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We review the nonanticommutative Q-deformations of N=(1, 1) supersymmetric theories in
four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic
Grassmann analyticity. The associated ˇeld theories arise as a low-energy limit of string theory in spe-
ciˇc backgrounds and generalize the Moyal-deformed supersymmetric ˇeld theories. A characteristic
feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the
Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished
by preserving the SO(4) ∼ Spin(4) ®Lorentz¯ symmetry and the SU(2) R-symmetry. We present
the superˇeld and component structures of the deformed N=(1, 0) supersymmetric gauge theory as
well as of hypermultiplets coupled to a gauge superˇeld: invariant actions, deformed transformation
rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the
Abelian case. For the charged hypermultiplet in an Abelian gauge superˇeld background we construct
the deformed holomorphic effective action.
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¶μ¸É·μ¥´μ ¤¥Ëμ·³¨·μ¢ ´´μ¥ £μ²μ³μ·Ë´μ¥ ÔËË¥±É¨¢´μ¥ ¤¥°¸É¢¨¥.

PACS: 12.60.Jv

To the memory of Julius Wess

1. INTRODUCTION

By now, the concept of supersymmetry has been organically incorporated
into modern high-energy theoretical physics. Originally, it was introduced at the
mathematical level as a possible kind of new symmetry which extends the standard
space-time symmetries by spinorial generators and relates bosons and fermions.
Since then, the consequences of the supersymmetry hypothesis for particle physics
have proved so fruitful that today it is hardly possible to doubt its validity. At
present, the quest for supersymmetric partners of the known elementary particles
is one of the main occupations of the forthcoming LHC experiments∗.

Let us mention the most impressive achievements of supersymmetry. First of
all, it yields a uniˇed setup for describing bosons and fermions. In the Standard
Model, it suggests a natural solution of the hierarchy problem. In grand uniˇcation
models, it predicts the single-point meeting of the three basic running couplings
(see, e.g., [2]) and solves the problem of the proton lifetime. Finally, the most
popular candidate for unifying gravity with quantum physics, String Theory, is to
large extent based on the concept of supersymmetry. Supersymmetric theories in
various dimensions originate from the low-energy limit of string theory with an
appropriate choice of background manifold. New applications of supersymmetry
regularly appear in various areas. The present review is devoted to a recent such
development.

We will be concerned only with four-dimensional supersymmetric theories.
The algebra of Poincar	e supersymmetry in 4D Minkowski space is characterized
by the number N of fermionic spinorial generators. N=1 supersymmetry is
referred to as simple, featuring only two two-component spinorial generators Qα

and Q̄α̇. The spinorial generators of extended supersymmetry (with N>1) carry
an index k of the fundamental representation of the R-symmetry group SU(N ).
To date, the N=1 supersymmetric theories have been studied most thoroughly,
both at the classical and at the quantum level, due to the existence of well estab-
lished superˇeld techniques (see, e.g., [3, 4]). Furthermore, only N=1 theories
are really interesting for phenomenological applications. On the other hand, theo-
ries with extended supersymmetry exhibit quite remarkable and unique properties.

∗The phenomenological aspects of supersymmetry are discussed in detail, e.g., in [1].
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For instance, N=2 supersymmetry imposes so severe constraints on the quantum
dynamics that it becomes possible to ˇnd exact expressions (and values) for some
important quantities. It is known that N=2 supersymmetric theories are one-
loop exact due to the so-called ®nonrenormalization¯ theorems. Moreover, the
low-energy quantum effective action in N=2 supersymmetric gauge theory can
be exactly evaluated nonperturbatively (the so-called SeibergÄWitten theory [5]).
However, among the supersymmetric ˇeld theories, the unique place belongs to
the N=4 supergauge model. It possesses the maximal number of supersymme-
tries admitting spins not higher than one. The restrictions of N=4 supersymmetry
on the quantum structure of this theory turn out to be so strong that they ensure
ultraviolet ˇniteness of this theory (i.e., it contains no quantum divergences at
all). Also N=4 supergauge theory is most intimately related to superstring theory,
e.g., via the renowned AdS/CFT correspondence (see reviews [6]).

Since there is no experimental evidence for supersymmetry at the energies
achievable by now, we must assume it to be broken, leading to the problem
of appropriate theoretical mechanisms for such breaking. One possibility is the
so-called soft breaking of supersymmetry. It is used in supersymmetric gauge
theories and adds to the action certain mass terms which preserve gauge in-
variance but break supersymmetry. If supersymmetry is spontaneously broken,
auxiliary ˇelds develop nonvanishing vacuum values and spinorial Goldstone
ˇelds (goldstini) appear. Standard methods of supersymmetry breaking can ruin
the remarkable quantum properties of supersymmetric theories or, at least, limit
the range of their applicability. Therefore, the search for and study of alternative
supersymmetry breaking schemes are of clear importance.

A new mechanism for breaking space-time symmetries in quantum ˇeld the-
ory arises from the hypothesis of noncommutativity of the space-time coordinates,

[xm, xn] = iϑmn = const. (1.1)

Here, the constants ϑmn are the parameters of the deformation of the commu-
tative algebra of functions given on standard Minkowski space with coordinates
xm. In the noncommutative ˇeld theory based on the relation (1.1) [8,9], Lorentz
invariance is broken but translation invariance is still alive. On general ˇndings,
noncommutativity is implemented by inserting the so-called �-product every-
where. In the case of deformation (1.1) the �-multiplication on ˇelds is realized
with the help of the pseudodifferential operator P (the Poisson structure operator):

φ(x) � ψ(x) = φ eP ψ, where P =
i

2
←−
∂mϑmn−→∂n. (1.2)

For constructing the classical action of noncommutative theories it sufˇces to
replace the standard multiplication of the ˇelds in the undeformed Lagrangian
by the �-multiplication (1.2). In this approach, the free part of the action pre-
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serves Lorentz invariance, while the breaking of Lorentz invariance due to the
deformation comes out only in the interactions.

The relation (1.1) can be employed also to deform a superspace. However,
the noncommutativity of bosonic coordinates alone does not trigger any breaking
of supersymmetry. Formally, one can deform the algebra of both even and odd
coordinates in superspace (see, e.g., [7]). For Minkowski signature, however, the
deformation of the fermionic superspace coordinates is not very well elaborated
since it is very difˇcult to simultaneously maintain reality, �-product associativity,
and the preservation of chiral supersymmetry representations in the noncommu-
tative theory (some attempts to overcome this problem were recently undertaken
in [10] and [11]).

In the Euclidean version of N=1 superspace, in contrast, the Grassmann-odd
coordinates θα and θ̄α̇ are not related by complex conjugation. We speak of
Euclidean N=(n/2, n/2) supersymmetry denoting the number of left-chiral and
right-chiral (antichiral) spinorial generators in the superalgebra. In N=(1/2, 1/2)
supersymmetric theories formulated in Euclidean superspace it is therefore con-
sistent to deform the left-chiral fermionic coordinates [12],

{θα, θβ} = Cαβ = const while {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0, (1.3)

thereby replacing a Grassmann algebra with a Clifford algebra. The parameters
Cαβ deform the algebra of functions on N=(1/2, 1/2) superspace. The remaining
(anti)commutativity relations in the chiral basis are not altered, in order to preserve
chirality. If such a nonanticommutative deformation is introduced exclusively in
the left-chiral sector of the superspace, the original N=(1/2, 1/2) Euclidean
supersymmetry gets broken to N=(1/2, 0). It is obvious that the opportunity of
such a half-breaking of supersymmetry exists only in Euclidean superspace.

We point out that the existence of nonanticommutative deformations preserv-
ing chirality derives from superstring theory [12Ä14]. Since the spectrum of IIB
supergravity contains the four-form potential, the N=(1, 1) superstring provides
a self-dual ˇve-form ˇeld-strength background, which in ˇrst approximation is
assumed to be constant. After a compactiˇcation to the orbifold C3/(Z2 × Z2)
one obtains a four-dimensional N=(1, 1) superstring in the background of a con-

stant self-dual graviphoton ˇeld strength Fαβ (with F α̇β̇ = 0, i.e., one considers
Euclidean space). It turns out that the correlation functions 〈θα(τ)θβ(τ ′)〉 are
proportional to the constant ˇeld Fαβ , whereas those involving the conjugate
variables θ̄α̇ are trivial. In the effective low-energy ˇeld theory, such string
variables become fermionic coordinates of a superspace with precisely the non-
trivial anticommutation relations (1.3). String models in the background of a
constant self-dual gauge ˇeld can have interesting phenomenological properties.
For instance, it was shown in [14] that the gluon potential in N=(1/2, 1/2)
supersymmetric theories can be modiˇed by a nonanticommutative deformation
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such as to acquire a nontrivial vacuum expectation value, which may by related
to quark conˇnement.

Field theories deˇned in Euclidean superspaces with deformed anticommu-
tation relations of the type (1.3) are referred to as N=1/2 (or N=(1/2, 0))
nonanticommutative theories. These theories possess a number of attractive prop-
erties. For example, it was established in [15Ä19] that the N=1/2 supersymmet-
ric WessÄZumino model and the N=1/2 supersymmetric gauge theory inherit
the renormalizability of their undeformed prototypes. In the Lagrangians of these
models, nonanticommutative deformations (1.3) give rise to additional terms poly-
nomial in the deformation parameters Cαβ . These terms can be treated as new
interaction vertices, the powers of Cαβ playing the role of coupling constants with
negative mass dimension. According to the standard lore of quantum ˇeld theory,
vertices should give rise to nonrenormalizable divergences. However, the extra
terms brought into the action by the nonanticommutative deformations appear

in a nonsymmetric way (they are not accompanied by similar terms with Cα̇β̇),
and the renormalization of such theories requires special analysis. For instance,
in [15, 16] it was found that a single new term was generated at quantum level,
and the nonanticommutative WessÄZumino model is multiplicatively renormaliz-
able. For the N=1/2 super-YangÄMills model it was shown [19] that all new
divergences owed to the nonanticommutative deformation can be eliminated by
a shift of one spinor ˇeld. As a result of these studies, all considered N=1/2
theories were found to be renormalizable and, hence, may be of phenomeno-
logical interest (after performing a Wick rotation to the Minkowski signature).
Furthermore, the effective action of the N=1/2 supersymmetric WessÄZumino
model and the YangÄMills theory was studied in [20].

Let us turn to the extended supersymmetry and its nonanticommutative de-
formation. We consider Euclidean N=(1, 1) superspace with Grassmann coor-
dinates θα

i , θ̄α̇j with i, j = 1, 2 and α = 1, 2 and α̇ = 1̇, 2̇. The left-chiral
deformation (1.3) generalizes to [21,22]

{θ̂α
i , θ̂β

j } = Cαβ
ij = const, (1.4)

with all other (anti)commutation relations between chiral coordinates of the
N=(1, 1) superspace remaining undeformed. The constant tensor Cαβ

ij decom-
poses into irreducible pieces,

Cαβ
ij = C

(αβ)
(ij) + εαβεijI. (1.5)

Putting all components but Cαβ
11 to zero, we recover the deformation (1.3). Var-

ious types of such deformations were studied in [23Ä25]. Of particular interest
is the pure-trace deformation Cαβ

ij = εαβεijI . This type was named nonanticom-
mutative chiral singlet deformation [21,22]. Since the chiral singlet deformation
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is fully speciˇed by a single parameter I which carries no indices, it does not
break Euclidean SO(4) invariance or SU(2) R-symmetry. However, it breaks
N=(1, 1) supersymmetry down to N=(1, 0). Apart from these special properties,
chiral singlet deformations can be given a stringy interpretation [26]. Unlike the
N=(1/2, 0) case, for deriving chiral singlet deformations one must consider the
N=4 superstring in the background of a constant axion ˇeld strength compact-
iˇed on the orbifold C × C2/Z2. The stringy origin of nonsinglet deformations
of N=(1, 1) supersymmetry was discussed in [27].

Like for the bosonic deformation (1.1), the relations (1.3) are also im-
plemented in terms of an appropriate �-product, which now operates on su-
perfunctions of the coordinates of the undeformed N=(1/2, 1/2) superspace
z = (xm, θα, θ̄α̇):

A(z) � B(z) = A ePC B with PC = −1
2
←−
QαCαβ−→Qβ , (1.6)

where Qα are the left-chiral supercharges. In the chiral basis the generators
Qα coincide with the partial derivatives with respect to the left Grassmann co-
ordinates, Qα = ∂α. Nonanticommutative models with simple supersymme-
try are obtained from the corresponding undeformed models via insertion of
the �-multiplication (1.6) everywhere inside the corresponding superˇeld La-
grangians [12]. The criterion of preserving some symmetry of the ®classical¯
(undeformed) action in the nonanticommutative case is the commuting of the
symmetry generator with the Poisson operator PC in (1.6).

Expression (1.6) for the �-product can easily be generalized to the extended
supersymmetry (1.4) [21,22]:

A(z) � B(z) = A ePC B with PC = −←−
Q i

αCαβ
ij

−→
Q j

β. (1.7)

Here, the N=(1, 0) supersymmetry generators Qi
α can be chosen in the chiral

basis, Qi
α = ∂/∂θα

i ≡ ∂i
α, and A(z) and B(z) are arbitrary superfunctions on

the extended superspace z = (xm, θα
i , θ̄α̇j). The most appropriate superˇeld for-

mulation of models with N=(1, 1) supersymmetry is provided by the harmonic
superspace approach, which has been worked out in detail for N=2 supersym-
metric theories in Minkowski space [34, 35]. This approach allows one to write
down superˇeld actions for nonanticommutative models in manifestly N=(1, 0)
supersymmetric form, and it also ensures the preservation of supersymmetry at
all stages of the quantum calculations. Nonanticommutative deformations of the
type (1.4) for harmonic superspace were introduced in [21, 22], while nonan-
ticommutative N=(1, 0) models of hypermultiplets and gauge superˇelds were
introduced and studied in [21, 22, 25, 26, 29Ä31]. In these papers, the component
structure of the corresponding classical deformed actions has been established.

The Poisson operators PC generating the nonanticommutative deformat-
ions (1.6) and (1.7) are composed from the supercharges of the unbroken
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N=(1/2, 0) or N=(1, 0) supersymmetries, respectively, hence such deforma-
tions are called Q-deformations. By deˇnition, the operators PC do not commute
with the N=(0, 1/2) or N=(0, 1) supercharges, or generally with the generators
of bosonic symmetries realized on the supercharges Qα or Qi

α. On the other
hand, the operators PC commute with the covariant spinor derivatives Dα, D̄α̇ or
Dk

α, D̄kα̇ deˇned in the corresponding superspaces. Therefore, Q-deformations
preserve superˇeld constraints involving these spinor derivatives, in particular the
conditions of chirality, antichirality, and Grassmann harmonic analyticity. An al-
ternative possibility is the nonanticommutative D-deformation [7], deˇned by the
Poisson operator bilinear in the covariant spinor derivatives. Such deformations
preserve the entire supersymmetry but break chirality, which makes it difˇcult
to construct D-deformed interactions of chiral superˇelds∗. As distinct from the
Q-deformations, no stringy interpretation is known for the D-deformation.

Nonanticommutative Q-deformations (1.6) or (1.7) differ in a crucial aspect
from the bosonic deformations (1.2). Their Poisson operators PC are built of
mutually anticommuting operators satisfying the nilpotency property (Qα)3 = 0
or (Qk

α)5 = 0, respectively. Therefore, the power expansions of the exponentials
in (1.6) and (1.7) terminate at corresponding orders. As a result, the ensuing mod-
els contain only a ˇnite number of local deformation terms in their Lagrangians.
In other words, nonanticommutative theories are always local, as opposed to
Moyal-deformed theories based on (1.2), which bring an inˇnite number of new
vertices into the Lagrangian.

Mathematically rigorous treatment of the �-products for the deformation of
both bosonic and Grassmann coordinates in the framework of noncommutative
ˇeld theory is discussed in [28] using the language of quantum (super)groups
and Hopf algebras. In this interpretation, the broken space-time symmetries and
supersymmetries of the noncommutative theories are not lost but just deformed.
The generators of the deformed (quantum) symmetries by deˇnition act covari-
antly on the �-products of the corresponding ˇelds or superˇelds, which guaran-
tees the invariance of the action under the deformed (quantum) (super)symmetry
transformations. In this review we will not deal with the deformed (quantum)
(super)symmetries, since their implications for nonanticommutatively deformed
theories are still obscure.

The renormalizability and other quantum aspects of theories with nonanti-
commutative Q-deformations of N=(1/2, 1/2) supersymmetry were considered
in detail in [15Ä20]. Up to now, the case of extended quantum supersymmetry
has been studied only for the particular case of chiral singlet Q-deformations

∗The singlet D-deformation of the N=(1, 1) gauge theory was considered in [21, 22]. In this
model, supersymmetry is preserved, the superˇeld geometry in the full superspace is deformed, but
the Grassmann-analytic representations remain undeformed.
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(in the harmonic superspace approach) [32, 33]. In particular, it was found that
the nonanticommutative models of the Abelian gauge superˇeld and the neutral
hypermultiplet are renormalizable. These results were obtained by computing the
divergent contributions to the quantum effective actions. These divergent contri-
butions do not have the form of classical interactions, whence one might conclude
that multiplicative renormalizability is jeopardized. Yet, all the divergent terms in
the effective action can be removed by a simple ˇeld redeˇnition, viz. by a shift
of the scalar ˇeld φ in the vector gauge multiplet; since such a ˇeld redeˇnition
does not in
uence the dynamics of the theory and it follows that the divergences
in the given case are unphysical. Therefore, the considered theories are not only
renormalizable, but actually ˇnite. An analogous situation had been observed
in [19] while proving the renormalizability of the N=1/2 supersymmetric gauge
theory. In this case, the divergences are removed by shifting one of the gaugini
belonging to the gauge supermultiplet. We remark that in the undeformed limit
the actions of the Abelian gauge superˇeld and the neutral hypermultiplet con-
sidered in [32] reduce to free ones. This implies that all interactions in these
deformed theories are caused by the deformation.

In [33], we also studied the quantum structure of the nonanticommutative
charged hypermultiplet model introduced in [29]. This model is of interest be-
cause in the undeformed limit it remains interacting, becoming the N=(1, 1) su-
persymmetric extension of electrodynamics. It is well known that the low-energy
effective action of the latter model is described by a holomorphic potential which
plays an important role in N=2 SeibergÄWitten theory [5]. In [33], by quantum
superˇeld calculations in harmonic superspace, it was established that this nonan-
ticommutative model is renormalizable in the standard sense. In addition, ˇnite
contributions to the low-energy effective action were obtained including the holo-
morphic potential, which turned out to be deformed in the naive sense. Thus, by
now, all Abelian models with nonanticommutative chiral singlet Q-deformation
of N=(1, 1) supersymmetry have been proved renormalizable.

The review is organized as follows. In Sec. 2 we introduce general chiral
Q-deformations of N=(1, 1) superspace and consider chiral singlet Q-deforma-
tions in harmonic superspace. In Sec. 3 we present superˇeld formulations of the
classical actions for the supersymmetric gauge multiplet and hypermultiplet mod-
els with chiral singlet Q-deformation of N=(1, 1) supersymmetry in harmonic
superspace. In Sec. 4 the component structure of these actions in the Abelian case
is given. Section 5 is devoted to proving renormalizability of the Abelian theo-
ries of the hypermultiplet and gauge superˇeld. In Sec. 6 we describe the general
structure of the effective action in the charged hypermultiplet model and evaluate
the leading (holomorphic) contributions to the effective action. In Sec. 6 we also
study the component structure of the new contributions to the low-energy effective
action induced by the nonanticommutativity. In Conclusions the main results are
summarized and some further directions are outlined. Two Appendices contain
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basic relations of Euclidean N=(1, 1) supersymmetry and Euclidean harmonic
superspace.

The review is mostly based on our papers [21,26,29,32,33]. We shall keep
to the notation used in these works.

2. CHIRAL DEFORMATIONS OF N=(1, 1) SUPERSYMMETRY

2.1. Chiral Deformations of N=(1, 1) Superspace. The nonanticommuta-
tive chiral deformations are possible only in the Euclidean superspace. Therefore
we consider the Euclidean N=(1, 1) superspace parametrized by the coordinates
z = (xm, θα

i , θ̄α̇i), where xm are the coordinates of the Euclidean space R4 and
θα

i , θ̄α̇i are Grassmann coordinates. Here α, α̇ = 1, 2 denote the spinor indices,
i = 1, 2 is the index of the R-symmetry group SU(2). Note that the group SO(4)
of rotations of the Euclidean space R4 plays the role similar to the Lorentz group
for the Minkowski space R3,1. The corresponding universal covering group for
SO(4) is Spin(4) = SU(2)L × SU(2)R. Therefore the spinors of different chi-
ralities transform independently with respect to the subgroups SU(2)L, SU(2)R

and they are not related to each other by the complex conjugation. The basic
deˇnitions related to the N=(1, 1) superspace are collected in Appendix A.

It is important to realize that there are two different types of complex conju-
gation in the N=(1, 1) superspace [21]. The ˇrst one, by deˇnition, acts on the
superspace coordinates and superˇelds as follows

θ̃α
k = εkjεαβθβ

j , ˜̄θα̇k = −εkjεα̇β̇ θ̄β̇j , x̃m = xm, ÃB = B̃Ã. (2.1)

Clearly, the conjugation (2.1) squares to the identity on any object and is compat-
ible with both Spin(4) and R-symmetry SU(2) groups of N=(1, 1) superspace,
preserving the irreducible representations of these groups. However, this conju-
gation is incompatible with the reduction of N=(1, 1) supersymmetry down to
N=(1/2, 1/2) since it is impossible to deˇne the invariant under (2.1) subset of
supercharges forming the N=(1/2, 1/2) supersymmetry∗.

There is an alternative conjugation in N=(1, 1) superspace denoted by ®∗¯
and deˇned by the rules

(θα
k )∗ = εαβθβ

k , (θ̄α̇k)∗ = εα̇β̇ θ̄β̇k, (xm)∗ = xm, (AB)∗ = B∗A∗. (2.2)

The conjugation (2.2) is compatible with the reduction of the N=(1, 1) super-
symmetry down to N=(1/2, 1/2) since it allows one to single out the invariant

∗Respectively, in N=(1, 1) superspace with the conjugation (2.1) there are no subspaces closed
under the N=(1/2, 1/2) supersymmetry.
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N=(1/2, 1/2) subspaces in the N=(1, 1) superspace. It respects also the action
of the group Spin(4). However, this conjugation squares to the identity only on
the bosonic coordinates and ˇelds, while for the spinor ˇelds the double con-
jugation yields −1. Therefore it is natural to refer to the involution (2.2) as a
®pseudoconjugation¯. The action of the R-symmetry group SU(2) on N=(1, 1)
supercharges and fermionic coordinates of N=(1, 1) superspace is incompatible
with the pseudoconjugation (2.2), while it preserves the SL(2, R) group which
plays the role of R-symmetry group in this case. This means that the pseudocon-
jugation ®∗¯ corresponds to another real form of N=(1, 1) supersymmetry with
a noncompact group of internal automorphisms. The undeformed real superˇeld
actions in these two different Euclidean N=(1, 1) superspaces are related to each
other and to N=2 supersymmetric actions in Minkowski space by the Wick ro-
tations. It should be pointed out that, when the deformations of supersymmetry
(or other symmetries) are introduced, the actions which are real with respect to
one conjugation can be complex with respect to the other, and vice versa. In
what follows we shall deal with only one type of the conjugation, that is given
by Eq. (2.1).

The chiral deformations of supersymmetry appear most naturally in the chiral
coordinates,

zL = (xm
L , θα

i , θ̄α̇k), xm
L = xm + i(σm)αα̇θα

k θ̄α̇k, (2.3)

where the Euclidean sigma-matrices are given in Appendix 1, (A.3). The super-
translations act on the coordinates zL as follows:

δεx
m
L = 2i(σm)αα̇θα

k ε̄α̇k, δεθ
α
k = εα

k , δεθ̄
α̇k = ε̄α̇k, (2.4)

where εα
k , ε̄α̇k are anticommuting parameters. In the chiral coordinates, the

supercharges and covariant spinor derivatives (A.4) read

Qi
α = ∂i

α, Q̄α̇i = −∂̄α̇i + 2iθα
i (σm)αα̇

∂

∂xm
L

, (2.5)

Di
α = ∂i

α + 2iθ̄α̇i(σm)αα̇
∂

∂xm
L

, D̄α̇i = −∂̄α̇i. (2.6)

Consider now the operator PC deˇned in the coordinate basis (2.3) by the
following expression:

PC = −←−
∂ i

αCαβ
ij

−→
∂ j

β = −←−
Q i

αCαβ
ij

−→
Q j

β . (2.7)

It acts on the arbitrary superˇelds A, B according to the rules

APCB = −(−1)p(A)(∂i
αA)Cαβ

ij (∂j
βB),

AP 2
CB = (∂k

γ∂i
αA)Cαβ

ij Cγρ
kl (∂l

ρ∂
j
βB).

(2.8)
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Here Cαβ
ij are some constants and p(A) is the Grassmann parity of the su-

perˇeld A. The operator PC deˇnes the MoyalÄWeyl �-product of superˇelds
(see (1.7)),

A � B = A ePC B = AB + APCB +
1
2
AP 2

CB +
1
6
AP 3

CB +
1
24

AP 4
CB. (2.9)

The operator PC is nilpotent since (∂i
α)5 = 0. Therefore the �-deformation (2.9)

never produces nonlocalities, in contrast to the deformations of bosonic coordi-
nates (1.1) (see, e.g., [9]).

As the operator (2.7) is built out only of the supercharges, and they anti-
commute with the covariant derivatives (2.6), the product (2.9) preserves both
chirality and antichirality,

Di
α(A � B) = (Di

αA) � B + A � (Di
αB),

D̄iα̇(A � B) = (D̄iα̇A) � B + A � (D̄iα̇B).
(2.10)

What is more important for N=(1, 1) supersymmetric theories, the �-multiplica-
tion also respects the Grassmann harmonic analyticity (see the next subsection for
details). Since all N=(1, 1) supersymmetric Euclidean theories are well deˇned
only if the chirality and harmonic analyticity are preserved (similarly to N=2
models in Minkowski space), it is a consistent deformation of these theories
when the standard multiplication in their classical actions is replaced by the
�-product (2.9).

It is natural to demand the multiplication (2.9) to be consistent with the
reality properties. Since in the Euclidean superspaces there are two different
conjugations (2.1) and (2.2) which respect either SU(2) or SL(2, R) R-symmetry
groups, the preservation of reality puts two different constraints on the parameters
of deformations Cαβ

ij :

˜(A � B) = B̃ � Ã =⇒ C̃αβ
ij = Cij

αβ , (2.11)

(A � B)∗ = B∗ � A∗ =⇒ (Cαβ
ij )∗ = Cαβij . (2.12)

In our further consideration we restrict ourselves to the case of the conjuga-
tion (2.11).

In general, since the constants Cαβ
ij have both the spinor and the R-symmetry

group indices, the Euclidean SO(4) and SU(2)L groups, as well as the
R-symmetry group SU(2), are broken in the theories with the deformations
induced by the �-product (2.9). Moreover, the N=(1, 1) supersymmetry is also
broken down to N=(1, 0) since the product (2.9) involves only the N=(1, 0)
supercharges Qi

α which have nonvanishing anticommutators with the N=(0, 1)
supercharges Q̄iα̇.
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Taking into account the deˇnition (2.7), the �-multiplication (2.9) of two
superˇelds can always be written as

A � B = AB + Qk
αNα

k (A, B), (2.13)

where Nα
k (A, B) is some function of the superˇelds A, B, and constants Cαβ

ij .
Equation (2.13) implies that in the full superspace integral the �-product of two
superˇelds reduces to the usual product,∫

d4xLd4θd4θ̄ A � B =
∫

d4xLd4θd4θ̄AB. (2.14)

In a similar way one can check that under the superspace integral the �-product
of three superˇelds obeys the cyclic property∫

d8zA � B � C =
∫

d8zC � A � B. (2.15)

There is also an analog of the relation (2.14) for the chiral subspace,∫
d4xLd4θA � B =

∫
d4xLd4θAB. (2.16)

Relation (2.16) is formally valid not only for the chiral superˇelds, but also for
general ones A, B (i.e., those given on the full N=(1, 1) superspace). However,
this is not the case for the general N=(1, 1) superˇelds under the antichiral
integral, ∫

d4xRd4θ̄ A � B 	=
∫

d4xRd4θ̄AB. (2.17)

Only for the antichiral superˇelds Φ̄, Λ̄, the equality sign in (2.17) is restored,∫
d4xRd4θ̄Φ̄ � Λ̄ =

∫
d4xRd4θ̄Φ̄Λ̄. (2.18)

Note that in the antichiral coordinates one should use the following expressions
for supercharges and covariant spinor derivatives:

Qi
α = ∂i

α − 2iθ̄α̇i(σm)αα̇
∂

∂xm
R

, Q̄α̇i = −∂̄α̇i, (2.19)

Di
α = ∂i

α, D̄α̇i = −∂̄α̇i − 2iθα
i (σm)αα̇

∂

∂xm
R

, (2.20)

where xm
R = xm − i(σm)αα̇θα

k θ̄α̇k.
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Now, let us deˇne the �-commutators and anticommutators of operators and
superˇelds as follows:

[A �, B] = A � B − B � A, {A �, B} = A � B + B � A. (2.21)

It is instructive to ˇnd the �-(anti)commutators of the bosonic and fermionic
superspace coordinates,

{θα
k

�, θβ
j } = 2Cαβ

ij , [xm
L

�, xn
L] = 0, [xm

L
�, θα

k ] = 0,
(2.22)

[xm
L

�, θ̄α̇k] = 0, {θα
k

�, θ̄β̇j} = 0, {θ̄α̇k �, θ̄β̇j} = 0.

Equations (2.22) tell us that in the chiral basis the �-product affects only the
anticommutator of left-chiral coordinates θα

i .
The constant tensor Cαβ

ij can be decomposed into the traceless part and trace
with respect to the SU(2)L spinor and SU(2) R-symmetry indices,

Cαβ
ij = C

(αβ)
(ij) + εαβεijI. (2.23)

The Poisson operator (2.7) acquires the most simple form in the particular case

C
(αβ)
(ij) = 0:

Ps = −←−
Q i

αIεαβεij
−→
Q j

β = −←−
Q i

αI
−→
Qα

i = −←−
∂ i

αI
−→
∂ α

i . (2.24)

The operator Ps produces the following �-product:

A � B = A ePsB. (2.25)

Clearly, the deformation (2.25) does not break the symmetries with respect to the
Euclidean rotation group SO(4) and the R-symmetry group SU(2). However, in
the deformed theories corresponding to the operator Ps, N=(1, 1) supersymmetry
is still broken by half.

The nonanticommutative Q-deformation associated with the �-product (2.25)
and preserving the maximal number of symmetries will be referred to as the
chiral singlet deformation. In what follows we will consider only this type of
deformations because of its uniqueness and relative simplicity.

2.2. Chiral Singlet Deformation of N=(1, 1) Harmonic Superspace. N=2,
D = 4 harmonic superspace (its Minkowski space version) was pioneered in [34].
The pedagogical introduction to the harmonic superspace approach can be found
in the book [35]. Here, following [21], we present how the nonanticommutative
deformations given by the operator (2.24) are realized in harmonic superspace.
The salient features of the Euclidean version of harmonic superspace are collected
in Appendix 2.
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The complex conjugation (2.1) can be naturally extended to the harmonic
variables,

ũ±
k = u±k. (2.26)

Using (2.1) and (2.26) one can ˇnd the complex conjugation rules for the harmonic
superspace coordinates xm

A , θ±α, θ̄±α̇

x̃m
A = xm

A , θ̃±α = εαβθ±β , ˜̄θ±α̇ = εα̇β̇ θ̄±β̇ . (2.27)

Note that the involution ˜ is a pseudoconjugation since it squares to −1 while
acting on the harmonics and harmonic projections of Grassmann coordinates.

Let us now apply to the Poisson operator Ps (2.24) of the chiral singlet
deformations with the �-product (2.25). In harmonic superspace, this operator
can be written as

Ps = I(
←−
Q+α−→Q−

α −←−
Q−α−→Q+

α ), (2.28)

where Q±
α = Qi

αu±
i are the harmonic projections of supercharges. In terms of

the supercharges Q±
α the �-product (2.25) is rewritten as

� = ePs = 1 + Ps +
1
2
P 2

s +
1
6
P 3

s +
1
24

P 4
s , (2.29)

where

1
2
P 2

s = −I2

4
[(
←−
Q+)2(

−→
Q−)2 + (

←−
Q−)2(

−→
Q+)2] − I2←−Q+α←−Q−β−→Q−

α

−→
Q+

β ,

1
6
(Ps)3 = −I3

3
[(
←−
Q−)2

←−
Q+α(

−→
Q+)2

−→
Q−

α − (
←−
Q+)2

←−
Q−α(

−→
Q−)2

−→
Q+

α ], (2.30)

1
24

(Ps)4 =
I4

16
(
←−
Q−)2(

←−
Q+)2(

−→
Q+)2(

−→
Q−)2.

Note that Ps commutes with the spinor derivatives in the analytic basis (they are
deˇned in (A.12)),

[Ps, D
±
α ] = 0, [Ps, D̄

±
α̇ ] = 0. (2.31)

The property (2.31) shows that the �-product (2.29) preserves the harmonic Grass-
mann analyticity. In other words, the �-product of two analytic superˇelds ΦA,
ΨA is again an analytic superˇeld,

(D±
α , D̄±

α̇ )(ΦA � ΨA) = 0. (2.32)

Due to the simple relation between the supercharges and covariant spinor
derivatives

Q±
α = D±

α + 2iθ̄±α̇(σm)αα̇∂m, (2.33)
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the following relations are valid for an arbitrary analytic superˇeld ΦA:

Q+
αΦA = 2iθ̄+α̇(σm)αα̇∂mΦA, (Q+)2ΦA = 4(θ̄+)2�ΦA. (2.34)

Equations (2.34) imply that in the decomposition of the �-product (2.29) any term
involving more than two Q+

α supercharges on the analytic superˇelds vanishes,
e.g.,

(Q+)2ΦAQ+
α ΨA = 4i(θ̄+)2�ΦAθ̄+α̇(σm)αα̇∂mΨA = 0. (2.35)

As a consequence, the singlet �-product of two analytic superˇelds is at most
quadratic in the deformation parameter I:

ΦA � ΨA = ΦAΨA + I(−1)p(Φ)(Q+αΦAQ−
α ΨA − Q−αΦAQ+

α ΨA)−

− I2

4
[(Q+)2ΦA(Q−)2ΨA + (Q−)2ΦA(Q+)2ΨA]−

− I2Q+αQ−βΦAQ−
α Q+

β ΨA. (2.36)

Then it is easy to see that the �-commutator of analytic superˇelds is linear in I

[ΦA
�, ΨA] = ΦAPsΨA − ΨAPsΦA = 2ΦAPsΨA,

= 2I(Q+αΦAQ−
α ΨA − Q−αΦAQ+

αΨA). (2.37)

The operator of chiral singlet deformations (2.24) also commutes with the
harmonic derivatives (A.13),

[Ps, D
++] = 0, [Ps, D

−−] = 0. (2.38)

As a result, the chiral singlet deformation does not break the internal symmetry
group SU(2) represented by the harmonics u±

i . It also preserves the Grassmann
shortness conditions, D±±Φ = 0. This makes it possible to utilize short multiplets
while constructing the actions, like in the undeformed theories.

The properties of the chiral singlet deformation listed above (the preservations
of left and right chiralities, as well as of the Grassmann analyticity and Grassmann
shortness) indicate that the harmonic superspace approach is equally applicable
to the N=(1, 1) nonanticommutative superˇeld theories, as to the conventional
N=2 supersymmetric ones.

3. CLASSICAL NONANTICOMMUTATIVE MODELS
IN N=(1, 1) HARMONIC SUPERSPACE

In constructing classical superˇeld actions of nonanticommutative theories
we follow the simple rule: in order to obtain the action of a nonanticommutative
model one should replace the usual product of superˇelds in the action of the
corresponding undeformed model by the �-product (2.25).
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3.1. Super-YangÄMills Model. In the harmonic superspace approach [35],
the gauge multiplet of N=2 or N=(1, 1) supersymmetry is described by the
analytic superˇeld V ++ with the harmonic U(1) charge +2. In general, this
superˇeld is valued in the Lie algebra of the gauge group U(n), i.e., it can be
written as V ++ = V ++ MT M , where T M are the generators of U(n).

Under the deformed U(n) gauge group, the gauge superˇeld is assumed to
transform as

δΛV ++ = D++Λ + [V ++ �, Λ], (3.1)

where Λ is an analytic superˇeld parameter also taking values in the algebra of
the gauge group. Note that even in the U(1) case, i.e., with only one copy of
V ++ and Λ, the transformation rule (3.1) is still non-Abelian due to the presence
of the �-product in the second term. In the undeformed limit this ®non-Abelian¯
piece vanishes. In the case of ®genuine¯ non-Abelian N=(1, 1) gauge theory
there are two sources of the non-Abelian structure, the standard one surviving in
the undeformed limit and the one induced by the �-product.

To construct an action which is invariant under the gauge transformations (3.1)
representing the deformed gauge U(n) group we follow the same steps as in the
non-Abelian N=2 super-YangÄMills theory in harmonic superspace [34,35]. We
introduce the superˇeld V −− as a solution of the harmonic zero-curvature equa-
tion,

D++V −− − D−−V ++ + [V ++ �, V −−] = 0. (3.2)

The solution of (3.2) is given by the following series [36]:

V −−(z, u) =
∞∑

n=1

(−1)n×

×
∫

du1 · · ·dun
V ++(z, u1) � V ++(z, u2) � . . . � V ++(z, un)

(u+u+
1 )(u+

1 u+
2 ) · · · (u+

n u+)
, (3.3)

where (u+
1 u+

2 )−1 is a harmonic distribution introduced in [34]. Using the su-
perˇeld V −−, one can construct the gauge superˇeld strengths in the standard
manner,

W = −1
4
(D̄+)2V −−, W̄ = −1

4
(D+)2V −−. (3.4)

As in the usual N=2 SYM theory, these superˇelds satisfy the Bianchi identity
(D+)2W = (D̄+)2W̄ . Applying relations (3.1), (3.2) and the gauge transfor-
mation rule for the V −− prepotential, δΛV −− = D−−Λ + [V −− �, Λ], it is easy
to show that the superˇeld strengths (3.4) transform covariantly under the gauge
group,

δΛW = [W �, Λ], δΛW̄ = [W̄ �, Λ]. (3.5)
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Moreover, they are covariantly (anti)chiral

D̄+
α̇ W = 0, D̄−

α̇ W − [D̄+
α̇ V −− �, W ] = 0,

(3.6)
D+

α W̄ = 0, D−
α W̄ − [D+

α V −− �, W̄ ] = 0,

and are covariantly independent of harmonics,

D++W + [V ++ �, W ] = 0, D++W̄ + [V ++ �, W̄ ] = 0. (3.7)

Equations (3.1)Ä(3.7) have exactly the same form as in the corresponding
undeformed non-Abelian N=2 super-YangÄMills theory. Therefore, the classi-
cal action of the nonanticommutative supersymmetric gauge theory can be also
represented as an integral over the chiral subspace

SSYM =
1
4
tr

∫
d4xLd4θW 2. (3.8)

Note that, due to the property (2.14), the �-product of two superˇeld strengths
in (3.8) is reduced to the ordinary product. However, despite the absence of
the �-product in (3.8), the nonanticommutative deformation is still present in this
expression through the superˇeld strengths (3.4) and the prepotential V −− (3.3).
It is easy to check that the action (3.8) is gauge invariant,

δΛSSYM =
1
4

tr
∫

d4xLd4θ[W 2 �, Λ] = 0. (3.9)

Here we have applied equations (2.14), (3.5). One can also show that this action
does not depend on the harmonic and Grassmann variables,

D++SSYM = 0, D̄±
α̇ SSYM = 0. (3.10)

It should also be noted that the chiral action (3.8) is real in the Euclidean case.
The classical action of nonanticommutative supersymmetric gauge theory can

be expressed as a full superspace integral of the Lagrangian written in terms of the
analytic superˇelds V ++, quite analogously to the action of the usual non-Abelian
N=2 gauge theory [36],

SSYM[V ++] =
∞∑

n=2

(−1)n

n
×

× tr
∫

d12zdu1 · · ·dun
V ++(z, u1) � V ++(z, u2) � . . . � V ++(z, un)

(u+
1 u+

2 )(u+
2 u+

3 ) · · · (u+
n u+

1 )
. (3.11)

While passing to the quantum theory, the representation (3.11) for the classical
action proves to be more advantageous.
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3.2. Hypermultiplet Model. The hypermultiplet in harmonic superspace is
described either by a complex analytic superˇeld q+ with the U(1) charge +1 or
by a real analytic chargeless superˇeld ω. Both these descriptions are known to
be related to each other via some sort of duality [35]. Therefore we can conˇne
our consideration to the q-hypermultiplet models.

The free classical action of the q+ superˇeld in harmonic superspace is
given by

S0[q+] = −
∫

dζ du q̃+D++q+. (3.12)

Here q̃+ is a superˇeld conjugated to q+, and dζdu = d4xAd4θ−du is the inte-
gration measure of the analytic superspace. The rules of integration in harmonic
superspace are given in Appendix 2, Eq. (A.14). Note that the identity (2.14)
allows us to omit the �-product in the free superˇeld actions like (3.12). In
other words, the chiral singlet deformation does not modify the free actions and
affects only the interaction terms. We will show that both the hypermultiplet
self-interaction and the interaction of hypermultiplet with a vector multiplet are
deformed due to nonanticommutativity. In some special cases considered below
this interaction disappears when the deformation is turned off.

It is easy to write the quartic interaction term of the q-superˇelds [21],

S4[q+] =
∫

dζ du(aq̃+ � q+ � q̃+ � q+ + bq+ � q+ � q̃+ � q̃+), (3.13)

where a, b are coupling constants. Note that two terms in the action (3.13) differ
only by ordering of superˇelds with respect to the �-product. In the undeformed
limit I → 0 both these terms are reduced to the single standard interaction term
(q̃+q+)2, with the coupling constant a + b.

Let us now introduce the interaction of hypermultiplet with the background
gauge superˇelds.

As is well known, the interaction of matter ˇelds with the gauge ones is to
large extent speciˇed by the choice of the representation of the gauge group to
which matter ˇelds belong. In particular, the fundamental and adjoint representa-
tions are of the main interest in quantum ˇeld theory.

Let us start with the fundamental representation. In this case the superˇeld
V ++ is a matrix which belongs to the Lie algebra of the gauge group U(n) acting
on the complex n-plet of superˇelds q+.

Based on the analogy with the ordinary U(n) gauge theory, the model (3.12)
can be coupled to the gauge superˇeld in the standard way, i.e., just by replacing
the 
at harmonic derivative D++ with the corresponding covariant one ∇++ =
D++ + V ++�. As a result, the action of the nonanticommutative hypermultiplet
superˇeld interacting with the vector superˇeld in the fundamental representation
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of the deformed U(n) group is given by

Sf [q+, V ++] = −
∫

dζ du q̃+ � (D++ + V ++) � q+. (3.14)

Here q̃+ is conjugated to q+. It is easy to check that the action (3.14) is invariant
under the gauge transformations of vector superˇeld (3.1) supplemented by the
following hypermultiplet transformations:

δΛq̃+ = q̃+ � Λ, δΛq+ = Λ � q+. (3.15)

We refer to the model (3.14) as a nonanticommutative model of charged hyper-
multiplet [29]. It should be emphasized that the transformation laws (3.15) are
essentially non-Abelian (they possess a nonzero Lie bracket) even in the U(1)
case. They become the standard U(1) transformations only in the undeformed
limit, when the �-product turns into the ordinary one.

In the adjoint representation the hypermultiplet superˇeld is transformed on
pattern of the second term in the transformation law (3.1)

δΛq̃+ = [q̃+ �, Λ], δΛq+ = [q+ �, Λ]. (3.16)

Here q+ is a matrix in the Lie algebra of the gauge group, and it can be expanded
over the generators of the gauge group as q+ = q+MT M . The corresponding
classical action is given by

Sad[q+, V ++] = −tr
∫

dζ du q̃+ � (D++q+ + [V ++ �, q+]). (3.17)

It is easy to check that (3.17) is invariant under the gauge transformations (3.1)
supplemented by (3.16).

We refer to the model with the classical action (3.17) and deformed gauge
group U(1) as the nonanticommutative model of neutral hypermultiplet. It is
worth noting that in the case of U(1) gauge group the interaction with the gauge
superˇeld in (3.17) is only due to the nonanticommutative deformation. This
interaction disappears in the limit I → 0 and the model (3.17) becomes free. This
is a new feature speciˇc only for the nonanticommutative neutral hypermultiplet
model with the U(1) gauge group. The interaction still survives in the limit I → 0
for the non-Abelian neutral hypermultiplet or for the charged hypermultiplet (even
with the U(1) gauge group). In our further consideration we restrict ourselves
only to the models with deformed U(1) gauge group.

It is instructive to rewrite the actions (3.14), (3.17) in a uniˇed form. For this
purpose we combine the hypermultiplet superˇelds q̃+, q+ into a single SU(2)
doublet q+a,

q+a = εabq+
b = (q̃+, q+) = q̃+

a , a = 1, 2. (3.18)
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The covariant harmonic derivative ∇++ acts on the doublet q+a in a different
way for the adjoint and fundamental representations of the U(1) gauge group,

Adj. rep.: ∇++q+a = D++q+a + [V ++ �, q+a], (3.19)

Fund. rep.: ∇++q+a = D++q+a+
1
2
[V ++ �, q+a]−1

2
(τ3)a

b{V ++ �, q+b}. (3.20)

Here τ3 = diag(1,−1) is the Pauli matrix. According to the deˇnition (3.19), the
expression ∇++q+a is covariant with respect to the additional symmetry group
SU(2)PG which is called the PauliÄGéursey group [35]. The matrices of this group
act on the index a of ∇++q+a. Using the new notation, the actions (3.14), (3.17)
can be uniformly written as

S[q+, V ++] =
1
2

∫
dζ du q+

a ∇++q+a. (3.21)

In the case of fundamental representation, the symmetry group SU(2)PG is broken
down to U(1) with the generator τ3.

4. THE COMPONENT STRUCTURE
OF N=(1, 0) NONANTICOMMUTATIVE ABELIAN MODELS

In the previous section we have shown that in the superˇeld Lagrangians
the chiral singlet deformation leads to some new interaction terms induced by
the �-product. It is important that this new interaction is always local owing to
the nilpotency of the operator Ps. Here we study these new interaction terms at
the component level. The most important features of such Lagrangians can be
most clearly exhibited on the examples of Abelian models of gauge superˇeld
and hypermultiplet.

4.1. Gauge Superˇeld Model. The gauge multiplet of N=(1, 1) supersymme-
try consists of two independent real scalar ˇelds φ, φ̄, independent Weyl spinors
Ψk

α, Ψ̄α̇k with the internal symmetry group index k = 1, 2 and a triplet of auxil-
iary ˇelds D(kl). The component structure of the N=(1, 0) nonanticommutative
Abelian supergauge model in terms of these ˇelds was studied in [26,31].

The classical action of nonanticommutative super-YangÄMills model is given
by (3.8). In the Abelian case we can omit the trace in (3.8),

SSYM =
1
4

∫
d4xLd4θW 2. (4.1)

Note that, according to (3.6), the superˇeld W is covariantly chiral rather than
manifestly chiral. Therefore it depends on the variables θ̄+

α̇ :

W = A + θ̄+
α̇ τ−α̇ + (θ̄+)2τ−2, (4.2)
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where A, τ−α̇, τ−2 are some chiral superˇelds. Remarkably, among these
superˇelds only A contributes to the action (4.1). Indeed, relations (3.6) and (3.7)
show that the terms involving the superˇelds τ−α̇, τ−2 are always proportional to
some �-commutators of superˇelds and therefore vanish under the integral over
d4θ. As a result, the action (4.1) acquires the following form:

SSYM =
1
4

∫
d4xLd4θA2. (4.3)

Let us ˇnd the component structure of the superˇeld A. For this purpose we
have to ˇx the component structure of the gauge superˇeld V ++. Using the gauge
freedom (3.1) one can eliminate the lowest components of V ++ by effecting the
WessÄZumino gauge,

V ++
WZ (xm

A , θ+α, θ̄+α̇, u) = (θ+)2φ̄(xA) + (θ̄+)2φ(xA) + 2(θ+σmθ̄+)Am(xA)+

+ 4(θ̄+)2θ+Ψ−(xA) + 4(θ+)2θ̄+Ψ̄−(xA) + 3(θ+)2(θ̄+)2D−−(xA), (4.4)

where

Ψ−
α (xA) = Ψk

α(xA)u−
k , Ψ̄α̇−(xA) = Ψ̄α̇k(xA)u−

k ,
(4.5)

D−− = Dkl(xA)u−
k u−

l .

The residual gauge transformation of the superˇeld (4.4) reads

δrV
++
WZ = D++Λr + [V ++ �, Λr], Λr = iλ(xA), (4.6)

where λ(xA) is an arbitrary real function. The transformation (4.6) amounts to
the following gauge transformations for the component ˇelds:

δφ = −8IAm∂mλ, δφ̄ = 0,

δΨk
α = −4I(σmΨ̄k)α∂mλ, δΨ̄k

α̇ = 0, (4.7)

δAm = (1 + 4Iφ̄)∂mλ, δDkl = 0.

As is seen from (4.7), the gauge transformations of ˇelds φ, Am, Ψk
α are deformed

due to the nonanticommutativity. In the limit I = 0, we are left with the standard
Abelian gauge transformation for the vector potential Am(x), δAm(x) = ∂mλ(x).

The chiral coordinates are best suited for the chiral singlet deformation since
the latter preserves chirality. In what follows, we pass from the analytic coordi-
nates {xm

A , θ±α , θ̄±α̇ } to the mixed chiral-analytic ones {zC = (xm
L , θ±α ), θ̄±α̇ } by

the rule
xm

A = xm
L − 2iθ−σmθ̄+. (4.8)
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For example, in the chiral-analytic basis the operator of chiral singlet deforma-
tions (2.24) is simpliˇed to the form,

Ps = I(
←−
∂ α

+

−→
∂ −α −←−

∂ α
−
−→
∂ +α), (4.9)

where ∂±α = ∂/∂θ±α. Let us also rewrite the component structure of the
prepotential (4.4) in these coordinates,

V ++
WZ (zC , θ̄+, u) = v++(zC , u) + θ̄+

α̇ v+α̇(zC , u) + (θ̄+)2v(zC , u). (4.10)

Here

v++ = (θ+)2φ̄,

v+α̇ = −2θ+
α Aαα̇ + 4(θ+)2Ψ̄−α̇ + 2i(θ+)2θ−α ∂αα̇φ̄,

(4.11)
v = φ + 4θ+Ψ− + 3(θ+)2D−− − 2i(θ+θ−)∂mAm − θ−σmnθ+Fmn−

− (θ+)2(θ−)2 � φ̄ + 4i(θ+)2θ−σm∂mΨ̄−

and Fmn = ∂mAn − ∂nAm.
Consider now the zero-curvature Eq. (3.2),

D++V −− − D−−V ++
WZ + [V ++

WZ
�, V −−] = 0. (4.12)

Developing the �-product in (4.12) and applying (4.9), we have

D++V −− − D−−V ++
WZ + 2I(∂α

+V ++
WZ ∂−αV −− − ∂α

−V ++
WZ ∂+αV −−)+

+
1
2
I3[∂α

−(∂+)2V ++
WZ ∂+α(∂−)2V −−−∂α

+(∂−)2V ++
WZ ∂−α(∂+)2V −−] = 0. (4.13)

We seek for the solution of Eq. (4.13) as an expansion over θ̄±α̇ ,

V −− = v−− + θ̄+
α̇ v−3α̇ + θ̄−α̇ v−α̇ + (θ̄+)2v−4 + (θ̄−)2A + (θ̄+θ̄−)ϕ−−+

+ θ̄+α̇θ̄−β̇ϕ−2

(α̇β̇)
+ (θ̄−)2θ̄+

α̇ τ−α̇ + (θ̄+)2θ̄−α̇ τ−3α̇ + (θ̄+)2(θ̄−)2τ−2, (4.14)

where v−−, v−3α̇, v−4, A, ϕ−−, ϕ−2

(α̇β̇)
, τ−α̇, τ−3α̇, τ−2 are the superˇelds de-

pending only on the chiral-analytic variables xm
L , θ±α , u±

k . Note that the superˇeld
A that deˇnes the classical SYM action (4.3) appears as one of the components
in the expansion (4.14). Now we substitute expressions (4.14), (4.10) into (4.13)
and equate to zero the coefˇcients at the corresponding powers of θ̄±α̇ . In this
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way we obtain the following set of equations:

D++v−− − D−−v++ = 0, (4.15)

D++v−α̇ − v+α̇ = 0, (4.16)

D++v−3α̇ + v−α̇ − D−−v+α̇ = 0, (4.17)

D++A = 0, (4.18)

D++ϕ−− + 2A− 2v +
1
2
{v+α̇ �, v−α̇ } = 0, (4.19)

D++v−4 − D−−v + ϕ−− +
1
2
{v+α̇ �, v−3

α̇ } = 0, (4.20)

D++ϕ−2

(α̇β̇)
+

1
2
{v+

α̇
�, v−

β̇
} +

1
2
{v+

β̇
�, v−α̇ } = 0, (4.21)

D++τ−α̇ + [v+α̇ �, A] = 0, (4.22)

D++τ−3α̇ − τ−α̇ + [v �, v−α̇] − 1
2
[v+α̇ �, ϕ−−] +

1
2
[v+

β̇
�, ϕ−2(α̇β̇)] = 0, (4.23)

D++τ−2 +
1
2
{v+α̇ �, τ−

α̇ } + [v �, A] = 0. (4.24)

Here we used the notations

D++ = D++ + [v++ �, ·] = u+
i

∂

∂u−
i

+ L θ+α∂−α, (4.25)

D−− = D−− + [v−− �, ·] = u−
i

∂

∂u+
i

+
1
L

θ−α∂+α, (4.26)

L = 1 + 4Iφ̄. (4.27)

It is straightforward (though somewhat lengthy) to ˇnd the solutions
of (4.15)Ä(4.24),

v−−(zC , u) = (θ−)2
φ̄

L
, (4.28)

v−3α̇(zC , u) = 2(θ−)2
Ψ̄−α̇

L2
, (4.29)

v−α̇ (zC , u) =
2
L

θ−αAαα̇ − 2
L2

(θ−)2Ψ̄+
α̇ +

4
L

(θ+θ−)Ψ̄−
α̇ +

+
2i

L
(θ−)2θ+α∂αα̇φ̄, (4.30)
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A(zC , u) =
[
φ +

4IAmAm

L
+

16I3(∂mφ̄)2

L

]
+

+ 2θ+

[
Ψ− +

4I(σmΨ̄−)Am

L

]
− 2θ−

L

[
Ψ+ +

4I(σmΨ̄+)Am

L

]
+

+ (θ+)2
[
8I(Ψ̄−)2

L
+ D−−

]
+

(θ−)2

L2

[
8I(Ψ̄+)2

L
+ D++

]
−

− 2(θ+θ−)
L

[
8I(Ψ̄+Ψ̄−)

L
+ D+−

]
+ (θ+σmnθ−)

(
Fmn −

8I∂[mφ̄An]

L

)
+

+ 2i(θ−)2θ+σm∂m
Ψ̄+

L
+ 2i(θ+)2Lθ−σm∂m

Ψ̄−

L
− (θ+)2(θ−)2�φ̄, (4.31)

ϕ−−(zC , u)=
4
L

θ−αΨ−
α +

8I

L2
θ−αAαα̇Ψ̄−α̇+(θ+θ−)

[
4
L
D−−+

16I

L2
Ψ̄−

α̇ Ψ̄−α̇

]
−

− (θ−)2
[
2i

L
∂mAm +

2
L2

D+− +
16I

L3
Ψ̄−

α̇ Ψ̄+α̇

]
−

− 4i(θ−)2θ+α 1
L

[
∂αα̇Ψ̄−α̇ − 2I

L
Ψ̄−α̇∂αα̇φ̄

]
, (4.32)

v−4(zC , u) = (θ−)2
[

2
L2

D−− +
16I

L3
Ψ̄−

α̇ Ψ̄−α̇

]
, (4.33)

ϕ−2

(α̇β̇)
(zC , u) = −1

2
{v−α̇ �, v−

β̇
} = 8IL−2(θ−αΨ̄−

α̇ Aαβ̇ + θ−αΨ̄−
β̇

Aαα̇)+

+ 4iIL−2(θ−)2(∂α
α̇ φ̄Aαβ̇ + ∂α

β̇
φ̄Aαα̇) − 16IL−3(θ−)2(Ψ̄+

β̇
Ψ̄−

α̇ + Ψ̄+
α̇ Ψ̄−

β̇
)+

+ 8iIL−2(θ−)2θ+α(Ψ̄−
α̇ ∂αβ̇ψ̄ + Ψ̄−

β̇
∂αα̇φ̄), (4.34)

τ−α̇ = [A �, v−α̇], (4.35)

τ−3α̇ = −D−−τ−α̇ +
1
2
[v−α̇ �, ϕ−−] − 1

2
[v−

β̇
�, ϕ−2(α̇β̇)], (4.36)

τ−2 = −1
2
[ϕ−− �, A] − 1

4
{v−α̇ �, [A �, v−α̇ ]}. (4.37)

Expressions (4.35)Ä(4.37) are presented in a superˇeld form since their exact
component structure is of no importance for our further consideration.
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Now we use expression (4.31) to ˇnd the component structure of the classical
action (4.3):

SSYM = Sφ + SΨ + SA, (4.38)

Sφ = −1
2

∫
d4x�φ̄

[
φ +

4IAmAm

1 + 4Iφ̄
+

16I3∂mφ̄∂mφ̄

1 + 4Iφ̄

]
, (4.39)

SΨ = i

∫
d4x

(
Ψiα +

4IAmσm
α

α̇Ψ̄iα̇

1 + 4Iφ̄

)
(σn)αβ̇∂n

(
Ψ̄β̇

i

1 + 4Iφ̄

)
+

+
1
4

∫
d4x

1
(1 + 4Iφ̄)2

(
8IΨ̄i

α̇Ψ̄jα̇

1 + 4Iφ̄
+ Dij

) (
8IΨ̄iα̇Ψ̄α̇

j

1 + 4Iφ̄
+ Dij

)
, (4.40)

SA =
∫

d4x

[
−1

2
An�An − 1

2
∂mAm∂nAn +

1
2
AnAn� ln(1 + 4Iφ̄) −

− εmnrs∂rAsAn∂m ln(1 + 4Iφ̄) +
1
2
AnAn∂m ln(1 + 4Iφ̄)∂m ln(1 + 4Iφ̄)−

−1
2
AmAn∂m ln(1 + 4Iφ̄)∂n ln(1 + 4Iφ̄) + ∂nAmAn∂m ln(1 + 4Iφ̄)

]
. (4.41)

Let us make two comments on the symmetries of the action (4.38). First of
all, it is invariant under the gauge transformations (4.7). Secondly, it respects the
residual N=(1, 0) supersymmetry,

δεφ = 2(εkΨk), δεφ̄ = 0,

δεAm = (εkσmΨ̄k),

δεΨk
α = −εαlDkl +

1
2
(1 + 4Iφ̄)(σmnεk)αFmn − 4iIεk

αAm∂mφ̄, (4.42)

δεΨ̄ = −i(1 + 4Iφ̄)(εkσm)α̇∂mφ̄,

δεDkl = i∂m[(εkσmΨ̄l + εkσmΨ̄l)(1 + 4Iφ̄)].

We observe that both gauge transformations (4.7) and the supersymmetry (4.42)
are deformed by the nonanticommutativity parameter I .

It is well known that the classical action of the undeformed supergauge theory
can be equivalently written in either chiral or antichiral superspace, because of
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the equality∗

1
4
tr

∫
d4xLd4θ W 2 =

1
4
tr

∫
d4xRd4θ̄ W̄ 2. (4.43)

Surprisingly, the relation (4.43) fails to be valid in the N=(1, 0) nonanticom-
mutative supergauge model. Moreover, it is inconsistent to treat the expression
1
4

tr
∫

d4xRd4θ̄W̄ 2 as any action since it bears the explicit dependence on Grass-

mann and harmonic variables.
This statement can be most easily proved in the Abelian case. To this

end, we consider the covariantly antichiral superˇeld strength in the antichiral
coordinates (A.21),

W̄ = −1
4
(D+)2V −− = Ā + θ+ατ̄−

α + (θ+)2τ̄−2, (4.44)

where Ā, τ̄−
α and τ̄−2 are purely antichiral superˇelds deˇned on the coordinate

set xm
R , θ̄±α̇ , u±. This superˇeld strength, as well as the prepotential V −−, depend

on the parameter of nonanticommutativity I . Let us expand W̄ in powers of I

W̄ =
∞∑

n=0

InW̄n, (4.45)

where the coefˇcients W̄n are some superˇelds. Clearly, the ˇrst term W̄0 in this
series is a purely antichiral superˇeld which has the same component structure as
the undeformed superˇeld strength,

W̄0 = Ā0 = φ̄ − 2θ̄+
α̇ Ψ̄−α̇ + 2θ̄−α̇ Ψ̄+α̇ + iθ̄−α̇θ̄+β̇(∂α

α̇Aαβ̇ + ∂α
α̇Aαβ̇)+

+ (θ̄+)2D−− + (θ̄−)2D++ − 2(θ̄+θ̄−)D+−−
− 2i(θ̄−)2θ̄+α̇u+

k ∂αα̇Ψαk − 2i(θ̄+)2θ̄−α̇u−
k ∂αα̇Ψαk − (θ̄+)2(θ̄−)2�φ. (4.46)

Note that W̄0 is harmonic-independent, D±±W0 = 0, whereas the next term W̄1

bears such a dependence,

ID++W̄1 = −[V ++ �, W̄0] 	= 0. (4.47)

Now we are going to prove that the expression

A =
∫

d4xRd4θ̄ W̄ 2
� (4.48)

∗Note that the analogous relation for the N=1 supersymmetric theories reads∫
d4xd2θ W αWα =

∫
d4xd2θ̄ W̄α̇W̄ α̇, where Wα, W̄α̇ are the N=1 gauge superˇeld strengths.

As is shown in [12], this relation also holds in the corresponding nonanticommutative gauge theory
with N=(1/2, 0) supersymmetry.
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depends on Grassmann variables and harmonics,

D±±A 	= 0, D−
α A 	= 0. (4.49)

For this purpose we expand it in powers of I ,

A =
∞∑

n=0

InAn, (4.50)

and check the unequalities (4.49) in the ˇrst order in I . Up to terms of the second
order in I we have

A0 + IA1 =
∫

d4xRd4θ̄ (W̄ 2
0 + 2IW̄0W̄1). (4.51)

Clearly, the term A0 =
∫

d4xRd4θ̄W̄ 2
0 in (4.51) does not depend on harmonics

since D±±W0 = 0. Therefore we have to consider only the harmonic derivative
of A1 which is given by

D++A1 = 4i

∫
d4xRd4θ̄∂α

+V ++θ̄+α̇∂αα̇(W̄ 2
0 ). (4.52)

It is a technical exercise to derive the component structure of A1, given the
component expansions (4.4), (4.46) of the superˇelds V ++ and W̄0. It is sufˇ-
cient to consider only two terms in the expression ∂α

+V ++θ̄+α̇ = (θ̄+)2Aαα̇ +
2θ+αθ̄+α̇φ̄ + . . . to come to the conclusion that

D++A1 = 16i

∫
d4xR [Am∂m(φ̄D++)+θ+αφ̄∂αβ̇(φ̄∂ββ̇Ψ+

β )]+. . . 	= 0. (4.53)

The terms written down in (4.53) cannot be cancelled by any other ones (which
are omitted here). The manifest dependence on harmonics implied by (4.53)
entails also the dependence on θ+ variables owing to the commutation relation
[D−−, D+

α ] = D−
α . Therefore, (4.53) proves the unequalities (4.49) which show

that tr
∫

d4xRd4θ̄ W̄ 2 cannot be treated as a superˇeld action.

It is easy to argue that the more general expression

∫
d4xRd4θ̄F̄�(W̄ ) also

involves a manifest dependence on the Grassmann variables and harmonics. This
implies that among the candidate contributions to the effective action of the
supersymmetric gauge model there are no such ones which are given by integrals
of some functions of the superˇeld strength W̄ over the antichiral superspace.
In Sec. 6 we will demonstrate that the contributions to the effective action in the
nonanticommutative case are naturally written as integrals over the full N=(1, 1)
superspace.
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4.2. SeibergÄWitten Transform in the Abelian Supergauge Model. Equa-
tions (4.7), (4.42) show that both gauge and supersymmetry transformations de-
pend on the parameter of the chiral singlet deformation I . A natural question is
whether there exist any change of the variables in the functional integral which
would bring these transformations to the undeformed form. For example, for the
gauge models with the bosonic noncommutative deformation such a transforma-
tion was found in [9], and it is known as the SeibergÄWitten map. Remarkably,
for the chiral singlet deformation such a ˇeld redeˇnition also exists. It was found
in [26,31]:

φ → ϕ =
1

(1 + 4Iφ̄)2

[
φ +

4I(AmAm + 4I2∂mφ̄∂mφ̄)
1 + 4Iφ̄

]
,

Am → am =
Am

1 + 4Iφ̄
, Ψ̄k

α̇ → ψ̄k
α̇ =

Ψ̄k
α̇

1 + 4Iφ̄
,

(4.54)

Ψk
α → ψk

α =
1

(1 + 4Iφ̄)2

[
Ψk

α +
4IAαα̇Ψ̄α̇k

1 + 4Iφ̄

]
,

Dkl → dkl =
1

(1 + 4Iφ̄)2

[
Dkl +

8IΨ̄k
α̇Ψ̄α̇l

1 + 4Iφ̄

]
.

It is easy to check that the supertranslations (4.42), being rewritten in terms of
the ˇelds (4.54), read

δεϕ = 2(εkψk), δεφ̄ = 0,

δεam = (εkσmψ̄k),

δεψ
k
α = −εαld

kl +
1
2
(σmnεk)αfmn, (4.55)

δεψ̄
k
α̇ = −i(εkσm)α̇∂mφ̄,

δεd
kl = i∂m(εkσmψ̄l + εkσmψ̄l),

where fmn = ∂man − ∂nam. The gauge transformations of the ˇelds (4.54) also
coincide with those for the undeformed ˇelds. Namely, all ˇelds are the gauge
group singlets, except for am which transforms as

δram = ∂mλ. (4.56)

Surprisingly, the ˇeld redeˇnition (4.54) drastically simpliˇes the structure
of the action (4.38). In terms of ˇelds ϕ, φ̄, ψα

k , ψ̄α̇k, am, dkl it is given by

SSYM =
∫

d4xL =
∫

d4x (1 + 4Iφ̄)2L0, (4.57)
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where

L0 = −1
2
ϕ�φ̄ +

1
4

(
fmnfmn +

1
2
εmnrsfmnfrs

)
−

− iψα
k ∂αα̇ψ̄α̇k +

1
4
dkldkl. (4.58)

The expression L0 is none other than a Lagrangian of N=(1, 1) supersymmetric
U(1) gauge theory. As a result, the net effect of the chiral singlet deformation in
terms of the new ˇelds is the appearance of the factor (1 + 4Iφ̄)2 in front of the
undeformed Lagrangian.

It is also worth pointing out that the SeibergÄWitten map is not unique.
Indeed, since the scalar ˇeld φ̄ is a singlet of both the gauge transformations and
N=(1, 0) supersymmetry, one can rescale the ˇelds as

ϕ̂ = L2ϕ, ψ̂k
α = L2ψk

α, d̂kl = Ldkl, (4.59)

which does not affect gauge transformations and supersymmetry. When written
in terms of the ˇelds (4.59), the Lagrangian L takes the most simple form,

L = −1
2
ϕ̂�φ̄ +

1
4
L2

(
fmnfmn +

1
2
εmnrsfmnfrs

)
−

− iψ̂α
k ∂αα̇ψ̄α̇k +

1
4
d̂kld̂kl. (4.60)

We see that the only remaining interaction is that between the gauge ˇeld strength
fmn and the scalar ˇeld φ̄. The Lagrangian (4.60) is bilinear in all other ˇelds,
like in the free case.

Let us now discuss the problem of a superˇeld representation for the SeibergÄ
Witten-like map (4.54). For this purpose we need a relation between the superˇeld
A given by (4.31) and the undeformed superˇeld strength W0 given by the
expression

W0(xL, θ+, θ−, u) = ϕ + 2θ+ψ− − 2θ−ψ+ + (θ−σmnθ+)fmn+

+ (θ+)2d−− + (θ−)2d++ − 2(θ+θ−)d+−+

+ 2i(θ−)2θ+σm∂mψ̄+ + 2i(θ+)2θ−σm∂mψ̄− − (θ+)2(θ−)2�φ̄. (4.61)

Here we use the notation ψ±
α = ψi

αu±
i , d+− = u+

k u−
l dkl, etc., as for the original

ˇelds. By deˇnition, the superˇeld strength (4.61) is gauge invariant,

δλW0 = 0, (4.62)

and it transforms under N=(1, 0) supersymmetry in the standard way,

δεW0 = (ε−α∂−α + ε+α∂+α)W0. (4.63)
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There is a simple relation between expressions (4.31) and (4.61) [26],

A(xL, θ+, θ−, u) = (1 + 4Iφ̄)2W0(xL, θ+, (1 + 4Iφ̄)−1θ−, u). (4.64)

Equation (4.64) plays the role of the superˇeld SeibergÄWitten transform. It is
essential that, up to an overall scalar factor, it amounts to rescaling the variable
θ− by the factor (1 + 4Iφ̄)−1.

Let us now introduce the following differential operator:

Rθ = exp (L−1θ−∂−) =

= L−2 + ∂−α

{
1 − L−1 − 1

4
(L−1 − 1)2[2θ−α − (θ−)2∂α

−]
}

, (4.65)

where L = 1 + 4Iφ̄. Using this operator, the superˇeld SeibergÄWitten trans-
form (4.64) can be rewritten as

A = L2RθW0. (4.66)

Owing to the simple property RθARθB = Rθ(AB), we have

A2 = L4RθW
2
0 . (4.67)

Employing now the relations (4.65), (4.67), one easily constructs the SeibergÄ
Witten transform of the classical action (4.3),

SSYM =
1
4

∫
d4xLd4θA2 =

1
4

∫
d4xLd4θ (1 + 4Iφ̄)2W 2

0 . (4.68)

This is just the action (4.57) derived before.
The SeibergÄWitten transform found here for the classical action (4.68) can

be readily generalized to the action with an arbitrary chiral potential,∫
d4xLd4θF�(A), (4.69)

where F�(A) is some function given by a series,

F�(A) =
∞∑

n=2

cnAn
� . (4.70)

The function An
� is expressed through the undeformed superˇeld strength (4.61)

as follows:
An

� = L2n−2(W0)n
�̂ + . . . , (4.71)
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where we introduced a modiˇed �-product,

�̂ = exp(L−1Ps). (4.72)

Dots in (4.71) stand for terms which involve full spinor derivatives ∂−α coming
from the expansion of the operator (4.65). These terms are not essential when
they are considered under the integral over chiral superspace. As a result, the
action (4.69) is expressed through the undeformed superˇeld strengths (4.61),∫

d4xLd4θF�(A) =
∫

d4xLd4θ L−2F�̂(L2W0). (4.73)

Here, the function F�̂(L2W0) is given by the series (4.70) with the �̂-product of
superˇelds. The relation (4.73) plays the role of SeibergÄWitten transform for
the chiral effective action.

Let us point out that the choice (4.59) not only brings the classical action
to the most simple form but also is very useful for studying the contributions to
chiral effective potentials. In particular, given the expansion of the superˇeld A
in terms of these ˇelds,

A = ϕ̂ + 2θ+αψ̂−
α − 2L−1θ−αψ̂+

α + L(θ+σmnθ−)fmn+

+ L(θ+)2d̂−− − 2(θ+θ−)d̂+− + L−1(θ−)2d̂+++

+ 2i[(θ−)2θ+α∂αα̇ψ̄+α̇ + L(θ+)2θ−α∂αα̇ψ̄−α̇] − (θ+)2(θ−)2�φ̄, (4.74)

one can readily ˇnd the component structure of cubic and quartic terms in the
effective potential F�(A) in the bosonic sector,∫

d4θA3
� = −3ϕ̂2�φ̄ + 3ϕ̂(d̂kl)2 +

3
4
L2ϕ̂(fαβ)2−

− 3I2�φ̄[L2(fαβ)2 − 4(d̂kl)2] − 16I4(�φ̄)3, (4.75)

∫
d4θA4

� = −4ϕ̂3�φ̄ + 6ϕ̂2(d̂kl)2 +
3
2
L2ϕ̂2(fαβ)2+

+ 2I2[L2(fαβ)2 − 4(d̂kl)2]
[
−6ϕ̂�φ̄ + (d̂kl)2 +

1
4
L2(fαβ)2

]
+

+ 8I4(�φ̄)2[3L2(fαβ)2 + 12(d̂kl)2 − 8ϕ̂�φ̄], (4.76)

where (fαβ)2 = fαβfαβ = (fmn)2 + fmnf̃mn and (d̂kl)2 = d̂kld̂kl. These ex-

pressions are the chiral singlet deformation of the corresponding terms

∫
d4θW 3

0
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and

∫
d4θW 4

0 in the undeformed N=(1, 1) holomorphic effective action. Equa-

tions (4.75), (4.76) show that the chiral singlet deformation manifests itself not
only in the appearance of induced interaction of vector ˇeld with scalars but
also in the presence of new terms with the ˇeld derivatives. Another important
consequence of the nonanticommutative deformation of the effective potentials is
the appearance of nonlinear self-coupling of the auxiliary ˇelds I2(d̂kl)4.

4.3. Neutral Hypermultiplet Model. The N=(1, 1) hypermultiplet on-shell
content is four real scalar ˇelds fak, a, k = 1, 2 and two independent spinors ραa,
χα̇

a . Here we assume that these ˇelds are neutral with respect to the U(1) group.
We are going to ˇnd the interactions of these ˇelds with the vector multiplet φ,
φ̄, Ψα

k , Ψ̄α̇k, Dkl.
The classical action of the neutral hypermultiplet is given by (3.21). Taking

into account equations (3.19) and (2.37), we make explicit the �-product in (3.21),

Sad[q+, V ++] =
1
2

∫
dζ du q+

a ×

× [D++q+a + 4iIθ̄+α̇(∂α
+V ++∂αα̇q+α − ∂αα̇V ++∂α

+q+a)]. (4.77)

The hypermultiplet superˇeld has the following component ˇled expansion:

q+a = f+a + θ+απa
α + θ̄+

α̇ κα̇a + θ+σmθ̄+r−a
m + (θ+)2g−a + (θ̄+)2h−a+

+ (θ̄+)2θ+αΣ−−a
α + (θ+)2θ̄+α̇Σ̄−−a

α̇ + (θ+)2(θ̄+)2ω−3a, (4.78)

where all the component ˇelds depend only on the variables xm
A and u±

i . These
ˇelds can be further expanded over the harmonic variables, giving rise to an
inˇnite number of the auxiliary ˇelds. The auxiliary ˇelds should be eliminated
from the action using the classical equation of motion for the hypermultiplet
superˇeld q+a. This equation is easily obtained from the action (4.77),

D++q+a + 4iIθ̄+α̇(∂α
+V ++∂αα̇q+a − ∂αα̇V ++∂α

+q+a) = 0. (4.79)

Substituting (4.78), (4.4) into (4.79) we ˇnd the explicit expressions of the hy-
permultiplet component ˇelds in terms of the physical scalars f ia and fermions
ρa

α, χα̇a,

f+a = faku+
k , πa

α = ρa
α, κα̇a = χα̇a, r−a

m = rak
m u−

k , g−a = 0,

h−a = haku−
k , Σ−−a

α = Σkl a
α u−

k u−
l , Σ̄−−a

α̇ = 0, ω−3a = 0,
(4.80)

rak
m = 2i(1 + 4Iφ̄)∂mfak, hak = −8iIAm∂mfak,

Σkl a
α = −4iI(Ψ̄α̇k∂αα̇fal + Ψ̄α̇l∂αα̇fak).
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Taking into account (4.80), we obtain the following action for the physical com-
ponents in the neutral hypermultiplet model:

Sad =
∫

d4x

[
1
2
(1 + 4Iφ̄)2∂mfak∂mfak +

1
2
i(1 + 4Iφ̄)ραa∂αα̇χα̇

a+

+ 4iIΨ̄α̇
kρα

a∂αα̇fak + 2iIραaAm∂mραa + iIρβaρα
a∂(αα̇Aα̇

β)

]
. (4.81)

Note that only the ˇelds φ̄, Am, Ψ̄α̇
k from the vector multiplet interact with the

hypermultiplet ˇelds in (4.81).
Let us study the symmetries of the action (4.81). This action is invariant in

the evident way under the gauge transformations (3.16). Using the relation (2.37),
these gauge transformations can be cast in the following form:

δΛq+a = 4iθ̄+
α̇ (∂αα̇Λ∂+αq+a − ∂+αΛ∂αα̇q+a). (4.82)

Recall that the component structure of the vector multiplet (4.4) is given in the
WessÄZumino gauge. Therefore it makes sense to discuss here only the residual
gauge transformations with the parameter Λr = iλ(xA). With such a choice of the
gauge parameter the hypermultiplet gauge transformations (4.82) are reduced to

δrq
+a = −4Iθ̄+

α̇ ∂αα̇λ(xA)∂+αq+a. (4.83)

Equation (4.83) leads to the following gauge transformations of the hypermultiplet
component ˇelds:

δrf
ak = 0, δrρ

a
α = 0, δrχ

α̇a = −4I∂αα̇λρa
α. (4.84)

Let us also consider the N=(1, 0) supersymmetry transformations for the
hypermultiplet

δεq
+a = (ε−αQ+

α − ε+αQ−
α )q+a = (ε+α∂+α − 2iε−αθ̄+α̇∂αα̇)q+a. (4.85)

In the WessÄZumino gauge, Eq. (4.85) leads to the following component ˇeld
transformations:

δεf
ak = εakρa

α, δερ
a
α = 0, δεχ

a
α̇ = 2iεαk(1 + 4Iφ̄)∂αα̇fa

k . (4.86)

It is an easy exercise to check that the action (4.81) is invariant with respect to
the hypermultiplet gauge transformations (4.84) combined with (4.7), as well as
with respect to the N=(1, 0) supersymmetry (4.86) combined with (4.42).

Both supersymmetry transformations (4.85) and the gauge transforma-
tions (4.84) are deformed due to the explicit presence of the parameter I . Let us
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consider the following transform of the hypermultiplet ˇelds:

fak → fak
0 = (1 + 4Iφ̄)fak,

ραa → ραa
0 = (1 + 4Iφ̄)ραa, (4.87)

χα̇a → χα̇a
0 = χα̇a +

4IAαα̇ρa
α

1 + 4Iφ̄
− 8IΨ̄α̇kfa

k

1 + 4Iφ̄
.

One can easily check that the new ˇelds fak
0 , ραa

0 , χα̇a
0 transform under U(1)

gauge group and N=(1, 0) supersymmetry in the standard way, i.e., as in the
undeformed case with I = 0. Therefore we can refer to the transformation (4.87)
as a SeibergÄWitten map for the neutral hypermultiplet model. In terms of the
ˇelds fak

0 , ραa
0 , χα̇a

0 the action (4.81) is rewritten as

Sad =
∫

d4x

[
1
2
∂mfak

0 ∂mf0 ak +
i

2
ραa
0 ∂αα̇χα̇

0 a +
2iIρβa

0 ρα
0 a∂(αα̇aα̇

β)

1 + 4Iφ̄
+

+
2Ifak

0 f0 ak�φ̄

1 + 4Iφ̄
+

4iIραa
0 f0ak∂αα̇ψ̄α̇k

1 + 4Iφ̄

]
. (4.88)

Let us now turn to the full N=(1, 0) supersymmetric gauge model which is
deˇned by the sum of the classical actions (4.57) and (4.81). In this model one
can perform the further change of ˇelds of the vector multiplet in order to bring
the total action SSYM + Sad to the simplest form,

ϕ → ϕ̂ = (1 + 4Iφ̄)2ϕ − 4I(fak
0 f0 ak)

1 + 4Iφ̄
,

ψα
k → ψ̂α

k = (1 + 4Iφ̄)2ψα
k − 4Iρak

0 f0 ak

1 + 4Iφ̄
, (4.89)

dkl → d̂kl = (1 + 4Iφ̄)dkl.

In terms of these new ˇelds (4.89) the action SSYM + Sad reads

SSYM + Sad =
∫

d4x(L0 + Lint), (4.90)

L0 = −1
2
ϕ̂�φ̄ +

1
2
∂mfak

0 ∂mf0 ak − 1
16

fαβfαβ − iψ̂α
k ∂αα̇ψ̄α̇k+

+
i

2
ραa
0 ∂αα̇χα̇

0 a +
1
4
d̂kld̂kl, (4.91)

Lint = −1
2
Iφ̄(1 + 2Iφ̄)fαβfαβ +

Iρβa
0 ρα

0 afαβ

1 + 4Iφ̄
. (4.92)
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Here fαβ = i∂αα̇aα̇
β + i∂βα̇aα̇

α = (σmn)αβfmn. Note that L0 coincides with
the Lagrangian of the free undeformed N=(1, 1) U(1) supergauge theory while
Lint presents the interaction of hypermultiplet ˇelds with the gauge multiplet.
We see that the whole interaction is proportional to the deformation parameter
I . Thereby, the interaction in this model is entirely an effect of chiral singlet
deformation.

4.4. Charged Hypermultiplet Model. Consider now the classical action (3.17)
of the charged hypermultiplet model. Using the representation (3.21) and the ex-
plicit expression (3.20), this action can be written as

Sf [q+, V ++] =

=
1
2

∫
dζdu q+

a

(
D++q+a +

1
2
[V ++ �, q+a] − 1

2
(τ3)a

b{V ++ �, q+b}
)

. (4.93)

The relevant superˇeld equation of motion reads

D++q+a +
1
2
[V ++ �, q+a] − 1

2
(τ3)a

b{V ++ �, q+b} = 0. (4.94)

To derive the component structure of the action (4.93), we follow the same
steps as for the neutral hypermultiplet model considered in the previous subsec-
tion. We take the component expansions of the hypermultiplet (4.78) and the
gauge superˇeld in the WessÄZumino gauge (4.4) and substitute them into (4.94).
As usual, the equations of motion for the auxiliary ˇelds have the algebraic form
and can be easily solved to eliminate these ˇelds. As a result, we ˇnd the fol-
lowing component structure of the charged hypermultiplet superˇeld in terms of
physical ˇelds:

q+a
e = u+

k fak + θ+αρa
α + (θ+)2u−

k gak + θ̄+
α̇ [χα̇a + (θ+)2u−

k u−
l σα̇a kl]+

+ θ+σmθ̄+rak
m u−

k + (θ̄+)2[u−
k hak + θ+αu−

k u−
l σa kl

α + (θ+)2u−
k u−

l u−
j Xa klj ],

(4.95)

where

gak = (τ3)a
b φ̄f bk, rak

m = 2i(1 + 2Iφ̄)∂mfak + 2(τ3)a
bAmf bk,

hak = −4iIAm∂mfak + (τ3)a
b (φf bk + 2I2φ̄�f bk), (4.96)

σα̇a kl = 2(τ3)a
b Ψ̄α̇(kf bl), σakl

α = −4iIψ̄α̇(k∂αα̇fal) + 2(τ3)a
b Ψ(k

α f bl),

Xa klj = (τ3)a
bD(klf bj).

Now we substitute the expansions (4.95) and (4.4) into the action (4.93) and
integrate over the Grassmann and harmonic variables to obtain the component
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form of the action of charged hypermultiplet in terms of the physical ˇelds,

Sf =
∫

d4x

[
1
2
(1 + 4Iφ̄)∂mfak∂mfak + i(τ3)b

aAmfbk∂mfak+

+
1
2
(Am)2(fak)2 +

1
2
φφ̄(fak)2 + I2(fak)2�(φ̄2) − 1

2
(τ3)a

bfk
a f blDkl+

+ 2iIΨ̄α̇
kρα

a∂αα̇fak + (τ3)a
b Ψα

kραaf bk + (τ3)a
bfk

a ψ̄α̇kχα̇b+

+
i

2
(1 + 2Iφ̄)ραa∂αα̇χα̇

a − 1
2
(τ3)a

bρα
aAαα̇χα̇b +

1
4
(τ3)a

b (φ̄χα̇aχα̇b + φρα
a ρb

α)+

+iIραaAm∂mραa +
i

2
Iρβaρα

a ∂(αα̇Aα̇
β) + I2(τ3)a

b φ̄∂αα̇ρβa∂βα̇ραb

]
. (4.97)

Note that in the limit I → 0 the action (4.97) still retains an interaction. It
has the standard form of the interaction between the physical ˇelds of N=(1, 1)
supersymmetric electrodynamics.

As in the neutral hypermultiplet model, from (3.15) one can derive the resid-
ual gauge transformations for the physical component ˇelds (in the WessÄZumino
gauge for the vector multiplet),

δrf
ak = iλ(τ3)a

b f bk, δrρ
a
α = iλ(τ3)a

bρb
α,

(4.98)
δrχ

α̇a = iλ(τ3)a
b χα̇b − 2I∂αα̇λρa

α.

The N=(1, 0) supersymmetry transformations for these ˇelds are given by

δεf
ak = εαkρa

α, δερ
a
α = 2εk

α(τ3)a
b φ̄f b

k,
(4.99)

δεχ
a
α̇ = −2εα

k [i(1 + 2Iφ̄)∂αα̇fak + (τ3)a
b Aαα̇f bk].

It is easy to check that the action (4.97) is invariant under both the gauge trans-
formations (4.98) and the supersymmetry ones (4.99).

In the charged hypermultiplet model there also exists a ˇeld redeˇnition
(SeibergÄWitten map) which casts the transformations (4.98), (4.99) in the unde-
formed form,

fak → fak
0 = (1 + 2Iφ̄)fak,

ραa → ραa
0 = (1 + 2Iφ̄)ραa, (4.100)

χa
α̇ → χa

α̇ 0 = χa
α̇ − 2IAαα̇ραa

1 + 4Iφ̄
+

4IΨ̄α̇kfak

1 + 4Iφ̄
.

However, in contrast to the neutral hypermultiplet model, the map (4.100) does
not lead to the substantial simpliˇcations of the classical action. Therefore, here
we do not show how the classical action of charged hypermultiplet looks like in
terms of the new ˇelds fak

0 , ρaα
0 , χa

α 0.
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5. RENORMALIZABILITY OF THE N=(1, 0)
NONANTICOMMUTATIVE ABELIAN MODELS

In this section we explore the quantum aspects of the nonanticommutative
theories deˇned by the classical actions (4.38), (4.81), and (4.93).

From the point of view of physical applications only renormalizable theories
play a fundamental role in quantum ˇeld theory while the nonrenormalizable ones
are usually treated as some effective theories. By the term ®renormalizability¯
we will mean the multiplicative renormalizability, when all the divergent quan-
tum corrections in a given theory have the form of some terms of the classical
action and hence can be taken away by some redeˇnition of coupling constants
or ˇelds in the classical action. According to the customary lore of quantum
ˇeld theory, a model is power-counting nonrenormalizable if it involves cou-
pling constants of the negative mass dimension. The supersymmetric models
with the chiral singlet deformation under consideration contain the parameter of
nonanticommutativity I with the negative mass dimension, [I] = −1. If one
treats this parameter as a coupling constant, the considered models are formally
nonrenormalizable. Nevertheless, we will show that in our case the standard
arguments towards nonrenormalizability fail and all the models considered here
are renormalizable. A key feature of the nonanticommutativity is that all such
models are formulated only in the Euclidean superspace and the deformation is
present only in the chiral sector of superspace, while the antichiral one remains
intact. Therefore, the interaction terms in the actions appear in a nonsymmet-
ric way, still preserving the reality with respect to the conjugation (2.11) in the
Euclidean space. These interactions lead to the quantum divergences of a special
form which do not violate the renormalizability. As a result, the nonanticom-
mutative theories with N=(1, 0) supersymmetry are renormalizable and so they
can bear certain interest for the further study in the framework of quantum ˇeld
theory.

Here we will prove the renormalizability of the models with the classical
actions (4.38), (4.81), (4.93). For this purpose we will calculate the divergent
parts of the effective actions of these models. By deˇnition, the effective action
in quantum ˇeld theory is a generating functional of all connected one-particle
irreducible Green functions. It encodes the full information about the quantum
dynamics of the given ˇeld theory and, in particular, allows one to ˇnd the
structure of quantum divergences. To obtain the divergent parts of the effective
actions we employ here the standard methods of quantum ˇeld theory based on
the Feynman diagram techniques.

5.1. Gauge Superˇeld Model. Consider the nonanticommutative model
of Abelian gauge superˇeld in its component formulation with the classical
action (4.38). As a ˇrst step, we eliminate the auxiliary ˇeld Dij by its equa-
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tion of motion,

Dij = −8IΨ̄i
α̇Ψ̄jα̇

1 + 4Iφ̄
. (5.1)

Upon substituting (5.1) into (4.40), the action for the spinor ˇelds takes the form

SΨ = i

∫
d4x

(
Ψiα +

4IAmσm
α

α̇Ψ̄iα̇

1 + 4Iφ̄

)
(σn)αβ̇∂n

(
Ψ̄β̇

i

1 + 4Iφ̄

)
. (5.2)

In what follows we will consider the quantization of the model (4.38) with the
action SΨ given by (5.2).

Since the action (4.38) is invariant under the gauge transformations (4.7) one
needs to ˇx the gauge to quantize the theory. It is convenient to choose the
following gauge-ˇxing condition:

∂m
Am

1 + 4Iφ̄
= 0. (5.3)

Note that (5.3) is none other than the Lorentz gauge condition ∂mam = 0 for the
gauge ˇeld am = Am/(1 + 4Iφ̄) which transforms in a standard way under the
U(1) gauge group, δam = ∂mλ.

Further we follow the routine of FaddeevÄPopov procedure to ˇx the gauge
freedom in the functional integral. Let us introduce the corresponding gauge-
ˇxing function

χ = ∂m
Am

1 + 4Iφ̄
=

∂mAm − AmGm

1 + 4Iφ̄
, (5.4)

where
Gm(x) = ∂m ln[1 + 4Iφ̄(x)]. (5.5)

The function χ transforms under gauge transformations (4.7) as follows:

δχ = ∂m
δAm

1 + 4Iφ̄
= �λ. (5.6)

The relation (5.6) shows that the action for the ghost ˇelds is just the action of
free scalars

SFP =
∫

d4x b�c. (5.7)

The generating functional for Green's functions is now deˇned as

Z[J ] =
∫

D(φ, φ̄, Ψ, Ψ̄, Am, b, c)δ
(

χ − ∂mAm − AmGm

1 + 4Iφ̄

)
×

× exp
(
−1

2
(SSYM + SFP + SJ)

)
, (5.8)



GAUGE THEORY IN DEFORMED N=(1,1) SUPERSPACE 1505

where

SJ =
∫

d4x[φJφ + φ̄Jφ̄ + Ψi
α(JΨ)α

i + Ψ̄iα̇(JΨ̄)iα̇ + Am(JA)m] (5.9)

and Jφ, Jφ̄, (JΨ)α
i , (JΨ̄)iα̇, (JA)m are sources for the ˇelds φ, φ̄, Ψi

α, Ψ̄iα̇,
Am. We have inserted into (5.8) the functional delta-function that ˇxes the gauge
degrees of freedom in the functional integral over the gauge ˇelds. This delta-
function can be easily written in the Gaussian form by averaging (5.8) with the
factor

1 =
∫

Dχ exp
(
−α

2

∫
d4xχ2(1 + 4Iφ̄)2

)
=

= Det−1/2[δ4(x − x′)(1 + 4Iφ̄)2]. (5.10)

The functional integral (5.10) produces the following gauge-ˇxing action:

Sgf =
α

2

∫
d4x(∂mAm − AmGm)2r

=
α

2

∫
d4x[(∂mAm)2 − 2∂mAmAnGn + AmAnGmGn].

(5.11)

Here α is an arbitrary parameter. For simplicity, in the sequel we set α = 1. As
a result, the generating functional (5.8) can be represented in the following form:

Z[J ] =
∫

D(φ, φ̄, Ψ, Ψ̄, Am, b, c) exp
(
−1

2
(Stot + SFP + SJ)

)
, (5.12)

where

Stot = SSYM + Sgf = −1
2

∫
d4x�φ̄(φ + 4I2∂mφ̄Gm)+

+ i

∫
d4x

(
Ψiα +

4IAmσm
α

α̇Ψ̄iα̇

1 + 4Iφ̄

)
(σn)αβ̇∂n

(
Ψ̄β̇

i

1 + 4Iφ̄

)
−

−
∫

d4x

[
1
2
An�An − AnGm∂nAm + AnGn∂mAm + εmnrsGmAn∂rAs

]
.

(5.13)

The functional integral (5.12) with the action (5.13) requires several com-
ments.

1. The ghost ˇelds b, c enter the action only through their kinetic term.
Hence, they fully decouple and can be integrated out.
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2. The fermionic ˇelds Ψi
α, Ψ̄i

α̇ do not contribute to the effective action.
Indeed, the action SΨ (5.2) can be brought to the form of free action by the

following change of ˇelds ψiα = Ψiα +
4IAmσm

α
α̇Ψ̄iα̇

1 + 4Iφ̄
, ψ̄β̇

i =
Ψ̄β̇

i

1 + 4Iφ̄
. One

can also check this observation by the direct computations of the corresponding
Feynman diagrams.

3. The contribution to the effective action from the scalar ˇeld φ is also
trivial since it appears in the action (5.13) without interaction with other ˇelds.

4. A nontrivial contribution to the effective action in this model comes only
from the terms in the last line of (5.13). These terms are quadratic in the vector
ˇeld Am and linear with respect to Gm. Hence, the ˇeld Gm appears only on
the external lines while Am works only inside the Feynman diagrams. Moreover,
there are only one-loop diagrams since there are no self-interaction of Am. Since
the ˇeld Gm is expressed only through φ̄ as in (5.5), we conclude that the effective
action is a functional of φ̄ only. The dimensional considerations allow one to
construct only the following three terms in the effective action:

Γ =
∫

d4x[f1(Iφ̄)I2�φ̄�φ̄ + f2(Iφ̄)I3�φ̄∂mφ̄∂mφ̄ +

+ f3(Iφ̄)I4(∂mφ̄∂mφ̄)2], (5.14)

where f1, f2, f3 are some functions. The Feynman graph computations should
specify these functions.

Taking into account these comments, we conclude that the effective action in
this model can be represented by the following formal expression∗:

ΓSYM =
1
2
Tr ln

δ2S̃

δAp(x)δAq(x′)
, (5.15)

where S̃ is the last line in (5.13),

S̃ =
∫

d4x

[
−1

2
An�An + AnGm∂nAm − AnGn∂mAm−

− εmnrsGmAn∂rAs

]
. (5.16)

∗Note that the one-loop effective action in the Euclidean space is given by Γ =
1

2
Tr ln S′′[Φ]

rather than the Minkowski space expression Γ =
i

2
Tr ln S′′[Φ]. Here S′′[Φ] is the second functional

derivative of the classical action.



GAUGE THEORY IN DEFORMED N=(1,1) SUPERSPACE 1507

The second functional derivative of the action (5.16) can be easily calculated,

δ2S̃

δAp(x)δAq(x′)
=

= −δpq�δ4(x − x′) + 4G[q∂p]δ
4(x − x′) + 2εpqmnGm∂nδ4(x − x′). (5.17)

Substituting (5.17) into (5.15) we have

ΓSYM =
1
2

Tr ln
[
δpqδ

4(x − x′) + 4G[p∂q]
1
�δ4(x − x′)−

− 2εpqmnGm
∂n

� δ4(x − x′)
]

=
1
2

Tr
∞∑

j=1

(−1)j+1

j
×

×
[
4G[p∂q]

1
�δ4(x − x′) − 2εpqmnGm

∂n

� δ4(x − x′)
]j

. (5.18)

The expression (5.18) provides us with the perturbative expansion of the effective
action in a form of Feynman diagram series with the external lines Gm.

The propagators in (5.18) appear in the combination ∂m�−1δ4(x − x′). On
the dimensionality grounds, only the expressions like

[
∂m

� δ4(x − x′)
]2

,

[
∂m

� δ4(x − x′)
]3

,

[
∂m

� δ4(x − x′)
]4

(5.19)

are divergent and all higher powers of ∂m�−1δ4(x− x′) produce ˇnite contribu-
tions to the effective action. Therefore, only two-, three- and four-point diagrams
lead to the divergent contributions in the effective action (note that the external
line is that of the ˇeld Gm). We are interested solely in the divergent contri-
butions to the effective action, and consider the calculations of two-, three- and
four-point functions separately.

Let us consider only the terms in the series (5.18) which are responsible for
the two-, three- and four-point diagram contributions,

ΓSYM
2 =

= −
∫

d4x1d
4x2

[
2G[q(x1)∂p]

1
�δ4(x1−x2)+εpqmnGm(x1)∂n

1
�δ4(x1−x2)

]
×

×
[
2G[p(x2)∂q]

1
�δ4(x2 − x1) + εqprsGr(x2)∂s

1
�δ4(x2 − x1)

]
, (5.20)
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ΓSYM
3 =

=
4
3

∫
d4x1d

4x2d
4x3

[
(Gt(x1)∂u−Gu(x1)∂t−εtumnGm(x1)∂n)

1
�δ4(x1−x2)

]
×

×
[
(Gu(x2)∂w − Gw(x2)∂u − εuwrsGr(x2)∂s)

1
�δ4(x2 − x3)

]
×

×
[
(Gw(x3)∂t − Gt(x3)∂w − εwtpqGp(x3)∂q)

1
�δ4(x3 − x1)

]
, (5.21)

ΓSYM
4 =

= −2
∫

d4x1d
4x2d

4x3d
4x4

[
(Gp∂q − Gq∂p − εp′qq′pGp′∂q′)

1
�δ4(x1 − x2)

]
×

×
[
(Gq∂m − Gm∂q − εm′mn′qGm′∂n′)

1
�δ4(x2 − x3)

]
×

×
[
(Gm∂n − Gn∂m − εr′ns′mGr′∂s′)

1
�δ4(x3 − x4)

]
×

×
[
(Gn∂p − Gp∂n − εtpunGt∂u)

1
�δ4(x4 − x1)

]
. (5.22)

To proceed, one has to perform the integrations over x2, x3, x4 in expres-
sions (5.20), (5.21), (5.22) using the Fourier representation for the ˇelds and
delta-functions. The corresponding divergent momentum integrals should be reg-
ularized by the standard methods of quantum ˇeld theory using, e.g., the dimen-
sional regularization. Here we omit the details of these computations which can
be found in [32]. As a result, the divergent parts of the functions (5.20), (5.21),
(5.22) are given by

ΓSYM
2,div =

1
16π2ε

∫
d4x ln (1 + 4Iφ̄)�2 ln (1 + 4Iφ̄), (5.23)

ΓSYM
3,div = − 1

4π2ε

∫
d4x∂m ln (1 + 4Iφ̄)∂m ln (1 + 4Iφ̄)� ln(1 + 4Iφ̄), (5.24)

ΓSYM
4,div = − 5

16π2ε

∫
d4x[∂m ln (1 + 4Iφ̄)∂m ln (1 + 4Iφ̄)]2. (5.25)

Here ε is a parameter of dimensional regularization, ε = 2 − d/2, where d is the
dimension of space-time. The limit ε → 0 takes off the regularization. The full
divergent contribution to the effective action is given by the sum of (5.23), (5.24)
and (5.25). Using the integration by parts, the divergent contribution to the
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effective action can be brought to the form

ΓSYM
div = ΓSYM

2,div + ΓSYM
3,div + ΓSYM

4,div =

=
1

π2ε

∫
d4x

I2�φ̄�φ̄

(1 + 4Iφ̄)2
− 6

π2ε

∫
d4x

4I3�φ̄∂mφ̄∂mφ̄

(1 + 4Iφ̄)3
. (5.26)

Note that the action (5.26) matches with the previously guessed structure (5.14).
At ˇrst sight, the nonanticommutative supergauge model looks like nonrenor-

malizable, since the quantum computations produce expressions (5.26) which are
absent in the classical action (4.38). However, it is easy to see that the diver-
gent terms (5.26) being added to the classical action (4.38) can be completely
compensated by the following shift of scalar ˇeld φ:

φ −→ φ − 2
π2ε

I2�φ̄

(1 + 4Iφ̄)2
+

12
π2ε

4I3∂mφ̄∂mφ̄

(1 + 4Iφ̄)3
. (5.27)

Therefore, the N=(1, 0) gauge model is renormalizable in the sense that all di-
vergences can be removed by the redeˇnition of the scalar ˇeld φ. One can
treat (5.27) as a change of ˇelds in the functional integral (5.12). Since the Jaco-
bian of such a change of functional variables is equal to unity, the terms (5.26),
being added to the classical action (4.38), do not contribute to the effective ac-
tion. Moreover, this model is ˇnite since the shift (5.27) allows one to completely
eliminate the divergences from the effective action.

This situation is analogous to the N=(1/2, 0) SYM model considered in [19],
where it was demonstrated that the quantum computations in this model generate
the divergent terms which are not present in the classical action of the model, but
these extra divergences can be removed by a simple shift of the gaugino ˇeld (the
lowest component in N=(1/2, 1/2) gauge multiplet). In our case the divergences
can also be removed by the shift of the lowest component of N=(1, 1) gauge
multiplet (scalar ˇeld).

It should also be noted that the divergent expression (5.26) vanishes on the
classical equation of motion for the scalar ˇeld φ̄ given by �φ̄ = 0. Therefore
the S-matrix in this model is free of divergences and in this sense one can say
that the model under consideration is ˇnite.

5.2. Neutral Hypermultiplet Model. Consider the model of neutral hy-
permultiplet with the classical action (4.81). Clearly, the hypermultiplet ˇelds
fak, ραa, χα̇

a work only inside the loops of Feynman diagrams while the vector
multiplet ˇelds φ̄, Ψ̄α̇

k , Am appear only on external lines. Moreover, since the
action (4.81) is quadratic with respect to the hypermultiplet ˇelds, the correspond-
ing effective action is one-loop exact. It is easy to observe also that the terms in
the second line of the action (4.81) correspond to the interaction vertices which
do not couple with the other vertices in one-loop diagrams. Indeed, to form a
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loop with these vertices one needs the propagators 〈ραaf bk〉, 〈ραaρβb〉 which are
absent in this model.

Let us analyze also the term
i

2
(1 + 4Iφ̄)ραa∂αα̇χα̇

a in the ˇrst line of (4.81).

It is easy to see that this term does not contribute to the effective action,

Γferm = −Tr ln
δ2Sad

δραa(x)δχα̇
b (x′)

= −Tr ln
[

i

2
(1 + 4Iφ̄)∂αα̇δ4(x − x′)δb

a

]
=

= −2 Tr ln
[

i

2
(1 + 4Iφ̄)δ4(x − x′)

]
− 2 Tr ln [∂αα̇δ4(x − x′)] � 0. (5.28)

As a result, the nontrivial contribution to the effective action comes only
from the loops with the internal lines given by the scalar ˇelds fak and with
the ˇeld φ̄ on external lines. This contribution is given by the following formal
expression:

Γhyp =
1
2

Tr ln
δ2

δfak(x)δfa′k′(x′)

[
1
2

∫
d4x(1 + 4Iφ̄)2∂mfak∂mfak

]
. (5.29)

Calculating the variational derivative in (5.29), we obtain

Γhyp = 2 Tr ln
[
(1 + 4Iφ̄)2�δ4(x − x′)

]
+

+ 2 Tr ln
[
δ4(x − x′) + 2

1
�Gm(x)∂mδ4(x − x′)

]
. (5.30)

The ˇrst term in the r.h.s. of (5.30) is trivial since it is proportional to δ4(0)
that is zero in the sense of dimensional regularization. The second term in the
r.h.s. of (5.30) provides us with the following perturbative representation for the
effective action:

Γhyp = 2Tr
∞∑

n=1

(−1)n+1

n

[
2
�Gm(x)∂mδ4(x − x′)

]n

. (5.31)

Note that the ˇelds Gm in the series (5.31) play the role of external lines of
corresponding Feynman diagrams. Taking into account the dimensions of ˇeld

Gm and propagators
1
�∂mδ4(x − x′) we conclude that only the diagrams with

two, three and four external lines are divergent. Let us consider these divergent
terms in the series (5.31), which corresponds to n = 2, 3, 4:

Γhyp
2 = −4

∫
d4x1d

4x2Gm(x1)Gn(x2)
∂m

� δ4(x1 − x2)
∂n

� δ4(x2 − x1), (5.32)
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Γhyp
3 =

16
3

∫
d4x1d

4x2d
4x3Gm(x1)Gn(x2)Gp(x3)×

× ∂m

� δ4(x1 − x2)
∂n

� δ4(x2 − x3)
∂p

� δ4(x3 − x1), (5.33)

Γhyp
4 = −8

∫
d4x1d

4x2d
4x3d

4x4Gm(x1)Gn(x2)Gp(x3)Gr(x4)×

× ∂m

� δ4(x1 − x2)
∂n

� δ4(x2 − x3)
∂p

� δ4(x3 − x4)
∂r

� δ4(x4 − x1). (5.34)

Expressions (5.32), (5.33), (5.34) can be calculated by the standard methods of
quantum ˇeld theory, see [32] for details. Here we give only the results,

Γhyp
2,div = − 1

16π2ε

∫
d4x ln (1 + 4Iφ̄(x))�2 ln (1 + 4Iφ̄(x)), (5.35)

Γhyp
3,div = − 1

8π2ε

∫
d4x� ln (1 + 4Iφ̄)∂n ln (1 + 4Iφ̄)∂n ln (1 + 4Iφ̄), (5.36)

Γhyp
4,div = − 1

16π2ε

∫
d4x[∂m ln (1 + 4Iφ̄)∂m ln (1 + 4Iφ̄)]2. (5.37)

Summarizing (5.35), (5.36), (5.37) we obtain the full divergent contribution to
the hypermultiplet effective action,

Γhyp
div = − 1

π2ε

∫
d4x

I2�φ̄�φ̄

(1 + 4Iφ̄)2
. (5.38)

Note that (5.38) agrees with the general structure of the effective action (5.14)
guessed before.

As in the deformed gauge model, there are no terms in the classical ac-
tion (4.38) having the ˇeld structure similar to (5.38). Therefore, at ˇrst sight the
multiplicative renormalizability of the model can be spoiled by the divergent con-
tribution (5.38). However, it is easy to observe that the term (5.38), being added
to the classical action (4.38), can be completely compensated by the following
shift of scalar ˇeld:

φ → φ +
2

π2ε

I2�φ̄

(1 + 4Iφ̄)2
, (5.39)

while the other ˇelds remain intact. Since the Jacobian of the change (5.39) is
equal to unity, we conclude that the term (5.38) does not spoil the renormalizabil-
ity and ˇniteness of the model. Moreover, the divergent term (5.38) vanishes on
the classical equation of motion for the scalar ˇeld φ̄ given by �φ̄ = 0. Therefore
the ˇniteness of S-matrix is also evident.



1512 BUCHBINDER I. L. ET AL.

Let us consider ˇnally the general Abelian N=(1, 0) nonanticommutative
model of gauge superˇeld interacting with the hypermultiplet matter. It is de-
scribed by the classical action

S = SSYM + Sad, (5.40)

where SSYM and Shyp are given by (4.38), (4.81), respectively. It is easy to see
that the divergent part of the effective action in this model is given by the sum
of expressions (5.26) and (5.38),

Γdiv = ΓSYM
div + Γhyp

div = − 6
π2ε

∫
d4x

4I3�φ̄∂mφ̄∂mφ̄

(1 + 4Iφ̄)3
. (5.41)

The divergent expression (5.41) can also be completely compensated by the
following shift of the scalar φ:

φ → φ +
12
π2ε

4I3∂mφ̄∂mφ̄

(1 + 4Iφ̄)3
. (5.42)

As a result, the general N=(1, 0) supergauge theory is also renormalizable and
ˇnite.

5.3. Charged Hypermultiplet Model. The model of charged hypermultiplet
is described by the superˇeld action (3.14) or the corresponding component ˇeld
action (4.97). Note that the component action (4.97) is much more complicated
than the actions of neutral hypermultiplet and gauge superˇeld considered above.
Therefore, to prove the renormalizability of the charged hypermultiplet model we
prefer to use the superˇeld description (3.14).

In superˇelds, the effective action of charged hypermultiplet is given by the
following formal expression:

Γ = Tr ln
δ2Sf

δq̃+(1)δq+(2)
= Tr ln(D++ + V ++�). (5.43)

The free Green function of hypermultiplet superˇeld has the standard form [35],

G
(1,1)
0 (1|2) = − 1

�(D+
1 )4(D+

2 )4
δ12(z1 − z2)

(u+
1 u+

2 )3
. (5.44)

It solves free equation of motion with the delta-source, D++G
(1,1)
0 (1|2) =

δ
(1,3)
A (1|2), where δ

(1,3)
A (1|2) is an analytic delta-function (see [35] for the de-

tails of the harmonic superspace approach). The effective action (5.43) can be
formally expressed through the free Green function (5.44) as

Γ = Tr ln
[
δ
(3,1)
A (1|2) + V ++(1) � G

(1,1)
0 (1|2)

]
. (5.45)
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Expanding the logarithm in (5.45) in a series, we obtain a perturbative represen-
tation for the effective action,

Γ =
∞∑

n=2

Γn, (5.46)

Γn =
(−1)n+1

n
×

×
∫

dζ1du1 · · · dζndunV ++(1) � G
(1,1)
0 (1|2) · · ·V ++(n) � G

(1,1)
0 (n|1). (5.47)

We calculate further the divergent parts of the n-point functions Γn.
As the ˇrst step, we restore in (5.47) the full N=(1, 1) superspace integration

measure with the help of (D+)4 factors of the propagator (5.44). For this purpose
we apply the following standard identity:

d12z = d4xd8θ = dζ(D+)4. (5.48)

As a result, the n-point Green function reads

Γn = − 1
n

∫
d12z1 du1 · · · d12zn dunV ++(1) �

1
� (D+

1 )4
δ12(z1 − z2)

(u+
1 u+

2 )3
×

× V ++(2) �
1
�(D+

2 )4
δ12(z2 − z3)

(u+
2 u+

3 )3
· · ·V ++(n) �

1
� (D+

n )4
δ12(zn − z1)

(u+
n u+

1 )3
.

(5.49)

Further we integrate by parts and take off the integration over Grassmann variables
θ2, . . . , θn−1 using the corresponding delta-functions. As a consequence, for
expression (5.49) we have

Γn=− 1
n

∫
d12z1d

12znd4x2 · · · d4xn−1d
nUXn[U ]δ8(θ1−θn)V ++(n)�(D+

n−1)
4×

×
[
(D+

n−2)
4

[
. . . (D+

2 )4
[
(D+

1 )4(D+
n )4

1
�δ12(zn − z1) � V ++(1)

1
�δ4(x1 − x2)

]
�

�V ++(x2, θ1, u2)
1
�δ4(x2−x3)

]
. . .�V ++(xn−2, θ1, un−2)

1
�δ4(xn−2−xn−1)

]
�

� V ++(xn−1, θ1, un−1)
1
�δ4(xn−1 − xn). (5.50)

Here we have introduced the denotations dnU = du1 · · ·dun, Xn[U ] =
1/[(u+

1 u+
2 )3 . . . (u+

n u+
1 )3]. Note that the covariant derivatives in (5.50) commute

with the �-product operators and hit only the corresponding V ++ superˇelds and
delta-functions.
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To integrate over the remaining Grassmann variables in (5.50) we make the
Fourier transform for superˇelds and delta-functions,

V ++(1) =
∫

d4p1

(2π)4
d4ρ1 eip1x1 eρ1θ1 Ṽ ++(p1, ρ1, θ̄1, u1), (5.51)

δ12(z1 − z2) =
∫

d4k1

(2π)4
d4π1 eik1(x1−x2) eπ1(θ1−θ2)δ4(θ̄1 − θ̄2), (5.52)

where we denote πθ = πα
i θi

α = −θα
i πi

α = −θπ. The �-product of Fourier
transforms of arbitrary two superfunctions f , g is given by

f � g =
∫

d4pd4k

(2π)8
d4ρd4πf̃(p, ρ)g̃(k, π) ei(p+k)x e(ρ+π)θ×

× e−IQα
i (p,ρ,θ̄)Qi

α(k,π,θ̄), (5.53)

where Qi
α(p, ρ, θ̄) = (−ρi

α + θ̄iα̇σm
αα̇pm). As a result, Eq. (5.50) reads

Γn =
(−1)n+1

n

∫
d4θ̄1d

4θ̄n
d4p1 · · · d4pn

(2π)4n
d4ρ1 · · ·d4ρnd4knd4πndnUXn[U ]×

× δ4(θ̄1 − θ̄n)δ4
(∑

pi

)
δ4

(∑
ρi

) exp
[

n∑
i,j=2(i<j)

−IQ(ρi)Q(ρj)
]

k2
n(kn − p1)2 . . .

(
kn −

n−1∑
i=1

pi

)2×

× (D+
n−1)

4[(D+
n−2)

4[. . . [(D+
2 )4[(D+

1 )4(D+
n )4δ4(θ̄n − θ̄1)]V ++(p1, ρ1, θ̄1, u1)]×

× V ++(p2, ρ2, θ̄1, u2)] . . . V ++(pn−2, ρn−2, θ̄1, un−2)]×

× V ++(pn−1, ρn−1, θ̄1, un−1)V ++(pn, ρn, θ̄n, un). (5.54)

Note that in this representation the derivatives D̄+
α̇ differentiate only θ̄ variables

while D+
α (π, u) is nothing but a multiplication operator on u+

i πi
α. Hence, we can

apply the following identities:

1
16

δ4(θ̄1 − θ̄n)(D̄+
1 )2(D̄+

n )2δ4(θ̄n − θ̄1) = (u+
1 u+

n )2, (5.55)

1
16

∫
d4π(D+(π, un−1))2((D+(π, un))2 = (u+

n−1u
+
n )2 (5.56)

to simplify (5.54). After these manipulations we are left with n − 2 differential
operators in (5.54) which give at most the momentum (k2)n−2 on condition
that these derivatives do not hit the external lines. Clearly, this corresponds
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to the logarithmic divergence of the momentum integral over d4k. The terms
with derivatives on the external lines V ++ are always ˇnite since they have
the power of momentum less than n − 2. Here we are interested only in the
divergent contributions to the effective action and consider therefore only the
terms in (5.54) without derivatives on V ++ superˇeld. As a result, the divergent
part of the effective action (5.54) is given by

Γn,div =
(−1)n+1

n

1
16n

∫
d4p1

(2π)4
du1d

4ρ1 · · ·
d4pn

(2π)4
dund4ρnd4θ̄1d

4θ̄nd4πd4k×

× V ++(p1, ρ1, θ̄1, u1) · · ·V ++(pn, ρn, θ̄1, u1) exp

[
−I

n∑
i,j=2;i<j

Q(ρi)Q(ρj)

]
×

× δ4(θ̄1 − θ̄n)(D+
n−1)

2(D̄+
n−1)

2 · · · (D+
2 )2(D̄+

2 )2(D+
1 )2(D̄+

1 )2(D+
n )2(D̄+

n )2×

× δ4(θ̄1−θ̄n)
δ4 (

∑
pi) δ4 (

∑
ρi)

k2(k−p2)2 . . .

(
k−

n∑
l=2

pl

)2

1
(u+

1 u+
2 )3(u+

2 u+
3 )3 · · · (u+

n u+
1 )3

. (5.57)

Note that the factor e−IΣQQ in (5.57) allows us to restore the �-product of
gauge superˇelds V ++(u1) � V ++(u2) � . . . � V ++(un) after the inverse Fourier
transform.

Now we simplify the chain of covariant derivatives in (5.57). Consider, e.g.,
the block (D+

2 )2(D̄+
2 )2(D+

1 )2(D̄+
1 )2. Using the identity D+

1α = (u+
1 u−

2 )D+
2α −

(u+
1 u+

2 )D−
2α and anticommutation relations for the derivatives, {D+

α , D̄−
α̇ } =

2kαα̇, this expression simpliˇes to

(D+
2 )2(D̄+

2 )2(D+
1 )2(D̄+

1 )2 → 16(u+
1 u+

2 )2k2(D+
2 )2(D̄+

1 )2. (5.58)

Applying relation (5.58) n−2 times, we rewrite the chain of derivatives in (5.57) as

δ4(θ̄1 − θ̄n)(D+
n−1)

2(D̄+
n−1)

2 · · · (D+
2 )2(D̄+

2 )2(D+
1 )2(D̄+

1 )2(D+
n )2×

× (D̄+
n )2δ4(θ̄1 − θ̄n) = 16n−2(k2)n−2(u+

1 u+
2 )2 · · ·

· · · (u+
n−2u

+
n−1)

2(D+
n )2(D+

n−1)
2δ4(θ̄1 − θ̄n)(D̄+

1 )2(D̄+
n )2δ4(θ̄1 − θ̄n). (5.59)

Finally, integrating over d4θ̄nd4πn in (5.57) and using the identities (5.55), (5.56),
we obtain

Γn,div =
1

16π2ε

(−1)n

n
×

×
∫

d12zdu1 · · · dun
V ++(u1) � V ++(u2) � . . . � V ++(un)

(u+
1 u+

2 )(u+
2 u+

3 ) · · · (u+
n u+

1 )
. (5.60)
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The factor
1

16π2ε
appears here due to the dimensional regularization of logarith-

micaly divergent momentum integral.

The full divergence in the model of charged hypermultiplet is obtained now
by summarizing the divergent parts of n-point functions given by (5.60)

Γdiv =
1

16π2ε

∞∑
n=2

(−1)n

n
×

×
∫

d12zdu1 · · · dun
V ++(u1) � V ++(u2) � . . . � V ++(un)

(u+
1 u+

2 )(u+
2 u+

3 ) · · · (u+
n u+

1 )
. (5.61)

As a result, we conclude that the divergent part of the effective action in the
charged hypermultiplet model coincides, up to a divergent factor, with the classical
action (3.11) in the model of gauge superˇeld. This proves the renormalizability
of the N=(1, 0) model of gauge superˇeld interacting with the hypermultiplet.

5.4. SeibergÄWitten Transform and Renormalizability. In this section we
have proven the renormalizability of Abelian models of gauge multiplet and hy-
permultiplets by direct computations of divergent contribution to the effective
actions of these models. Recall that there is a change of classical ˇelds in
these actions (4.54), (4.87), (4.100) which not only brings the supersymmetry
and gauge transformations to the undeformed form but also essentially simpli-
ˇes the structures of the classical action. We refer to these transformations as
the SeibergÄWitten maps. The SeibergÄWitten maps prove also very useful for
the proof of renormalizability and ˇniteness of neutral hypermultiplet and gauge
multiplet models. The quantum computations in terms of the transformed ˇelds
explicitly demonstrate the exact cancellations of divergent terms in the corre-
sponding effective actions.

The SeibergÄWitten map in the Abelain N=(1, 0) supergauge model (4.38)
was derived in Subsec. 4.2. Here we use these transformations in the form (4.59),

φ → ϕ̂ = φ +
4I

1 + 4Iφ̄
[AmAm + 4I2(∂mφ̄)2],

Am → am =
Am

1 + 4Iφ̄
, Ψ̄k

α̇ → ψ̄k
α̇ =

Ψ̄k
α̇

1 + 4Iφ̄
,

(5.62)

Ψk
α → ψ̂k

α = Ψk
α +

4IAαα̇Ψ̄α̇k

1 + 4Iφ̄
,

Dkl → d̂kl =
1

1 + 4Iφ̄

[
Dkl +

8IΨ̄k
α̇Ψ̄α̇l

1 + 4Iφ̄

]
.
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The action (4.38) in terms of these new ˇelds is rewritten as

SSYM =
∫

d4x

(
−1

2
ϕ̂�φ̄ − iψ̂α

k ∂αα̇ψ̄α̇k +
1
4
d̂kld̂kl

)
+

+
1
4

∫
d4x(1 + 4Iφ̄)2

(
fmnfmn +

1
2
εmnrsfmnfrs

)
, (5.63)

where fmn = ∂man − ∂nam. The form (5.63) is more preferable for further
quantum computations as compared to the one given by (4.57), since the scalar
ϕ̂, as well as the spinor and auxiliary ˇelds, are free in (5.63). The only interaction
term is present in the second line of (5.63). It is an interaction between the vector
ˇeld strength and the scalar φ̄.

The action (5.63) is invariant under the Abelian gauge transformation,

δam = ∂mλ, (5.64)

λ being the gauge parameter. We use here the Lorentz gauge

∂mam = 0, (5.65)

since the transformation (5.64) has the same form as in the classical electro-
dynamics. Further we follow the FaddeevÄPopov procedure of constructing the
functional integral. Let us introduce the gauge-ˇxing function

χ = ∂mam, (5.66)

which transforms under (5.64) as δχ = �λ. Obviously, the ghost ˇelds do not
interact with any other ones and so they completely decouple. The ghost action
is given again by (5.7). The generating functional for Green's functions is now
given by∗

Z[J ] =
∫

D(ϕ̂, φ̄, ψ̂, ψ̄, am, b, c)δ(χ − ∂mam)×

× exp
(
−1

2
(SSYM + SFP + SJ)

)
, (5.67)

where

SJ =
∫

d4x[ϕ̂Jϕ̂ + φ̄Jφ̄ + ψ̂i
α(Jψ̂)α

i + ψ̄iα̇(Jψ̄)iα̇ + am(Ja)m]. (5.68)

∗Note that the Jacobian of the change of functional variables (5.62) is unity since this redeˇnition
of ˇelds is local.
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To represent the delta-function in the Gaussian form, we average Eq. (5.67) with
the functional factor (5.10). As a result, we obtain the gauge-ˇxing action in the
form

Sgf =
α

2

∫
d4x(1 + 4Iφ̄)2∂mam∂nan. (5.69)

For simplicity we choose the gauge-ˇxing parameter α to be equal to unity,
α = 1. Now, the generating functional (5.67) reads

Z[J ] =
∫

D(ϕ̂, φ̄, ψ̂, ψ̄, am, b, c) exp
(
−1

2
(Stot + SFP + SJ )

)
, (5.70)

where

Stot = SSYM +Sgf =
∫

d4x

(
−1

2
ϕ̂�φ̄ − iψ̂α

k ∂αα̇ψ̄α̇k +
1
4
d̂kld̂kl

)
+Sa (5.71)

and

Sa =
1
2

∫
d4x(1 + 4Iφ̄)2×

× (∂mam∂nan + ∂man∂man − ∂man∂nam + εmnrs∂man∂ras). (5.72)

It is evident that the scalar and spinor ˇelds, as well as the ghosts, do
not contribute to the effective action. The only contribution comes from the
part (5.72), namely

ΓSYM=
1
2
Tr ln

δ2Sa

δap(x)δaq(x′)
=

1
2

Tr ln [δpq�δ4(x−x′)+2δpqGm∂mδ4(x−x′)+

+ 4G[p∂q]δ
4(x − x′) − 2εpqmnGm∂nδ4(x − x′)]. (5.73)

The ˇeld Gm(x) was deˇned in (5.5). Expression (5.73) is the starting point for
perturbative calculations of one-loop effective action in the N=(1, 0) nonanti-
commutative SYM model. Note that it resembles the ˇrst line of (5.18), except
for the term 2δpqGm∂mδ4(x − x′). Therefore the further computations are very
similar to the ones in Sec. 2. As usual, only two-, three- and four-point diagrams
are divergent. The two-point function is given by

ΓSYM
2 =−

∫
d4x1d

4x2

[
δpqGm(x1)∂m

1
�δ4(x1−x2)+2G[p(x1)∂q]

1
�δ4(x1−x2)+

+ εqpmnGm(x1)∂n
1
�δ4(x1 − x2)

][
δqpGn(x2)∂n

1
�δ4(x2 − x1)+

+ 2G[q(x2)∂p]
1
�δ4(x2 − x1) + εpqrsGr(x2)∂s

1
�δ4(x2 − x1)

]
. (5.74)
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To proceed, we pass to momentum space and compute the divergent momentum
integrals using the standard methods of quantum ˇeld theory. As a result, we ˇnd
that the two-point function (5.74) has no divergent contributions,

ΓSYM
2,div = 0. (5.75)

The absence of divergences here is owing to the term 2δpqGm∂mδ4(x − x′)
in (5.73) and (5.74). It gives the contribution which exactly cancels expres-
sion (5.23) obtained by similar calculations without this term.

The three- and four-point functions are deˇned by the following formal
expressions:

ΓSYM
3 =

4
3

Tr
[
(δpqGm(x)∂m + 2G[p(x)∂q]−

− εpqmnGm(x)∂n)
1
�δ4(x − x′)

]3

, (5.76)

ΓSYM
4 = −2 Tr

[
(δpqGm(x)∂m + 2G[p(x)∂q]−

− εpqmnGm(x)∂n)
1
�δ4(x − x′)

]4

. (5.77)

The further computations are very similar to those in Subsec. 5.1, but with taking
into account the term 2δpqGm∂mδ4(x−x′). After careful tracking the coefˇcients
during the computations, we ˇnd that the three- and four-point functions also have
no divergences,

ΓSYM
3,div = 0, ΓSYM

4,div = 0. (5.78)

As a result, we conclude that the Abelian N=(1, 0) nonanticommutative gauge
model (5.63) is completely ˇnite,

ΓSYM
div = 0, (5.79)

without the necessity to perform any ˇeld redeˇnition such as (5.27).
One more important comment to be added is as follows. The Abelian

N=(1, 0) nonanticommutative gauge model is described by the classical ac-
tions (4.38) or (5.63) which are related to each other by the SeibergÄWitten
map (5.62). It is obvious that the Jacobian of such a change of functional vari-
ables (5.62) is unity (in the sense of dimensional regularization). Therefore the
effective actions in these two models should also be related by the SeibergÄWitten
map. As for the divergent part, we observe that it is trivial for both models (4.38)
and (5.63), since it can be removed by the shift (5.27) of the scalar ˇeld φ.
Note that this explains the appearance of only two out of three possible divergent
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terms (5.14). Indeed, if the third term proportional to I4

∫
d4xf3(Iφ̄)(∂mφ̄∂mφ̄)2

appeared in the divergent part of the effective action, it could not be removed
by any shift of the scalar ˇeld φ, that would mean the presence of a nontrivial
divergence in the model. However, we have seen in this section that the effective
action in N=(1, 0) nonanticommutative gauge theory is ˇnite.

Let us also consider the general model of an Abelian N=(1, 0) nonanti-
commutative gauge superˇeld interacting with a neutral hypermultiplet. It is
described by the sum of the classical actions (4.38) and (4.81). Upon performing
the SeibergÄWitten map (4.89), this action turns into (4.90). We see that the
nontrivial interaction terms in (4.92) are the ones given by∫

d4x
1
4
(1 + 4Iφ̄)2

(
fmnfmn +

1
2
εmnrsfmnfrs

)
. (5.80)

This expression just coincides with the one present in the gauge theory ac-
tion (5.63). Thus the quantum computations tell us once again that the general
Abelian N=(1, 0) nonanticommutative model is ˇnite

Γdiv = 0. (5.81)

This result agrees with the one of Subsec. 5.2, modulo some divergent redeˇni-
tion (5.42) of the scalar ˇeld φ.

To summarize, the use of the SeibergÄWitten map in the models under
consideration makes it possible to avoid the divergent expressions in the effective
action from the very beginning. Otherwise, such expressions appear but they are
removable by some divergent redeˇnition of the scalar ˇeld φ.

6. HOLOMORPHIC POTENTIAL IN THE NONANTICOMMUTATIVE
ABELIAN CHARGED HYPERMULTIPLET MODEL

The previous section was devoted to the calculation of divergent parts of the
effective actions in the models of gauge superˇeld and hypermultiplets. In this
section we study the structure of ˇnite parts of these effective actions. It is clear
that the chiral singlet deformation modiˇes the effective action of the original
undeformed theory in some way. Since we restrict our consideration only to the
Abelian case, it makes sense to study only the issue of nonanticommutative cor-
rections to the effective action in the charged hypermultiplet model. Indeed, in the
limit I → 0 the undeformed Abelian models of neutral hypermultiplet and gauge
superˇeld become free and exhibit no any quantum dynamics, while the charged
hypermultiplet model turns into the N=(1, 1) supersymmetric electrodynamics
which is nontrivial at the quantum level.
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It is well known [37, 39] that the low-energy effective action in the unde-
formed charged hypermultiplet model has the following structure in the sector of
gauge superˇelds:

Γ =
∫

d4xd4θF(W ) +
∫

d4xd4θ̄ F̄(W̄ ) +
∫

d4xd8θH(W, W̄ ), (6.1)

where F is a holomorphic potential; F̄ is an antiholomorphic potential and H is a
nonholomorphic potential. The superˇeld strengths W , W̄ are expressed through
the prepotential V −− as in (3.4). In the Abelian case these superˇelds obey the
(anti)chirality conditions,

D±
α W̄ = 0, D̄±

α̇ W = 0. (6.2)

The holomorphic and antiholomorphic parts of the effective action (6.1) result in
the following effective equations of motion:

(D+)2F ′(W ) + (D̄+)2F̄ ′(W̄ ) = 0. (6.3)

By now, the perturbative contributions to the effective action in the
undeformed charged hypermultiplet model have been thoroughly studied (see,
e.g., [37Ä42]). In particular, the holomorphic potential in this model is given by
the following simple formula:

F(W ) = − 1
32π2

W 2 ln
W

μ
, (6.4)

where μ is some constant of mass dimension +1.
The superˇeld strengths W , W̄ have the scalar ˇelds φ, φ̄ and the Maxwell

ˇeld strength Fmn = ∂mAn − ∂nAm as their bosonic component ˇelds,

W = φ + (θ+σmnθ−)Fmn + . . . , W̄ = φ̄ + (θ̄+σ̃mnθ̄−)Fmn + . . . (6.5)

Here we do not consider the dependence of these superˇelds on the spinors Ψi
α,

Ψ̄iα̇ and auxiliary ˇelds Dkl. Substituting the ˇeld strength (6.5) into (6.4), one
readily obtains the component structure of the holomorphic effective action in the
bosonic sector,

Γhol =
∫

d4xd4θF(W ) =

= − 1
32π2

∫
d4x(FmnFmn + FmnF̃mn)

(
ln

φ

μ
+

3
2

)
+ . . . (6.6)
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Here F̃mn =
1
2
εmnrsFrs and dots stand for the terms with derivatives of ˇelds

and spinor ˇelds. We stress that expression (6.6) corresponds to the bosonic
terms in the effective action which are leading in the following approximation:

φ = const, φ̄ = const, Fmn = const,

Ψi
α = Ψ̄iα̇ = Dkl = 0.

(6.7)

Note that the constant 3/2 in (6.6) can be removed by a shift of the parameter μ,
however it will be important when we will consider the nonanticommutative
deformation of (anti)holomorphic effective action. The antiholomorphic part of
the effective action can be obtained by the complex conjugation of the action (6.6).

6.1. General Structure of the Effective Action. Let us discuss the general
structure of the effective action in the charged hypermultiplet model. Since the
classical action (3.14) is a simple �-product generalization of the corresponding
classical action of undeformed theory, one can assume that the chiral part of the
effective potentials in (6.1) is also given by the �-deformation of the holomorphic
potential,

F(W ) −→ F�(W ). (6.8)

However, the antiholomorphic contributions to the effective action cannot be
accounted by such naive considerations. As was shown in Subsec. 4.1, one
cannot construct any action in the antichiral superspace having the form W̄n

� . We
will show that the corresponding contributions to the effective action are naturally
given by the full superspace integrals.

For the further consideration it will be more convenient to study the variation
of effective action δΓ, rather than Γ itself. In particular, given the holomorphic
effective action

Γhol =
∫

d4xd4θF�(W ), (6.9)

one can write its variation either in the analytic superspace,

δΓhol =
∫

dζdu δV ++ �

[
−1

4
D+αD+

αF ′
�(W )

]
, (6.10)

or in full superspace,

δΓhol =
∫

d12zdu δV ++ � V −− �
1
W

� F ′
�(W ). (6.11)

To derive expressions (6.10), (6.11) one should follow the same steps as in [42]
for the non-Abelian N=2 superymmetric gauge model without deformations.

We assume that the antiholomorphic contributions to the effective action can
be accounted by the following variation:

δΓantihol =
∫

d12zdu δV ++ � V −− �
1
W̄

� F̄ ′
�(W̄ ), (6.12)
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which is written in full N=(1, 1) superspace rather than in the antichiral one. In
particular, it reproduces the correct effective equations of motion of the form (6.3).
Clearly, the full superspace action δΓantihol can always be reduced to the an-
tichiral superspace by integrating over d4θ, but the result cannot be written as∫

d4xd4θ̄ F̄�(W̄ ).

6.2. One-Loop Effective Action. In this subsection we explicitly calculate the
leading contributions to the charged hypermultiplet effective action in harmonic
superspace. Consider the full propagator G(1,1)(1|2) of the charged hypermultiplet
deˇned as a solution of the equation

∇++ � G(1,1)(1|2) = δ
(3,1)
A (1|2). (6.13)

In contrast to the free propagator G
(1,1)
0 (1|2) given by (5.44), G(1,1)(1|2) de-

scribes the dynamics of the charged hypermultiplet interacting with the back-
ground gauge superˇeld V ++. It is straightforward to check that the solution
of (6.13) can be written as

G(1,1)(1|2) = − 1
�̂�

� (D+
1 )4(D+

2 )4
{

eΩ(1)
� � e−Ω(2)

� �
δ12(z1 − z2)

(u+
1 u+

2 )3

}
, (6.14)

where �̂� is the covariant box operator,

�̂� = −1
2
(D+)4∇−− � ∇−−, (6.15)

and Ω(z, u) is a ®bridge¯ superˇeld in the full N=(1, 1) superspace deˇned by
the relations

∇++ = eΩ
� � D++ e−Ω

� , ∇−− = eΩ
� � D−− e−Ω

� . (6.16)

The bridge superˇeld was originally introduced in [34] for the undeformed N=2
supergauge theory as an operator relating N=2 superˇelds in the so-called λ- and
τ -frames. Using the superˇeld Ω(z, u) one can write the relation (3.3) between
the prepotentials V −− and V ++ in the following simple forms:

V −−(z, u) =
∫

du′ e
Ω(z,u)
� � e−Ω(z,u′)

� � V ++(z, u′)
(u+u′+)2

=

=
∫

du′V
++(z, u′) � eΩ(z,u′)

� � e−Ω(z,u)
�

(u+u′+)2
. (6.17)

Relations (6.17) can be directly checked using (6.16) and the properties of har-
monic distributions.
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Note that the operator �̂� takes any analytic superˇeld into an analytic one.
This operator, while acting on analytic superˇelds, can be represented in the
following form:

�̂� = ∇m � ∇m − 1
2
(∇+α � W ) � ∇−

α − 1
2
(∇̄+

α̇ � W̄ ) � ∇̄−α̇+

+
1
4
(∇+α � ∇+

α � W ) � ∇−− − 1
8
[∇+α �, ∇−

α ] � W − 1
2
{W �, W̄}, (6.18)

where ∇±
α = D±

α + V ±
α , ∇̄±

α̇ = D̄±
α̇ + V̄ ±

α̇ are covariant spinor derivatives.
Expression (6.18) has the same form as in the undeformed non-Abelian gauge
theory [40], with the �-product playing the role of the matrix commutator. This
result is not surprising since (6.18) is derived using only the algebra of covariant
derivatives which has the same form as in the undeformed case.

Clearly, the charged hypermultiplet effective action is one-loop exact since
the classical action (3.14) is quadratic in the hypermultiplet superˇelds. It can
also be expressed through the propagator G(1,1)(1|2),

Γ = Tr ln
δ2S

δq̃+(1)δq+(2)
= Tr ln (∇++�) = −Tr ln G(1,1)(1|2). (6.19)

The variation of this effective action reads

δΓ = Tr [δV ++ � G(1,1)] =
∫

dζ du δV ++(1) � G(1,1)(1|2)|(1)=(2). (6.20)

Using the deˇnition (6.13), one can derive the following relation between the free
and full hypermultiplet propagators:

G(1,1)(1|3) = G
(1,1)
0 (1|3)−

∫
dζ2 du2 G

(1,1)
0 (1|2)�V ++(2)�G(1,1)(2|3). (6.21)

Substituting (6.21) into the variation (6.20), we ˇnd

δΓ = −
∫

dζ1 du1 dζ2 du2 δV ++(1)�G
(1,1)
0 (1|2)�V ++(2)�G(1,1)(2|1). (6.22)

Taking into account the explicit forms of the propagators (5.44), (6.14), we
rewrite (6.22) as follows:

δΓ = −
∫

dζ1 dζ2 du1 du2 δV ++(1) �
1
� (D+

1 )4(D+
2 )4

δ12(z1 − z2)
(u+

1 u+
2 )3

×

× V ++(2) �
1

�̂�(2)

� (D+
1 )4(D+

2 )4
{

eΩ(2)
� � e−Ω(1)

�
δ12(z2 − z1)

(u+
2 u+

1 )3

}
. (6.23)
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Now we take off the spinor derivatives from the ˇrst delta-function to restore full
N=(1, 1) superspace measure with the help of (5.48),

δΓ = −
∫

d12z1 d12z2 du1 du2 δV ++(1) �
1
�

δ12(z1 − z2)
(u+

1 u+
2 )3

×

× V ++(2) �
1

�̂�(2)

� (D+
1 )4(D+

2 )4
{

eΩ(2)
� � e−Ω(1)

� �
δ12(z2 − z1)

(u+
2 u+

1 )3

}
. (6.24)

We did not impose any restrictions on the background gauge superˇelds so far,
therefore (6.24) is the exact representation for the hypermultiplet effective action.
It should be considered as a starting point for further calculations of different
contributions to the effective action.

6.3. Divergent Part of the Effective Action. The effective action, as a
functional of superˇeld strengths, can be expanded in a series with respect to
these superˇelds and their covariant derivatives. This series can be obtained from
the representation (6.24) for the effective action as a result of the decomposition
of the operator 1/�̂� in this expression.

Let us omit all superˇelds in the operator (6.18),

1
�̂�

≈ 1
� . (6.25)

Such an approximation, being applied to (6.24), corresponds exactly to the di-
vergent part of the effective action since the other terms in the covariant box
operator produce higher powers of momenta in the denominator which lead to
the ˇnite contributions. Under the condition (6.25), the variation of the effective
action (6.24) is essentially simpliˇed

δΓdiv =
∫

d12z1 d12z2
du1du2

(u+
1 u+

2 )6
δV ++(1) �

1
�δ12(z1 − z2)×

× V ++(2) �
1
� (D+

1 )4(D+
2 )4

{
eΩ(2)
� � e−Ω(1)

� � δ12(z2 − z1)
}

. (6.26)

Next, we apply the identity

δ8(θ1 − θ2)(D+
1 )4(D+

2 )4δ12(z1 − z2) = (u+
1 u+

2 )4δ12(z1 − z2) (6.27)

to shrink the integration over the Grassmann variables to a point. As a result,
after regularization of the divergent momentum integral, (6.26) becomes

δΓdiv =
1

16π2ε

∫
d12z du1 δV ++(z, u1)�

�

∫
du2

V ++(z, u2) � eΩ(z,u2)
� � e−Ω(z,u1)

�

(u+
1 u+

2 )2
. (6.28)
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Here ε is a parameter of dimensional regularization. Applying now (6.17), we
obtain the following expression for the variation of the effective action:

δΓdiv =
1

16π2ε

∫
d12z du δV ++ � V −−. (6.29)

The variation (6.29) can be easily integrated with the help of (6.9), (6.11),

Γdiv =
1

32π2ε

∫
d4xd4θ W 2. (6.30)

As a result, we see that the divergent part of the effective action is proportional
to the classical action of the N=(1, 0) supesymmetric gauge theory. This result
has already been obtained in Subsec. 5.3 by a different method.

6.4. Holomorphic and Nonholomorphic Contributions. In this subsection
we will study the ˇnite contributions to the effective action in the charged hy-
permultiplet model. The leading terms in the low-energy effective action are
composed of the superˇeld strengths without derivatives. Such an approxima-
tion is effectively accounted by considering the background superˇeld strengths
obeying the following constraints:

∇±α � W = 0, ∇̄±
α̇ � W̄ = 0. (6.31)

Under the constraints (6.31) all superˇelds with derivatives in the operator �̂�

given by (6.24) can be neglected∗,

1
�̂�

≈ 1

� − 1
2
{W �, W̄}

. (6.32)

As a result, the variation of the effective action is given by

δΓ =
∫

d12z1 d12z2
du1du2

(u+
1 u+

2 )6
δV ++(1) �

1
�δ12(z1 − z2)V ++(2)�

�
1

� − 1
2
{W �, W̄}

(D+
1 )4(D+

2 )4
{

eΩ(2)
� � e−Ω(1)

� � δ12(z2 − z1)
}

. (6.33)

∗In (6.32) we discard also the connections covariantizing the vector derivatives ∂m which are
present in the ˇrst term of the operator (6.18). These connections are always proportional to the
derivatives of superˇeld strengths and therefore are not essential for studies of the holomorphic
effective action.
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Next, we apply the identity (6.27) and integrate over d8θ2 using the corresponding
delta-function

δΓ =
∫

d12z1 d4x2
du1du2

(u+
1 u+

2 )2
δV ++(x1, θ, u1)�V ++(x2, θ, u2)� eΩ(2)

� � e−Ω(1)
� �

�
1
�δ4(x1 − x2)

1

� − 1
2
{W �, W̄}

δ4(x2 − x1). (6.34)

The bosonic delta-functions in (6.34) result in the following momentum integral:∫
d4k

(2π)4
1
k2

1

k2 +
1
2
{W �, W̄}

=

= − 1
16π2

ln�

[
{W �, W̄}

2μ2

]
+ (divergent terms), (6.35)

where μ is an arbitrary constant of dimension +1. The function ln� here is
understood in a sense of the corresponding Taylor series with the �-product of

superˇelds, e.g., ln�(1 + X) = X − 1
2
X � X +

1
3
X � X � X + . . . Since the

divergent part of the effective action was studied in the previous subsection, here
we concentrate only on the ˇnite part. Applying the identity (6.17), we conclude,

δΓ = − 1
16π2

∫
d12zdu δV ++ � V −− � ln�

{W �, W̄}
2μ2

. (6.36)

Expression (6.36) is responsible for all contributions to the effective action with
the superˇeld strengths without derivatives.

Note that in the limit I → 0 the �-product becomes the usual multiplication
and (6.36) is given by

δΓ(I=0) = − 1
16π2

∫
d12z du δV ++V −−

(
ln

W

μ
+ ln

W̄

μ

)
. (6.37)

The variation (6.37) corresponds precisely to the holomorphic and antiholomor-
phic parts of the effective action (6.1) with the holomorphic potential (6.4) of
the undeformed theory. However, if I 	= 0, the logarithm in (6.36) cannot be
written as a sum of two logarithms since there are mixed terms. Therefore in the
nonanticommutative case expression (6.36) is responsible for both holomorphic,
antiholomorphic and nonholomorphic contributions to the effective action.

We have to extract the holomorphic and antiholomorphic parts from the
effective action (6.36). For this purpose we apply the following identity for the
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logarithm in (6.36):

ln�
{W �, W̄}

2μ2
= ln�

W

μ
+ ln�

W̄

μ
+

1
12μ3

[W �, [W �, W̄ ]]+

+
1

12μ3
[W̄ �, [W̄ �, W ]] + . . . , (6.38)

where dots stand for terms of the fourth and higher orders in superˇelds which
come with various commutators. Note that expression (6.38) is valid without any
restrictions on the superˇelds and is obtained only with the help of formal ma-
nipulations with �-(anti)commutators of superˇelds. The terms with commutators
in (6.38) correspond to the nonholomorphic contributions to the effective action
since they involve both W and W̄ . Keeping only the ˇrst two terms in the r.h.s.
of (6.38), we obtain the following expression for the variation (6.36):

δΓ = − 1
16π2

∫
d12z du δV ++ � V −− �

[
ln�

W

μ
+ ln�

W̄

μ

]
+ . . . (6.39)

Here dots stand for the nonholomorphic contributions. According to equa-
tion (6.11), the holomorphic part of the variation (6.39) can be easily integrated,

Γhol = − 1
32π2

∫
d4xd4θ W � W � ln�

W

μ
. (6.40)

As a result, we proved that the holomorphic part of the effective action in the
nonanticommutative charged hypermultiplet model is nothing but a �-product
generalization of a standard holomorphic potential (6.4).

Note that the terms with commutators in (6.38) can be eliminated by imposing
the further constraints on the background gauge superˇelds. Consider, e.g., the
following constraints:

∂mW̄ = 0,
∂

∂θi
α

W̄ = 0. (6.41)

One of the consequences of (6.41) is the relation Qi
αW̄ = 0 which reduces

the �-product of the superˇeld strengths to the usual product. Note that the
constraints (6.41) are not covariant and could be too strong. However, they keep
the dependence of the superˇeld W̄ on the θ̄iα̇ variables and are consistent with
the approximation (6.7) in which we study the corrections to the holomorphic
potential. Moreover, the constraints (6.41) do not violate the covariance of the
effective action in the holomorphic sector.

The constraint (6.41) simpliˇes the antiholomorphic part of the effective
action since it allows one to omit the �-product,

δΓantihol =
1

16π2

∫
d12z du δV ++V −− ln

W̄

μ
. (6.42)
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The variation (6.42) reproduces the standard antiholomorphic potential,

Γantihol = − 1
32π2

∫
d4xd4θ̄ W̄ 2 ln

W̄

μ
. (6.43)

Despite the absence of �-product in (6.43), this expression implicitly depends on
the parameter of chiral singlet deformation I through the superˇeld W̄ which
involves this parameter by deˇnition.

6.5. Component Structure of the Effective Action. The leading contributions
to the effective action in the undeformed hypermultiplet model are given by (6.6).
Here we study the corrections to these terms due to the nonanticommutative
deformations of supersymmetry. For this purpose we ˇnd the component structure
of the actions (6.40), (6.42) in the bosonic sector in the approximation (6.7). Here
we follow the same steps as in Subsec. 4.1, where the component structure of the
classical action of N=(1, 0) supergauge theory was studied.

In the component expansion of the prepotential (4.4) we keep only the bosonic
ˇelds,

V ++
WZ = (θ+)2φ̄ + (θ̄+)φ + 2(θ+σmθ̄+)Am−

− 2i(θ̄+)2(θ+θ−)∂mAm − (θ̄+)2(θ−σmnθ+)Fmn. (6.44)

Note that both the strength Fmn and gauge potential Am enter the prepoten-
tial (6.44). Therefore expression (6.44) depends on the spatial coordinates xm

through the potential Am. Without loss of generality, we choose the vector

potential to be linear in xm, Am =
1
2
Fnmxn, Fmn = const. In particular,

∂mAn − ∂nAm = Fmn, ∂mAm = 0.
Analogously to expression (4.14), we look for the prepotential V −− in the

form

V −− = v−− + θ̄−α̇ v−α̇ + (θ̄−)2A + (θ̄+θ̄−)ϕ−−+

+ (θ̄+σ̄mnθ̄−)ϕ−−
mn + (θ̄−)2θ̄+

α̇ τ−α̇ + (θ̄+)2(θ̄−)2τ−− (6.45)

as a solution of the zero-curvature equation (4.13). All the component ˇelds in
the r.h.s. of (6.45) depend only on the variables θ+

α , θ−α . Substituting (6.44),
(6.45) into (4.13), we ˇnd

v−− = (θ−)2
φ̄

1 + 4Iφ̄
, (6.46)

v−α̇ =
2(θ−σm)α̇Am

1 + 4Iφ̄
, (6.47)

A = φ +
4IAmAm

1 + 4Iφ̄
+ (θ+σmnθ−)Fmn, (6.48)
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τ−α̇ = −4I(θ−σmn)αFmnσrα
α̇Ar

1 + 4Iφ̄
, (6.49)

τ−− = ϕ−− = ϕ−−
mn = 0. (6.50)

Using the deˇnitions (3.4), we ˇnd the component structure of the superˇeld
strengths

W = φ +
4IAmAm

1 + 4Iφ̄
+ (θ+σmnθ−)Fmn−

− 4I(θ−σα
mn)(σr θ̄

+)α
ArFmn

1 + 4Iφ̄
, (6.51)

W̄ =
φ̄

1 + 4Iφ̄
+ (θ̄+σ̄mnθ̄−)

Fmn

1 + 4Iφ̄
+

+ (θ̄+)2(θ̄−)2
2IFmnFmn + 4IFmnF̃mn

1 + 4Iφ̄
. (6.52)

Note that the superˇelds W and W̄ are deformed differently. Moreover, the
superˇeld W̄ given by (6.52) does not depend on the xm and θi

α variables, which
agrees with the constraint (6.41).

Introducing the notations

Φ = φ +
4IAmAm

1 + 4Iφ̄
, (6.53)

we bring the superˇeld strength (6.51) to the standard form,

W = Φ + (θ+σmnθ−)Fmn + . . . , (6.54)

where dots correspond to the last term in (6.51) which does not contribute to the
holomorphic effective action.

Now we substitute the superˇeld strength (6.54) into the holomorphic poten-
tial (6.40), compute the �-products and integrate over Grassmann variables. As
a result, we arrive at the following component expression for the holomorphic
effective action:

Γhol = − 1
32π2

∫
d4x(F 2 + FF̃ )

[
ln

Φ
μ

+ Δ(X(Φ, Fmn))
]

, (6.55)

where

Δ(X) =
1
2
(1−X)2 ln (X − 1)+

1
2
(1 + X)2 ln (1+X) − (1+X2) ln X, (6.56)

X(Φ, Fmn) =
Φ

2I
√

2(F 2 + FF̃ )
. (6.57)
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The function Δ(X) in (6.55) is responsible for the nonanticommutative correc-
tions to the standard terms in the holomorphic potential. In the limit I → 0 we
have

lim
I→0

Δ(X) =
3
2
. (6.58)

We see here that (6.58) reproduces the constant 3/2 in (6.6). This constant was
not essential in the undeformed case, but now it is replaced by the function Δ(X).

Let us ˇnally study the nonanticommutative corrections in the antiholomor-
phic sector. We substitute the superˇeld strength (6.52) into the antiholomorphic
potential (6.43) and integrate there over the Grassmann variables. As a result, we
ˇnd the component structure of the antiholomorphic effective action,

Γantihol = − 1
32π2

∫
d4x

(F 2 + FF̃ )
(1 + 4Iφ̄)2

(
ln

φ̄

μ(1 + 4Iφ̄)
+

3
2

)
−

− 1
32π2

∫
d4x

F 2 + 2FF̃

(1 + 4Iφ̄)2
2Iφ̄

(
1 + 2 ln

φ̄

μ(1 + 4Iφ̄)

)
. (6.59)

In the limit I → 0, expression (6.59) reproduces the standard antiholomorphic
potential in the undeformed charged hypermultiplet theory.

CONCLUSIONS

In this review we considered N=(1, 0) nonanticommutative theories with a
chiral singlet Q-deformation of N=(1, 1) supersymmetry in harmonic superspace.
In particular, we studied Abelian models of the gauge superˇeld and hypermul-
tiplets, both classical and quantum. Let us give a brief summary of the basic
results of the review.

In the superˇeld approach the nonanticommutative deformation of N=(1, 1)
supersymmetry is taken into account by introducing a �-product in N=(1, 1)
superspace. The chiral singlet deformation of N=(1, 1) harmonic superspace
is a particular case. Owing to the fact that the operation of �-multiplication is
compatible with the harmonic and Grassmann harmonic analyticities, classical
actions of the gauge superˇeld and hypermultiplet models can be obtained simply
by substituting the �-product for the ordinary local product in the undeformed
superˇeld actions. At the component level, the �-products induce a modiˇcation
of the actions by new terms proportional to the deformation parameter. We
have presented the component structure of the deformed classical actions for the
Abelian models of the neutral and charged hypermultiplets, as well as for the
gauge supermultiplet.

The quantum aspects of these nonanticommutative models are remarkable.
The deformation parameter has negative mass dimension, so counterterms are
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expected to destroy the renormalizability. Nevertheless, we proved the renor-
malizability of the deformed models of the Abelian gauge superˇeld and neutral
hypermultiplet. It turned out that the divergent contributions to the effective
action can be eliminated altogether by an appropriate shift of the scalar ˇeld φ,
one of two independent scalar ˇelds present in the Euclidean N=(1, 1) vector
gauge supermultiplet. This ˇeld redeˇnition has no impact on the quantum dy-
namics of the theory, and the theories under considerations are actually ˇnite.
The renormalizability of the Abelian nonanticommutative model of the charged
hypermultiplet was proved using perturbative quantum calculations in N=(1, 1)
harmonic superspace. It turns out that the divergent part of the effective action
is proportional to the superˇeld action of the N=(1, 0) model of the gauge su-
perˇeld. In this sense the charged hypermultiplet model is also renormalizable.
Moreover, in this model the holomorphic potential was calculated and found to
follow from its undeformed analog just by employing �-product universally. At
the level of component ˇelds this leads to new terms in the effective action which,
at least in the bosonic sector, can be accommodated in the single function Δ(X)
deˇned in (6.56).

Summarizing, we point out that all theories with chiral deformations of
N=(1/2, 1/2) and N=(1, 1) supersymmetry studied so far are renormalizable.
One naturally conjecture that any deformation of this type preserves the renor-
malizability properties. Surely, this hypothesis requires a rigorous proof and to
be supported by further examples. In this connection, it would be interesting to
prove the renormalizability of non-Abelian N=(1, 0) nonanticommutative gauge
theories with and without hypermultiplets, as well as to attack the problem of
constructing the low-energy effective action in these theories.

An important problem for further study is the question of renormalizabil-
ity and ˇniteness of nonanticommutative N=4 (actually, N=(2, 2) in Euclidean
space) supersymmetric gauge theory corresponding to the chiral singlet deforma-
tion (2.25) in harmonic superspace [27, 29, 43Ä45]. If the chiral deformations of
supersymmetry preserve the ˇniteness of this model, the quantum aspects of such
a deformed N=4 supergauge theory shall be very special.

Another possible direction of future investigation concerns the quantum study
of nonsinglet deformations of N=(1, 1) supersymmetry. In particular, it is of in-
terest to consider those deformations which reduce to the known deformations of
N=(1/2, 1/2) supersymmetry upon the appropriate reduction of the Grassmann
sector of N=(1, 1) superspace. In this way, one might compare the results of
calculations in the N=1 and N=2 superˇeld approaches. Nonanticommutative
models with nonsinglet deformations of N=(1, 1) supersymmetry were consid-
ered at the classical level in [23].

To conclude, theories with nonanticommutative deformations of supersym-
metry represent a prospective area for further studies. Only a small part of this
new ®continent¯ of applications of supersymmetry has been developed until today.
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Appendix 1

EUCLIDEAN N=(1, 1) SUPERSPACE

The Euclidean N=(1, 1) superspace is deˇned as a superspace parameterized
by the coordinates

z = {xm, θα
i , θ̄α̇i}, α, α̇ = 1, 2, i = 1, 2. (A.1)

Here θα
i , θ̄α̇i are analytic Grassmann variables; xm = (x1, x2, x3, x4) are coordi-

nates of the Euclidean space R4 with the metrics gmn = δmn. Since the metrics
is given by the unit matrix δmn, the objects with upper and lower indices are
equivalent. Therefore, throughout this work we use only the vectors and tensors
with lower indices, except for xm, and the contraction over repeated indices is
assumed.

The spinor SU(2) indices α, α̇ are raised and lowered with the antisymmetric
ε-tensor,

ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄β̇ ,
(A.2)

ε12 = −ε12 = ε1̇2̇ = −ε1̇2̇ = 1, εαβεβγ = δα
γ , εα̇β̇εβ̇γ̇ = δα̇

γ̇ .

We use the following conventions for the Euclidean sigma-matrices:

(σm)αα̇ = (iσ,1)αα̇, (σ̄m)α̇α = εαβεα̇β̇(σm)ββ̇ ,

σmσ̄n + σnσ̄m = 2δmn, σmn =
i

2
(σmσ̄n − σnσ̄m), (A.3)

tr σnσ̄m = 2δmn, tr(σnσ̄mσpσ̄r) = 2δmnδpr − 2δnpδmr + δnrδpm − 2εnmpr,

where σ are the Pauli matrices.
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Supercharges and covariant spinor derivatives in N=(1, 1) superspace are
given by

Qi
α = ∂i

α − iθ̄α̇i(σm)αα̇
∂

∂xm
, Q̄α̇i = −∂̄α̇i + iθα

i (σm)αα̇
∂

∂xm
,

(A.4)

Di
α = ∂i

α + iθ̄α̇i(σm)αα̇
∂

∂xm
, D̄α̇i = −∂̄α̇i − iθα

i (σm)αα̇
∂

∂xm
,

where the anticommuting derivatives ∂i
α =

∂

∂θα
i

, ∂̄α̇i =
∂

∂θ̄α̇i
act on the Grass-

mann variables by the rules

∂i
αθβ

j = δi
jδ

β
α, ∂̄α̇iθ̄

β̇j = δj
i δ

β̇
α̇. (A.5)

The nonvanishing anticommutation relations between the operators (A.4) are as
follows:

{Di
α, D̄α̇j} = −{Qi

α, Q̄α̇j} = −2iδi
j(σm)αα̇

∂

∂xm
. (A.6)

Appendix 2

EUCLIDEAN HARMONIC SUPERSPACE

The harmonic variables u±
i , i = 1, 2, are deˇned as the coordinates parame-

terizing the coset SU(2)/U(1) and obeying the following basic relations:

u±k = εkju±
j , u+ku−

k = 1. (A.7)

The harmonic variables (A.7) allow one to convert the internal symmetry group
indices into the U(1) indices ±, e.g.,

θ±α = θαku±
k , θ̄±α̇ = θ̄α̇ku±

k ,
(A.8)

Q±
α = Qk

αu±
k , Q̄±

α̇ = Q̄k
α̇u±

k , D±
α = Dk

αu±
k , D̄±

α̇ = D̄k
α̇u±

k .

A key feature of the superspace with the coordinates (xm, θ±α, θ̄±α̇, u±i) is
the presence of the so-called analytic subspace (ζ, u) = (xm

A , θ+, θ̄+, u±i), where

xm
A = xm − i(θ+α(σm)αα̇θ̄−α̇ + θ−α(σm)αα̇θ̄+α̇). (A.9)

The analytic subspace is closed under supersymmetry,

δεx
m
A = −2i(σm)αα̇(ε−αθ̄+α̇ + θ+αε̄−α̇),

(A.10)
δεθ

α± = ε±α, δεθ̄
±α̇ = ε̄±α̇.
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Here ε±α = εαku±
k , ε̄±α̇ = ε̄α̇ku±

k and εαk, ε̄α̇k are anticommuting parameters of
supertranslations. Therefore there exist the so-called analytic superˇelds which
®live¯ on the subset of analytic coordinates, ΦA = ΦA(ζ, u). Such superˇelds are
singled out from the general superˇelds on N=(1, 1) superspace by the following
covariant analyticity (Grassmann CauchyÄRiemann) conditions:

D+
α ΦA = 0, D̄+

α̇ ΦA = 0, (A.11)

where the covariant spinor derivatives D±
α , D̄±

α̇ in the analytic basis are given by

D+
α =

∂

∂θ−α
, D−

α = − ∂

∂θ+α
+ 2i(σm)αα̇θ̄−α̇ ∂

∂xm
A

,

(A.12)

D̄+
α̇ =

∂

∂θ̄−α̇
, D̄−

α̇ = − ∂

∂θ̄+α̇
− 2i(σm)αα̇θ−α ∂

∂xm
A

.

In the harmonic superspace approach the harmonic variables u±
i are con-

sidered on equal footing with the Grassmann and space-time ones. In particu-
lar, there are covariant harmonic derivatives, which in the analytic coordinates
(xm

A , θ±α , θ̄±α̇ , u) are given by

D++ = u+
i

∂

∂u−
i

− 2iθ+α(σm)αα̇θ̄+α̇ ∂

∂xm
A

+ θ+
α

∂

∂θ−α
+ θ̄+

α̇

∂

∂θ̄−α̇
,

D−− = u−
i

∂

∂u+
i

− 2iθ−α(σm)αα̇θ̄−α̇ ∂

∂xm
A

+ θ−α
∂

∂θ+
α

+ θ̄−α̇
∂

∂θ̄+
α̇

,

(A.13)

D0 = [D++, D−−] = u+
i

∂

∂u+
i

− u−
i

∂

∂u−
i

+ θ+
α

∂

∂θ+
α

+ θ̄+
α̇

∂

∂θ̄+
α̇

−

− θ−α
∂

∂θ−α
− θ̄−α̇

∂

∂θ̄−α̇
.

The derivatives (A.13) obey the commutation relations of the su(2) algebra.
The integration over the Grassmann and harmonic variables is deˇned by the

rules ∫
d4θ(θ+)2(θ−)2 = 1,

∫
d4θ−(θ+)2(θ̄+)2 = 1,∫

d8θ(θ+)2(θ̄+)2(θ−)2(θ̄−)2 = 1, (A.14)∫
du 1 = 1,

∫
du u+(i1 · · ·u+inu−j1 · · ·u−jm) = 0.

Here we use the following notation

(θ+)2 = θ+αθ+
α , (θ̄+)2 = θ̄+

α̇ θ̄+α̇,
(A.15)

θ−σmnθ+ = θ−α(σmn)β
αθ+

β = −θ+σmnθ−.
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We use also the chiral-analytic coordinates ZC = (zC , θ̄±α̇), where

zC = (xm
L , θ±α). (A.16)

The covariant spinor and harmonic derivatives, as well as the N=(1, 0) super-
charges, in these coordinates read

D+
α = ∂−α + 2iθ̄+α̇∂αα̇, D−

α = −∂+α + 2iθ̄−α̇∂αα̇,
(A.17)

D̄+
α̇ = ∂̄−α̇, D̄−

α̇ = −∂̄+α̇,

D++
C = ∂++ + θ+α∂−α + θ̄+α̇∂̄−α̇,

(A.18)
D−−

C = ∂−− + θ−α∂+α + θ̄−α̇∂̄+α̇,

Q+
α = ∂−α, Q−

α = −∂+α, (A.19)

where ∂++ = u+
i

∂

∂u−
i

, ∂−− = u−
i

∂

∂u+
i

. An analytic superˇeld Λ(ζ, u) can be

represented in the chiral-analytic coordinates as

Λ(ζ, u) = Λ(ζC , u)− 2i(θ−σmθ̄+)∂mΛ(ζC , u)− (θ−)2(θ̄+)2�Λ(ζC , u), (A.20)

where ζC = (xm
L , θ+, θ̄+) and the component ˇelds in the θ and harmonic expan-

sion of Λ(ζC , u) depend on the coordinates xm
L .

For the antichiral superˇelds we use also the antichiral coordinates,

xm
R = xm

A + 2iθ+σmθ̄− = xm
L + 2iθ+σmθ̄− − 2iθ−σmθ̄+. (A.21)

The N=(1, 0) supercharges and the covariant spinor derivatives in these coordi-
nates are given by the expressions

Q+
α = ∂−α − 2iθ̄+α̇∂αα̇, Q−

α = −∂+α − 2iθ̄−α̇∂αα̇,
(A.22)

D+
α = ∂−α, D−

α = −∂+α.
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