be explained by the superweak
interaction. It was shown that the measured value of the parameter Re ε′/ε can
be explained by the SM (see [26]).

We will consider now the expressions (182) and (183) for ε and ε′. Neglecting
quadratic in small parameters terms, for ε we obtain the following expression:

ε � ε̄ +
〈0|T |K2〉
〈0|T |K1〉

. (199)

For the parameter ε′ we ˇnd

ε′ =
1√
2

[
〈2|T |K2〉
〈0|T |K1〉

+ (ε̄ − ε)
〈2|T |K1〉
〈0|T |K1〉

]
=

=
1√
2

〈2|T |K1〉
〈0|T |K1〉

[
〈2|T |K2〉
〈2|T |K1〉

− 〈0|T |K2〉
〈0|T |K1〉

]
, (200)

where

〈I|T |K1,2〉 =
1√
2
(〈I|T |K0〉 ± 〈I|T |K̄0〉), I = 0, 2. (201)

Let us consider the matrix elements 〈I|T |K0〉 and 〈I|T |K̄0〉. From the unitarity
of the S matrix we have

S†T = T †. (202)

From this relation we ˇnd

〈I|S† T |K0〉 =
∑

n

〈I|S†|n〉〈n|T |K0〉 = 〈K0|T |I〉∗. (203)

In the sum over intermediate states |n〉, there enter |I〉, |πππ〉, |ππγ〉 and other
states. The main contribution gives the two-pion state |I〉: the state of three
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pions is forbidden by the conservation of G parity in the strong interaction∗,
contributions of other states are suppressed by phase space factor and by α. We
have

〈I|S†|I〉 = e−2iδI , (204)

where δI is the phase of the π − π scattering in the state with the total isotopic
spin equal to I , the angular momentum equal to zero and the energy in the
center-of-mass system equal to mK .

Further, from the CPT invariance it follows that

〈K0|T |I〉 = 〈I|T |K̄0〉. (205)

Thus, from the unitarity of the S matrix and the CPT invariance we ˇnd that the
matrix elements 〈I|T |K0〉 and 〈I|T |K̄0〉 are connected by the following relation:

e−2iδI 〈I|T |K0〉 = 〈I|T |K̄0〉∗. (206)

Let us introduce the complex amplitudes AI and ĀI in the following way:

〈I|T |K0〉 = eiδI AI , 〈I|T |K̄0〉 = eiδI ĀI . (207)

From the relation (206) we ˇnd that

ĀI = A∗
I . (208)

Thus, we have

〈I|T |K0〉 = eiδI AI , 〈I|T |K̄0〉 = eiδI A∗
I . (209)

In the case of the CP conservation we have that

〈I|T |K0〉 = 〈I|T |K̄0〉 (210)

and
AI = A∗

I . (211)

Now let us return back to relations (199) and (200). Taking into account (209)
we ˇnd

ε = ε̄ + i
ImA0

Re A0
(212)

and

ε′ =
1√
2

ei(δ2−δ0+π/2) Re A2

Re A0

[
Im A2

ReA2
− Im A0

ReA0

]
. (213)

∗The G operator is a product of the C operator and the operator of the rotation at the angle π
around the second axes in the isotopic space. G parity of the pion is equal to −1.
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From these relations we can conclude the following:
1.

φε′ = δ2 − δ0 +
π

2
, (214)

where φε′ = arg ε′ is the phase of the parameter ε′. From the analysis of the
(π − π)-scattering data it was obtained [65]

δ2 − δ0 +
π

2
= (42.3 ± 1.5)◦, (215)

2.
Re ε = Re ε̄. (216)

The parameter ε̄ depends on the choice of arbitrary phase of the |K0〉 and
|K̄0〉 states. We see from (216) that Re ε̄ is a rephrase invariant quantity.

For the phase of the parameter ε the following relation holds:

φε � arctan
2Δm

ΓS
, (217)

where φε = arg ε. This relation is based on the BellÄSteinberger unitarity relation
which we derive now. We have

HaL = λLaL, a†
SH† = λ∗

Sa†
S . (218)

If we multiply the ˇrst equation by a†
S from the left and the second one by aL

from the right and subtract from the ˇrst relation the second one, we ˇnd

(a†
SΓaL) = i(λL − λ∗

S)(a†
SaL). (219)

This relation can be rewritten in the form

〈KS |Γ|KL〉 = i(λL − λ∗
S)〈KS |KL〉. (220)

The relation (220) is the BellÄSteinberger unitarity relation. For the left-hand
side of this equation we have

〈KS |Γ|KL〉 = 2π
∑

i

〈KS |HW |i〉〈i|HW |KL〉δ(Ei − m). (221)

In the sum over intermediate states |i〉 the main contribution gives two-pion states.
Taking into account these states we have

〈KS |Γ|KL〉 � η+−Γ(KS → π+π−) + η00Γ(KS → π0π0). (222)

Now, according to the |ΔI| = 1/2 rule we have

Γ(KS → π+π−) � 2Γ(KS → π0π0). (223)
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From (181), (184), (222), and (223) we ˇnd

〈KS |Γ|KL〉 �
(

2
3
η+− +

1
3
η00

)
ΓS = εΓS, (224)

where ΓS is the total width of K0
S meson. Further, we ˇnd

〈KS |KL〉 =
2Re ε̄

1 + |ε̄|2 � 2Re ε̄ = 2Re ε. (225)

From (220), (224), and (225) we obtain the following relation:

ε ΓS = 2
(

iΔm +
1
2
ΓS

)
Re ε. (226)

If we take the real part of (226) we obtain identity. From the imaginary part of
(226) we ˇnd the following relation:

Im ε

Re ε
= tan φε =

2Δm

ΓS
. (227)

Thus, the phase of the parameter ε is given by the relation (217).
The mass difference Δm and the width ΓS are connected by the empirical

relation Δm � 1
2
ΓS . Thus, φε � π/4. The experimental data are in agreement

with this prediction of the theory. We have [32]

φε = (43.5 ± 0.7)◦. (228)

From (215) and (228) it follows that phases of the parameters ε and ε′ are
approximately equal

φε � φε′ . (229)

Up to now we considered effects of the CP violation in the two-pion decays
of K0

L meson. Effects of the CP violation were observed also in the semileptonic
decays

K0
L → π−l+νl, K0

L → π+l−ν̄l. (230)

Let us determine the CP asymmetry

AL =
Γ(K0

L → π−l+νl) − Γ(K0
L → π+l−ν̄l)

Γ(K0
L → π−l+νl) + Γ(K0

L → π+l−ν̄l)
, (231)

where Γ(KL → π−l+νl) and Γ(K0
L → π+l−ν̄l) are the total widths of the decays

K0
L → π−l+νl and KL → π+l−ν̄l. If the CP is conserved, the asymmetry AL is

equal to zero. In fact, in this case initial state is the eigenstate of the operator of the
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CP conjugation and ˇnal states are the CP conjugated states. The probabilities
of the transitions to such states must be equal in the case of the CP conservation.

Let us consider the asymmetry AL. The semileptonic decay of the K0 me-
son, which is the bound state of s̄ and d quarks, is due to the transition
s̄ → ū + l+ + νl. Analogously, the decay of the K̄0 meson, which is the
bound state of the s and d̄ quarks, is due to the transition s → u + l− + ν̄l.
Thus, the decay K0 → π−l+νl (ΔQ = −1, ΔS = −1) is allowed and
decay K̄0 → π−l+νl (ΔQ = −1, ΔS = 1) is forbidden, and the decay
K̄0 → π+l−ν̄l (ΔQ = 1, ΔS = 1) is allowed and K0 → π+l−ν̄l (ΔQ = 1,
ΔS = −1) is forbidden. This corresponds to the ΔQ = ΔS rule. Further, from
the CPT invariance it follows that

〈π+l−ν̄l|T |K̄0〉 = 〈K0|T |π−l+νl〉. (232)

If we took into account that in the Born approximation T = T †, we have

〈π+l−ν̄l|T |K̄0〉 � 〈π−l+νl|T |K0〉∗. (233)

From (172) and (233) we ˇnd

AL =
|1 + ε̄|2 − |1 − ε̄|2
|1 + ε̄|2 + |1 − ε̄|2 =

2 Re ε̄

1 + |ε̄|2 � 2Re ε̄. (234)

Now, taking into account (216), we ˇnally have

AL � 2Re ε = 2|ε| cosφε. (235)

From experimental data for the asymmetry AL it was found the value [32]

AL = (3.32 ± 0.06) · 10−3. (236)

From (215) and (236) for the parameter |ε| was found the value

|ε| = (2.232 ± 0.007) · 10−3. (237)

In order to connect |ε| with parameters, characterizing CKM mixing matrix, it
is necessary to calculate quark box diagrams which determine the amplitude of
K0 → K̄0 transition. Taking into account the QCD corrections for the parameter
|ε| it was found the following expression:

|ε| = A2aη̄[A2b(1 − ρ̄) + c], (238)

where a, b, and c are given in [26]. Equation (238) gives hyperbola in ρ̄, η̄ plane.
It is used in the standard unitarity triangle ˇt which we will discuss later.
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8. CP VIOLATION AND MIXING IN B0 − B̄0 SYSTEM

We will consider in this section the effects of the CP violation in the decay
of the mixed B0 − B̄0 system. These effects were investigated in detail in the
BaBar and the Belle experiments at the asymmetric B factories, and in the D0
and the CDF experiments at the Fermilab. At the B factories B0

d and B̄0
d mesons

are resonansly produced in the decays of Υ(4S).
The states of B0

H and B0
L mesons, particles with deˇnite masses and widths,

are given by the following relations:

|B0
H,L〉 = p|B0〉 ∓ q|B̄0〉, (239)

where p and q are connected with nondiagonal elements of the effective Hamil-
tonian by the relations (154) and (155). Let us stress that we have chosen arbitrary
phases of the states |B0〉 and |B̄0〉 in such a way that |B̄0〉 = CP |B0〉.

The states |B0
H,L〉 are eigenstates of the effective Hamiltonian H with eigen-

values

μH,L = mH,L − i
1
2

ΓH,L. (240)

Here mH,L and ΓH,L are masses and total decay widths of B0
H,L mesons. Because

of the large difference in the lifetimes of the short-lived and long-lived kaons it
is possible to produce beams of K0

L mesons. In the case of the B0 mesons the
situation is different. The lifetimes of B0

H and B0
L are quite close. Only mixtures

of B0
H and B0

L can be studied in experiments.
Let us obtain ˇrst the mixed states which are the result of the evolution of

the initial (at t = 0) |B0〉 and |B̄0〉 states. From (239) we have

|B0〉 =
1
2p

(|B0
H〉 + |B0

L〉), |B̄0〉 =
1
2q

(−|B0
H〉 + |B0

L〉). (241)

From (241) we ˇnd

|B0(t)〉 =
1
2p

(e−iμH t |B0
H〉 + e−iμLt |B0

L〉) = g+(t)|B0〉 − q

p
g−(t)|B̄0〉 (242)

and

|B̄0(t)〉 =
1
2q

(−e−iμHt |B0
H〉 + e−iμLt |B0

L〉) =

= −p

q
g−(t)|B0〉 + g+(t)|B̄0〉. (243)

Here

g±(t) =
1
2
(e−iμH t ± e−iμLt). (244)
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Let us present μH,L in the form

μH = μ +
1
2
Δμ, μL = μ − 1

2
Δμ. (245)

Here

μ =
μH + μL

2
= m − i

1
2
Γ, Δμ = μH − μL = Δm − i

1
2
ΔΓ, (246)

where

m =
mH + mL

2
, Γ =

ΓH + ΓL

2
, Δm = mH − mL, ΔΓ = ΓH − ΓL. (247)

Notice that by the deˇnition Δm > 0. From (244) and (245) for the functions
g±(t) we obtain the following expressions:

g±(t) =
1
2

e−iμt(e−i 1
2Δμt ± ei 1

2Δμt). (248)

Let us consider the decays of B0 and B̄0 into a state |f〉 which is the eigenstate
of the operator of the CP conjugation

CP |f〉 = ±|f〉. (249)

From (242) for the transition amplitude we ˇnd

〈f |T |B0(t)〉 = 〈f |T |B0〉(g+(t) − λfg−(t)), (250)

where

λf =
q

p

〈f |T |B̄0〉
〈f |T |B0〉 . (251)

For the transition amplitude 〈f |T |B̄0(t)〉 we have

〈f |T |B̄0(t)〉 =
p

q
〈f |T |B0〉(−g−(t) + λfg+(t)). (252)

From (250) we ˇnd that the transition probability is given by the expression

Γ(B0(t) → f) = Γ(B0 → f)(|g+(t)|2 + |λf |2|g−(t)|2−
− 2 Reλfg−(t)g∗+(t)). (253)

Further, from (248) we have

|g±(t)|2 =
1
2

e−Γt

(
cosh

1
2
ΔΓt ± cos Δmt

)
(254)
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and

g−(t)g∗+(t) = −1
2

e−Γt

(
sinh

1
2
ΔΓt + i sin Δmt

)
. (255)

From (253), (254), and (255) for the transition probability Γ(B0(t) → f) we
obtain the following expression:

Γ(B0(t) → f) =
1
2

e−Γt Γ(B0 → f)(1 + |λf |2)×

×
(

cosh
1
2
ΔΓt + Cf cos Δmt + Df sinh

1
2
ΔΓt − Sf sin Δmt

)
, (256)

where

Cf =
1 − |λf |2

(1 + |λf |2)
, Df =

2 Reλf

(1 + |λf |2)
, Sf =

2 Im λf

(1 + |λf |2)
. (257)

It is obvious from (257) that parameters Cf , Df , and Sf satisfy the relation

C2
f + D2

f + S2
f = 1. (258)

For the transition probability Γ(B̄0(t) → f) from (252) we ˇnd

Γ(B̄0(t) → f) =
∣∣∣∣pq

∣∣∣∣
2

Γ(B0 → f)(|g−(t)|2 + |λf |2|g+(t)|2−

− 2 Reλfg+(t)g∗−(t)). (259)

From (254), (255), and (259) for the probability Γ(B̄0(t) → f) we obtain
the following expression:

Γ(B̄0(t) → f) =
1
2

e−Γt

∣∣∣∣pq
∣∣∣∣
2

Γ(B0 → f)(1 + |λf |2)×

×
(

cosh
1
2
ΔΓt − Cf cos Δmt + Df sinh

1
2
ΔΓt + Sf sin Δmt

)
. (260)

If CP is conserved 〈f |T |B0〉 = ±〈f |T |B̄0〉, p = q and λf = ±1. In this case
we have: Γ(B0(t) → f) = Γ(B̄0(t) → f) = e−ΓH t(e−ΓLt) Γ(B0 → f).

The quantity λf , which determines the time dependence of the probabilities
Γ(B0(t) → f) and Γ(B̄0(t) → f), does not depend on arbitrary phases of the
states of B0, B̄0, and f . In fact, let us consider the states

|B0〉′ = eiα|B0〉, |B̄0〉′ = e−iα|B̄0〉, |f〉′ = eiβ |f〉, (261)

where α and β are arbitrary constants. From (154) and (156) we have

q′ = eiαq, p′ = e−iαp. (262)
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From (251), (261), and (262) we ˇnd

λ′
f =

q′

p′

′〈f |T |B̄0〉′
′〈f |T |B0〉′ = λf . (263)

Let us consider now the matrix element Γ12. From (B.35) we have

Γ12 = 2π
∑

i

〈B0|HW |i〉〈i|HW |B̄0〉δ(E − mB). (264)

From this expression follows that the contribution to Γ12 is given by the in-
termediate states |i〉 in which both B0 and B̄0 mesons can decay. In the Standard
Model transitions to such states are strongly suppressed (see, for example, [26]).
Thus, in the SM we have

|Γ12| � |M12|. (265)

From (153) we ˇnd

Δμ = Δm − i
1
2
ΔΓ = 2|M12|

√(
1 − i

2
Γ12

M12

) (
1 − i

2
Γ∗

12

M∗
12

)
. (266)

Taking into account (265), from this expression we obtain

Δm − i
1
2
ΔΓ = 2 |M12|

(
1 − i

2
Re

Γ12

M12

)
+ O

(∣∣∣∣ Γ12

M12

∣∣∣∣
2
)

. (267)

Thus, we have

Δm � 2|M12|, ΔΓ � 2 Re
Γ12

M12
|M12|. (268)

Let us consider now the mixing parameter q/p. We have

q

p
=

√
H21

H12
= −2 H21

Δμ
. (269)

Neglecting terms of the order O(|Γ12/M12|2), from (267) and (269) we ˇnd

q

p
� −

M∗
12

(
1 − i

2
Γ∗

12

M∗
12

)

|M12|
(

1 − i

2
Re

Γ12

M12

) =� − M∗
12

|M12|

(
1 − 1

2
Im

Γ12

M12

)
. (270)

Let us determine the CP asymmetry in the case of the decays of B0 and B̄0 into
the state f which is the eigenstate of the operator of the CP conjugation

ACP
f (t) =

Γ(B̄0(t) → f) − Γ(B0(t) → f)
Γ(B̄0(t) → f) + Γ(B0(t) → f)

. (271)
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In the SM in the case of the Bd mesons

ΔΓd

Γd
� 1. (272)

For example, in [66] it was found

ΔΓd

Γd
= (40.9+8.9

−9.9) · 10−4,
ΔΓs

Γs
= 0.127± 0.024. (273)

We will consider B0
d − B̄0

d system. We can neglect ΔΓd in (256) and (260). We
can also neglect Im Γ12/M12 in (270). Thus, we have |q/p| � 1 and from (256)
and (260) for the asymmetry we ˇnd the expression

ACP
f (t) = −Cf cosΔmt + Sf sin Δmt. (274)

In conclusion we will consider the following decays:

B0
d(B̄0

d) → J/Ψ + K0
S,L. (275)

These decay modes are called golden by the reasons which will be clear later.
Final J/Ψ and K0

S,L particles are in the state with l = 1. Neglecting in the

matrix elements of the decay small terms of the order of ∼ 10−3 we can put
|KS〉 � |K1〉 and |KL〉 � |K2〉. Thus, we ˇnd

CP |J/ΨK0
S,L〉 = ηS,L|J/ΨK0

S,L〉, (276)

where ηS,L = ∓1.
Matrix elements of the processes B̄0

d(B0
d) → J/Ψ + K0

S,L are determined by
decays of the b quark, which are governed by the tree and penguin electroweak
diagrams. If we take into account QCD corrections, the matrix elements of the
process B̄0

d → J/Ψ + K0
S,L are given by the relation (see reviews [25,26])

〈J/Ψ K0
S,L|T |B̄0

d〉 =
GF√

2

∑
q=u,c

VqbV
∗
qs

⎛
⎝ ∑

k=1,2

Ck(μ)〈J/Ψ K0
S,L|O

qs
k |B̄0

d〉+

+
10∑

k=3

Ck (μ)〈J/Ψ K0
S,L|Os

k|B̄0
d〉

)
. (277)

Here Ck(μ) are real Wilson coefˇcients; Oqs
k are 4-quark currentÄcurrent oper-

ators and Os
k are 4-quark penguin operators (for the deˇnitions see, for exam-

ple, [25]).
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For the matrix element of the process B0
d → J/Ψ + K0

S,L we have

〈J/Ψ K0
S,L|T |B0

d〉 =
GF√

2

∑
q=u,c

V ∗
qbVqs

⎛
⎝ ∑

k=1,2

Ck(μ)〈J/Ψ K0
S,L|(O

qs
k )†|B0

d〉+

+
10∑

k=3

Ck(μ)〈J/Ψ K0
S,L|(Os

k)†|B0
d〉

)
. (278)

Further, we have

(Oqs
k )† = (CP )−1 Oqs

k CP, (Os
k)† = (CP )−1 Os

k CP. (279)

From (276), (278), and (279) we ˇnd

〈J/ΨK0
S,L|T |B0

d〉 = ηS,L
GF√

2

∑
q=u,c

V ∗
qbVqs×

×

⎛
⎝ ∑

k=1,2

Ck(μ)〈J/Ψ K0
S,L|O

qs
k |B̄0

d〉 +
10∑

k=3

Ck(μ)〈J/Ψ K0
S,L|Os

k|B̄0
d〉

⎞
⎠ . (280)

Let us compare now the matrix elements 〈J/Ψ K0
S,L|T |B̄0

d〉 and 〈J/Ψ K0
S,L|T |B0

d〉.
The ratio of these matrix elements which enter the expression for the parameter
λJ/ΨK0

S,L
(see (251)) depends on the CKM matrix elements and on the hadronic

matrix elements. However, |VubV
∗
us| � 10−2 |VcbV

∗
cs|. If we neglect in (277) and

(280) the contribution of the terms proportional to |VubV
∗
us| and take into account

that the product V ∗
cbVcs is real, we come to the following result:

〈J/ΨK0
S,L|T |B̄0

d〉
〈J/ΨK0

S,L|T |B0
d〉

� ηS,L. (281)

For the parameter λJ/ΨK0
S,L

we ˇnd

λJ/ΨK0
S,L

� ηS,L
q

p
. (282)

Thus, in the case of the decays (275) the parameter λJ/ΨK0
S,L

(practically) is

independent of hadronic uncertainties of the decay matrix elements.
The mixing parameter q/p is given by the relation q/p � −M∗

12/|M12|
(see (187)). Main contribution to the box diagrams which determine matrix
element M12 gives the virtual t quark. We have

q

p
� −earg (V ∗

tbVtd)2 . (283)
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From (133), (282), and (283) we ˇnd

λJ/ΨK0
S,L

� −ηS,L e2iβ . (284)

Thus, we have

CJ/ΨK0
S,L

� 0, SJ/ΨK0
S,L

� −ηS,L sin 2β. (285)

From (274) and (285) for the asymmetry ACP
J/ΨK0

S
(t) we ˇnd the following

expression:
ACP

J/ΨK0
S
(t) = sin 2β sin Δmt. (286)

Asymmetry ACP
J/ΨK0

L
(t) differs by sign from ACP

J/ΨK0
S
(t). We have

ACP
J/ΨK0

L
(t) = − sin 2β sin Δmt. (287)

We came to an important conclusion: the measurement of t dependence of the
CP asymmetries in the decays B̄0

d(B0
d) → J/Ψ K0

S,L allows one to determine
the angle β in a model-independent way [67].

The asymmetries A
J/ΨK0

L,S

CP (t) were measured by the BaBar collaboration in
experiments at the asymmetric B factory at SLAC and by the Belle collaboration
in experiments at the asymmetric B factory at KEK. In these experiments the
ˇrst evidence of the CP violation in B0

d(B̄0
d) decays was found and the value

of the parameter sin 2β was determined [68, 69]. Recently the results of the
measurement of the parameter sin 2β in the experiments which were performed
during 1999Ä2006 were published [70,71].

At the asymmetric B factories, B0
d mesons are produced in the decay Υ(4S) →

B0
d + B̄0

d . Flavor of a particle is determined by the tagging another particle. The
proper time t in (274) and other equations are given by the difference between
the proper time of reconstructed and tagged B0 mesons: t = trec − ttag. Be-
cause the B0

d and B̄0
d mesons are practically at rest in Υ(4S) rest frame we have

trec − ttag =
zrec − ztag

βγc
, where zrec and ztag are positions of corresponding

decay vertices and βγ is the Lorentz boost of Υ(4S).
In the BaBar experiment (347.5 ± 3.8) · 106Υ(4S) → B0

d + B̄0
d decays were

detected. For the analysis there were used the decays determined by the transition
b → cc̄s. The decays into the following eigenstates of the CP operator were
analyzed: J/ΨK0

S, J/ΨK0
L, Ψ(2S)K0

S, χc1K
0
S, ηcK

0
S and J/ΨK∗0

S .
From the ˇt of the experimental data the following result was obtained [70]∗:

sin 2β = 0.710± 0.034 ± 0.019, C = 0.070 ± 0.026 ± 0.018. (288)

∗The ˇrst error is statistical and the second one is systematical.



1288 BILENKY S.M.

In the Belle experiment 535 ·106 Υ(4S) → B0
d + B̄0

d decays were detected. From
analysis of the decays into J/ΨK0

S and J/ΨK0
L states it was found [71]:

sin 2β = 0.642 ± 0.031± 0.017, C = −0.018± 0.021 ± 0.014. (289)

Thus, the parameter sin 2β is known today with accuracy about 5%. This model-
independent result is very important for the unitarity triangle ˇt of the experimen-
tal data which we will discuss in the next section.

9. UNITARITY TRIANGLE TEST OF THE STANDARD MODEL

Several groups [72Ä75] analyze experimental data with the aim to perform
the unitarity triangle test of the Standard Model and to search for effects of
beyond the SM physics. Different groups use different statistical methods of the
analysis of experimental data. We will present here some results of the UTˇt
collaboration [72, 73] which uses the Bayesian method. Other groups obtain
similar results.

In the standard unitarity triangle ˇt, the results of the measurement of the
following quantities are used:∣∣∣∣Vub

Vcb

∣∣∣∣ , Δmd,
Δmd

Δms
, ε and sin 2β. (290)

From (120) we have∣∣∣∣Vub

Vcb

∣∣∣∣ = λ
√

ρ2 + η2 =
λ

1 − 1/2λ2

√
ρ̄2 + η̄2, (291)

where ρ̄ and η̄ are determined by Eq. (126). Mass differences Δmd and Δms are
given by (105). For the ratio Δmd/Δms we have

Δmd

Δms
= λ2[(1 − ρ̄)2 + η̄2]

mBd

mBs

f2
Bd

B̂Bd

f2
Bs

B̂Bs

. (292)

The expression for the parameter ε is given by (238).
Let us obtain sin 2β as a function of ρ̄ and η̄. From Fig. 1 we ˇnd that

sin β =
η̄√

(1 − ρ̄)2 + η̄2
, cosβ =

(1 − ρ̄)√
(1 − ρ̄)2 + η̄2

. (293)

From these relations we have

sin 2β =
2η̄ (1 − ρ̄)

(1 − ρ̄)2 + η̄2
. (294)
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Fig. 2. 68 and 95% total probability regions of the allowed values of the parameters ρ̄ and
η̄. The values of the quantities |Vub|/|Vcb|, Δmd, Δms, ε, and sin 2β were used in the
ˇt [72]

From the ˇt of the experimental data the unique region in the plane of the
parameters ρ̄, η̄ was found (see Fig. 2).

For the parameters ρ̄ and η̄ the following values were obtained:

ρ̄ = 0.196 ± 0.045, η̄ = 0.347 ± 0.025. (295)

These values determine the vertex B of the triangle in Fig. 1.
The values of the parameters (290) overconstrain the unitarity triangle. For

example, position of the vertex B can be obtained if only the parameters |Vub/Vcb|,
Δmd, and Δms, which determine lengths of the sides of the triangle, are used
in the ˇt. From the result of such a ˇt the value of the parameter sin 2β can be
predicted. In [72] it was found

sin 2β = 0.734± 0.043. (296)

We can compare (296) with the measured values of the parameter sin 2β, given
by (288) and (289). This comparison illustrates the evidence in favor of the
correctness of the Standard Model.

Recently at the Tevatron in the Fermilab the mass difference Δms was
measured by D0 [61] and CDF [59] collaborations. In the CDF experiment it
was found

Δms = (17.77 ± 0.10 ± 0.07) ps−1. (297)

The Belle collaboration measured the branching ratio for the leptonic decay
B → τ + ντ :

BR(Bd → τ + ντ ) = (1.060.34
−0.28 ± 0.18) · 10−4. (298)

From this measurement the value of the constant fBd
can be determined.
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The BaBar and Belle collaborations by the investigation of the decays Bd →
ππ, Bd → ρρ, Bd → πππ, and Bd → D∗K∗ obtained the information about the
values of the angles α and γ (see [76]).

In the new analysis of the UTˇt collaboration [73] all these data were used. If
in the analysis only the values of the angles α, β, and γ are used, for parameters
ρ̄ and η̄ the following values were found:

η̄ = 0.204± 0.055, η̄ = 0.317± 0.025. (299)

If the quantities |Vub/Vcb|, Δmd, Δms, ε and the results of the lattice calculations
are used, in this case one obtained

η̄ = 0.197± 0.035, η̄ = 0.380± 0.025. (300)

From the ˇt of all the data it was found

η̄ = 0.197± 0.031, η̄ = 0.351± 0.020. (301)

The ˇt of all the data is presented in Fig. 3.

Fig. 3. Allowed values of the parameters ρ̄ and η̄ (68 and 95% total probability regions
are shown [73]). The values of the quantities |Vub|/|Vcb|, Δmd, Δms, ε, β, γ, and α
were used in the ˇt
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From this analysis (and analysis performed by other groups) we can conclude
that existing data are in agreement with the Standard Model. However, it is nec-
essary to stress that accuracy of the experimental data is limited and complicated
QCD calculations are used in the analysis. There is still a room for beyond the
SM physics (see, for example, [25]). In order to reveal it more precise data and
progress in theoretical calculations are mandatory.

CONCLUSION

The GlashowÄWeinbergÄSalam uniˇed theory of weak and electromagnetic
interactions is an outstanding achievement of the XX century physics. It was
created as a result of a long period of the development of the phenomenological
theory during which violation of P , C [1] and later CP [6] were discovered
and universal V − A current× current theory of the weak interaction was pro-
posed [77,78].

The SM predicted a new class of the weak interactions (neutral currents),
vector W± and Z0 bosons and their masses. After τ lepton was discovered, the
SM predicted that other members of the third family of quarks and leptons (b and
t quarks and the third type of neutrino ντ ) must exist. All predictions of the SM
were perfectly conˇrmed by experiment.

Only one prediction of the SM Å existence of the scalar neutral Higgs
boson Å is still waiting for its conˇrmation. The search for the Higgs boson will
be one of the primary goals of the future LHC collider at CERN.

With the experiments at the LEP and SLD in the nineties next step in the
testing of the SM started. The precision of these data required calculations of
radiative corrections. At present numerous data of LEP, SLD, BaBar, Belle, CDF,
D0 and other experiments are in good agreement with the prediction of the SM.
The ˇt of all electroweak data allows one to predict the upper bound of the mass
of the Higgs boson (see, for example, [32]): mH � 235 GeV at 99% CL.

In 1999, with the beginning of BaBar and Belle experiments at asymmetrical
B factories at SLAC and KEK, a new stage in the testing of the SM started. In
the framework of the SM, violation of the CP invariance is due to one physical
phase in the unitary 3×3 CKM mixing matrix. This phase enters into the unitarity
triangle relation which is a consequence of the orthogonality of different columns
(or lines) of the mixing matrix. The numerous tests of this relation became
possible with new B-factory data. Existing data are in good agreement with the
Standard Model. This agreement conˇrms:

• The basic assumption of the SM that two sets of quark ˇelds Å ˇelds q′L
which possess deˇnite transformation property and ˇelds of quarks with deˇnite
masses qL Å are connected by unitary transformation.

• The assumption that only three quark families exist in nature.
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It is necessary, however, to stress that the unitarity triangle test is based
not only on experimental data but also on nonperturbative QCD calculations of
relevant matrix elements. A room for a new physics is still open. Improvement
of the accuracy of data and improvement of the accuracy of the lattice and other
calculations is a key problem for the future progress.

We have considered here elementary particle aspects of the problem of the
CP violation. CP violation is one of the three famous Sakharov conditions [79]
of baryon asymmetry of the Universe. It is plausible, however, that the observed
in the SM violation of CP is too small to explain the baryon asymmetry η =
nB − nB̄/nγ = (6.14±0.25) ·10−10 (see [80Ä82]). Thus, existence of the baryon
asymmetry of the Universe presumably requires additional to the SM mechanism
of the CP violation.

It is a pleasure for me to acknowledge the ILIAS programme for the support
and theory department of the TRIUMF for the hospitality.

Appendix A

COMPARISON OF M0 � M̄0 OSCILLATIONS
WITH NEUTRINO OSCILLATIONS

It is of interest to compare M0 � M̄0 oscillations with neutrino oscillations
recently discovered in the Super Kamiokande [83], SNO [84] , KamLAND [85]
and other neutrino oscillation experiments [86Ä88,90,91].

Particles with deˇnite 	avor M0 and M̄0 (M0 = K0, B0
d,s, . . .) are produced

in strong interaction processes. States of these particles are eigenstates of the
Hamiltonian of the strong and electromagnetic interactions which conserve the
quark 	avor. In processes of production of M0 and M̄0 the effects of the weak
interaction, in which quark 	avor is violated, are negligibly small and can be
neglected. After M0 and M̄0 are produced, weak interaction plays the major
role. Because of the weak interaction, M0 and M̄0 decay and eigenstates of
the total Hamiltonian |M0

H〉 and |M̄0
L〉 have different masses and widths. Thus,

M0 � M̄0 oscillations are due to the existence of strong interaction in which
quark 	avor is conserved and weak interaction in which quark 	avor is changed.

Neutrinos have only weak interaction. However, neutrino masses are very
small. In neutrino production and neutrino detection processes, neutrino masses
can be safely neglected. This means that in such processes lepton 	avor numbers
Le, Lμ, and Lτ are conserved: together with lepton l+ 	avor neutrino νl is
produced , 	avor neutrino νl in a charge current process produces l−, etc. After
	avor neutrino is produced, small neutrino masses (and neutrino mixing) play the
key role. Because of neutrino masses, in the neutrino propagation different mass
components of the mixed 	avor neutrino state acquire different phases. This is a
physical reason for the neutrino oscillations νl � νl′ (see, for example, [92,93]).
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In the framework of the Standard Model, CP violation is connected with
the physical phase in the mixing matrix. As we have seen, in the case of two
families there are no physical phases in the mixing matrix. The CP invariance
can be violated if (at least) three families of the quarks and leptons exist.

In the case of neutral bosons oscillations take place only between two particles
M0 and M̄0. In order to reveal CP violation in the decays of these particles one
must observe effects of all three families of quarks. Because observable particles
are hadrons and not quarks, Jarlskog invariant J does not enter in the quantities
which characterize the CP violation.

Neutrinos are stable particles. In order to observe effects of the CP violation
in neutrino oscillations all three neutrinos must be involved in the transition
probability. Only elements of the neutrino mixing matrix and the neutrino mass-
squared differences enter into the transition probabilities. It is natural to expect
that effects of the CP violation in the neutrino oscillations are determined by the
Jarlskog invariant. We will demonstrate this below.

The Lagrangian of neutrino interaction has the form

LCC(x) = − g

2
√

2
jCC
α (x)Wα(x) + h.c.,

LNC(x) = − g

2 cos θW
jNC
α (x)Zα(x),

(A.1)

where the charged current jCC
α (x) and the neutral current jNC

α (x) are given by
the expressions

jCC
α (x) = 2

∑
l=e,μ,τ

ν̄lL(x)γαlL(x), jNC
α (x) =

∑
l=e,μ,τ

ν̄lL(x)γανlL(x). (A.2)

Here

νlL(x) =
3∑

k=1

Uli νiL(x) (A.3)

is the ®mixed ˇeld¯. In (A.3), νi(x) is the ˇeld of neutrino with mass mi, and U
is the unitary 3 × 3 PMNS mixing matrix [94, 95]. For neutrinos, particles with
electric charges equal to zero, there are two possibilities (see [96,97]):

1. If the total lepton number L = Le + Lμ + Lτ is conserved, neutrinos νi

are Dirac particles.
2. If there are no conserved lepton numbers, neutrinos νi are Majorana

particles.
The probability of the transition νl → νl′ and νl → νl′ (l, l′ = e, μ, τ ) during

the time t in the three-neutrino case, we are considering, is given by the following
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expressions (see, for example, [97]):

P (νl → νl′) =

∣∣∣∣∣
3∑

i=1

Ul′i e−iEit U∗
li

∣∣∣∣∣
2

(A.4)

and

P (ν̄l → ν̄l′) =

∣∣∣∣∣
3∑

i=1

U∗
l′i e−iEit Uli

∣∣∣∣∣
2

. (A.5)

Here Ei � p +m2
i /2 p is the energy of neutrino with mass mi and momentum p.

If CP is conserved in the case of the Dirac neutrinos, arbitrary phases of the
ˇelds of the leptons and neutrinos can be chosen in such a way that

U∗
li = Uli. (A.6)

If νi are Majorana particles, from the condition of the CP invariance we have
(see [98])

U∗
li = Uliηi, (A.7)

where ηi = ±i is the CP parity of the Majorana neutrino with the mass mi.
From (A.4), (A.5), (A.6), and (A.7) it follows that in the case of the CP

invariance for the Dirac as well as for the Majorana neutrinos we have

P (νl → νl′) = P (ν̄l → ν̄l′). (A.8)

If we compare expressions (A.4) and (A.5), we come to the conclusion that
transition probabilities satisfy the following relation:

P (νl → νl′) = P (ν̄l′ → ν̄l). (A.9)

This relation is the consequence of the CPT invariance inherent to any local
quantum ˇeld theory. It follows from (A.9) that the equality

P (νl → νl) = P (ν̄l → ν̄l) (A.10)

is a consequence of the CPT invariance. Thus, if the inequality

P (νl → νl′) �= P (ν̄l′ → ν̄l), l′ �= l (A.11)

takes place, it would be a proof of the CP violation in the lepton sector.
Let us consider now expression (A.4) for the transition probability

P (νl → νl′). We have

P (νl → νl′) =
∑
i,k

Ul′i U∗
l′k U∗

li Ulk e−i(Ei−Ek)t. (A.12)
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Here

(Ei − Ek) t � Δm2
ki

2E
L, (A.13)

where L is the distance between the neutrino production and the neutrino detection
points and Δm2

ki = m2
i −m2

k. From (A.12) for the transition probability we ˇnd
the following expression:

P (νl → νl′) =
∑

i

|Ul′i|2 |Uli|2+

+ 2 Re
∑
i>k

Ul′i U∗
l′k U∗

li Ulk exp
(
−i

Δm2
ki

2E
L

)
. (A.14)

Further, from the condition of the unitarity of the mixing matrix U∑
i

Ul′iU
∗
li = δl′l (A.15)

we ˇnd ∑
i

|Ul′i|2 |Uli|2 = δl′l − 2 Re
∑
i>k

Ul′i U∗
l′k U∗

li Ulk. (A.16)

From (A.14) and (A.16) for the transition probability we obtain the following
expression:

P (νl → νl′) = δl′l−

− 2 Re
∑
i>k

Ul′iU
∗
l′kU∗

liUlk

(
1 − exp

(
−i

Δm2
ki

2E

)
L

)
. (A.17)

From (A.17) we have

P (νl → νl′) = δl′l − 2
∑
i>k

Re (Ul′iU
∗
l′kU∗

liUlk)
(

1 − cos
Δm2

ki

2E
L

)
+

+ 2
∑
i>k

Im (Ul′iU
∗
l′kU∗

liUlk) sin
Δm2

ki

2E
L. (A.18)

Analogously, for the probability of the transition ν̄l → ν̄l′ we ˇnd

P (ν̄l → ν̄l′) = δl′l − 2
∑
i>k

Re (Ul′iU
∗
l′kU∗

liUlk)
(

1 − cos
Δm2

ki

2E
L

)
−

− 2
∑
i>k

Im (Ul′iU
∗
l′kU∗

liUlk) sin
Δm2

ki

2E
L. (A.19)
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Let us introduce the quantity

J ik
l′l = Im Ul′i Ulk U∗

l′k U∗
li. (A.20)

In the case of the CP invariance from (A.6) for the Dirac neutrinos and from
(A.7) for the Majorana neutrinos we ˇnd

J ik
l′l = 0. (A.21)

From the deˇnition (A.20) we have

J ik
l′l = −Jki

l′l , J ik
l′l = −J ik

ll′ . (A.22)

Further, from the unitarity of the 3 × 3 mixing matrix U we ˇnd∑
i

J ik
l′l = δl′l Im U∗

l′k Ulk = 0,
∑
l′

J ik
l′l = δik Im U∗

li Ulk = 0. (A.23)

From (A.22) and the ˇrst equation (A.23) we have

J21
l′l = J13

l′l = J32
l′l . (A.24)

Further, from (A.22) and the second equation (A.23) we ˇnd

J ik
eμ = J ik

μτ = J ik
τe. (A.25)

If we introduce the following notation

J21
eμ = J, (A.26)

from (A.24) and (A.25) we have

J ik
l′l = ±J, l′ �= l, i �= k. (A.27)

Thus, in the neutrino case, as in the quark case (see Sec. 2), there exists only one
independent Jarlskog invariant.

Let us consider now the last term of expression (A.18) for l′ �= l. Taking
into account (A.22), we ˇnd

2
∑
i>k

J ik
l′l sin

Δm2
ki

2E
L =

= 2J21
l′l

(
sin

Δm2
12

2E
L + sin

Δm2
23

2E
L − sin

Δm2
13

2E
L

)
. (A.28)

It is obvious that
Δm2

13 = Δm2
12 + Δm2

23. (A.29)
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Further, for any a and b we have

sin a + sin b − sin (a + b) = 4 sin
a

2
sin

b

2
sin

(a + b)
2

. (A.30)

From (A.28), (A.29), and (A.30) we ˇnd

2
∑
i>k

J ik
l′l sin

Δm2
ki

2E
L = 8J21

l′l sin
Δm2

12

4E
L sin

Δm2
23

4E
L×

× sin
(Δm2

12 + Δm2
23)

4E
L. (A.31)

Let us determine CP asymmetry

ACP
l′l = P (νl → νl′) − P (ν̄l → ν̄l′), l �= l′. (A.32)

From the unitarity of the mixing matrix and the CPT invariance it is easy to
obtain the following relations:

ACP
eμ = ACP

τe = −CP
τμ . (A.33)

In fact, from the unitarity of the mixing matrix we ˇnd∑
l′=e,μ,τ

ACP
l′l = 0. (A.34)

Further, from relation (A.9) we have

ACP
l′l = −ACP

ll′ . (A.35)

From (A.34) and (A.35) we obtain the following relations:

ACP
μe + ACP

τe = 0, ACP
eμ + ACP

τμ = 0, ACP
eτ + ACP

μτ = 0. (A.36)

From (A.36) we easily ˇnd relations (A.33). Thus, in the case of three
families there exists only one independent asymmetry.

From (A.18), (A.19), (A.31), and (A.32) we ˇnd

ACP
eμ = 16J sin

Δm2
12

4E
L sin

Δm2
23

4E
L sin

(Δm2
12 + Δm2

23)
4E

L. (A.37)

Thus, the CP asymmetry is proportional to the invariant J . Let us comment this
connection.

The transition probabilities (A.4) and (A.5) are invariant under the phase
transformation

Uli → e−iαl Uli e−iβi , (A.38)

where αl and βi are arbitrary constant phases. It is obvious that
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1. The CP asymmetry is also invariant under the transformation (A.38).
2. The CP asymmetry is equal to zero in the case of the CP invariance.

The Jarlskog invariant J satisˇes both these conditions.
As we have seen there exists only one Jarlskog invariant in the case of

the three-neutrino mixing. This is connected with the fact that only one phase
characterizes the mixing matrix. Let us comment now this last statement. In
the case of the Dirac neutrinos, like in the quark case, one physical CP phase
characterizes mixing matrix. In the case of the Majorana neutrinos 3×3 mixing
matrix is characterized by three CP phases [99]. However, two additional Majo-
rana phases do not enter into expressions for neutrino and antineutrino transition
probabilities [99].

The 3 × 3 PMNS neutrino mixing matrix can be parametrized in the same
way as CKM quark mixing matrix (see (78)). For the Jarlskog invariant we have
in this case

J = −s12s13s23 sin δc2
13c12c23. (A.39)

It follows from (A.37) and (A.39) that in order the CP asymmetry is different
from zero it is necessary that not only the CP phase but also three mixing angles
θ12, θ23, and θ13 and two mass-squared differences Δm2

23 and Δm2
12 are different

from zero. Thus, in order to reveal violation of the CP invariance in the lepton
sector all three families must be involved in oscillations.

Appendix B

EVOLUTION EQUATION FOR M0 − M̄0 SYSTEM

The physics of the M0 − M̄0 system (M0 = K0, B0
d,s, . . .) is based on the

evolution equation. We will show here that wave functions of such systems
satisfy the Schréodinger equation with nonhermitian Hamiltonian (see [100]).

Let us consider, as an example, K0 − K̄0 system. K0 and K̄0 mesons are
particles with the strangeness +1 and −1, correspondingly. They are produced in
strong interaction processes in which strangeness is conserved. After K0 (K̄0) is
produced, weak interaction in which strangeness is changed plays the major role:
due to weak interaction particles decay and transitions K0 � K̄0 take place.

We will present the total Hamiltonian in the form

H = H0 + HW , (B.1)

where H0 is a sum of the free Hamiltonian and the Hamiltonian of strong and
electromagnetic interactions, and HW is the Hamiltonian of the weak interaction.

Let |K0〉 and |K̄0〉 be the states of K0 and K̄0 in their rest systems. These
states are eigenstates of the Hamiltonian H0 and of the operator of the strange-
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ness S. Assuming CPT invariance of the Hamiltonian of the strong and electro-
magnetic interactions we have

H0 |K0〉 = m|K0〉, H0 |K̄0〉 = m|K̄0〉 (B.2)

and
S|K0〉 = |K0〉, S|K̄0〉 = −|K̄0〉, (B.3)

where m is the mass. Due to the CPT invariance the masses of K0 and K̄0 are
the same.

Because of the conservation of the strangeness by the Hamiltonian H0, the
vectors |K0〉 and |̄K0〉 cannot be distinguished from vectors

|K0〉′ = eiSα|K0〉 = eiα|K0〉, |K̄0〉′ = eiSα|K̄0〉 = e−iα|K̄0〉, (B.4)

where α is an arbitrary constant phase.
The operators of the CP conjugation and the strangeness anticommute with

each other
CPS + SCP = 0. (B.5)

From this relation we have

SCP |K0〉 = −CP |K0〉. (B.6)

Thus, we have
CP |K0〉 = ηCP |K̄0〉, (B.7)

where ηCP is a CP phase factor. Taking into account the freedom in the choice
of the phases of the vectors |K0〉 and |K̄0〉 we can put ηCP = 1. In this case we
have

CP |K0〉 = |K̄0〉. (B.8)

In this review we used this choice. However, we demonstrated that measurable
quantities do not depend on the choice of arbitrary phase factors.

Let us consider now the Schréodinger equation for a vector |Ψ(t)〉. We have

i
∂|Ψ(t)〉

∂t
= H |Ψ(t)〉. (B.9)

The formal general solution of equation (B.9) has the form

|Ψ(t)〉 = eiHt|Ψ(0)〉, (B.10)

where |Ψ(0)〉 is the vector of the state at the initial time t = 0.
It will be convenient to present the solution (B.10) in another form. Let us

denote |n〉 the normalized eigenvector of the total Hamiltonian. We have

H |n〉 = En |n〉, 〈n′|n〉 = δn′n. (B.11)
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The vector |Ψ(0)〉 can be developed over the vectors |n〉. We have

|Ψ(0)〉 =
∑

n

|n〉〈n|Ψ(0)〉. (B.12)

From (B.10), (B.11), and (B.12) we ˇnd

|Ψ(t)〉 =
∑

n

e−iEnt |n〉 〈n|Ψ(0)〉. (B.13)

Further for t � 0 we have

e−iEnt =
−1
2πi

∞∫
−∞

e−iEt

E − En + iε
dE. (B.14)

From (B.11), (B.13), and (B.14) we ˇnd that the solution of equation (B.9)
can be presented in the form

|Ψ(t)〉 =
−1
2πi

∞∫
−∞

G+(E) e−iEt dE|Ψ(0)〉, (B.15)

where

G+(E) =
1

E − H + iε
. (B.16)

We assume now that the initial state |Ψ(0)〉 is a superposition of the states of K0

and K̄0 mesons. We have

|Ψ(0)〉 =
∑

α=1,2

aα(0)|α〉, (B.17)

where |K0〉 ≡ |1〉 and |K̄0〉 ≡ |2〉.
At t � 0 we have

|Ψ(t)〉 =
∑

α=1,2

aα(t)|α〉 +
∑

i

bi(t)|i〉, (B.18)

where a1(t)(a2(t)) is the amplitude of the probability to ˇnd K0 (K̄0) at time t,
and |i〉 are states of the particles which are produced in decays of neutral kaons
(ππ, πππ, πlνl, etc.).

From (B.15) and (B.17) for the wave function aα(t) we ˇnd the following
expression:

aα′(t) = 〈α′|Ψ(t)〉 =
−1
2πi

∞∫
−∞

∑
α

〈α′|G+(E)|α〉 e−iEt dE aα(0). (B.19)
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Up to now all our equations were exact. Now we will develop perturbation theory
over the weak interaction. From (B.16) we have

(E − H0 − HW + iε) G+(E) = 1. (B.20)

If we multiply this equation by the operator
1

E − H0 + iε
from the left, we obtain

the LippmanÄSchwinger equation for the operator G+(E):

G+(E) =
1

E − H0 + iε
+

1
E − H0 + iε

HW G+(E). (B.21)

We will obtain now the matrix element 〈α′|G+(E)|α〉 in the form of perturbation
series. From (B.2) we ˇnd∗

〈α′|G+(E)|α〉 =
δα′α

E − m + iε
+

1
E − m + iε

∑
α′′

〈α′|HW |α′′〉〈α′′|G+(E)|α〉+

+
1

E − m + iε

∑
i

〈α′|HW |i〉〈i|G+(E)|α〉. (B.22)

Now, taking into account that 〈i|α〉 = 0 from (B.21), we ˇnd

〈i|G+(E)|α〉 =
1

E − Ei + iε

[∑
α′′

〈i|HW |α′′〉〈α′′|G+(E)|α〉+

+
∑
i′

〈i|HW |i′〉〈i′|G+(E)|α〉
]
. (B.23)

This equation can be easily solved by iterations. Its solution can be presented in
the form of the perturbation series over the weak interaction. We will consider
only the ˇrst term of the series.

From (B.22) and (B.23) we ˇnd

〈α′|G+(E)|α〉 =

=
δα′α

E − m + iε
+

1
E − m + iε

∑
α1

〈α′|R(E)|α′′〉〈α′′|G+(E)|α〉, (B.24)

where up to the terms of the second order of the perturbation theory we have

〈α′|R(E)|α′′〉 =

= 〈α′|HW |α′′〉 +
∑

i

〈α′|HW |i〉 1
E − Ei + iε

〈i|HW |α′′〉 + . . . (B.25)

∗The sum
∑

i

means sum and integration over corresponding variables in the state |i〉 and sum

over all possible states |i〉.
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In the matrix form equation (B.24) can be written as follows:

G+(E) =
1

E − m + iε
+

1
E − m + iε

R(E) G+(E), (B.26)

where G+(E) and R(E) are 2 × 2 matrices with elements 〈α′|G+(E|α〉 and
〈α′|R(E)|α〉. This matrix equation can be easily solved. We have

G+(E) =
1

E − m − R(E) + iε
. (B.27)

From (B.19) and (B.27) for the wave function a(t) we ˇnd

a(t) =
−1
2πi

∞∫
−∞

e−iEt

E − m − R(E) + iε
dEa(0). (B.28)

Because |R(E)| � m, the pole in the integral (B.28) is at the point E � m. We

have R(E) = R(m)+(E−m)
dR

dE

∣∣∣∣
E=m

+ . . . The second term of this expansion

is much smaller than the ˇrst one. We will neglect it. This approximation is
called the WeisskopfÄWigner approximation [101]. In this approximation we
have∗

a(t) � −1
2πi

∞∫
−∞

e−iEt

E −H + iε
dEa(0) = e−iHta(0), (B.29)

where H = m + R(m). (B.30)

From (B.29) we come to the conclusion that the wave function of K0 − K̄0

system satisˇes the Schréodinger equation

i
∂a(t)
∂t

= Ha(t). (B.31)

Let us consider now the effective Hamiltonian H. Taking into account the relation

1
m − Ei + iε

= P
1

m − Ei
− iπδ(Ei − m) (B.32)

from (B.25) we ˇnd

H = M − i

2
Γ, (B.33)

∗We took into account that imaginary parts of the eigenvalues of H are negative.
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where

Mα′α = mδα′α + 〈α′|HW |α〉 + P
∑

i

〈α′|HW |i〉 1
m − Ei

〈i|HW |α〉 (B.34)

and
Γα′α = 2π

∑
i

〈α′|HW |i〉〈i|HW |α〉δ(Ei − m). (B.35)

It follows from these expressions that M and Γ are hermitian matrices:

M † = M, Γ† = Γ. (B.36)

Thus, summarizing, wave function of K0 − K̄0 system satisˇes the Schréodinger
equation with effective nonhermitian Hamiltonian H which is given by (B.33).

Let us consider M11 (M22). The ˇrst term in (B.34) is the bare mass of K0

(K̄0). The second and third terms are the corrections to mass. Thus, M11 (M22)
is the mass of K0 (K̄0) with corrections due to the weak interaction. From the
CPT invariance it follows that

M11 = M22. (B.37)

From (B.35) it follows that Γ11 (Γ22) is the total decay width of K0 (K̄0).
Taking into account the CPT invariance we have

Γ11 = Γ22. (B.38)

Thus, if the CPT invariance holds, we have

H11 = H22. (B.39)

In the case of the CP invariance we have

H11 = H22. (B.40)

and
H12 = H21. (B.41)

If the relation (B.39) is violated, this means that CPT and CP are violated. The
violation of the relation (B.41) is a signature of the CP violation.

The relation (B.41) was obtained under the assumption that the arbitrary
phases of the states are chosen in such a way that |K̄0〉 = CP |K0〉. If we
change the basic states and instead of |K0〉 and |K̄0〉 will use |K0〉′ = eiα |K0〉
and |K̄0〉′ = e−iα |K̄0〉, we will have

H′
12 = e−4iα H′

21. (B.42)
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Thus, there is no any relations between the phases of the nondiagonal elements of
the matrix H in the case of the CP invariance. Only the violation of the relation

|H12| = |H21| (B.43)

is a signature of the CP violation.
Let us notice that in the case of T invariance we have

|H12| = |H21|. (B.44)

It is obvious that all relations we derived here are also valid for B0
d,s − B̄0

d,s,

D0 − D̄0 and other systems.
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