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C P VIOLATION AND UNITARITY TRIANGLE TEST

OF THE STANDARD MODEL
S. M. Bilenky

Joint Institute for Nuclear Research, Dubna

Phenomenological issues of the C'P violation in the quark sector of the Standard Model are
discussed. We consider quark mixing in the SM, standard and Wolfenstein parameterization of the
CKM mixing matrix and unitarity triangle. We discuss the phenomenology of the C'P violation in
Kg and BS(BS) decays. The standard unitarity triangle fit of the existing data is discussed. In
Appendix A we compare the K0 &= KO, Bg,s s Bg’ s» etc., oscillations with neutrino oscillations.
In Appendix B we derive the evolution equation for M — MO system in the Weisskopf~Wigner
approximation.

O6cyxn 1oTcd (heHOMEHOMOrYIecKre Borpockl npobnembl C'P-H pymieHHs B KB PKOBOM CeEK-
tope. ITogpo6HO p ccM TPUB I0TCA CMEIIMB HUEe KB pKoB B CT H PTHOM Mozmenu, T HI PTH A I p -
merpu3 1 CKM-M TpHULBI CMEIIMB HMSI, T KX€ II p MeTpu3 1us BonbeHmTellH W yHMT PHBII
TpeyronbuuK. Jet bHO p cemotpen  heromenonorns CP-u pymenns B p cn o x K9 u BY — BY.
OO6cyxJ ercst OCHOB HHBIf H YHMT PHOM TpeyroibHHMKE (DMT I HHBIX. B mpumoxenun A Mbl cp B-
miB em K9 S5 K 0, Bg,s = Bg’s OCUMIUTALMU C OCLUULILMAMU HelTpuHo. B mnpunoxenun B

IPUBOIMTCA BBIBOX yp BHeHus spomonun cucteMst MO — MO B npubmnkenun B iickorng —Buruep .

PACS: 14.60.Pq

INTRODUCTION

Soon after it was discovered that invariance under the space inversion P
and invariance under the charge conjugation C (invariance under the change
particles < antiparticles) are violated [1] (1957), Landau [2] and Lee and Yang [3]
suggested that the Hamiltonian of the weak interaction is invariant under the
combined C'P transformation. One of the consequences of this suggestion was
the theory of the two-component neutrino [2—4] according to which the neutrino
is left-handed (or right-handed) particle and antineutrino is right-handed (or left-
handed) particle.

The helicity of the neutrino was measured in spectacular experiment [5]
performed in 1958. This experiment confirmed the theory of the two-component
neutrino. It was established that neutrino is left-handed particle.

The confirmation of the theory of the two-component neutrino strengthened
belief in the hypothesis of the C'P invariance of the Hamiltonian of the weak
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interaction. All existing data at the end of fifties and beginning of sixties were in
agreement with this hypothesis.

It was a big surprise for the physics community when in the experiment
performed by Christenson, Cronin, Fitch, and Turlay [6] in 1964 the decay
K? — 777~ was observed. The observation of this decay was a proof that CP
is violated*.

The discovery of the C'P violation was announced at the Rochester confer-
ence in Dubna in 1964. In 1980, Cronin and Fitch were awarded the Nobel Prize
for this discovery.

The observed violation of P and C in the § decay and other weak decays
was large. Discovered by Cronin, Fitch and others, effect of the violation of C' P
was very small. They found that the ratio of the modulus of the amplitudes of the
C P-forbidden decay K? — nt +7~ and the C' P-allowed decay K2 — mt 47~
was about 2 - 1073,

The first problem was to understand what interaction is responsible for the
CP violation in K9 — 7 + 7 decays. Many hypotheses were put forward. One
of the most viable ideas was proposed by Wolfenstein [7]. He noticed that it is
possible to explain the observed violation of the C'P in decays of K9 meson if
we assume that there exists a new |AS| = 2 interaction, which is characterized
by a very small effective interaction constant Gsw ~ 107° G (G is the Fermi
constant). This interaction was called the superweak interaction.

Measurable parameters characterizing violation of CP in Kj — 7w+ decays
are n4_ and ngg. These parameters are, correspondingly, ratios of the amplitudes
of the decays K? — 7t + 7~ and K3 — 7t + 7~ and K? — 7% 4+ 70 and
K2 — 7% + 70, If the superweak interaction is responsible for the violation of
the CP in K — 7 + 7 decays, in this case

N+— = Noo- (1)

It took many years of enormous experimental efforts [8,9] in order to check the
relation (1). It was proved that the relation (1) is not valid. Thus, superweak
interaction as a possible source of the C'P violation in the neutral kaon decays
was excluded by these experiments.

At the time when experiments [8,9] were completed, the Glashow [10],
Weinberg [11], Salam [12] Standard Model (SM) was established by numerous

*In fact, let us consider decays of short-lived and long-lived kaons (K2 and K?) into 7 47~
in the rest frame of the kaon. Because spin of the kaon is equal to zero, final pions have equal to zero
orbital momentum. Thus, we have P|rt7n~) = |rt7x~), Clnt7n~) = |7~ 7nt) = |7t 7~) and
CP |rt n=) = |nt 7). The decay Kg — 7t + 7~ is the main decay mode of the short-lived
kaon. If CP is conserved, |Kg) is the state with C'P parity equal to 1. The CP parity of the
orthogonal state /7, must be equal to —1 and hence decay K7 — 7w+ 4 m— must be forbidden in
the case of the C'P conservation.
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experiments. The expected in the SM violation of the relation (1) is very small
(see [13]). The data of the experiments [8,9] were in agreement with the SM.

In 1973, Kobayashi and Maskawa [14] considered C'P violation in the frame-
work of the Standard Model. In the Standard Model, violation of the CP is
determined by phases in the unitary mixing matrix. In 1973, only two families of
leptons and quarks were known. It was demonstrated in [14] that it is impossible
to violate C'P in this case. It was shown in [14] that in order to explain observed
CP violation we need to assume that (at least) six quarks exist. Kobayashi and
Maskawa obtained the first parametrization of the mixing matrix in the case of
three families. They showed that this matrix is characterized by three mixing
angles and one C'P phase.

During more than 30 years the investigation of the C'P violation was limited
by the system of neutral kaons (see book [15]). During last 8 years with the
BaBar and Belle experiments at the asymmetric B factories at the SLAC and
KEK, a new era in the investigation of the C'P violation started (see book [16]).
In these experiments numerous effects of the C'P violation in different decays of
the neutral and charged B4 mesons were observed. This allowed one to perform
the unitarity triangle test of the SM. All existing at present data are in good
agreement with the SM and the assumption that only three families of quarks exist
in nature.

In this review we will consider some phenomenological aspects of the prob-
lem of the C'P violation in the quark sector. In Sec. 1 we consider the SM Higgs
mechanism of the mixing of quarks. In Sec.2 we consider in detail the quark
mixing matrix and the C'P violation. In Sec.3 we derive the standard para-
metrization of the CKM mixing matrix. In Sec.4 we discuss the values of the
modulus of the elements of the CKM matrix. In Sec.5 we consider Wolfenstein
parametrization of the CKM matrix elements and the unitarity triangle. In Sec. 6
we obtain eigenstates and eigenvalues of the effective Hamiltonian of K° — K0,
B — BY etc., systems. In Sec.7 we consider in detail phenomenology of the C' P
violation in decays of K?. In Sec.8 we consider the C'P violation in B® — B°
decays. In Sec.9 we present results of the unitarity triangle test of the Standard
Model. In Appendix A we compare K% = K° BY <= BOY ete., oscillations
with neutrino oscillations. In Appendix B we derive in the Weisskopf—Wigner
approximation the evolution equation for K0 — K%, BY — B etc., system.

Last years, in connection with appearance of the B factories, several books [18,
48], many reviews [13,16,20-27] and hundreds of papers on the C'P violation
were published. In these books and reviews many details and many references
on original papers can be found.

I tried to discuss here some basic questions and to derive different relations.
I hope that this review will be useful for those who start to study this exciting
field of physics.
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1. QUARK MIXING IN THE STANDARD MODEL

The Standard Model of the electroweak interaction is based on the following
principles (see, for example, [28,29]):

1. The local gauge SUL(2) x Uy (1) symmetry of the Lagrangian of the fields
of massless quarks, leptons, gauge vector bosons, and scalar Higgs bosons.

2. The spontaneous symmetry breaking. Due to the spontaneous breaking of
the local SUL(2) x Uy(1) symmetry the masses of W* and Z° bosons, mass
terms of quarks and leptons and mass of the Higgs boson are generated.

3. Unification of the weak and electromagnetic interactions.

We will consider the quark sector of the Standard Model. The theory is
based on the assumption that three families of quarks and leptons exist, and the
left-handed quark fields are transformed as SUL(2) doublets*

¢1L=(Zi>7 %L:(zi), ¢3L=(zi>7 (2)

and the right-handed fields of quarks ¢ (¢ = u, d, ¢, s, ¢, b) are the singlets of the
group.

The requirements of the local gauge SUL(2) x Uy (1) invariance fix the
Lagrangian of the interaction of quarks and vector bosons in the form of the
sum of the charged current (CC), neutral current (NC), and electromagnetic (EM)
parts:

9 _.cCyya
£5¢ = ———i°°we 4 he,
I Qﬁja
rNC 9 iNC 7o 3
I 2 cos ija ) ( )
L:]]EM —_ —BjSM Aa,

where
3
. -1 . _ _ -
iSe=2>" birg (T +im2)vathic = (a7 vady + CLVasE 7L ()
=1

is the quark charged current,

3
) -1 . .
JnC=2) dir 5T8VatiL — 2 sin? Gy ji ®)
i=1
is the quark neutral current, and

M=) egdvad (6)

g=u,d,c,...

*The meaning of primes will be clear later.
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is the electromagnetic current. Here W is the field of W bosons, Z¢ is the
field of ZY bosons, A is the electromagnetic field, g is the electroweak constant,
Ow is the weak angle, e, = 2/3, —1/3 are the quark charges in the unit of the
proton charge, and h.c. means hermitian conjugate.

In the total Lagrangian of the Standard Model the following SU,(2) x Uy (1)
invariant Lagrangians of the Yukawa interaction of quarks and Higgs fields enter:

n \/5 /) wn
L= Y DM gpd +he @

i=1,2,3 g=d,s,b

and

u \/§ n u 7
L = == > GiMPqré+hec. ®)

i=1,2,3 g=u,c,t

O+ is the Higgs
bo

doublet, ¢ = iTo¢*, and v is the constant (vacuum expectation value of the Higgs
field).
If we choose

Here M9°""™ and MUP are complex 3 x 3 matrices, ¢ = (

0
plx) = v+x() |, ©)
V2
where x(x) is the field of neutral Higgs bosons, the symmetry will be spon-

taneously broken. For the mass terms of up and down quarks we obtain the
following expressions:

Ly = U M"Ug +he., Ly =—D'pM"Dp+he, (10)

m

where
! !/
Ur, r dL,R
! ! / !
Ur=1| cr |» Drr=1| str |- (11)
t/ b
L,R L.R

The complex matrices M"P and MI°%" can be diagonalized by the biunitary
transformations

MW — VLUP muP V'}lzlplf7 Mdown — VLdown mdown V}%ownT. (12)

down

Here V;'%, and V%™ are unitary matrices, and m"? and m are diagonal

matrices with positive diagonal elements.



1250 BILENKY S.M.

From (10) and (12) we find

LUP = —Um"PU, LIV = _Dmdovnp, (13)
Here
u d
U=UL+Ugr= c , D=Dp+Dgr= S , (14)
t b
miP = 0 me 0 |, miom= 0 ms O (15)
0 0 my 0 0 my
and
Urr=V%UL g Dpr=ViR" D g (16)

From (13), (14), and (16) we obtain the standard mass terms for up and down
quarks

LP(x)=— > mela)q(z), LI¥"(x)=— Y meqz)g(x). (17)

q=u,c,t q=d,s,b

Thus, g(z) is the field of the ¢ quarks with the mass m, (¢ = u,d, ¢, s,t,b). The
left-handed and right-handed fields of quarks with definite masses and primed
quark fields, which have definite transformation properties, are connected by the
unitary transformations (16).

Let us consider now the charged current of the quarks. From (4) and (16)
we find

GOC = 2U v DY = 2U17aV Dp = 2[i1 YadP ™ 4C1 e sT X +117.00]. (18)

Here
V = (v Pty (19)
and
dp>= > Vaaydin, sP¥= Y Veaydin, bP¥= Y Vig,dip. (20)
di=d,s,b di=d,s,b di=d,s,b

From (19) it follows that V' is a unitary matrix*

Vv =1. (1)

*We assume that there are no additional heavy families of quarks.
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From (18) and (20) we conclude that fields of down quarks enter into CC of the
SM in the form of the «mixed» combinations d¥, s pmix  The unitary 3x3
mixing matrix V is called Cabibbo [30]-Kobayashi—-Maskawa [14] (CKM) mixing
matrix. We will see later that the violation of the C'P invariance is determined
in the SM by the matrix V.

Let us consider now the electromagnetic current. From (6) we have

. 92 _ 1 _
g = (019U + UpvaUg) = 3(D17aDL + DpvaDy).  (22)

Taking into account the unitarity of the matrices V;' 7, and VA%™, we find

o 2 ;
JEM = Z(UrvaUr + UrvaUr)

=3 (DrvaDr 4+ DryaDr) =

= > eqfrag, (23)

q=u,d,c,...

1
3

where e,,c; = 2/3 and eq s, = —1/3. Thus, we come to the standard expression
for the electromagnetic current which is diagonal in the quark flavors.
Let us consider the neutral current. We have

3
. - 1 . .
jaC =2 Z%L §T3’Ya1/JiL —2sin® O™ =

= U17UL = DiraDy, — 2 sin’ Gwjg ' =
= Y WipYamin— Y, dipYadip — 2 sin® OwiiM. (24)
U =u,c,t dy=d,s,b

Thus, the neutral current of the SM is also diagonal in the quark flavors*. Only
the charged current changes flavor of the quarks (s — w+ W™, etc.). We will
show later that the electromagnetic and NC interactions of the SM automatically
conserve C'P. The C'P invariance can be violated only by the flavor-changing
CC interaction.

2. MIXING MATRIX

We will consider here general properties of the unitary mixing matrix V.
Let us calculate first the number of the angles and phases which characterize the
unitary mixing matrix V' in the general n X n case.

*Notice, however, that flavor changing neutral current is induced by the charged current in the
higher orders of the perturbation theory.
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The unitary matrix V' can be presented in the form V = ¥, where H is
the hermitian matrix. Such matrix is characterized by n (diagonal elements) +

2
n®—n
2 ( 5 (nondiagonal elements) = n? real parameters.

The number of the angles which characterize n x n unitary matrix coincides
with the number of parameters which characterize n x n orthogonal matrix O
(OTO = 1). Such matrix can be presented in the form O = e*, where AT = —A.

n(n —1)
2

real parameters. Thus, the number of the angles which characterize the unitary
matrix is equal to

The antisymmetric matrix A is characterized by (nondiagonal elements)

n(n—1
Nangles = % (25)

Other parameters of the matrix V' are phases. The number of the phases is

equal to

n(n—1 n(n+1
nphases:n2_ ( 2 ): ( 2 ) (26)

The number of physical phases, which characterize mixing matrix, is significantly
smaller than nppases.
The mixing matrix enters into CC together with the quark fields:

i$9=2 > tryvaVuadic 7

u1=u,c,td1=d,s,b
The free Lagrangian of quark fields is invariant under the transformation
q(z) — e q(x), q=wu,d,... (28)

where a4 is an arbitrary constant phase. We will take this fact into account in
the calculation of the number of physical phases in the mixing matrix V.
The unitary matrix can be presented in the form

V =S (a)V5(8), (29)

where S(a) and S(3) are diagonal phase matrices (Sy,u,(Q) = Guyu, €041
Saydy(B) = 04,0, €P41) and V is a unitary matrix. There are 2(n — 1) 4+ 1
independent phases a,, and Gq, *.

The phase factors e?®«1 and e’’41 can be included into quark fields. Thus, the
number of measurable, physical phases which characterize unitary mixing matrix

*We must take into account that only difference of common phases of S(3) and S(«) enters
into (29).
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Vis equal to

phys __ n(n + 1)
phases — 9

N Gl (Gl 1)2(" —2), (30)

Let us obtain now the constraints on the mixing matrix which follow from the
requirements of the C'P invariance of the CC interaction. For the CC Lagrangian
we have

z:g?%):—% > (@) Vi aydin (@) Wa(z)—

u1=u,c,t di=d,s,b

- % > dip (@) Vi g (@)Wi(z), (31

w1 =u,c,t di=d,s,b

where V' is the 3 x 3 unitary CKM mixing matrix (we suppressed tilde).
The C'P is conserved if Lagrangian satisfies the following condition:

VepLiC(x)Vip = LT (), (32)

where Vi p is the operator of the C'P conjugation and 2’ = (2°, —x).

For the left-handed quark field g, (z) we have
Ver qu(@)Vip = e 2*3°Cqr (2). (33)

Here g is an arbitrary phase and C' is the matrix of the charge conjugation,
which satisfies the relations

CraC™' =—ya, CT=-C. (34)

Taking into account that phases of quark fields are arbitrary, we can include phase
factor e’ into the field ¢(x). We obtain in this case

Ver qu(z)Vip =+°Cat (). (35)
From (34) and (35) we also have
Verqr(x)Vip = —qt (/)07 14°. (36)

Let us consider now the current @11 (x)Yod1r (). From (34), (35), and (36) we
find

Vepuin(z)yadin(2)Vep = —uif ()07 17 Cdi(a') =
:—6a§1L(x')'yau1L(x'). (37)
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Here § = (1,—1,—1,—1) is the sign factor. Notice that in the relation (37) we
took into account anticommutator properties of the fermion fields.

Under the C'P transformation the field of the vector W bosons is trans-
formed as follows:

Vop Wo(2)Vap = —e 2w s, Wi(a), (38)

where Oy is an arbitrary phase. Taking into account that phase of the nonher-
mitian W, (z) field is arbitrary, we can include phase factor e’®" into the W
field. In this case we have

VepWa ()Vih = =8 Wi(a'). (39)
With the help of (31), (37), and (39) we find

Ver LFC(2)Vip

> = —% > din (@)Y Vi, 4y uarn(a)Wi(a') -

wy,dy

LN (@) g, din(a)Wala'). (40)
\/5 u1,d1

From (31), (32), and (40) we conclude that in the case of the C'P invariance the

CKM mixing matrix V is real:

Vul di = V’Uikl dy- (41)

We will comment now this condition. The first term of the CC Lagrangian (31)
is responsible for the flavor-changing transition

di —»u+W~, dy=d,s,b, ui =u,c,t. (42)

Amplitude of this transition is equal to V,,, 4,. The second term of the Lagran-
gian (31) is responsible for the C'P-conjugated transition

di — a1+ W™, dy=d,5b, u =a,ct. (43)

Because the Lagrangian is hermitian, the amplitude of the transition (43) is equal

to Vi 4, . If the C'P invariance holds, the amplitude of transition (42) is equal to
the amplitudes of C' P-conjugated transition (43).

As we have shown the number of the physical phases in the CKM mixing

matrix is given by (30). For n = 2 the mixing matrix is real. Thus, for

two families of quarks the unitarity of the mixing matrix assures invariance of the
Lagrangian of interaction of the quarks and W bosons under C' P transformation®.

*In order to explain in the framework of the SM observed violation of the C'P invariance we
need to assume that (at least) three families of quarks exist in nature. This was original argument
of Kobayashi and Maskawa [14] in favor of the existence of the third family of quarks. When this
argument was presented, only two families of quarks were known.
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For n = 3 the number of measurable phases in the mixing matrix is equal to
one*. It follows from (41) that in the case of the C'P invariance this phase must
be equal to zero.

We have considered the CC part of the SM interaction Lagrangian. Let us
discuss now the neutral current and electromagnetic interactions. From (34), (35),
and (36) for the left-handed current we have

Verar(2)Yaqr(z) Vip = —0aqr () Yaqr(2'). (44)
Analogously, for right-handed current we obtain
Verdr(@)1atr(@)Vop = —0adr(@')Yaqr (). 45)
Taking into account that
VepZ®(@)Vip = —0a2%(a'), VepA®(2)Vip = —0.A%')  (46)
from (3), (23), and (24) we find
VerLyC(a)Vap = L79(),  VerLiM(@)Veop = LM (). @47)

Thus, the SM Lagrangians of the NC and electromagnetic interactions are auto-
matically invariant under C'P transformation. This is connected with the fact that
the electromagnetic and neutral current interactions of the SM are diagonal in the
quark flavors.

We have chosen C'P phase factors of quark and W fields equal to one
and determined C'P transformations by the relations (35) and (39). In this case
CKM matrix is characterized by three angles and one phase responsible for the
violation of the C'P invariance. It is of interest to characterize C'P violation in a
rephrasing-invariant way [31].

Let us consider quantities

Qe = Virdy Vaad Vas,a, Vi (48)

w1 U uyda Y uzdy

invariant under phase transformation

Viyd, — € iV, g ePii (49)

*The minimal number of families at which the CC Lagrangian of the SM can violate C'P is
equal to three. This minimal number is equal to the number of SM families of quarks and leptons
which exist in nature. In fact, it was established by the experiments on the measurement of the width
of the decay Z — v + v that the number of flavor neutrinos is equal to three (see [32]). This means
that the number of the lepton families is equal to three. For the SM to be renormalizable, the number
of the quark families must be also equal to three.
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where o, and 34, are arbitrary phases. It is evident that

(@) = Qi = Quiid- (50)
If we determine the C'P conjugation by the relations (33) and (38) with arbi-
trary C'P phases of the quark and W fields from the C'P invariance of the CC
Lagrangian, we find

2900y, —2iag —23 _ *
UV, g, e 2 o7 20w = e (51)

It follows from (48) and (51) that in the case of the C'P invariance the quantities

dyids
Qo2 are real:

dids _ did
Qu11u22 - u1d1 Vquz Vuldz uzdy — (Qulluz)* (52)
Let us introduce the quantities

Jd =Im Qb (53)

U3 U2 UU2

In the case of the C'P invariance we have

Jhd =0. (54)

UuUiru2

In the general case of the C'P violation from (50) we obtain the following
relations:
Jd1d2 _

= _ Jdedr  gdida _ _ jdida (55)

uluU2 uiu’? uiuU2 uUq *

Thus, J%192 =£ 0 only if dy # do and u; # us.

U1 U2
Further, from the unitarity of the mixing matrix we find

didz _ did2
E Quluz - uluz u2d2 uldz’ E Qulug 5d1d2 uzdz‘/;udl (56)

Ul

From these relations we have
did did
D dbn =0 Y Jnk=0 (57)
dy uy
Let us consider first the simplest case of two families. We have in this case

Jds = (58)

uc

This result corresponds to the absence of the physical phases in the mixing matrix
for n = 2.
We will consider now the case of three families. From the first relation (57)
we have
Ji o+ =0, g, I =0, TP, 4+ T, =0. (59)

Ui u2 Ui u2 uiu2 uiu2 uiu2 uiu2
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It follows from (59) and (55) that the following cycling relations hold:

ivua = Ttz = Tt ua- (60)
From the second relation (57) we obtain the following equations:
Ja® T =0, TRt T =0, a4 g =0 (6
From these relations and (55) we find
Jhde = Jotz = gt (62)
From (60) and (62) we obtain the following relations:
Jas = I8 =J =T =Jh=...=J (63)
Other nonzero J3142 differ from J by sign (J5 = —J, etc.). Thus, in the case

of three families there exists only one independent rephrasing invariant quantity.
This result is determined by the fact that for n = 3 there is only one physical
phase in the mixing matrix. The quantity J is called Jarskog invariant.

3. STANDARD PARAMETRIZATION OF THE CKM MIXING MATRIX

Several parametrizations of the unitary CKM mixing matrix V' were proposed
in literature. We will obtain here the so-called standard parametrization [32] which
is based on the three Euler rotations.

Let us consider three orthogonal and normalized vectors

|d), |s) and |b). (64)

In order to obtain three general «mixed» vectors we will perform the three Euler
rotations. The first rotation will be performed at the angle 615 around the vector
|b). New orthogonal and normalized vectors are

|d) = c12 |d) + 512 |s),
|s) = —s12 |d) + c12 |s), (65)
b)" = |b),

where c12 = cosfis and s;3 = sinfio. In the matrix form Egs. (65) can be

written as follows:
|DY = V'|D). (66)

Here

S
= =

(67)

~
<
>
~
Il
SR
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and
ci2 si2 0
V/ = —S812 C12 0 . (68)
0 0 1

Let us perform now the second rotation at the angle 615 around the vector |s)’.
At this step we will introduce the C'P phase §, connected with the rotation of
the vector of the third family |b). We will obtain the following three orthogonal
vectors:

|d>// =13 |d>/ + 813 efié |b>/,
)" =1s)", (69)
|b>” = —S13 eié |d>/ + c13 |b>l

In the matrix form we have

DY = V" (DY’ (70)
Here
i3 0 spze®
V= O 1 0 . 1
—s13€® 0 c13

Finally, let us perform rotation around the vector |d)” at the angle f55. New
orthogonal vectors are

|d>/// — |d>//7
|5)"" = cas| 5)" + 513 |b)", (72)
|b>/l/ — _523 |S>N +023 |b>”.
We have
|D///> — V/,/|D,/>. (73)
Here
1 0 0
V”/ = 0 C23 5923 . (74)

0 —s23 co3
From (66), (70), and (73) we find
|D") = VI|D), (75)

where
V=v"vV"V'. (76)

It is obvious that V' is the unitary matrix.
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Thus, the general 3x3 unitary mixing matrix has the form

1 0 0 C13 0 s13 e_ié C12 si2 0
V= 0 C23 523 0 1 0 —S12 C12 0 . (77)
0 —8923 (23 —S13 eié 0 C13 0 0 1

From (77) we find

—1id
C13C12 C13512 513"
V = | —co3si2 — s23ci2513€  cazcia — Sa3s12513€0  c13823 . (78)
is is
893512 — C23C12513 €" —893C12 — 23512513 €% C13C23

In the standard parametrization the 3x3 mixing matrix is characterized by three
Euler angles 615, 023, and 613 and one phase §. We have seen before that in the
case of the C'P conservation V* = V. Thus, in this case § = 0.

Let us calculate in the standard parametrization of the CKM mixing matrix
the invariant J given by (63). From (78) we have

2 .
J = C12€23C13512523513 S 0. (79)

As we have seen in the previous section in the case of the C'P conservation
the Jarlskog invariant J is equal to zero. It follows from experimental data that
all mixing angles are different from zero (see below). The rephrase invariant
condition of the C'P conservation has the form: sin 6 = 0.

4. MODULUS OF THE ELEMENTS OF CKM MATRIX

The values of the modulus of the CKM matrix elements were determined
from the data of different experiments (see [33]).

The highest accuracy was reached in the measurement of the element |V,q|.
There are three sources of information about this element: i) The superallowed
0T — 0T 3 decay of nuclei. ii) The neutron decay. iii) The 3 decay of pion
7t — 7Vetu..

Only vector current gives contribution to the matrix element of the 07 — 0%
[ transition. From the isotopic invariance and the hypothesis of the conserved
vector current CVC it follows that matrix element of 0™ — 0V transition between
components of isotopic triplet is given by

(P [Valp)| = N|Vaal V20 + 7)o, (80)

where p and p’ are momenta of initial and final nuclei and N is the normalization
factor. The nuclear Coulomb effects and radiative corrections, which violate this
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relation, must be taken into account. From the most precise measurements of ft
values® of nine nuclei the following average value was obtained [34,35]:

|Via| = 0.97377 4 0.00027. (81)

It is necessary to notice, however, that the ) value of 46V was recently remea-
sured [35]. The new value leads to an increase of the f factor which gives 2.70
decrease of the value of |V,,4| with respect to the average value (81).

The element |V,,4| can be determined also from data of the experiments on the
measurements of the lifetime of the neutron 7,, and from the ratio of the nucleon
weak axial and vector constants g4. The constant g4 can be obtained from the
data of the experiments on the measurement of the asymmetry of electrons in the
decay of polarized neutrons. From the world averages values of 7,, and g4 [32]

Tn = (885.7+£0.8) s, ga = —1.2695=+ 0.0029 (82)
for the element |V,,4| it was found the value [37]
|Va| = 0.9746 + 0.0004 £ 0.0018 £ 0.0002. (83)

Here the first (second) error is due to the error of 7,, (g4) and the third error is
due to the uncertainty in the calculations of radiative corrections. As is seen from
(83) the dominant uncertainty is due to the error of the constant g 4.

Finally, the value of the element |V,4| was obtained from the measurement
of the branching ratio of the decay 7T — mletv,. Only vector CC current
gives contribution to the hadronic matrix element of this process. From the CVC
and isotopic invariance it follows that matrix element of the hadronic vector
current is given by the relation (80). The problem of the calculation of the
radiative corrections is much more simpler in the pion case than in the nuclear
case. However, the branching ratio of the pion 3 decay is very small (B(rT —
7roe+ue) ~ 107®). As a result, the accuracy of the determination of the element
|Vl from the measurement of this branching ratio is much worse than from the
measurement of the ft values of the nuclear 0™ — 0T 3 decays. In [36] it was
found the value

|Via| = 0.9728 £ 0.0030. (84)

The value of the element |V,;| was obtained from the measurement of the
widths of the decays K; — 7%y, (I = e, ) and Kt — 7% Tw,. Only CC
vector current gives contribution to the hadronic part of the matrix elements of
these decays. The matrix element is characterized by two form factors and has
the form

V' Valp) = NVug (f+(@Q@%) 0+ D)o + [-(Q*) (P —P)a) - (85)

*The ft value is the product of the phase-space integral f and the half-life of a nucleus ¢.
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Here p and p’ are momenta of kaon and pion; Q> = —(p’ — p)?, and N is the
standard normalization factor. Taking into account the results of the measurements
of the form factors f ((Q?) and recent measurements of the branching ratios of the
decays K — mev and K — wuv [38-40], for the element |V,,;| the following
value was found [37]:

[Vis| = 0.2257 + 0.0021. (86)

This result was obtained with the chiral perturbation value [41] f1(0) = 0.961 +
0.008 used.

The value of the parameter |V,,s| can be also obtained from the measurement
of the widths of the decays K+ — ptv, and 7t — ptv,. Using for the ratio
of the decay constants the value

Jr _ 1.19810-08% + 0.003, (87)

Ix
which was obtained in the lattice calculations [42], for the matrix element |V,,|

it was found [37]
[Vis| = 0.224570:9012, (88)

The value of the element |V,,5| can be also inferred from the analysis of data
on the investigation of the hyperon decays. From these data it was found [43]

Vs = 0.2250 + 0.0027. (89)

Finally, information about the value of the parameter |V, 5| can be obtained from
the data of the experiments on the investigation of the decays 7+ — v, +
hadrons (S = +1). From these data the following value of the matrix element
|Vus| was found [44]:

|Vis| = 0.2208 + 0.0034. (90)

Thus, the values of the element |V,;|, determined from the different experimental
data and with different theoretical inputs, are compatible.
From the unitarity of the CKM matrix V' we have

[Vaud|® + [Vaus | + Ve |* = 1. oD

The last term gives negligible contribution to this relation (see later). From (83)
and (86) it was found [37]

[Vaud? + Vs[> + [Vap|* = 0.9992 £ 0.0005 £ 0.0009, (92)

where the first error is due to the error of |V,4| and the second one is due to the
error of |V,s|. Thus, the values (83) and (86) of the parameters |V, 4| and |V,s|
saturate the unitarity relation (91).
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The element |V,q| can be determined from the data on the production of the
muon pairs in the processes of interaction of v, and ¥, with nucleons*. From
these data it was found the value [33]

|Vea| = 0.230 4+ 0.011. (93)

The element |V.4| can also be obtained from the data on the study of the decays
D — mly if the corresponding form factors are known. Using lattice calculations
of the form factors [45] it was found [46]

[Vea| = 0.213 +0.008 + 0.021, (94)

where the dominant error is the theoretical one.

The value of the element |V.s| was determined from the data on the inves-
tigation of the decays D — Kly;. Using the lattice calculations of the form
factors [45] it was found the value [46]

[Vus| = 0.957 £ 0.017 + 0.093, (95)

where the second (theoretical) error is the largest one.

A model independent information about the element |V.4| can be obtained
from the data on the study of the decay W+ — ¢+ 5. From the LEP data it was
found the value [47]

[Ves| = 0.947032 +0.13. (96)

The value of the element |V,,| was determined from the data on the inves-
tigation of the semileptonic inclusive decays B — X, l7; and exclusive B —
D(D*)ly; decays. Analysis of the inclusive data is based on the operator product
expansion theory [48,49]. From the LEP and B-factories data it was found the
following average value [50]:

|Vep| = (41.7£0.7) - 1073, 97)

An analysis of the exclusive data is based on the heavy quark effective theo-
ry [51,52]. The average value

|Vep| = (40.9 £1.8) - 1073 (98)

which was found from the analysis of the exclusive data [50] is compatible
with (97).
The value of the element |V,;| can be obtained from the study of semileptonic
inclusive decay
B — X,y 99)

*One muon is produced in a process of interaction of neutrino (antineutrino) with nucleon; and
another, in the decay of the produced charmed particle.
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and exclusive decay -
B — nlp,. (100)

The suppression of the background from the CKM enhanced inclusive decay B —
Xl is the main problem in the investigation of the decay (99). The following
average value of |V,,;| was obtained from different inclusive measurements [50]:

[Vis| = (4.40 +0.20 £ 0.27) - 1073 (inclusive). (101)

In the exclusive decay (100) both final charged particles are detected. This leads
to the better suppression of the background than in the inclusive case. However,
the branching ratio of the exclusive decay (which is known at present with the
accuracy ~ 8%) is much smaller than the branching ratio of the inclusive decay.
The hadronic matrix element of the process (100) is given by

(' |Valp) =

= NV (f+(q2) (p +p -

2 2 2 2
myg —m myg —m

T”) do + fo(qQ)T”qa> ., (102)

where ¢ = p — p’ and f(¢?), fo(q?) are the form factors.

The calculation of the form factors f, (¢%) and fo(q¢?) is the main problem in
the determination of |V;| from the exclusive data. Using the most precise lattice
calculations [54, 58] the following value was found [50]:

[Vip| = (3.8470-67) - 1073 (exclusive). (103)

This value is compatible with (101). From (101) and (103) the following weighted
average of the matrix element |V,,;| was obtained [50]:

|Vip| = (4.31 £0.39) - 1072 (exclusive). (104)

The element |V;4| can be determined from the measurement of the mass difference
of BY mesons. The major contribution to the box diagram which determines
mass differences Am, (¢ = d, s) gives the virtual ¢ quark. We have (see, for
example, [13])

G2 i *
Am, = 6—7§m3qm%V(fquBq)nBSO(xt)|thv;q|2. (105)
Here fp, is the decay constant and BBq is the so-called B factor. The factor np
is due to short distance QCD corrections (np = 0.55 & 0.01), and Sp(z:) is the
known function of z; = m?/m?.
For the mass difference Amy the following value was obtained [55]:

Amg = (0.507 +0.004) ps~*. (106)
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Assuming |V;| = 1 and taking into account the lattice result [56,57]

f,\/Bp, = (244 + 11 + 24) MeV (107)
for the element |V;4| it was found the value [58]
|Via| = (7.44+0.8) 1073 (108)

Recently the mass difference of B? mesons was measured. Using the CDF
value [59]
Amg = (17.31703% 4 0.07) ps ™! (109)

fB.\/Bb,
=121+ 0.04700 (110)
de \/ BBd

1%
Vial _ 0.20875:008. (111)
|Vis| '

and the lattice result

it was obtained [59]

The value of the element |V;4| can be found from the unitarity relation V.,V +
Vin Vit + Vip V5, = 0. Tt was obtained [33]

[Vis| = (40.6 +£2.7) - 1073, (112)

Finally, an information about the element |V;p| can be inferred from the measure-

B(t b
5 (B_(; T I)/Vq) = |Vip|?. From the Fermilab data [60,61]
q=d,s,b
it was found the following 95% CL lower bound [33]:

ment of the ratio

[Vip| > 0.78. (113)

5. WOLFENSTEIN PARAMETERS. UNITARITY TRIANGLE

From the values of the modulus of elements of the CKM matrix, which we
discussed in the previous section, it follows that quark mixing angles are small
and there exists a hierarchy of mixing between different families. In fact, in the
standard parametrization of the CKM matrix we have

Vud = ci13c12, Vs = c13812, Vep = 13523, Vip = s13€7 % (114)
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From these relations we find

Vu Ve
o = Vo s13=Val- (115

S12 = y 823 = )
\/|Vud|2+|vus|2 \/|Vud|2+|Vus|2

From (81), (86), (97), (101), and (115) for the parameters s;; we find

S19~2-1071 S93~4-1072, s13~4-1073. (116)
Let us introduce the parameter
A= S12. (1 17)
We have )
So3 N2, s13 5>\3. (118)

Thus, there exists a hierarchy of angles of the mixing between different quark
families. The strength of the coupling between the families is determined by the
degree of the parameter \.

Wolfenstein [62] proposed a parametrization of the mixing matrix which
takes into account this hierarchy. Instead of si2, S23, and s13 e~ he introduced
four real parameters A\, A, p and 7 by the following relations:

S12 = /\7 §23 = 14/\27 S13 e_ié = A)\g(p — i’l]). (1 19)

Let us develop elements of the CKM matrix over the small parameter A. Keeping
terms of the order of \* for the CKM mixing matrix V' we have

1 1
I e A AX3(p—i
2 S (p—in)

V= 7A+%A2)\5(172(p+in)) 1,%>\2,é>\4(1+4A2) AN? . (120)

AN3 (17 (17%,\2) (p+in)) 7A)\2+%A)\4(172(p+i7))) 17%142)\4
We will obtain now the so-called unitarity triangle relation. This relation follows
from the condition of the unitarity of the mixing matrix
Vv =1. (121)

For the three families of the quarks from (121) we have

Z VJldl V;ile = 6(11(12' (122)
U1 =u,c,t
From (122) we obtain the following relations:

S WadlP=1, > WaslP=1, Y VuelP=1 (123

w1 =u,c,t w1 =u,c,t w1 =u,c,t
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and

> VadVis =0, Y V. Va=0, > ViaVi,=0. (124)

w1 =u,c,t w1 =u,c,t w1 =u,c,t

Let us consider the relations (124). In the first relation, the first and the second
terms are of the order A and the third one is of the order A\°. Thus, in this relation
the main contribution is given by the terms which connect only two families (the
first and the second). In the second relation (124), the first term is of the order
A% and the second and the third terms are of the order A\2. In this relation the
main contribution is also given by the terms which connect only two families (the
second and the third). The only relation in which all terms are of the same (\?)
order is the third relation (124). It has the form

ViaViy + VeaViy + ViV, = 0. (125)

Let us now expand different terms of (125) over the powers of the small parameter
A. We have [63]

ViV, = cizciasiz e = AX3(p + i) + O(\7), (126)

p= (1 - %Xé’) p, = (1 - %Xé’) n. (127)

For the second term of the relation (125) we find

where

VeV = (—s12¢23 — c12523513 € )c13s03 = —AN® + O(NT). (128)
Finally, for the third term of (125) we obtain
ViaVii = (sa3512 — Cazc12813€%°) ci3c3 ==~ AN (1 — (p+1i77)) + O(AT). (129)

We see from the relations (126), (128), and (129) that up to small terms of the
order of A7 all terms in (125) are proportional to A\3.
Let us rewrite the relation (125) in the form

VudVyy ViaVi,
— + — =L (130)
(_Vcdvcb) (_Vcdvcb)
We have* .
Mzﬁ-l—iﬁ:‘/ﬁQ—i—ﬁQew (131)

(—=VedVep)

*It is obvious that the ratios of the products of the CKM matrix elements in (130) are invariant
under phase transformation (49).
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and .
V;‘/d‘/;gb

(=VeaV3)
Thus, the unitarity relation (130) takes the form

(p+im)+ 1 —(p+in) =1. (133)

This relation can be presented as a triangle
in the complex (p,7) plane (see Fig.1). It is
called the unitarity triangle. L A@)
From (132) and (133) for the angles a
and (3 we have* -

— ( VudVJb)
Y=arg | T ) r

VeV,
’ a3 g
5= arg (—VCdV“f). C(0,0) B(1,0) p
ViaVi, . o .
Fig. 1. The unitarity triangle. The
From (78) and (131) it follows that the angles a= ¢2, ﬁ = ¢1, v = ¢3 are
angle v coincides with the CKM angle . For shown
the angle o we find

=1—(p+in) =/ (1—p2+iPe ™. (132)

15|

ViaVis )
a=nm—0F—vy=arg | ———-2 |. (135)
! g( VuaVigy
The square of the unitarity triangle is equal to
=~ 1
S==-1-7.
5 1
From (131) we find
VudVeal Vi Vea — — | .
—— U0 e — 54 if. (136)
VeaP Vo2~ 271
From this relation we have
J
= o e 30 (137)
1 VeaPIVaaP?

where J is the Jarskog invariant (63). Thus, the square of the unitarity triangle
is given by

5~ 1 J

S=- —5—F7. (138)
2 [Veal?[Ven |?

*Other notations for the angles of the unitarity triangle, which are often used in literature, are:

P1=0; p2=0; P3=1.
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For the square of the unitarity triangle, given by the relation (130), we have [31]
J. (139)

The relations (124) are conditions of orthogonality of the columns of the matrix V.
Additional three relations can be obtained from the conditions of orthogonality of
the matrix V' lines. We can easily see that the only relation in which all terms
are of the same \® order is the condition of the orthogonality of the first and the
third lines:

> VaaVig, =0. (140)

di=d,s,b

This relation after expansion of different terms over the powers of the parameter A
also takes the form of relation (133).

6. EIGENSTATES AND EIGENVALUES OF THE EFFECTIVE
HAMILTONIAN OF THE M° — M° SYSTEM

We will obtain here eigenstates and eigenvalues of the effective 2 x 2 non-
hermitian Hamiltonian H of the M% — M? system (M° = K©, Bg}S, ...) which
we derived in Appendix B. We have

Happ = pg,Log, L (141)
Here .
i
WH,L = MH,L — §FH,L (142)
and
ap L(l)
= ’ . 143
aH,L < aH,L(z) > ( )

If the wave function at the initial time ¢ = 0 is equal to a1, at £ > 0 we have

: 1
7lmH1Lt7§FH1Lt

aH7L(t)=e aH,L- (144)
Thus, mpy, 1, and I'g 1, are masses and total decay widths of M%’ ;, bosons, particles
which are described by the functions ap ;. We will use the index H for the
heavier particle and the index L for the lighter particle. Thus, we have mg > my.
For the vectors of the states of M(f)L 1, we have

M) =Y ann(a)la), (145)

a=1,2
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where |1) = |[M°) and |2) = |M©) are states of M° and M particles (in the rest
frame system).

Assuming the CPT invariance of the Hamiltonian, we can present the effective
Hamiltonian of the M° — M© system in the form

H=Hy +H", (146)
where
H™ = ( ;21 1%2 ) (147)
From (146) and (147) we have
H"ay 1 = ky,pam,. (148)
Here
kar = pma,r — Hii. (149)

For the eigenvalues g, of the Hamiltonian H"¢ we obviously have
kH,L = FV Hi2Ho. (150)

Further from (148) and (150) we find that ag 1, (2) and ag, (1) are connected by

the relation

H.
ap,L(2) =F H—EGH,L(l); (151)

where ap,1,(1) is an arbitrary constant.
Equation (141) has the following solutions:

1
aHg L = ( T Hgl/ng > aH,L(l) (152)

with
pE,L = Hin F v HiaHo. (153)
Three physical complex parameters £, 7, (masses and total decay width of M(f)L )

and parameter / Ho1 / H12, which characterize mixing of M 0 and MO, correspond
to three complex matrix elements of the matrix H (Hy1, Hie2, and Hay).

Let us choose
VH
ag(l) = ——2___ — (154)

VI|Hiz| + |Haz|

aH,I = ( q ) , (155)

We have
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where
H
g=—2 (156)
VI Hiz| + |Ha|
With this choice we have
[p* +1a" =1 and (af; yarr) =1. (157)
The states of M?I’ 1, are given by the following relations:
|Mpy) = p|M°) —q|M°), [M}) = p|M°) + q|M°). (158)

If CP is conserved, in this case Ho1 = Hi and ¢ = p. For the eigenstates of
the Hamiltonian we have

1
V2

Let us make the following remark. We have chosen phases of the states |M )
and | M) in such a way that (see Appendix B)

|M3 1) = —=(IM°) 7 |M?)). (159)

CP |M°) = |MO). (160)

The states |[M°) and |M°) are eigenstates of the Hamiltonians of the strong and
electromagnetic interactions. These interactions conserve quark flavors. This
means that it is impossible to distinguish states |[M°) and |M°) from the states

|MOY = e | M%), |M°) =e " |M°), (161)

where « is an arbitrary phase. -
If for the states of M° and M° we will use |M°)" and |MP°)’, in this case

we have

i

p=e¢"p, ¢ =e"q (162)

The states of MY, ; are invariant under the change of the basis. In fact, we have

(M ) = p'|M°) 5 ¢'|M°) = p|M°) F q|M°) = M} 1). (163)

7. CP VIOLATION IN THE DECAYS OF K9 MESON

The observation of the decay K9 — w7~ marked the discovery of the CP
violation [6]. During more than 30 years the study of decays of neutral kaons
was the only source of the information about the C'P violation. In this section
we will consider in some detail the effects of the C'P violation in the decays of
K? mesons (see [64]).
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Branching ratios for main decay channels of K 27 7, mesons

K2-decay channels | Branching ratio, % || K2-decay channels | Branching ratio, %

K% —rntn~ 68.95 + 0.14 K¢ - nte v, 38.8 +0.27
K% — 79° 31.05 4+ 0.14 Kr —ntu v, 27.19 4+ 0.25
K% — rtn 0 (3.24+1.2)107" K) — 3n° 21.05 +0.23
— — K¢ - atp=n0 12.59 +0.19

The branching ratios of main decay modes of K2 ; mesons are presented in
the Table [32]. ’

As is seen from the Table, K2 meson decays mainly into two pions, and K9
meson decays mainly into three particles: three pions and pion, lepton, neutrino.
Because the phase-space factor in the case of the decay into two particles is much
larger than in the case of the decay into three particles, the time of life of K7, is
much larger than the time of life of Kg [32]:

1 1
L= = (5.1840.04)-10"%s, 75 = o= (0.8953+0.006)-10"1%s. (164)
L S

For the ratio of the widths of K9 and K? we have

I's
= ~ . 165
T, 580 (165)

For the masses of K and K? it was found the value [32]
mg, = (497.648 £ 0.022) MeV. (166)

For the difference of the masses of K? and K2 mesons the following value was
found [32]:

Am =my, —mg = (0.5992 4+ 0.0010) - 10'°% s7* =
= (3.483 £ 0.006) - 1072 MeV. (167)

Let us notice the following approximate empirical relation:

1
5 Ts = Am. (168)

We will consider the C P-forbidden decays

K w7t 477 and KY — 704 7" (169)
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For the states of K, 5 mesons we have
IK?) =p|K®) — q|K), |K§)=p|K°)+q|K"), (170)

where the parameters p and ¢ are given by (154) and (156), respectively.
The |K2, g) states can be presented in another form. Let us introduce the

complex parameter € *

l—q/p _p—q

£= " (171
l+q/p p+g
From (170) and (171) for the normalized |K,(—3 g) states we find
1 _
K} 5) = —m=—=—==[(1+&)|K°) F (1 - |K")]. (172)

2 (1+1€P)
If C'P is conserved, in this case € = 0 and for the states of the long-lived and
short-lived kaons we have
1

V2

The states |Kg71> are eigenstates of the operator of the C' P conjugation:

K3 ,) = —=(IK°) 7 |K?)). (173)

CP |K3,) =F|KJ,). (174)

The states | K7 ) can be presented in the form

1 _
KV = ———(|K9) +¢ KV)),
|KL) (1+|€|2)(| 2) +é K7))
) (175)
K% = ————(|K?) + ¢ K9)).
K8) = s (KD + e K3)
Let us introduce the measurable parameters
(roa ITIKY) (TR 176)

Mt = 7=+ 70. Moo )
(nt7|T|KS) (nm|T|KS)

which characterize the C'P violation in the decays (169)**. In (176), T matrix is
connected with the S matrix by the relation S =1+ i7"

*The parameter € characterizes C'P violation in the K g g states. Let us stress, however, that €
depends on arbitrary phases of the |K°) and |K©) states.

**In fact, the states |77~ ) and |707C) are eigenstates of the operator of the C'P conjugation
with eigenvalues equal to 1. If C'P is conserved, the state of the long-lived kaon is \Kg), which
is eigenstate of C'P with eigenvalue equal to —1. Thus, in the case of the C'P conservation
N4+~ =100 = 0.
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The complex parameters 14 _ and 799 can be presented in the form

Ni— = [ne—|e"* =, 100 = |noo| ™. (177)

From the analysis of the experimental data it was found [32]

N | = (2.28840.014) - 1073, |ny_| = (2.276 £ 0.014) - 1073,
(178)
¢4 = (43.52 £ 0.06)°, ¢4 = (43.50 £ 0.06)°.

The spin of the kaon is equal to zero, Thus, in the Kg’ g decays two pions are
produced in the S state. Total isotopic spin I of two pions takes the values
0, 1, 2. However, from the Bose—Einstein statistics it follows that the state with
I =1 is forbidden. Hence, the states of two pions, produced in the decays of
K s are superpositions of states with the total isotopic spin equal to 0 and 2.

We have
e =2 0+ )
ont) =[5 o) -2 1)

where |I) is the state of the two pions with the angular momentum equal to zero
and the total isotopic spin equal to I.

The presentation of the states of two pions as a superposition of states with
definite total isotopic spin will allow us to take into account the approximate
|AI| = 1/2 rule, which is valid for the nonleptonic decays of the strange particles.
For example, according to this rule the ratio of the total widths of the decays
Kg — ntn~ and Kg — 7%7% must be equal to 2. We see from the Table that
this prediction is satisfied with the accuracy of about 10%.

Let us consider now the parameters 14 _ and 799. From (176) and (179) we
have

(179)

_ (OITIKD) +1/V3 (2IT|ES) (150)
(0IT|K$) +1/v2 (2|T|KE)
The amplitude (0|T'|K2) is C P-allowed and is allowed by the |AI| = 1/2) rule.
If we divide numerator and denominator of (180) by this «large» amplitude in
the linear over small parameters approximation we find

ny_ ~e+¢e, (181)

where o
(O]T'|KT)
(O|T'|K)

€ =

(182)
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and

, 1 <<2|T|K2>_ <2|T|Kg>> (183)

~ V2 \(OITIKY) ~ © (0IT|Ks)

Analogously, for 199 we obtain
oo ~€—2 ¢, (184)

Thus, we can characterize the C'P violation in the decays (169) by the parameters
e and ¢'*. From (183), we can expect that |[¢'| < |e|. As we will see later,
experimental data confirm this expectation.

All existing data on the investigation of effects of the C'P violation in decays
of K are described by the Standard Model with three families of quarks. It is
interesting, however, to mention other alternatives. Historically the hypothesis of
a superweak interaction [7] was important. It was suggested in [7] that effects
of the C'P violation in the decays (169) can be explained by existence of a new
interaction which violates C'P and changes the strangeness by two units.

In order to explain the idea of the superweak model, let us consider the
relation (171). Taking into account (154) and (156) we find

- Hyip — Hyy (185)
(VHi2 + VHo1)?

Obviously we have

(VHig + /Ho1)? = &(\/Hig + /Ho1)* + 4v/Hi2Ho; . (186)

From (153) and (186) we find

2(A — A
(V/Hiz +V/Hzn )? = _20w = As) 1L_ > s). (187)
Thus, we have
3 Hip — Hoy

= — . 188
1—¢e2 2(>\L - )\s) ( )
Taking into account that |é] ~ 2- 1072 and 'z, /T's < 1, from (188) we find the

following relation:

e~ H12 - 7_(21 7 (189)

2 (Am + %Fs)

where Am = my — mg.

*Let us notice that parameters ¢ and €’ do not depend on arbitrary phases of |K?) and |K©).
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It is shown in Appendix B that in the effective Hamiltonian H enters linear
in the interaction term (see (B.32)). Taking into account that the usual weak
interaction Hamiltonian changes the strangeness by one unit, we have

(K°|Hyw|K°) = (K°|Hsw|K®) # (K°|Hsw|K"), (190)

where Hsw is a Hamiltonian which violates C'P and changes the strangeness by
two units. It is evident from (189) that if such interaction exists, the parameter €
is different from zero.

In order to estimate the effective constant G'sw, which characterizes the in-

teraction Hgw, we will use the relation (189). Taking into account that Am ~

1
3 I's we have

_ GSW -3
~ ~ 10 191
|€| GQFm%{ ) ( )

1 . . .
where G ~ 10_5—2 is the Fermi constant and my is the mass of the kaon.
m

Thus, effects of the g’P violation in the decays of K can be explained if the
constant of |AS| = 2 interaction which violates C' P is given by Gsw ~ 107% Gp,
i.e., is much smaller than the Fermi constant. This is the reason why this
interaction is called superweak.

Let us consider the parameters 74— and 7y in the case of the superweak
interaction. From (175) and (176) we have

(ntn~|T|K2) + é(ntm~ |T|Ky)
M- = - ~ - . (192)
(mtn=|T|Ky) + é(ntn—|T|K>)
In the superweak model (777~ |T|K2) ~ 0. We have
Ny =& (193)

0

Analogously, for the decay K; — 7%7% we find

Noo = €. (194)

Thus, if the superweak interaction is the origin of the effects of the C'P violation,
observed in the decays K; — mm, we would have

Ta— = Ti00- (195)

From (181), (184), and (195) we conclude that in case of the superweak
interaction € = 0.

Taking into account linear in €’/e terms, from (181) and (184) we have in
the general case

e e
[Ny |* ~ |e]? (1 + 2Re?> , |noo)? =~ |€? (1 - 4Rez> : (196)
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From this relations we find

/ 1 2
Re < = - (1 _ Imool 2) . (197)
e 6 4|

The ratio |19o|?/|n4+—|?> was measured in spectacular NA48 [8] and KTeV [9]
experiments. It was found from the data of these experiments that

!/ !/

Re = = (14.7+£2.2)-10~* (NA48), Re= = (20.7£2.8)-10~* (KTeV). (198)
€ €

Thus, it was proved that the parameter € is different from zero and is much
smaller than the parameter €. Therefore, it was proved that effects of the CP
violation, observed in the decays (169), cannot be explained by the superweak
interaction. It was shown that the measured value of the parameter Re€'/e can
be explained by the SM (see [26]).

We will consider now the expressions (182) and (183) for € and €’. Neglecting
quadratic in small parameters terms, for ¢ we obtain the following expression:

(OIT'|K2)

For the parameter ¢’ we find
p_ 1 TQTIKy) <2IT|K1>] _
=7 [omwy T O wmRy
_ LTIk [<2|T|K2> OS] e
V2 (O|T|Kq) [(2|T|K:)  (0|T|Kqy)]’
where
(IIT| K1 2) = %(<I|T|K0> + (I|T|\K°), I=0,2. (201)

Let us consider the matrix elements (I|T’|K°) and (I|T|K°). From the unitarity
of the .S matrix we have
STT =Tt (202)

From this relation we find

{ISTTIKC) = (11T |n)(n|T|K°) = (KO|T|1)". (203)

n

In the sum over intermediate states |n), there enter |I), ) ) and other
states. The main contribution gives the two-pion state |I): the state of three
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pions is forbidden by the conservation of G parity in the strong interaction®,
contributions of other states are suppressed by phase space factor and by a. We
have

(118T[1) = e=21, (204)

where &5 is the phase of the m — 7 scattering in the state with the total isotopic
spin equal to I, the angular momentum equal to zero and the energy in the
center-of-mass system equal to mg.

Further, from the CPT invariance it follows that

(K°|T|I) = I|T|K"). (205)

Thus, from the unitarity of the S matrix and the CPT invariance we find that the
matrix elements (I|T|K°) and (I|T|K°) are connected by the following relation:

e 201 (I|T|K°) = (I|T|K°)*. (206)
Let us introduce the complex amplitudes A; and A; in the following way:
(I|T|K°) = €1 A7,  (I|T|K°) = e A;. (207)
From the relation (206) we find that
Ap = A3 (208)
Thus, we have
(I|IT|K%) = e A, (I|T|K°) = ™1 A3. (209)
In the case of the C'P conservation we have that
(I|T|K° = (I|T|K°) (210)

and
Ar = A7. 211)

Now let us return back to relations (199) and (200). Taking into account (209)

we find m A
_ . .ImAy

= 212

€ e—l—zReAO (212)

and

r_ L iabotn/2) Re 4y {ImA? ImAO} , (213)

€= \/5 ReAQ ReAg B Rer

*The G operator is a product of the C' operator and the operator of the rotation at the angle 7
around the second axes in the isotopic space. G parity of the pion is equal to —1.
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From these relations we can conclude the following:

1.
0
bo =02 =00+ 7, (214)
where ¢ = arg ¢ is the phase of the parameter ¢/. From the analysis of the

(m — m)-scattering data it was obtained [65]

8y — 8o + g = (42.3 £ 1.5)°, 215)

Ree = Ree. (216)

_ The parameter € depends on the choice of arbitrary phase of the |K ) and
|K?) states. We see from (216) that Re € is a rephrase invariant quantity.
For the phase of the parameter ¢ the following relation holds:

2A
¢ >~ arctan Fsm’ 217)

where ¢, = arg e. This relation is based on the Bell-Steinberger unitarity relation
which we derive now. We have

Har, = Apar, asHb = Nsak. (218)

If we multiply the first equation by afg from the left and the second one by ar,
from the right and subtract from the first relation the second one, we find

(akTar) =i(\p — A5)(akar). (219)
This relation can be rewritten in the form
(KsT|KpL) =i(AL — A5)(Ks|KL). (220)

The relation (220) is the Bell-Steinberger unitarity relation. For the left-hand
side of this equation we have

(Ks|T|KL) =21y (Ks|Hwli)(i| Hw |KL)5(Ei — m). (221)
i
In the sum over intermediate states |¢) the main contribution gives two-pion states.
Taking into account these states we have
(Ks|T|KL) ~ny T(Ks — ntn) 4+ nool(Ks — 7°x°). (222)
Now, according to the |AI| = 1/2 rule we have

INKs — ntr) ~ 2T (Kg — 797°). (223)
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From (181), (184), (222), and (223) we find

2 1
(Ks||Kp) ~ (577+— + gﬁoo) I's =elg, (224)

where I'g is the total width of Kg meson. Further, we find

2Ree€ _
(Ks|KyL) = T ~ 2Re€ = 2Ree. (225)

From (220), (224), and (225) we obtain the following relation:

1
el's =2 (iAm + 5F5> Ree. (226)

If we take the real part of (226) we obtain identity. From the imaginary part of
(226) we find the following relation:

(227)

Thus, the phase of the parameter € is given by the relation (217).
The mass difference Am and the width I'g are connected by the empirical
1
relation Am ~ 5FS. Thus, ¢ ~ 7/4. The experimental data are in agreement
with this prediction of the theory. We have [32]

¢ = (43.5£0.7)°. (228)

From (215) and (228) it follows that phases of the parameters € and ¢ are
approximately equal

¢6 =~ d)e“ (229)

Up to now we considered effects of the C'P violation in the two-pion decays
of K9 meson. Effects of the C'P violation were observed also in the semileptonic
decays

K) a7 lty, K =o'l (230)

Let us determine the C'P asymmetry

INKY - 1Ty) —T(KY - 7t p
a, = L7 ) — I L _f), (231)
INKY - 7= lty) + (K} — ntl—p)

where I'(Kf, — 7~ 1Ty;) and T'(K9 — 7t~ ;) are the total widths of the decays
K — 7%y, and K1, — nt1~ 1. If the CP is conserved, the asymmetry Ay, is
equal to zero. In fact, in this case initial state is the eigenstate of the operator of the
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CP conjugation and final states are the C'P conjugated states. The probabilities
of the transitions to such states must be equal in the case of the C'P conservation.

Let us consider the asymmetry Ay. The semileptonic decay of the K" me-
son, which is the bound state of § and d quarks, is due to the transition
5 — @+ 1" + 1. Analogously, the decay of the K° meson, which is the
bound state of the s and d quarks, is due to the transition s — u + 1~ + 7.
Thus, the decay K° — 7 Ity (AQ = —1, AS = —1) is allowed and
decay K — 7717y, (AQ = —1, AS = 1) is forbidden, and the decay
K% — 7l 5, (AQ =1, AS = 1) is allowed and K° — 7t~ (AQ = 1,
AS = —1) is forbidden. This corresponds to the AQ = AS rule. Further, from
the CPT invariance it follows that

(7717 |T|K°) = (K°|T |7~ 1T 1). (232)
If we took into account that in the Born approximation 7' = T'T, we have
(r T y|T|K°) ~ (x~ 1T |T|K°)*. (233)
From (172) and (233) we find

_J14+€e?—]1—¢? 2Ree

= = ~ 2Reé. 234
SRR LN i >

Now, taking into account (216), we finally have
AL ~ 2Ree = 2|e| cos Pe. (235)

From experimental data for the asymmetry Ay, it was found the value [32]
Ap = (3.3240.06) - 1073, (236)
From (215) and (236) for the parameter |¢| was found the value
le| = (2.232 + 0.007) - 1073, (237)

In order to connect |e| with parameters, characterizing CKM mixing matrix, it
is necessary to calculate quark box diagrams which determine the amplitude of
K% — KO transition. Taking into account the QCD corrections for the parameter
€| it was found the following expression:

le| = A%ai[A%b(1 — p) + ¢, (238)

where a, b, and c are given in [26]. Equation (238) gives hyperbola in p, 7 plane.
It is used in the standard unitarity triangle fit which we will discuss later.
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8. CP VIOLATION AND MIXING IN B° — B SYSTEM

We will consider in this section the effects of the C'P violation in the decay
of the mixed B® — BY system. These effects were investigated in detail in the
BaBar and the Belle experiments at the asymmetric B factories, and in the DO
and the CDF experiments at the Fermilab. At the B factories BY and BY) mesons
are resonansly produced in the decays of Y(45).

The states of B(}{ and B% mesons, particles with definite masses and widths,
are given by the following relations:

|BY..) = p|B% F q|BY), (239)

where p and ¢ are connected with nondiagonal elements of the effective Hamil-
tonian by the relations (154) and (155). Let us stress that we have chosen arbitrary
phases of the states |B°) and |B°) in such a way that |B®) = C'P|B°).

The states |B%7 ;) are eigenstates of the effective Hamiltonian H with eigen-
values

1
PHL =MHL 15 To,r. (240)

Here mpy, 1, and 'y 1, are masses and total decay widths of B?{’ 7, mesons. Because
of the large difference in the lifetimes of the short-lived and long-lived kaons it
is possible to produce beams of K? mesons. In the case of the B® mesons the
situation is different. The lifetimes of BY and BY are quite close. Only mixtures
of BY and BY can be studied in experiments.

Let us obtain first the mixed states which are the result of the evolution of
the initial (at ¢ = 0) |B°) and |B) states. From (239) we have

1 _ 1
|BY) = > (IBy) +1BY)), |B°) = Z—q(—lBgﬁ +|B)). (241)
From (241) we find

1, . _
1B%(1)) = %(e_“"” |By) + e~ |BL)) = g4 (1) BY) — %9— (O)IB") (242)

and
R 1 —ipuH —ipr
|B°(t>>:2—q<—e HHL|BY) 4 e 1 |BY)) =
= _gg,<t>|30> +g4(8)]B%). (243)
Here

1 ) )
g+(t) = i(e—wt + et (244)
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Let us present fif 7, in the form

pr=nt gD g =p— g A (245)
Here
u:wzm—iéf, AMZMH—,ULZA’ITL—Z'%AF, (246)
where
m = mH;mL, r= FH‘;FL, Am=mg —myp, AT =Ty —Ty. (247)

Notice that by the definition Am > 0. From (244) and (245) for the functions
g+(t) we obtain the following expressions:

1 . _ .
9x(t) = 5 e (eTIEANE L oz Aty (248)

Let us consider the decays of B and B into a state |f) which is the eigenstate
of the operator of the C'P conjugation

CP |f) =%£[f). (249)

From (242) for the transition amplitude we find

(FIT|B°(t)) = (f|IT|B°)(g+(t) — Apg— (1)), (250)
where (|71BY)
_q
Ap = » ITIEY) (251)
For the transition amplitude (f|T|B°(t)) we have
(FIT|B(t)) = §<f|T|B°><—g_ (t) + Apga (£)- (252)

From (250) we find that the transition probability is given by the expression

D(BO(t) = f) =T(B° = /)(lg+ )] + [\s*lg-(®)*~
—2Re)Arg_(t)gi(t)). (253)

Further, from (248) we have

1 1
lg= () = 5 e 1t <cosh iAI‘t =+ cos Amt> (254)
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and
1 1
g-(t)g’ (t) = -3 e 1t (sinh §AFt + i sin Amt) . (255)

From (253), (254), and (255) for the transition probability I'(B°(t) — f) we
obtain the following expression:

1
L(B(t) — f) = 3¢ YD(BY = )1+ [Af[?)x
1 1
X (cosh EAH + Cy cos Amt + Dy sinh EAFt — S sin Amt) , (256)

where

1—|>\f|2 2Re)\f 2Im)\f
Or . D= Mg = 2T 257
T W L A e W) M A ey S

It is obvious from (257) that parameters C'y, D, and S satisfy the relation
Ci+D}+5S7=1. (258)
For the transition probability I'(B°(t) — f) from (252) we find

L(B® = f(lg-®)F + [ArPlg+ (O -

—2ReAfg4+(t)g™(t)). (259)

From (254), (255), and (259) for the probability I'(B°(t) — f) we obtain
the following expression:

(80 - 1) - |2

2

Pl rB = na+ pP)x

PB(1) — )= 5o

1 1
X (cosh EAH — Cf cos Amt + Dy sinh EAFt + 5S¢ sin Amt) . (260)

If CP is conserved (f|T|B°) = +£(f|T|B"), p = q and Ay = £1. In this case
we have: I'(BY(t) — f) =T(B(t) — f) = e Tal(e TL))T(B? — f).

The quantity Ay, which determines the time dependence of the probabilities
['(B°(t) — f) and T'(B°(t) — f), does not depend on arbitrary phases of the
states of B®, BY, and f. In fact, let us consider the states

|BO>/ _ eia|BO>, |BO>/ — efioz|BO>7 |f>/ — eiﬁ|f>7 (261)
where « and (3 are arbitrary constants. From (154) and (156) we have

¢ =eq, p=eTp. (262)
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From (251), (261), and (262) we find

, _ 4 "ITIBY) _
1= By M (263)

Let us consider now the matrix element I'15. From (B.35) we have

Tyo =21 (B°|Hwli)(i|Hw|B°)§(E — mp). (264)

From this expression follows that the contribution to I';5 is given by the in-
termediate states |i) in which both B and B® mesons can decay. In the Standard
Model transitions to such states are strongly suppressed (see, for example, [26]).
Thus, in the SM we have

[Ti2| < [Mial. (265)
From (153) we find
1 (3 Flg 7 FTZ
Ap=Am —i=Al =2|M 1—-——= 1—- . 266
m m =iz | 12|\/ 2M12> ( 2, (266)

Taking into account (265), from this expression we obtain

N I'io Iip
Am—z§AI‘ =2 |M12| (1 R M12> +O <‘M12

Thus, we have

) (267)
2

Am ~ 2|Mys|, AT ~2Re —|M12| (268)
Let us consider now the mixing parameter ¢/p. We have

q Hyy 2 Hoq
4 _ = . 269
4 Hys Ap (269)

Neglecting terms of the order O(|T'12/Mi2|?), from (267) and (269) we find

i Iy
M, (11— —&>
4. 12 ( 2 M, e~ M7,y (1__1 I‘12) 270)
D M| (1 - iRe T2 | M2] Mo
2 Mio

Let us determine the C'P asymmetry in the case of the decays of BY and B into
the state f which is the eigenstate of the operator of the C' P conjugation

P(B() — )~ D(B(t) — f)
A =t e = prtEw - 27D
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In the SM in the case of the B; mesons

AT
A (272)
Iq
For example, in [66] it was found
AT AT,
—dd = (40.9759) - 107*, = = 012720024, (273)

We will consider B} — BY system. We can neglect ATy in (256) and (260). We
can also neglect ImT'15 /M2 in (270). Thus, we have |¢/p| ~ 1 and from (256)
and (260) for the asymmetry we find the expression

AJC:P (t) = —Cj cos Amt + Sy sin Amd. (274)
In conclusion we will consider the following decays:
BY(BY) — J/V + K . (275)

These decay modes are called golden by the reasons which will be clear later.
Final J/¥ and K¢ ; particles are in the state with [ = 1. Neglecting in the

matrix elements of the decay small terms of the order of ~ 1073 we can put
|Kg) ~ |K1) and |K) ~ |K3). Thus, we find

CP|JJUKY ) =ns,L|J/VKS 1), (276)

where 7s. 1, = F1.

Matrix elements of the processes BJ(Bj) — J/¥ + K§ ; are determined by
decays of the b quark, which are governed by the tree and penguin electroweak
diagrams. If we take into account QCD corrections, the matrix elements of the
process B — J/U + ng are given by the relation (see reviews [25,26])

. G « 5|
/W KSLITIBY = 75 30 ViV | D2 Crln)(/ ¥ K 1|OF | B+

g=u,c k=1,2
10 B
+>Cr (W)(J)¥ K%,L|02|BS>> . @Q17)
k=3

Here Cj(p) are real Wilson coefficients; Of° are 4-quark current—current oper-
ators and O}, are 4-quark penguin operators (for the definitions see, for exam-
ple, [25]).
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For the matrix element of the process By — J/¥ + K¢ | we have

Gr s
(J/¥ K§ |T|Bg) = Z ViVas | D Culi)(J/ ¥ KG L|(O7)T|B)+

q =u,c k=1,2
+Zck<u)<J/\IfK8,L|(OZ)*|BS>>. (278)

Further, we have
(o =Pyt off cp, (0;)' =(CP)"* O; CP. (279)
From (276), (278), and (279) we find

(J/UKY,, |T|BY) nSL £ Vi

q u,c
< | S Crlw) (/W KL 08 1B + S Culi) (/9 K5 ,|011BY) | . (280)
k=1,2 k=3

Let us compare now the matrix elements (J/¥ Kg7L|T|Bg> and (J/U Kg7L|T|Bg>.
The ratio of these matrix elements which enter the expression for the parameter
Asjw Ky, (see (251)) depends on the CKM matrix elements and on the hadronic

matrix elements. However, |V,,, V.5 | ~ 1072 |V, V|, If we neglect in (277) and
(280) the contribution of the terms proportional to |V,; V.| and take into account
that the product V; V¢, is real, we come to the following result:

/ey TBY st
(J7WKS JTIBY ~ "

For the parameter A /g Ko, We find

q
/\J/qugyL =~ ns,LZ—)- (282)

Thus, in the case of the decays (275) the parameter A ;g KY, (practically) is
independent of hadronic uncertainties of the decay matrix elements.

The mixing parameter ¢/p is given by the relation q/p ~ —M,/|Mis]
(see (187)). Main contribution to the box diagrams which determine matrix
element M, gives the virtual ¢t quark. We have

1o e (ViiVia)®, (283)
P
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From (133), (282), and (283) we find

Appwks, = —ns.e”. (284)
Thus, we have
Crwrg, =0, Sywky, = —ns.L sin20. (285)
From (274) and (285) for the asymmetry A?}; 0 (t) we find the following
expression:
A?}} Ko (1) =sin 23 sin Amt. (286)
Asymmetry A?ﬁPK% (t) differs by sign from A?/Inyg (t). We have
A§ﬁp wo (1) = —sin 23 sin Amt. (287)

We came to an important conclusion: the measurement of ¢ dependence of the
CP asymmetries in the decays B(Bg) — J/¥ K§ ; allows one to determine
the angle [ in a model-independent way [67].

0

The asymmetries Aé/I;PKL'S (t) were measured by the BaBar collaboration in
experiments at the asymmetric B factory at SLAC and by the Belle collaboration
in experiments at the asymmetric B factory at KEK. In these experiments the
first evidence of the C'P violation in BY(BY) decays was found and the value
of the parameter sin23 was determined [68,69]. Recently the results of the
measurement of the parameter sin 23 in the experiments which were performed
during 1999-2006 were published [70,71].

At the asymmetric B factories, B} mesons are produced in the decay Y (45) —
Bg + Bg. Flavor of a particle is determined by the tagging another particle. The
proper time ¢ in (274) and other equations are given by the difference between
the proper time of reconstructed and tagged B9 mesons: t = tpee — tiag. Be-
cause the B and BY mesons are practically at rest in Y (4S5) rest frame we have
trec — trag = M, where zrc and ziag are positions of corresponding

Brye
decay vertices and (v is the Lorentz boost of T(45).

In the BaBar experiment (347.5 & 3.8) - 1067 (45) — BY + BY decays were
detected. For the analysis there were used the decays determined by the transition
b — ccs. The decays into the following eigenstates of the C'P operator were
analyzed: J/\I/Kg, J/UKY, \Il(2S)Kg, XclKg, nch and J/\IlKgo.

From the fit of the experimental data the following result was obtained [70]*:

sin 28 = 0.710 £ 0.034 £ 0.019, C = 0.070 £ 0.026 £ 0.018. (288)

*The first error is statistical and the second one is systematical.
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In the Belle experiment 535 - 106 T (4.5) — B9+ BY decays were detected. From
analysis of the decays into J/WK?2 and J/WK? states it was found [71]:

sin 20 = 0.642+0.031 £ 0.017, C = —0.018 £+ 0.021 4+ 0.014. (289)

Thus, the parameter sin 23 is known today with accuracy about 5%. This model-
independent result is very important for the unitarity triangle fit of the experimen-
tal data which we will discuss in the next section.

9. UNITARITY TRIANGLE TEST OF THE STANDARD MODEL

Several groups [72-75] analyze experimental data with the aim to perform
the unitarity triangle test of the Standard Model and to search for effects of
beyond the SM physics. Different groups use different statistical methods of the
analysis of experimental data. We will present here some results of the UTfit
collaboration [72,73] which uses the Bayesian method. Other groups obtain
similar results.

In the standard unitarity triangle fit, the results of the measurement of the
following quantities are used:

Amd
Amyg’

e and sin 20. (290)

Vub
‘ ) Amd;

Vew

From (120) we have

v, A
‘ =MW+t = —— sV P+ (291)

ub
Ve 1—1/2)2

where p and 7} are determined by Eq. (126). Mass differences Amgy and Am are
given by (105). For the ratio Amg/Am, we have

Amd -

9 B
de deBBd
Amg '

mB, f3 Bp,

N[(1-p)% + 7% (292)

The expression for the parameter € is given by (238).
Let us obtain sin 2/ as a function of p and 7. From Fig. 1 we find that

_ 1-5
Snfe—— 1 gD (293)
(1—p)?+7? (1-p)%+7?
From these relations we have
27 (1 p)

sin 28 = (294)

T—pP+7



CP VIOLATION AND UNITARITY TRIANGLE TEST OF THE STANDARD MODEL 1289

7
1.2

1

0.8 sin 23 -7 AM,
0.6F 7 S
0.4

0.2 "

UT,, Vi \

Lol \ed

-1 -0.5

0

[]
1
!
1
\

-0.2

N

I p
Fig. 2. 68 and 95% total probability regions of the allowed values of the parameters p and

7. The values of the quantities |Vus|/|Ver|, Ama, Ams, €, and sin 23 were used in the
fit [72]

From the fit of the experimental data the unique region in the plane of the
parameters p, 1 was found (see Fig. 2).
For the parameters p and 7 the following values were obtained:

p=0.196 £ 0.045, 7 =0.347+0.025. (295)

These values determine the vertex B of the triangle in Fig. 1.

The values of the parameters (290) overconstrain the unitarity triangle. For
example, position of the vertex B can be obtained if only the parameters |Vi,5/Vep|,
Amyg, and Amg, which determine lengths of the sides of the triangle, are used
in the fit. From the result of such a fit the value of the parameter sin 23 can be
predicted. In [72] it was found

sin28 = 0.734 £ 0.043. (296)

We can compare (296) with the measured values of the parameter sin 23, given
by (288) and (289). This comparison illustrates the evidence in favor of the
correctness of the Standard Model.

Recently at the Tevatron in the Fermilab the mass difference Amgs was
measured by DO [61] and CDF [59] collaborations. In the CDF experiment it

was found
Amg = (17.77 £ 0.10 £ 0.07) ps~ . (297)

The Belle collaboration measured the branching ratio for the leptonic decay
B— 14+,
BR(Byq — 7+ v;) = (1.06%3%¢ +0.18) - 107, (298)

From this measurement the value of the constant fp, can be determined.
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The BaBar and Belle collaborations by the investigation of the decays By —
nr, Bqg — pp, Bq — wrm, and By — D* K™ obtained the information about the
values of the angles o and v (see [76]).

In the new analysis of the UTHfit collaboration [73] all these data were used. If
in the analysis only the values of the angles «, 3, and ~y are used, for parameters
p and 7 the following values were found:

71 = 0.204+£0.055, % = 0.317=£0.025. (299)

If the quantities |Vip/Vep|, Amg, Amg, € and the results of the lattice calculations
are used, in this case one obtained

7 =0.197+£0.035, 7 =0.380=+0.025. (300)
From the fit of all the data it was found
7 =0.197+0.031, 7 =0.35140.020. (301)

The fit of all the data is presented in Fig. 3.

7k

1

0.5

-0.5

-1 -0.5 0 0.5 1 P

Fig. 3. Allowed values of the parameters p and 7 (68 and 95% total probability regions
are shown [73]). The values of the quantities |Vis|/|Ves|, Ama, Ams, €, 8, 7, and «
were used in the fit
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From this analysis (and analysis performed by other groups) we can conclude
that existing data are in agreement with the Standard Model. However, it is nec-
essary to stress that accuracy of the experimental data is limited and complicated
QCD calculations are used in the analysis. There is still a room for beyond the
SM physics (see, for example, [25]). In order to reveal it more precise data and
progress in theoretical calculations are mandatory.

CONCLUSION

The Glashow—Weinberg—Salam unified theory of weak and electromagnetic
interactions is an outstanding achievement of the XX century physics. It was
created as a result of a long period of the development of the phenomenological
theory during which violation of P, C [1] and later C'P [6] were discovered
and universal V' — A current X current theory of the weak interaction was pro-
posed [77,78].

The SM predicted a new class of the weak interactions (neutral currents),
vector W+ and Z° bosons and their masses. After 7 lepton was discovered, the
SM predicted that other members of the third family of quarks and leptons (b and
t quarks and the third type of neutrino ;) must exist. All predictions of the SM
were perfectly confirmed by experiment.

Only one prediction of the SM — existence of the scalar neutral Higgs
boson — is still waiting for its confirmation. The search for the Higgs boson will
be one of the primary goals of the future LHC collider at CERN.

With the experiments at the LEP and SLD in the nineties next step in the
testing of the SM started. The precision of these data required calculations of
radiative corrections. At present numerous data of LEP, SLD, BaBar, Belle, CDF,
DO and other experiments are in good agreement with the prediction of the SM.
The fit of all electroweak data allows one to predict the upper bound of the mass
of the Higgs boson (see, for example, [32]): my < 235 GeV at 99% CL.

In 1999, with the beginning of BaBar and Belle experiments at asymmetrical
B factories at SLAC and KEK, a new stage in the testing of the SM started. In
the framework of the SM, violation of the C'P invariance is due to one physical
phase in the unitary 3 x 3 CKM mixing matrix. This phase enters into the unitarity
triangle relation which is a consequence of the orthogonality of different columns
(or lines) of the mixing matrix. The numerous tests of this relation became
possible with new B-factory data. Existing data are in good agreement with the
Standard Model. This agreement confirms:

e The basic assumption of the SM that two sets of quark fields — fields ¢},
which possess definite transformation property and fields of quarks with definite
masses q;, — are connected by unitary transformation.

e The assumption that only three quark families exist in nature.
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It is necessary, however, to stress that the unitarity triangle test is based
not only on experimental data but also on nonperturbative QCD calculations of
relevant matrix elements. A room for a new physics is still open. Improvement
of the accuracy of data and improvement of the accuracy of the lattice and other
calculations is a key problem for the future progress.

We have considered here elementary particle aspects of the problem of the
C'P violation. C'P violation is one of the three famous Sakharov conditions [79]
of baryon asymmetry of the Universe. It is plausible, however, that the observed
in the SM violation of C'P is too small to explain the baryon asymmetry n =
np —ng/ny = (6.14+0.25)-1071° (see [80-82]). Thus, existence of the baryon
asymmetry of the Universe presumably requires additional to the SM mechanism
of the C'P violation.

It is a pleasure for me to acknowledge the ILIAS programme for the support
and theory department of the TRIUMF for the hospitality.

Appendix A

COMPARISON OF M° = M° OSCILLATIONS
WITH NEUTRINO OSCILLATIONS

It is of interest to compare M < MY oscillations with neutrino oscillations
recently discovered in the Super Kamiokande [83], SNO [84] , KamLAND [85]
and other neutrino oscillation experiments [86-88,90,91].

Particles with definite flavor M° and M° (M° = KO, Bg}S, ...) are produced
in strong interaction processes. States of these particles are eigenstates of the
Hamiltonian of the strong and electromagnetic interactions which conserve the
quark flavor. In processes of production of M and MY the effects of the weak
interaction, in which quark flavor is violated, are negligibly small and can be
neglected. After MY and M° are produced, weak interaction plays the major
role. Because of the weak interaction, M° and M° decay and eigenstates of
the total Hamiltonian |M%) and |M?) have different masses and widths. Thus,
M = M?O oscillations are due to the existence of strong interaction in which
quark flavor is conserved and weak interaction in which quark flavor is changed.

Neutrinos have only weak interaction. However, neutrino masses are very
small. In neutrino production and neutrino detection processes, neutrino masses
can be safely neglected. This means that in such processes lepton flavor numbers
Le, L, and L, are conserved: together with lepton [t flavor neutrino v; is
produced , flavor neutrino v; in a charge current process produces [, etc. After
flavor neutrino is produced, small neutrino masses (and neutrino mixing) play the
key role. Because of neutrino masses, in the neutrino propagation different mass
components of the mixed flavor neutrino state acquire different phases. This is a
physical reason for the neutrino oscillations v; < vy (see, for example, [92,93]).
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In the framework of the Standard Model, C'P violation is connected with
the physical phase in the mixing matrix. As we have seen, in the case of two
families there are no physical phases in the mixing matrix. The C'P invariance
can be violated if (at least) three families of the quarks and leptons exist.

In the case of neutral bosons oscillations take place only between two particles
M?° and M?P. In order to reveal C'P violation in the decays of these particles one
must observe effects of all three families of quarks. Because observable particles
are hadrons and not quarks, Jarlskog invariant J does not enter in the quantities
which characterize the C'P violation.

Neutrinos are stable particles. In order to observe effects of the C'P violation
in neutrino oscillations all three neutrinos must be involved in the transition
probability. Only elements of the neutrino mixing matrix and the neutrino mass-
squared differences enter into the transition probabilities. It is natural to expect
that effects of the C'P violation in the neutrino oscillations are determined by the
Jarlskog invariant. We will demonstrate this below.

The Lagrangian of neutrino interaction has the form

cc _ 9 .cc a

L (x) = Wi Jo o (@)W*(z) + hec.,

NC g NC o (A-1)
£50) = -5 L) 7 @),

where the charged current j$C(z) and the neutral current jY©(z) are given by
the expressions

35C () =2 Z (@) yale (),  5°(x) = Z L (z)varvin(z). (A2)

I=e.u,7 I=e.u,7

Here

3
v (x) = Z Ui vir(x) (A.3)
k=1

is the «mixed field». In (A.3), v;(x) is the field of neutrino with mass m;, and U
is the unitary 3 x 3 PMNS mixing matrix [94,95]. For neutrinos, particles with
electric charges equal to zero, there are two possibilities (see [96,97]):

1. If the total lepton number L = L. + L, + L, is conserved, neutrinos v;
are Dirac particles.

2. If there are no conserved lepton numbers, neutrinos v; are Majorana
particles.

The probability of the transition v; — v and v; — vy (I,1' = e, p, 7) during
the time ¢ in the three-neutrino case, we are considering, is given by the following
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expressions (see, for example, [97]):

3 2
Py — ) = > Urie Bt U; (A4)
i=1
and
3 2
P(p, — op) = Z Uy e Bt Uy (A.5)
=1

Here F; ~ p+m?2/2p is the energy of neutrino with mass m; and momentum p.
If C'P is conserved in the case of the Dirac neutrinos, arbitrary phases of the
fields of the leptons and neutrinos can be chosen in such a way that

U = Us. (A.6)

If v; are Majorana particles, from the condition of the C'P invariance we have
(see [98])
Up; = Ui, (A7)

where 7; = £i is the C'P parity of the Majorana neutrino with the mass m;.
From (A.4), (A.5), (A.6), and (A.7) it follows that in the case of the CP
invariance for the Dirac as well as for the Majorana neutrinos we have

P(l/l — I/ll) = P(ﬁl — 17[/). (AS)

If we compare expressions (A.4) and (A.5), we come to the conclusion that
transition probabilities satisfy the following relation:

P(Vl — l/l/) = P(Dl/ — 171). (A9)

This relation is the consequence of the CPT invariance inherent to any local
quantum field theory. It follows from (A.9) that the equality

P(l/l — I/l) = P(ﬁl — l_/l) (AlO)
is a consequence of the CPT invariance. Thus, if the inequality
P(l/l —>l/l/) #P(ﬂl/ — 171), l/7él (A.11)

takes place, it would be a proof of the C'P violation in the lepton sector.
Let us consider now expression (A.4) for the transition probability
P(v; — vy). We have

Py — )= Z Ui US, U Ung e UEi— Bkt (A.12)
ik
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Here

Am3, I
2F 77

where L is the distance between the neutrino production and the neutrino detection

points and Am?, = m? —m?. From (A.12) for the transition probability we find

the following expression:

(E; — Ep)t ~ (A.13)

P(l/l — l/l/) = Z |Ul’i|2 |Uli|2+
A

+2Re > Ui Ui, U U exp | —i —pL). a4
>k

Further, from the condition of the unitarity of the mixing matrix U

> Uiy = b (A.15)
we find
Z |Ul’i|2 |Uli|2 = 51/1 —2Re Z Ul’i Ultk UZ; Ulk~ (A.16)
i >k

From (A.14) and (A.16) for the transition probability we obtain the following
expression:

P(l/l — l/l/) = 6l/l—

2

Am?.
—2Re > UniUp UpiUsk (1 — exp <—i %) L) . (A7)
i>k

From (A.17) we have

Am2,
Py — vp) =6 —2 Y Re (U Ui UsUu) (1 — cos %L) +
i>k

Am%
tL. (A.18
i ( )

+2) Im (UpiUpy UiUk) sin

i>k

Analogously, for the probability of the transition 7; — )y we find

Lo Am2.
Py — 171') =0 —2 Z Re (Ul’iUl/kUliUlk) (1 e QEM ) -
i>k

Am%
tL. (A.19
i ( )

— 2> " Im (UpiU, U Usi) sin

i>k
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Let us introduce the quantity
Jik =ImUy; Uy Uy U (A.20)

In the case of the C'P invariance from (A.6) for the Dirac neutrinos and from
(A.7) for the Majorana neutrinos we find

Jik = (A.21)
From the definition (A.20) we have
Tk =gk gk = gk (A.22)
Further, from the unitarity of the 3 x 3 mixing matrix U we find

> I =0 Im U, U =0, Y Jik =6 ImUj; Uy = 0. (A.23)
, 7

From (A.22) and the first equation (A.23) we have
Jit = Jii = Jii- (A.24)
Further, from (A.22) and the second equation (A.23) we find
JIk =gk = J%. (A.25)
If we introduce the following notation
JZ =1 (A.26)
from (A.24) and (A.25) we have
Jk=+J, U#1, i#k. (A.27)

Thus, in the neutrino case, as in the quark case (see Sec. 2), there exists only one
independent Jarlskog invariant.

Let us consider now the last term of expression (A.18) for I’ # [. Taking
into account (A.22), we find

g ik sin ’”L_

i>k

_ Ami, - Ami, - Amiy
2Jl/l <sm TL —+ sin TL — S TL) . (A28)

It is obvious that
Amiy; = Am3y + Am3,. (A.29)
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Further, for any a and b we have
(a+10)

b
sin a + sinb — sin (a + b) = 4 sin g sin 3 sin 5 (A.30)
From (A.28), (A.29), and (A.30) we find
w . AmZ, . Am} . Am3
22,][/? sin 2Ek L = 8J7] sin 4E12L sin 4EQ?’L><
_ (Amiy + Am3s)
————FL. (A3l
X sin 1B (A31)
Let us determine C'P asymmetry

Aglp = P(l/l — I/l/) - P(l71 — 17[/), l # V. (A.32)

From the unitarity of the mixing matrix and the CPT invariance it is easy to

obtain the following relations:
AST = ACP = -CF. (A.33)

T

In fact, from the unitarity of the mixing matrix we find

> Aif=o. (A.34)

V'=e,u,T
Further, from relation (A.9) we have
AGE = —AGP. (A.35)
From (A.34) and (A.35) we obtain the following relations:
AGP 4+ ASP =0, ASP + ASP =0, ASF +ACF =o0. (A.36)

From (A.36) we easily find relations (A.33). Thus, in the case of three
families there exists only one independent asymmetry.
From (A.18), (A.19), (A.31), and (A.32) we find

Am? Am2. Am?2, + Am?2.
AeCMP=16J sin élnEuL sin ;nEQ‘SL sin( m124+E M)

L. (A.37)

Thus, the C' P asymmetry is proportional to the invariant J. Let us comment this
connection.
The transition probabilities (A.4) and (A.5) are invariant under the phase
transformation , )
Uy — e ' Uy 7, (A.38)

where a; and f3; are arbitrary constant phases. It is obvious that
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1. The CP asymmetry is also invariant under the transformation (A.38).

2. The C'P asymmetry is equal to zero in the case of the C'P invariance.
The Jarlskog invariant .J satisfies both these conditions.

As we have seen there exists only one Jarlskog invariant in the case of
the three-neutrino mixing. This is connected with the fact that only one phase
characterizes the mixing matrix. Let us comment now this last statement. In
the case of the Dirac neutrinos, like in the quark case, one physical C'P phase
characterizes mixing matrix. In the case of the Majorana neutrinos 3 x3 mixing
matrix is characterized by three C'P phases [99]. However, two additional Majo-
rana phases do not enter into expressions for neutrino and antineutrino transition
probabilities [99].

The 3 x 3 PMNS neutrino mixing matrix can be parametrized in the same
way as CKM quark mixing matrix (see (78)). For the Jarlskog invariant we have
in this case

J = —S812513523 sin 56%3612623. (A39)

It follows from (A.37) and (A.39) that in order the C'P asymmetry is different
from zero it is necessary that not only the C'P phase but also three mixing angles
012, 023, and 613 and two mass-squared differences Amgg and Am?, are different
from zero. Thus, in order to reveal violation of the C'P invariance in the lepton
sector all three families must be involved in oscillations.

Appendix B
EVOLUTION EQUATION FOR M° — MY SYSTEM

The physics of the M°? — M? system (M° = K©, Bg}S, ...) is based on the
evolution equation. We will show here that wave functions of such systems
satisfy the Schrodinger equation with nonhermitian Hamiltonian (see [100]).

Let us consider, as an example, K — K9 system. K° and K° mesons are
particles with the strangeness +1 and —1, correspondingly. They are produced in
strong interaction processes in which strangeness is conserved. After K° (K°) is
produced, weak interaction in which strangeness is changed plays the major role:
due to weak interaction particles decay and transitions K° < K9 take place.

We will present the total Hamiltonian in the form

H = Hy+ Hy, (B.1)

where Hj is a sum of the free Hamiltonian and the Hamiltonian of strong and
electromagnetic interactions, and Hyy is the Hamiltonian of the weak interaction.

Let |K°) and |K°) be the states of K° and K in their rest systems. These
states are eigenstates of the Hamiltonian Hy and of the operator of the strange-
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ness S. Assuming CPT invariance of the Hamiltonian of the strong and electro-
magnetic interactions we have

Hy |K°) = m|K"), Hy|K") =m|K") (B.2)
and
S|K®) =|K?), S|K°%) = -|K"), (B.3)

where m is the mass. Due to the CPT invariance the masses of K° and K are
the same.

Because of the conservation of the strangeness by the Hamiltonian Hy, the
vectors |K°) and |KY) cannot be distinguished from vectors

|K0>/ _ eiSa|K0> _ eio¢|}—(—0>7 |K0>/ _ eiSa|R0> — efio¢|}—g—0>7 (B4)

where « is an arbitrary constant phase.
The operators of the C'P conjugation and the strangeness anticommute with
each other

CPS + SCP =0. (B.5)
From this relation we have
SCP|K") = —CP|K"). (B.6)
Thus, we have -
CP|K®) =ncp|K®), (B.7)

where ncp is a C'P phase factor. Taking into account the freedom in the choice
of the phases of the vectors |[K°) and |K°) we can put ncp = 1. In this case we
have
CP|K°% = |K°). (B.8)
In this review we used this choice. However, we demonstrated that measurable
quantities do not depend on the choice of arbitrary phase factors.
Let us consider now the Schrédinger equation for a vector |¥(¢)). We have

0¥ (1))
ot

The formal general solution of equation (B.9) has the form

i = H[T(t)). (B.9)
[W(t)) = e |W(0)), (B.10)

where |¥(0)) is the vector of the state at the initial time ¢ = 0.
It will be convenient to present the solution (B.10) in another form. Let us
denote |n) the normalized eigenvector of the total Hamiltonian. We have

H |n) = E, |n), (n'|n) = dpn. (B.11)
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The vector |¥(0)) can be developed over the vectors |n). We have
=" [n){(n[¥(0)). (B.12)
n

From (B.10), (B.11), and (B.12) we find
= e Pt in) (n|¥(0)). (B.13)

Further for ¢ > 0 we have

| ® oiBt
Tt = — —— dFE. B.14
¢ ori | E— B, +ic (B.14)
From (B.11), (B.13), and (B.14) we find that the solution of equation (B.9)
can be presented in the form

—iEt
QWZ/"G+ dE|(0)), (B.15)

where 1
Gi(F)= ———. B.16
B = 5o (B.16)
We assume now that the initial state [¥(0)) is a superposition of the states of K°
and K° mesons. We have

[T(0)) = Y aa(0)|e), (B.17)

where |K%) = |1) and |K°) = |2).
At t > 0 we have

[w(B) = > aalt)la) + b)), (B.18)

a=1,2

where a1 (t)(az(t)) is the amplitude of the probability to find K° (K°) at time ¢,
and |i) are states of the particles which are produced in decays of neutral kaons
(rm, momw, wlyy, ete.).

From (B.15) and (B.17) for the wave function a,(t) we find the following
expression:

ao (t) = (/| ¥ QM/Z G (BE)|a)e P dE an(0).  (B.19)
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Up to now all our equations were exact. Now we will develop perturbation theory
over the weak interaction. From (B.16) we have

(E— Hy— Hw +1ie) G4(FE) = 1. (B.20)
1
If we multiply this equation by the operator ————— from the left, we obtain
E — Hy + i€
the Lippman—Schwinger equation for the operator G (E):
1 1

G4 (B)

= Hyw G4 (E). B.21
F—Hotic  E—Hytic "V +(E) (B.21)

We will obtain now the matrix element (/|G (E)|a) in the form of perturbation
series. From (B.2) we find*

4 _ 50{’04 1 , " "
(|G (B)|a) = Fomiic  EomTie %;(a |Hy o/} |G (E)|a)+
1 ! . .
T E - mtic > (/| Hwli)(i|G+ (B)|a). (B.22)

Now, taking into account that (i|a) = 0 from (B.21), we find

(i|G+(E)|a) = #ﬁ_“ Z<iIHW|a"><a”|G+(E)|a>+

o’

D (i Hw i) (G (B)la) | (B23)

This equation can be easily solved by iterations. Its solution can be presented in
the form of the perturbation series over the weak interaction. We will consider
only the first term of the series.
From (B.22) and (B.23) we find
(/|G (B)|a) =
0o’ o 1
= — + .
E-m+ie FE-—m-+ie

Y (@ [R(E)|a"){"|G 4 (E)|a), (B.24)

o
where up to the terms of the second order of the perturbation theory we have
(o/|R(E)|o") =

= (o/[Hwla") + > (o/[Hw i) (i|Hw|a") +... (B.25)

1
E—Ei+2'6

*The sum E means sum and integration over corresponding variables in the state |z) and sum

7
over all possible states ).
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In the matrix form equation (B.24) can be written as follows:

1 1

Gi(F) =
+(E) E—m+ie+E—m+ie

R(E) G.(E), (B.26)

where G4 (F) and R(E) are 2 x 2 matrices with elements (o/|G4(F|«) and
(¢/|R(E)|c). This matrix equation can be easily solved. We have

1
FE) = . B.2
G+(P) E—m — R(E) + ic (B.27)
From (B.19) and (B.27) for the wave function a(t) we find
-1 ® e—iEt
t) = — dE . B.28
a(t) 27 / E—m— R(E) + ic a(0) ( )
— 0o

Because |R(E)| < m, the pole in the integral (B.28) is at the point E ~ m. We
dR
have R(E) = R(m)+ (E—m) B +. .. The second term of this expansion
E=m
is much smaller than the first one. We will neglect it. This approximation is
called the Weisskopf—Wigner approximation [101]. In this approximation we
have*

1 T Bt o
where
H =m+ R(m). (B.30)

From (B.29) we come to the conclusion that the wave function of K9 — K©
system satisfies the Schrodinger equation
_Oaf(t)
i
ot

= Hal(t). (B.31)

Let us consider now the effective Hamiltonian H. Taking into account the relation

1 1
=P —imd(E; — B.32
m — E; + i€ m — F; imd( m) ( )

from (B.25) we find _
H:M;%n (B.33)

*We took into account that imaginary parts of the eigenvalues of 7 are negative.
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where

Measo = mbara + (& [Hyw|a) + P> (o' |Hw i) (i|Hw|o)  (B.34)

m—Ei

and
Toro =21 Y (o |Hw|i)(i| Hw|a)d(E; —m). (B.35)

It follows from these expressions that M and I" are hermitian matrices:
Mt=Mm, T'=T. (B.36)

Thus, summarizing, wave function of K — K system satisfies the Schrodinger
equation with effective nonhermitian Hamiltonian 7 which is given by (B.33).

Let us consider M;; (Mss). The first term in (B.34) is the bare mass of K°
(K9). The second and third terms are the corrections to mass. Thus, M1 (Mas)
is the mass of K (K©) with corrections due to the weak interaction. From the
CPT invariance it follows that

My = Mas. (B.37)

From (B.35) it follows that I';; (I's2) is the total decay width of K0 (K©).
Taking into account the CPT invariance we have

1 =Tas. (B.38)
Thus, if the CPT invariance holds, we have
H1i1 = Hao. (B.39)
In the case of the C'P invariance we have
Hi1 = Hoa. (B.40)

and
H1io = Hox. (B.41)

If the relation (B.39) is violated, this means that CPT and C'P are violated. The
violation of the relation (B.41) is a signature of the C'P violation.

The relation (B.41) was obtained under the assumption that the arbitrary
phases of the states are chosen in such a way that |[K°) = CP |K°). If we
change the basic states and instead of |K°) and |K?) will use |[K°)" = ei® |K©)
and |K%) = e~ |K?), we will have

Lo =e MUHY,. (B.42)
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Thus, there is no any relations between the phases of the nondiagonal elements of
the matrix H in the case of the C'P invariance. Only the violation of the relation

[Hi2| = [Ho| (B.43)

is a signature of the C'P violation.

Let us notice that in the case of T' invariance we have

|Hi2| = [Ha1l. (B.44)

It is obvious that all relations we derived here are also valid for BY , — B9 _,

DY — DO and other systems.

O 0 N N W B~ W N =

—_ = =
N = O

13.
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