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A kinetic theory of vacuum particle creation under the action of an inertial mechanism is con-
structed within a nonperturbative dynamical approach. At the semiphenomenological level, the inertial
mechanism corresponds to quantum ˇeld theory with a time-dependent mass. At the microscopic level,
such a dependence may be caused by different reasons: the nonstationary Higgs mechanism, the in-
�uence of a mean ˇeld or condensate, the presence of the conformal multiplier in the scalar-tensor
gravitation theory, etc. In what follows, a kinetic theory in the collisionless approximation is devel-
oped for scalar, spinor and massive vector ˇelds in the framework of the oscillator representation,
which is an effective tool for transition to the quasiparticle description and for derivation of non-
Markovian kinetic equations. Properties of these equations and relevant observables (particle number
and energy densities, pressure) are studied. The developed theory is applied here to describe the
vacuum matter creation in conformal cosmological models and explain the observed photons number
density in the cosmic microwave background radiation. As other example, the self-consistent evo-
lution of scalar ˇelds with nonmonotonic self-interaction potentials (the W potential and WittenÄDi
VecchiaÄVeneziano model) is considered. In particular, conditions for appearance of tachyonic modes
and a problem of the relevant deˇnition of a vacuum state are discussed.
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INTRODUCTION

The present work is devoted to the construction of a kinetic theory of vacuum
creation of particles with time-dependent masses. For brevity, this mechanism
will be referred to as inertial one. Microscopic foundations of a mass change may
be different. The Higgs mechanism leads to the most popular models of such a
class, when the corresponding mean ˇelds are time-dependent. General quantum
ˇeld models with nonpolynomial interactions may also be considered, where the
separation of nonstationary mean ˇelds results in a time-dependent mass [1]. A
well-known example of this kind is the WittenÄDi VecchiaÄVeneziano model [2,3]
in the framework of which the mean-ˇeld concept was analyzed in [4]. The
NambuÄJona-Lasinio [5] and σ [6] models are other examples where the meson
masses are deˇned by evolution of a quark condensate to be described at the
hydrodynamic [7] or kinetic [8] level. The particle mass may depend on many-
particle interactions in hot and dense nonstationary matter [9Ä11]. A general basis
for a rather slowly-varying time dependence of the effective mass can be obtained
within the Green function method [12,13]. The ˇeld dependence of the mass is a
general factor determining the time evolution in all these cases (F-class models).
The conformal invariance of the scalar-tensor gravitational theory provides a time
dependence of the particle mass by means of the conformal multiplier [14Ä17].
The mass can be changed also due to the parameterization stipulated by additional
space dimensions [18]. Such theories should be referred to as the other class
(C class). In the F-class theories, the vacuum particle creation admits a well-
known interpretation based on the simpliˇed vacuum tunnelling model in an
external ˇeld [19Ä21]. A similar interpretation of the C-class models is difˇcult.
At the phenomenological level, however, both classes have a uniform mathemat-
ical description as will be shown in Secs. 1, 2, and 3, respectively, for the scalar,
fermion and massive vector boson in quantum ˇeld theories (QFTs).

The ˇrst consideration of the vacuum creation of particles with the vari-
able mass was proposed apparently in [22] as a possible variant for describing
a quantum system response to the time variation of system parameters [23].
Using the Bogoliubov transformation method, residual momentum distributions
for fermions, and pair correlators were found for the cases of step-like and smooth
variations of the fermion mass (Subsec. 2.4).

In the present work, the kinetic theory will be based on the oscillator represen-
tation (OR) [24,25], which is the most economical method for a nonpertrubative
description (as compared to the Bogoliubov method of canonical transforma-
tion [26] or other accurate approaches to the problem [15,27,28]) of the vacuum
particle creation under the action of time-dependent strong ˇelds. This approach
leads directly to the quasiparticle representation (QPR) with diagonal operator
forms in the momentum space for the set of dynamical variables. It allows one
to get easily the Heisenberg-type equations of motion for creation and annihila-
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tion operators. An important feature of the time-dependent Fock representation
is the necessary consistency of commutation (anticommutation) relations with the
equations of motion. Otherwise, this circumstance can bring to the noncanonical
quantization rules (an example will be considered in Subsec. 3.1).

In terms of the OR it is possible to immediately derive the corresponding
kinetic equations (KE) by the well-known method [29]. Some particular results
are published in [1,30]. The kinetic theory for scalar, spinor, and massive vector
ˇelds is constructed in Secs. 1, 2, and 3, respectively. The main attention is paid
to the particle creation in conformal cosmological models [31Ä33] (Sec. 4). It is
shown that the choice of the equation of state (EoS) of the Universe allows one
to obtain, in principle, the observed number density of matter participants and
photons and, possibly, dark matter. The basic problem here is the description of
vacuum particle creation which should be consistent with EoS but it is beyond
the present article.

Finally, in Sec. 5 the other class of scalar QFT systems is considered with
nonmonotonic self-interaction potentials to apply the decomposition of the ˇeld
amplitude into the quasi-classical space-homogeneous time-dependent background
ˇeld and the �uctuation part. In this case, the particle mass is deˇned by intensity
of a quasi-classical ˇeld. As an example, self-interaction potentials of the simplest
polynomial type and those for a nontrivial case (the pseudoscalar sector of the
WittenÄDi VecchiaÄVeneziano model) are analyzed. It is shown, that the relevant
deˇnition of vacuum states allows one to avoid the tachyonic mode beginning.
The main purpose of this review is to summarize all known relevant results on
the inertial mechanism of the vacuum particle production and to call attention to
unsolved problems which are shortly listed in Sec. 5.3.3.

We use the metric gμν = diag (1,−1,−1,−1) and natural units � = c = 1.

1. SCALAR FIELD

1.1. Oscillator and Quasiparticle Representations. Let us start our con-
sideration with the simplest case of the real scalar ˇeld with the time-dependent
mass m(t), whose equation of motion is

[∂μ∂μ + m2(t)]ϕ(x) = 0. (1)

The corresponding Lagrange function is given as

L =
1
2
∂μϕ∂μϕ − 1

2
m2(t)ϕ2. (2)

In the considered case, the system is space-homogeneous and nonstation-
ary. Therefore, the transition to the Fock space can be realized on the basis
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functions ϕ(x) ∼ exp (±ipx), and creation and annihilation operators become
time-dependent. The assumption about the space homogeneity allows one to look
for solution of Eq. (1) in discrete momentum space in the following form:

ϕ(x, t) =
1√
V

∑
p

eipxϕ(p, t), (3)

where V = L3 and pi = (2π/L)ni, at that the integers ni (i = 1, 2, 3) run
from −∞ to +∞. The thermodynamic limit can be covered in the resulting
equations. Then the oscillator-type equation of motion follows from Eq. (1) and
decomposition (3) as

ϕ̈(±)(p, t) + ω2(p, t)ϕ(±)(p, t) = 0 (4)

with
ω2(p, t) = m2(t) + p2. (5)

The symbols (±) correspond to the positive and negative frequency solutions of
Eq. (4) deˇned by its free asymptotics in the inˇnite past (future) [26],

ϕ(±)(p, t → ∓∞) ∼ e±iω∓t, (6)

where ω∓ =
√

m2
∓ + p2 are deˇned by asymptotics of the mass

m∓ = lim
t→∓∞

m(t). (7)

The asymptotics (6) corresponds to the in(out)-states and is necessary for deˇn-
ition of in(out)-vacuum. This requirement, however, can be broken in cosmol-
ogy [34]. We suppose here that such asymptotics exists and the relevant vacuum
states will be denoted by |0〉 without indices ®in¯ or ®out¯, that is evident from
the context. In the considered class of problems, the classiˇcation of states in the
frequency sign turns out to be impossible for an arbitrary time moment. Accord-
ing to a general analysis [35], this leads to instability of a vacuum state during
the action period of the external ˇelds and to the vacuum particle creation. In
this case, it is possible to consider quasiparticle excitations during the system
evolution (ṁ(t) �= 0) and describe their creation and annihilation in the vacuum
state |0〉. When the external ˇeld action is completed, residual particles of some
ˇnite density remain in the out-state. However, it is necessary to emphasize that
these particles are deˇned in respect of the in-vacuum state [26].

In the general case, S matrix does not exist in the considered formalism.
Its role in description of the system with unstable vacuum is performed by
other mathematical objects: the operator of the canonical Bogoliubov transfor-
mation [26], distribution functions in the kinetic approach [24, 29, 30, 36Ä38], or
some set of correlation functions [39,40], etc.
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The conception of ®quasiparticle¯ plays the central role in the QFT with
strong time-dependent quasi-classical external ˇelds [26, 35]. Under the con-
sidered conditions, this approach is the shortest realization of the quasiparticle
concept within the standard Fock representation of the QFT, where the external
ˇeld can be taken into account nonperturbatively. Thus, the QPR corresponds to
a possibility of writing down the set of commutative operators of physical (ob-
servable) quantities (the complete QPR) in the diagonal form in an arbitrary time.
It is naturally related to the question whether operators have the quadratic form
in the Fock representation. Hence, the interaction between the ˇeld constituents
and self-interaction is not taken into account. It corresponds to a nondissipa-
tive approximation in the kinetic theory [41]. An alternative deˇnition of the
quasiparticle was given in [25] for constrained systems.

The transition to the QPR can be realized in different ways. The traditional
method is based on the time-dependent canonical Bogoliubov transformation [26].
The alternative approach uses the oscillator (®holomorphic¯) representation, which
leads directly to the QRP [24]. In the considered case the transition to the OR is
made by substituting m± → m(t) into the dispersion law for the free ˇeld and
postulating the following decompositions:

ϕ(x) =
1√
2V

∑
p

1√
ω(p, t)

{
a(p, t) eipx + a†(p, t) e−ipx

}
,

π(x) = − i√
2V

∑
p

√
ω(p, t)

{
a(p, t) eipx − a†(p, t) e−ipx

}
,

(8)

where π(x) is the generalized momentum; a†(p, t) and a(p, t) are the creation
and annihilation operators of particles with the momentum p at the time moment
t. The in-vacuum state is deˇned as

a(p, t → −∞)|0〉 = 0, 〈0|0〉 = 1. (9)

The canonical commutation relation

[ϕ(x), π(x′)]t=t′ = iδ(x − x′) (10)

together with the decomposition (8) provides the standard commutation relation
for time-dependent creation and annihilation operators

[
a(p, t), a†(p′, t)

]
= δpp′ . (11)

The substitution of the decompositions (8) into the Hamiltonian

H(t) =
1
2

∫
d3x

{
π2(x) + [∇ϕ(x)]2 + m2(t)ϕ2(x)

}
(12)
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leads immediately to a diagonal form which corresponds to the QPR

H(t) =
∑
p

ω(p, t)
{

a†(p, t)a(p, t) +
1
2

}
. (13)

In the considered case the vacuum energy of zero oscillations (®Zitterbewegung¯)
depends on time.

Equations of motion for the operators a, a† can be obtained now from the
minimal action principle [24] or from the Hamiltonian equations

ϕ̇ =
δH

δπ
= π, π̇ = −δH

δϕ
= �ϕ − m2(t)ϕ. (14)

Here and below we use the notation (˙) = d/dt( ). Combining Eqs. (8) and (14),
we get

ȧ(p, t) =
1
2
Δ(p, t) a†(−p, t) − iω(p, t) a(p, t),

ȧ†(p, t) =
1
2
Δ(p, t) a(−p, t) + iω(p, t) a†(p, t),

(15)

where

Δ(p, t) =
ω̇(p, t)
ω(p, t)

=
m(t) ṁ(t)
ω2(p, t)

(16)

is the factor deˇning the mixing of states with positive and negative energies.
This equation obviously is consistent with the commutation relations (11).

Equations of motion (15) can be rewritten as the Heisenberg-type equa-
tion, e.g.,

ȧ(p, t) =
1
2
Δ(p, t)a†(−p, t) + i [H(t), a(p, t)] . (17)

In the instantaneous QPR these equations serve as a basis for a nonperturbative
derivation of the KE describing scalar particle creation and annihilation processes
within the inertial mechanism.

1.2. Kinetic Equation. The key object of the kinetic theory is the quasiparticle
distribution function which for the space-homogeneous case is

f(p, t) = 〈0|a†(p, t)a(p, t)|0〉, (18)

where |0〉 = |0〉in is the initial (t → −∞) vacuum state. Differentiating the
distribution function (18) with respect to time and using (15) we get

ḟ(p, t) = Δ(p, t)Re {f(+)(p, t)}. (19)
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Here the auxiliary correlation function is introduced

f (+)(p, t) = 〈0|a†(p, t)a†(−p, t)|0〉. (20)

This function provides a coherent connection between the states with positive and
negative energies (the so-called entangled states [28]).

The equation of motion for f (+)(p, t) can be obtained by analogy with
equation (19). We present it here in the integral form as

f (+)(p, t) =
1
2

t∫
t0

dt′Δ(p, t′) [1 + 2f(p, t′)] e2iθ(p;t,t′), (21)

where the initial condition f (+)(p, t0) = 0 was used. This condition corresponds
to the initial condition for the distribution function f(p, t0) = 0 and is a direct
consequence of the deˇnition (9). Eventually, the dynamical phase in Eq. (21) is
equal to

θ(p; t, t′) =

t∫
t′

dτω(p, τ). (22)

The substitution of Eq. (21) into Eq. (19) leads us to the resulting KE written
in the thermodynamical limit V → ∞ at the ˇxed particle density

ḟ(p, t) =
1
2
Δ(p, t)

t∫
t0

dt′Δ(p′, t) [1 + 2f(p, t′)] cos [2θ(p; t, t′)] . (23)

The source term in the r.h.s. of Eq. (23) describes a variation of the particle num-
ber with the given momentum due to vacuum creation and annihilation processes
for the inertial mechanism, Δ(p, t) is deˇned by Eq. (16). The non-Markovian
KE (23) has the structure as that for the Schwinger mechanism of pair creation
in an electric ˇeld [29]. This equation was investigated in detail for description
of the pre-equilibrium evolution of quarkÄgluon plasma created in collisions of
ultrarelativistic heavy ions [36, 37]. The case of the scalar QED was considered
in [24] for an electric ˇeld of arbitrary polarization.

As follows from Eq. (16), in the framework of the inertial mechanism the
particle production rate is deˇned by the rate of the mass change

ξ(t) =
1

m(t)
dm(t)
d(m0t)

, (24)

where m0 is the characteristic mass to ˇx the time scale (e.g., m0 = m−).
Let us note that the KE (23) is valid under two basic assumptions: a) there

are no particles (or antiparticles) in the in-state; b) a collisionless approximation
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is applicable (i.e., the corresponding dissipative processes are not taken into con-
sideration).

In the low-density approximation f(p, t) � 1, the KE (23) results in the
following solution [36]:

f(p, t) =
1
4

∣∣∣∣∣∣
t∫

t0

dt′Δ(p, t′) exp [2iθ(p; t, t′)]

∣∣∣∣∣∣
2

� 0. (25)

The KE (23) can be transformed to linear equations of the non-Hamiltonian
dynamical system with zero initial conditions

ḟ =
1
2
Δu, u̇ = Δ(1 + 2f) − 2ωv, v̇ = 2ωu, (26)

which is convenient for numerical analysis. This equation system has the ˇrst
integral

(1 + 2f)2 − u2 − v2 = 1, (27)

according to which the phase trajectories are located on the two-cavity hyperboloid
with top coordinates f = u = v = 0 (physical branch) and f = −1, u = v = 0
(nonphysical one). If the function f is excluded from Eqs. (26), we obtain the
nonlinear two-dimensional dynamical system with

u̇ = Δ
√

1 + u2 + v2 − 2ωv,

v̇ = 2ωu.
(28)

The functions f(p, t) and u(p, t) have a certain physical meaning (the last func-
tion describes vacuum polarization effects, see Subsec. 1.3) below and are invari-
ants with respect to the time inversion t → −t while the auxiliary function v(p, t)
and factor (16) change their signs. Thus, the KE (23) is invariant at the time
inversion.

The presented formalism of vacuum particle creation is speciˇc for kinetic
theory and allows natural generalization to the case of interacting ˇelds that leads
to introduction of corresponding collision integral of a non-Markovian type [42].
This approach is close to the modern method expounded in the book [26] where
the time-dependent Bogoliubov transformation is used. The same method was
used in pioneer works [43Ä45] (see also [34]). Some modiˇcation of the for-
malism [26] (the r, θ̄ representation) was developed in [25] and then used widely
(e.g., in [32] and references cited there). The correspondence between the r, θ̄
representation and our approach (as well as that used in the book [26]) may be
easily established.

1.3. Observables and Regularization. The KE (23) describes the vacuum
quasiparticle excitations rising at an external force (ṁ(t) �= 0, in the considered
case). When this action is switched off, there is still some remaining density of
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real (residual) particles and antiparticles. In the absence of any interaction between
the system constituents, the real particles are ®on-shell¯ ones and have the free-
particle dispersion law ω± with the mass m± (7), while quasiparticles are ®off-
shell¯ with the dispersion law (5). Within the Green function method [13], one can
say that the time-dependent dispersion law like (5) corresponds to the t-parametric
mass shell surface of slowly time-dependent m(t), i.e., m(T ± τ/2) ≈ m(T ),
where T and τ correspond to slow and fast time scales. This case is not of
interest for the considered problem. Thus, the dispersion law (5) does not belong
to the mass shell surface. In the general case, the on-shell condition

∣∣∣∣m(t) − m0

m0

∣∣∣∣ � 1 (29)

(m0 = m±) is not connected directly with the condition of efˇciency of the
vacuum particle creation, ξ(t) � 1, where ξ(t) is deˇned by Eq. (24). On the
contrary, the presence of high frequencies in the function m(t) is necessary for
vacuum creation and does not contradict the on-shell condition (29). In principle,
the KEs of such a type are designed for the description of evolution of both real
particles and quasiparticles. In particular, the distribution function of residual
particles is fout(p) = lim

t→∞
f(p, t). This simple formula for fout(p) follows from

Eq. (25) in the low-density approximation. However, the presence of the fast
oscillated multiplier in the source term in the r.h.s. of the KE (23) leads to a
large amount of numerical calculations which make impossible the study of the
system evolution for rather large times after the switching on external forces. The
corresponding large scaling methods of calculations based on the KE (23) have
not been worked out at present. Some properties of a residual particleÄantiparticle
plasma due to a limited pulse of the external ˇeld action can be estimated by the
imaginary time method [46].

The distribution function is the key quantity of the system. The density
of observable variables is some integral in the momentum space containing the
distribution function and auxiliary functions u(p, t), which describe the effects
of vacuum polarization. The simplest variable of such a type is the density of
quasiparticles. In the thermodynamic limit L → ∞ we have

ntot(t) =
∫

[dp]f(p, t), (30)

where [dp] = (2π)−3d3p. To proceed to the thermodynamical limit, the rule

1
L3

∑
p

→
∫

[dp] (31)

is used here and below.



1730 FILATOV A.V. ET AL.

Other important characteristics of the system are the energy density ε and
pressure P , which can be obtained as the average value of the energy-momentum
tensor corresponding to the Lagrangian density (2),

Tμν = ∂μϕ∂νϕ − gμνL. (32)

As a result, we have [26]

ε = 〈0|T00|0〉 =
∫

[dp] ωf, (33)

3P = ε −
∫

[dp]
[
m2

ω

(
f +

1
2
u

)
+ ωu

]
. (34)

The last two terms in integrand (34) represent the contribution of vacuum polar-
ization.

Finally, the entropy density can be introduced

S(t) = −
∫

[dp]
[
f ln f − (1 + f) ln (1 + f)

]
. (35)

It is not conserved (Ṡ(t) �= 0) even in the considered nondissipative approximation
because the system is open (the mass change is deˇned by external causes).

A direct proof of the convergence of integrals (30), (33)Ä(35) is complicated
because of the absence of an explicit form for functions f(p, t) and u(p, t).
Therefore, one usually uses the method of asymptotic expansions in power series
of the inverse momentum p−N (N -wave regularization technique) [47] (another
approach rests on the WKB approximation [48]). Our present consideration is
based on the explicit asymptotic solutions of the system (26) for |p| � m.
The integral (30) is assumed to be convergent at any time moment. Then the
function f(p, t) should decrease at p → ∞ and hence f(p, t) � 1 in this region.
This inequality corresponds to the low-density approximation (25), where the KE
solution can be written in the explicit form as

f∞(p, t) =
1

4p4

∣∣∣∣∣∣
t∫

t0

dt′m(t′)ṁ(t′) exp [2ip (t − t′)]

∣∣∣∣∣∣
2

, (36)

p = |p| → ∞ because Δ∞(p, t) = m(t)ṁ(t)/p2 in accordance with Eq. (16).
These solutions are consistent with the integral of motion (27). Thus, indeed as-
ymptotic solutions are some quickly oscillating functions (this fact was ˇrst noted
in [30] for the case of massive vector bosons, see Subsec. 3.3). Such behavior
matches with the quasiparticle interpretation of vacuum excitations by the inertial
mechanism. The real (observed) particles are the result of the evolution by the
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moment when ṁ = 0 and the out-vacuum state is realized. The asymptotics (36)
may be in�uenced by other (noninertial) mechanisms of vacuum particle creation
(e.g., in the case of harmonic ®laser¯ electric ˇeld [49Ä51]).

The asymptotics of the integral (36) can be obtained by the stationary phase
method [52]

t∫
t0

dt′ m(t′)ṁ(t′) e2ip(t−t′) =
m(t)ṁ(t)

ip
+ O(p−2), (37)

if ṁ(t0) = 0. Using Eqs. (36) and (26) we get the leading contributions

f (6)(p, t) =
[
m(t)ṁ(t)

2p3

]2

,

u(4)(p, t) =
1
p4

[
ṁ2(t) + m(t)m̈(t)

]
,

(38)

where the upper indices show the inverse momentum degree for the corresponding
leading terms (we are not interested in the asymptote of the function v(p, t),
which plays some auxiliary role only). Relations (38) are identical to the results
of application of the N -wave regularization method to Eqs. (26) [47].

Now one can conclude that the integral (33) is convergent but the last inte-
gral term in Eq. (34) needs a regularization. The regularizing procedure of the
PauliÄVillars type is based on the subtraction of appropriate counterterms in inte-
grals (30), (33)Ä(35). These counterterms can be obtained by the substitution
p2 → p2 + M2 into the denominator of asymptotics (38),

fR = f − fM , uR = u − uM . (39)

If the regularizing mass M � m(t) can be chosen rather large, M � Λ (Λ is
®the computer cut-off parameter¯), the in�uence of counterterms on the results
of numerical calculations is negligible.

The numerical investigation of the KE (23) and observable densities (30),
(33)Ä(35) will be presented in Subsec. 2.4.

2. FERMION FIELD

2.1. Quasiparticle Representation. The material of this subsection is based
on papers [53Ä55].

Equations of motion for fermion ˇelds with the variable mass are

[iγμ∂μ − m(t)]ψ(x) = 0,

ψ̄(x)[iγμ←−∂ μ + m(t)] = 0,
(40)
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where ψ̄ = ψ†γ0. The corresponding Hamiltonian is (k = 1, 2, 3)

H(t) = i

∫
d3x ψ†ψ̇ =

∫
d3x ψ̄{−iγk∂k + m(t)}ψ. (41)

By analogy to the scalar case, we use the following decompositions of ˇeld
functions in the discrete momentum space:

ψ(x) =
1√
V

∑
p

∑
α=1,2

{
eipx aα(p, t) uα(p, t) + e−ipx b†α(p, t) vα(p, t)

}
,

ψ̄(x) =
1√
V

∑
p

∑
α=1,2

{
e−ipx a†

α(p, t) ūα(p, t) + eipxbα(p, t) v̄α(p, t)
}
.

(42)

The OR is intended to derive equations of motion for creation and annihilation
operators. It is based on the primary equations (40) and free u, v spinors with
the substitution m → m(t). Thus, the following equations for the spinors are
postulated in the OR:

[γp − m(t)] u(p, t) = 0,

[γp + m(t)] v(p, t) = 0
(43)

with p0 = ω(p, t). These deˇnitions create the set of standard orthogonality
conditions [56] depending on time now parameterically

ūα(p, t) uβ(p, t) =
m(t)

ω(p, t)
δαβ , v̄α(p, t) vβ(p, t) = − m(t)

ω(p, t)
δαβ ,

u†α(p, t) uβ(p, t) = v†α(−p, t) vβ(−p, t) = δαβ,

ūα(p, t) vβ(p, t) = u†α(p, t) vβ(−p, t) = 0.

(44)

Decompositions (42) and relations (44) lead immediately to the diagonal form
of the Hamiltonian (41)

H(t) =
∑
p,α

ω(p, t)[a†
α(p, t)aα(p, t) + b†α(p, t)bα(p, t)] (45)

with interpretation of a†, a (and b†, b) as the creation and annihilation operators
of quasiparticles obeying the standard anticommutation relations

{aα(p, t), a†
β(p′, t)} = {bα(p, t), b†β(p′, t)} = δpp′δαβ. (46)

We are not interested in the subsequent diagonalization of the spin operator and
such QPR can be named the incomplete representation.
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Now in order to get equations of motion for creation and annihilation op-
erators in the OR, let us substitute the decomposition (42) in Eqs. (40) and use
relations (44). Then, as an intermediate result, we obtain the following closed set
of equations of motion which is valid in a general case:

ȧα(p, t) + Uαβ
1 (p, t) aβ(p, t) + Uαβ

2 (p, t) b†β(−p, t) = −iω(p, t) aα(p, t),

ȧ†
α(p, t) − a†

β(p, t)Uβα
1 (p, t) + bβ(−p, t)Uβα

2 (p, t) = iω(p, t) a†
α(p, t),

ḃα(−p, t) + a†
β(p, t)V βα

1 (p, t) − bβ(−p, t)V βα
2 (p, t) = (47)

= − iω(p, t) bα(−p, t),

ḃ†α(−p, t) + V αβ
1 (p, t) aβ(p, t) + V αβ

2 (p, t) bβ(−p, t) = iω(p, t) b†α(−p, t).

The spinor construction is introduced here as

Uαβ
1 = u†α(p, t) u̇β(p, t), V αβ

1 = v†α(−p, t) u̇β(p, t),

Uαβ
2 = u†α(p, t) v̇β(−p, t), V αβ

2 = v†α(−p, t) v̇β(−p, t).
(48)

The matrices U2 and V1 describe the transitions between states with positive and
negative energies and different spins, while the antiunitary matrices U1 and V2

show the spin rotations only

U †
1 = −U1, V †

2 = −V2, V †
2 = −U2. (49)

Equations (47) are compatible with the canonical commutation relations (46).
Let us write now the u, v spinors in an explicit form, according to [57]:

u† 1(p, t) = A(p) [ ω+, 0, p3, p−],

u† 2(p, t) = A(p) [ 0, ω+, p+,−p3 ],

v† 1(−p, t) = A(p) [−p3,−p−, ω+, 0 ],

v† 2(−p, t) = A(p) [−p+, p3, 0, ω+],

(50)

where p± = p1 ± ip2, ω+ = ω + m(t) and A(p) = [2ωω+]−1/2. Spin rotation
matrices (48) in this representation are equal to zero

U1 = V2 = 0. (51)

For the remaining matrices (48) we have U2 = −V1 = U , where U is the
Hermitian matrix

U(p, t) =
ṁ(t)

2ω2(p, t)

[
p3 p−
p+ −p3

]
. (52)
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Thus, the system of equations of motion (47) reduces to the following one:

ȧα(p, t) + Uαβ(p, t)b†β(−p, t) = −iω(p, t)aα(p, t),

ḃα(−p, t) − a†
β(p, t)Uβα(p, t) = −iω(p, t)bα(−p, t).

(53)

2.2. Kinetic Equation. Equations of motion (53) do not contain the spin
rotation matrices (51) and they are similar to Eqs. (15); therefore, the KE deriva-
tion meets no problem now. To be speciˇc, let us introduce the one-particle
correlation functions

gαβ(p, t) = 〈0|a†
β(p, t)aα(p, t)|0〉,

g̃αβ(p, t) = 〈0|bβ(−p, t)b†α(−p, t)|0〉.
(54)

The differentiation of (54) with respect to time leads to the following matrix
equations:

ġ(p, t) = −U(p, t)G(p, t) − G†(p, t)U(p, t),
˙̃g(p, t) = G(p, t)U(p, t) + U(p, t)G†(p, t),

(55)

where the auxiliary function was introduced

Gαβ(p, t) = 〈0|a†
β(p, t)b†α(−p, t)|0〉. (56)

Together with Eqs. (55), the corresponding equation of motion

Ġ(p, t) = U(p, t)g(p, t) − g̃(p, t)U(p, t) + 2iω(p, t)G(p, t) (57)

forms a closed set of equations for correlation functions. With the help of
Eqs. (57), one can exclude the auxiliary correlator from the system (55)

ġ(p, t) = 2U(p, t)

t∫
t0

dt′[ g̃(p, t′)U(p, t′) − U(p, t′)g(p, t′)] cos 2θ(p, t′, t),

(58)

˙̃g(p, t) = 2

t∫
t0

dt′[U(p, t′)g(p, t′) − g̃(p, t′)U(p, t′)]U(p, t) cos 2θ(p, t′, t),

using zero initial conditions. The subsequent transformation is based on the
relation

Tr {U(t)AU(t′)} =
1
4
λ(p, t)λ(p, t′)TrA (59)
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for an arbitrary second-rank matrix A, which follows from Eq. (52). The function
(p = |p|)

λ(p, t) =
ṁ(t)p

ω2(p, t)
(60)

plays a role of some analog of Eq. (16).
Using isotropy of the considered system, we will limit ourselves to the spin-

averaged scalar distributions

f(p, t) =
1
2

Tr g(p, t), f̃(−p, t) = 1 − 1
2

Tr g̃(p, t). (61)

Calculating the trace of (58) we get

ḟ(p, t) = ˙̃f(−p, t) =
1
2
λ(p, t)

t∫
t0

dt′λ(p, t′)[1 − f̃(−p, t′)−

− f(p, t′)] cos 2θ(p; t, t′). (62)

In the case of the vacuum initial state, f̃(−p, t) = f(p, t), we have

ḟ(p, t) = 2λ(p, t)

t∫
t0

dt′λ(p, t′)[1 − 2f(p, t′)] cos [2θ(t, t′)], (63)

The KEs (23) and (63) are similar but differ by statistical factors 1 ± 2f (the
Bose enhancement or the Fermi suppression) and by structure of the factors (16)
and (60). The corresponding linear equations for the non-Hamiltonian dynamical
system become

ḟ =
1
2
λu, u̇ = λ[1 − 2f ] − 2ωv, v̇ = 2ωu. (64)

This system possesses one ˇrst integral of motion (see [38])

(1 − 2f)2 + v2 + u2 = 1. (65)

This relation represents an ellipsoid in the phase space of (f, u, v) variables.
After exclusion of the function f from Eq. (64), we obtain the system of non-
linear equations

u̇ = λ
√

1 − u2 − v2 − 2ωv,

v̇ = 2ωu.
(66)

It can easily be proved that the KE (63) is invariant with respect to time inversion.
Equations analogous to Eqs. (26) and (64) were obtained in [53] (see also [26])
for the conformal �at space-time. The KE (63) to the case of spinor QED was
generalized in [54, 55]. In the general case, the spin correlation functions (54)
and (56) can be decomposed in respect of the Pauli matrices (e.g., [58]).
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2.3. Observables and Regularization. The total particle number density and
energy density in the considered case are distinguished from the corresponding
expressions (30) and (33) for the scalar system by the spin degeneration factor
g = 4 (for an equal number of particles and antiparticles)

n(t) = 4
∫

[dp]f(p, t), (67)

ε(t) = 〈0|T00|0〉 = 4
∫

[dp]ω(p, t)f(p, t), (68)

where T00 is the zero component of the energy-momentum tensor

Tμν =
i

2
[ψ̄γμ(∂νψ) − (∂ν ψ̄)γμψ]. (69)

By deˇnition, the entropy density of the fermion system is equal to

S(t) = −4
∫

[dp]
[
f ln f + (1 − f) ln (1 − f)

]
. (70)

Finally, the pressure is

P (t) =
1
3
〈Tkk〉. (71)

Using (69) and (40), this relation can be reduced to the following form:

P (t) =
1
3
{ε(t) − m(t)〈ψ̄(x)ψ(x)〉}. (72)

Here the correlation function is calculated by means of relations (44)

P (t) =
1
3
ε(t) +

1
3

∫
[dp]

m2(t)
ω(p, t)

[1 − 2f(p, t)] + Ppol(t), (73)

where the last term takes into account the contribution of the vacuum polarization,

Ppol(t) = −2
3
m(t)

∫
[dp]

p

ω(p, t)
u(p, t). (74)

This result was obtained under additional conditions for ®observable¯ correlation
functions

〈0|a†
α(p, t)aβ(p′, t)|0〉 = 〈0|b†α(p, t)bβ(p′, t)|0〉 = δαβδpp′ , (75)

which is a consequence of space-homogeneity and isotropy (absence of the spin
moment) of the system. The auxiliary correlation function (56) is not connected
with the spin moment and, therefore, it remains off-diagonal with respect to spin
indices.
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The same regularization procedure can be realized here for the calculation
of divergence integrals, as presented in Subsec. 1.3 for the scalar bosons. Equa-
tion (25) for the distribution function in the low-density approximation is valid
also after the replacement Δ(p, t) → λ(p, t). Asymptotics of the factor (60) is
equal to λ∞(p, t) = ṁ(t)/p. Using Eq. (25) and the rules of Subsec. 1.3, one can
derive the following expressions for counterterms for the case of fermion ˇelds:

f
(4)
M (p, t) =

[
ṁ(t)

4(p2 + M2)

]2

,

u
(3)
M (p, t) =

m̈(t)
4(p2 + M2)3/2

.

(76)

However, these counterterms can be ignored in computer calculations.
It is known [26] that the phase density of pairs created in an electric ˇeld

for the whole period of its action is related to long-time asymptotics of solutions
of some oscillator equations. For the inertial mechanism, analogous derivation
results in the following relation [22]:

lim
t→+∞

f(p, t) =
cosh τπ[(mi − mf )] − cosh τπ[(ωi − ωf )]

2 sinh (τπωi) sinh (τπωf )
, (77)

where τπ = πτ/2, the indices i, f correspond to the initial and ˇnal states. This
relation is convenient for calculation of observables for long pulses τ � m, see,
e.g., Fig. 4 where the direct solution of kinetic equation is a very robust numerical
problem.

2.4. Numerical Results. Here numerical investigations of the KEs are pre-
sented for bosons (23), fermions (63), and appropriate densities of observable
variables are estimated (Subsecs. 1.3 and 2.3). As an example, two variants of
time-dependent masses are considered. The ˇrst case qualitatively corresponds to
a typical meson mass change under the phase transition within the NJL model [59]

m(t) = (m0 − mf ) exp [−(t/τ)2] + mf , t � 0, (78)

with the parameters m0 (initial mass), mf (ˇnal mass), and τ (transition time).
Another variant suggested in [22, 23] allows an analytical solution of the Dirac
equation

m(t) =
mf + m0

2
+

(
mf − m0

2

)
tanh (2t/τ). (79)

Numerical results for solution of the KEs are presented in Figs. 1Ä8 for m(t)
deˇned by Eq. (78) with τ = 10 fm/c and in Figs. 9, 10 for the mass (79) with
τ = 20 fm/c. Masses are speciˇed in natural units, mh = 197 MeV/c2.
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Fig. 1. Time dependence of the pair density
for bosons and fermions at m0 = 1

Fig. 2. The pair density evolution of fermi-
ons for various initial masses (p Å proton,
e Å electron)

Fig. 3. The residual pair density versus
the mass ratio

Fig. 4. The residual energy density versus the
transition time τ , m0 = 1

At a glimpse, the time dependence of quasiparticle density for bosons and
fermions repeats qualitatively the curve ṁ(t); however, when ṁ(t) → 0 the
densities go asymptotically to certain ˇnite values nr (residual density, Fig. 1,
t � τ ), which characterize the real (free) particles (at the active stage of the
process, ṁ(t) �= 0, one may talk about quasiparticles only). The n(t) dependence
for fermions on the initial mass value is shown in Fig. 2 in the range from the
electron mass to proton one. This dependence is nonmonotonic: With increasing
m0 the residual density reaches the maximum at m0 ∼ 10 MeV and then begins
to decrease. This effect appreciably depends on the variant used for the mass
change: For the case (79) it manifests itself much more clearly than for the
model (78). The residual particle density dependence on the mass change is
presented in Fig. 3. Qualitative behavior of the energy density is similar to that of
particle density, showing a smooth asymptotic decrease (see Fig. 4). In Fig. 5, the
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Fig. 5. Entropy density evolution of bosons
for different values of the relaxation time
τ , m0 = 1

Fig. 6. The distribution function of bosons
in time-momentum variables, m0 = 1,
τ = 10 fm/c

Fig. 7. Distribution functions at the time
t = τ = 10 fm/c, m0 = 1

Fig. 8. Asymptotic form of distribution
functions at t � τ

time dependence of the boson entropy density is presented for different values of
the relaxation time. Nonmonotonic behavior of entropy is caused by the fact that
the system is opened and treated in the nondissipative approximation.

Momentum spectra of particles at different stages of the interaction process
are shown in Figs. 6Ä8. The maximal number of bosons is created with zero
momentum, whereas there are no fermions with p = 0. This feature differs
qualitatively from the case of the Schwinger mechanism of particle creation [38].

It is important that the formation of appreciably nonmonotonic distributions
with the ®fast¯ mass changing (78), Fig. 7, assists in the development of plasma
oscillations. For smoother mass changing (79) this effect becomes much less
pronounced.

The most interesting features are observed in the pressure behavior, Fig. 9, 10.
For both variants of the mass evolution and independently of particle statistics,
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Fig. 9. Pressure evolution corresponding to
mass changing (79), m0 = 1, τ = 20 fm/c

Fig. 10. Asymptotic oscillations of pres-
sure at t � τ without ®switching off¯ of
vacuum polarization effects

the pressure is negative at the beginning of the process, then it changes its
sign in the re�ection point of m(t) and gradually decreases. However, contrary
to other observables, the pressure has no constant asymptotics and at t � τ
looks like almost undamped oscillations, Fig. 9. It is distinctive for pressure of
the bosonic quasiparticle system which strongly oscillates around zero, Fig. 10.
The reason is that unlike the other considered quantities, the pressure is not
completely determined by the quasiparticles distribution function f(p, t), but it
depends also on the function u(p, t), which describes vacuum polarization effects.
At the operator language, this means incomplete diagonalization of the energy-
momentum tensor in the Fock space: Averaged over the initial vacuum, its spatial
components include the contribution of anomalous correlators like 〈0 |a†

p a†
p |0〉.

Thus, if the process of particle creation stops when the time mass evolution
is completed (ṁ(t) → 0), the vacuum polarization effects are not ®switched off¯
simultaneously but continue to in�uence some observables, e.g., pressure. As
a consequence, in such nondissipative nonequilibrium model it is impossible to
determine unambiguously the equation of state [60].

3. MASSIVE VECTOR BOSONS

3.1. The Complete QPR. The simplest version of quantum ˇeld theory of
neutral massive vector bosons is given by the Lagrangian density [56]

L(x) = −1
2

∂μuν ∂μuν +
1
2

m2(t)uνuν , (80)

which corresponds to the equation of motion

[∂μ∂μ + m2(t)]uν = 0 (81)
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with the additional ®external¯ constraint

∂μuμ = 0. (82)

An alternative way is to proceed from the Wentzel Lagrangian [61]

L(x) = −1
4
FμνFμν +

1
2
m2(t)uνuν , (83)

where the strength tensor Fμν = ∂νuμ − ∂μuν . Here the constraint (82) is a
consequence of dynamical equations. Lagrangians (80) and (83) result in different
energy-momentum tensors (e.g., see [61,62]).

The transition to the QPR is carried out by the standard decomposition of
free ˇelds and momenta in the discrete momentum space with the replacement
m → m(t) in the dispersion law (see Subsec. 1.1),

uμ(x) =
1√
2V

∑
p

1√
ω(p, t)

{
aμ(p, t) eipx + a∗

μ(p, t) e−ipx
}

,

πμ(x) = − i√
2V

∑
p

√
ω(p, t)

{
aμ(p, t) eipx − a∗

μ(p, t) e−ipx
}

,

(84)

where aμ(p, t) are the classical amplitudes. Unlike the scalar case, the consistent
quantization is possible only after including the constraint (82).

The substitution of the ˇeld operators (84) into the Hamiltonian

H = −1
2

∫
dx

(
πμπμ + ∇uμ∇uμ + m2(t)uμuμ

)
(85)

gives directly the diagonal form in the Fock space

H = −
∑
p

ω(p, t) a∗
μ(p, t) aμ(p, t). (86)

However, this quadratic form is not positively deˇned. To correct it, one needs
to exclude the μ = 0 component by the additional condition (82). The equations
of motion for amplitudes aμ(p, t) are similar to the scalar case (15)

ȧμ(p, t) =
1
2
Δ(p, t) a∗

μ(−p, t) − iω(p, t) aμ(p, t), (87)

where Δ(p, t) is deˇned by Eq. (16). Using Eqs. (87), the condition (82) may be
transformed now to the following relation (i = 1, 2, 3):

ω(p, t) a0(p, t) = pi ai(p, t). (88)
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This equation allows one to exclude the μ = 0 component from the Hamilto-
nian (86) and quantize other components, which gives

H =
∑
p,i,k

1
ω(p, t)

[
ω2(p, t) δik − pipk

]
a†

i (p, t) ak(p, t), (89)

with the corresponding commutation relation and the vacuum state[
ai(p, t), a†

k(p′, t)
]

= δikδpp′ , ai(p, t → −∞)|0〉 = 0. (90)

The next step is the diagonalization of the quadratic form (89) by means of
the linear transformation [56]

ai(p, t) = Eikαk(p, t) ≡ (e1)iα1(p, t)+

+ (e2)iα2(p, t) + (e3)i
ω

m(t)
α3(p, t), (91)

where {e1(p), e2(p), e3(p)} is the local orthogonal basis constructed on the
vector e3 = p/|p|. These real unit vectors form the triad,

eikejk = ekiekj = δij , eik = (ei)k. (92)

The transformation (91) establishes the positively-deˇned Hamiltonian

H =
∑
p

ω(p, t)
[
α†

i (p, t)αi(p, t) + αi(p, t)α†
i (p, t)

]
. (93)

The presence of the ω/m factor in the nonunitary matrix E in Eq. (91) leads
to violation of the unitary equivalence between the a representation (89) and
α representations (93). Equations of motion for these new amplitudes follow
from a combination of Eqs. (87) and (91)

α̇i(p, t) =
1
2
Δ(p, t)α†

i (−p, t) − iω(p, t)αi(p, t) + ηij(p, t)αj(p, t). (94)

The spin rotation matrix ηij is deˇned as

ηik(p, t) = −Δmδi3δk3 (95)

with Δm = −ṁ/m + Δ. This relation shows a particular role of the third
component.

Together with the Hamiltonian (86), the total momentum operator takes also
the diagonal form. However, the spin operator

Si = εijk

∫
dx

[
ukπj + πjuk − ujπk − πkuj

]
(96)
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has nondiagonal terms in the spin space in terms of the operator αi

Sk = iεijk

∑
p

[
α†

i (p, t)αj(p, t) − α(p, t)α†
j(p, t)

]
, (97)

where εijk is the unit antisymmetric tensor. In particular, the spin projection on
the p3 axis is

S3 = i
∑
p

[
α†

1(p, t)α2(p, t) − α†
2(p, t)α1(p, t)+

+α2(p, t)α†
1(p, t) − α1(p, t)α†

2(p, t)
]
. (98)

Thus, this representation can be named the incomplete quasiparticle representation
since the spin projection is not ˇxed. The operator (98) can be diagonalized by a
linear transformation to the new basis [56]

ci(p, t) = Rikαk(p, t), (99)

with the unitary matrix

R =
1√
2

⎡
⎣ 1 i 0

−i 1 0
0 0

√
2

⎤
⎦ . (100)

As a result, the new amplitudes ci(p, t) correspond to creation and annihilation
operators of vector quasiparticles with the total energy, 3-momentum and spin
projection into the chosen direction,

H(t) =
∑
p

ω(p, t)
[
c†i (p, t)ci(p, t) + ci(p, t)c†i (p, t)

]
, (101)

Π(t) =
∑
p

p
[
c†i (p, t)ci(p, t) + ci(p, t)c†i (p, t)

]
, (102)

S3(t) =
∑
p

[
c†1(p, t)c1(p, t) − c1(p, t)c†1(p, t)+

+c2(p, t)c†2(p, t) − c†2(p, t)c2(p, t)
]
. (103)

This c representation will be referred to as the complete quasiparticle represen-
tation. The equations of motion for these amplitudes follow from Eqs. (94), (99)

ċi(p, t) =
1
2
Δ(p, t)c†i (−p, t) − iω(p, t)ci(p, t) + ηij(p, t)cj(p, t), (104)

where the matrix ηij is ˇxed by Eq. (95).
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The transition to this representation from the initial a representation is deˇned
by the combination of transformations (91) and (99)

c(p, t) = U(p, t)a(p, t) (105)

with the nonunitary operator (e(±) = (e1 ± ie2)/
√

2)

U(p, t) = R · E−1(p, t) =

⎡
⎢⎢⎢⎣

e
(+)
1 e

(+)
2 e

(+)
3

e
(−)
1 e

(−)
2 e

(−)
3

m

ω
e31

m

ω
e32

m

ω
e33

⎤
⎥⎥⎥⎦ . (106)

To solve the quantization problem, the equation of motion should be taken
into account. The commutation relation has the noncanonical form

[
ci(p, t), c+

j (p′, t)
]

= Qik(p, t)Qjk(p, t)δpp′ , (107)

where the matrices Qil(p, t) are deˇned by the equations

Q̇ij(p, t) = ηik(p, t)Qkj(p, t) (108)

with the initial conditions

lim
t→−∞

Qij(p, t) = δij . (109)

So the commutation relation is transformed to the canonical form only in the
asymptotic limit t → −∞. Relation (107) provides the deˇnition of positive-
energy quasiparticle excitations of vacuum to be treated as some time-dependent
energy reservoir.

3.2. Kinetic Equations. The standard procedure to derive the KE [29] is
based on the Heisenberg-type equations of motion (87) or (104). Let us introduce
one-particle correlation functions of vector bosons in the initial a representation

Fik(p, t) = 〈0|a†
i (p, t)ak(p, t)|0〉, (110)

where the averaging procedure is performed over the in-vacuum state [26]. By
differentiating the ˇrst equation with respect to time, we obtain

Ḟik(p, t) =
1
2
Δ(p, t)

{
Φik(p, t) + Φ†

ik(p, t)
}

, (111)

where the auxiliary correlation function is introduced as

Φik(p, t) = 〈0|ai(−p, t)ak(p, t)|0〉. (112)
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Equation of motion for this function can be obtained by analogy with Eq. (111).
We write out the answer in the integral form

Φik(p, t) =
1
2

t∫
−∞

dt′Δ(p, t′) [δik + 2Fik(p, t′)] e2iθ(p;t,t′). (113)

The asymptotic condition Fik(p,−∞) = 0 (the absence of quasiparticles in the
initial time) has been used here. The substitution of Eq. (113) into Eq. (111) leads
to the resulting KE

Ḟik(p, t) =
1
2
Δ(p, t)

t∫
−∞

dt′Δ(p, t′)[δik + 2Fik(p, t′)] cos [2 θ(p; t, t′)]. (114)

This KE is a natural generalization of the corresponding KE for scalar particles
(Subsec. 1.2).

However, there is a number of problems that are speciˇc for the theory
of massive bosons: The energy is not positively-deˇned, the spin operator has
nondiagonal terms in the space of spin states, etc. This circumstance hampers the
physical interpretation of the distribution function (110). In order to overcome
this difˇculty, it is necessary to proceed to the complete QPR where the system
has well-deˇned values of energy, spin, etc. The simplest way to derive the KE
in this QPR is based on the application of the transformation (105) directly to the
KE (114).

Similarly to the deˇnitions (110), we introduce correlation functions of vector
particles in the complete QPR

fik(p, t) = 〈0|c†i (p, t)ck(p, t)|0〉. (115)

They are connected with the primordial correlation functions (110) by relations
of the type

fik(p, t) = U †
in(p, t)Ukm(p, t)Fnm(p, t). (116)

As a result, the KE (114) becomes

ḟik(p, t) =
1
2
Δ(p, t)

t∫
−∞

dt′Δ(p, t′)Mikjl(p, t, t′)
[
δjl + 2fjl(p, t′)

]
×

× cos 2θ(p; t, t′) − Δm(p, t)[δi3f3k(p, t) + δk3fi3(p, t)], (117)
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where

Mikjl(t, t′) = δ⊥ijδ
⊥
kl+

+
ω(t′)
ω(t)

m(t)
m(t′)

[
δi3δj3δ

⊥
kl + δk3δl3δ

⊥
ij +

ω(t′)
ω(t)

m(t)
m(t′)

δi3δk3δj3δl3

]
(118)

and δ⊥ik = δik − δi3δk3.
As was expected, distribution functions fαβ(p, t) satisfy the same KE (114)

for α = 1, 2. The feature of the complete QPR becomes apparent only in tensor
components of the distribution function fik(p, t) which contains the preferred
values of the spin index i and (or) k = 3. Let us select the KE for diagonal com-
ponents of the correlation function (115) which has the direct physical meaning
of transversal (i = 1, 2)

ḟi(p, t) =
1
2
Δ(p, t)

t∫
−∞

dt′Δ(p, t′)
[
1 + 2fi(p, t′)

]
cos 2θ(p; t, t′) (119)

and longitudinal components of the distribution function

ḟ3(p, t) = −2Δm(p, t)f3(p, t) +
1
2
Δ(p, t)

m2(t)
ω2(t)

×

×
t∫

−∞

dt′Δ(p, t′)
ω2(t′)
m2(t′)

[
2f3(p, t′) + Q(p, t′)

]
cos 2θ(p; t, t′). (120)

Here the shorthand notation fii = fi has been introduced for diagonal components
of the matrix correlation functions (115) and

Δ =
mṁ

ω2
, Δm = −Δ

p2

m2
. (121)

Longitudinal and transversal distribution functions are connected by the relation

f3(p, t) = Q(p, t)f1(p, t), (122)

where Q(p, t) is the function entering into the commutation relation for the
longitudinal bosons,

[c3(p, t), c†3(p
′, t)] = Q(p, t) δpp′ ,

Q(p, t) = exp
[
−2

t∫
t0

Δm(t′)dt′
]

=
[

m(t)
m(t0)

ω(t0)
ω(t)

]2 (123)

with the corresponding initial values m(t0) and ω(t0).
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Due to relation (122), it is sufˇcient to solve only Eq. (119). The KE for
transversal bosons is transformed from the integro-differential form to a set of or-
dinary differential equations similarly to the cases considered above (Subsecs. 1.2
and 2.2):

ḟk =
1
2
Δuk, u̇k = Δ(1 + 2fk) − 2ωvk, v̇k = 2ωuk. (124)

The general initial condition for all diagonal components of the distribution
function

lim
t→−∞

fk(t) = lim
t→−∞

uk(t) = lim
t→−∞

vk(t) = 0 (125)

satisˇes the following requirement:

lim
t→−∞

m(t) = m0, or lim
t→−∞

ṁ(t) = 0. (126)

The main operating characteristic of the vacuum creation process is the total
number density of vector bosons,

ntot(t) =
1
π2

∞∫
0

p2dp
[
2f1(p, t) + f3(p, t)

]
,

=
1
π2

∞∫
0

p2dp f1(p, t)
[
2 + Q(p, t)

]
,

(127)

where isotropy of the system was assumed, p = |p|. As will be shown in
Subsec. 3.3, the integral (127) is convergent. It essentially differs from results
based on the Wentzel Lagrangian (83). In particular, as was shown in [16,17,32],
the Wentzel approach leads to inˇnite particle density. Authors of these papers
give some arguments in favor of that allowing for quasiparticle collisions will
result in ˇnite physical quantities and bring the estimated energy budget of the
Universe to agreement with observation data [17,63].

We will consider below the case when the time dependence of the vector
boson mass is deˇned by conformal evolution of the Universe. The set of
equations similar to (124) was obtained ˇrst in [80] within an alternative model
Lagrangian (83) in the FriedmanÄRobertsonÄWalker (FRW) space-time. The
quantization procedure is quite ordinary in this approach. It would be useful to
compare the predictions of these two models in detail.

3.3. EoS for the Isotropic Case. The relations for the energy density and
pressure can be derived from the energy-momentum tensor corresponding to the
Lagrangian (80)

Tμν = −∂μuα∂νuα − ∂νuα∂μuα − gμνL. (128)
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Taking into account the isotropy of the system, we obtain the EoS for the massive
vector boson gas [16]

ε(t) = 2
∫

[dp] ω(2 + Q)f1,

P (t) =
2
3
ε(t) − 4

3
m2

∫
[dp]
ω

(2 + Q)f1 + δPvac(t),
(129)

where δPvac(t) is the contribution to pressure induced by the vacuum polarization,

δPvac(t) = −2
3

∫
[dp]
ω

(
2ω2 + m2

) [
1 + Q

(
1
2

+
p2

m2

)]
u1. (130)

In order to prove the convergence of the integrals (129), (130), we investigate
the asymptotic behavior of the solution of the system of equations (124). This
system can be solved exactly in the limit p � m for the case α = 1/2 (the
parameter α is deˇned in Sec. 4)

ḟ =
m2

H

4tH

1
p2

u, u̇ =
m2

H

2tH

1
p2

(1 + 2f) − 2pv, v̇ = 2pu. (131)

The asymptotic solution of Eqs. (131) with the initial conditions (125) is

f(p, t) =
v(p, t)

(2p/m0)3
∼ sin2 p(t − t0)

16(p/m0)6
, u(p, t) ≈ sin 2p(t − t0)

4(p/m0)3
, (132)

where m0 = m(t0) = m
2/3
H t

−1/3
H and t0 = 1/m0. The numerical study of

Eqs. (124) shows that the basic features of the solutions (132) for α = 1/2 are
conserved also for other α > 0. It corresponds to the results of Subsec. 1.3.

According to Eq. (132), the particle number density and energy density (see
Eqs. (127) and (129), respectively) are convergent, but the vacuum polarization
contribution to pressure (130) is divergent. Moreover, irrelevant fast vacuum
oscillations of the pressure are observed here. Such a behavior of the pressure
for a plasma created from vacuum is not speciˇc for the present theory but it
is inherent in the models where an electronÄpositron plasma is created in strong
time-dependent electric ˇelds as investigated in [64]. The standard regularization
procedure of similar integrals with some unknown functions satisfying ordinary
differential equations is based on the study of asymptotic decompositions of these
functions in power series of the inverse momentum, 1/pN (see Subsec. 1.3). In the
considered case, such a procedure is not effective because the solution (131) has
quickly oscillating factors (®Zitterbewegung¯), whose asymptotic decomposition
leads to secular terms. Therefore, for numerical calculations we regularize the
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pressure by a momentum cut-off at p = 10m0 and separate its stable part by
means of the time averaging procedure

〈P 〉 =
1

(t − t0)

t∫
t0

p(t)dt. (133)

Such ®coarse graining¯ procedure was proposed in [65] in order to exclude the
®Zitterbewegung¯ from the description of vacuum particle creation. In reality,
these fast oscillations are smoothed out due to dissipative processes which are not
taken into consideration here (the ˇrst attempt to derive the collision integral for
the scalar quasiparticle gas in a strong electric ˇeld was made in [42]).

4. APPLICATION TO CONFORMAL COSMOLOGY MODELS

The description of the vacuum creation of particles in time-dependent grav-
itational ˇelds of cosmological models goes back to [45, 66Ä68] and has been
reviewed, e.g., in monographs [34,69,70]. The particularity of our work consists
in the consideration of vacuum generation of particles at conditions of the early
Universe in the framework of a conformal-invariant cosmological model [16,17].
Thus, the space-time is assumed to be conformably �at and the expansion of the
Universe in the Einstein frame (with metric g̃μν ) with constant masses m̃ can be
replaced by the change of masses in the Jordan frame (with metric gμν) due to the
evolution of the cosmological (scalar) dilaton background ˇeld [14,71]. This mass
change is deˇned by the conformal factor Ω(x) of the conformal transformation

g̃μν(x) = Ω2(x)gμν . (134)

Since mass terms generally violate the conformal invariance, a space-time depen-
dent mass term

m(x) =
1

Ω(x)
m̃ (135)

has been introduced which formally keeps the conformal invariance of the the-
ory [34]. In the important particular case of the isotropic FRW space-time,
the conformal factor is equal to the scale factor, Ω(x) = a(t̃), and hence
m(t̃) = a(t̃)mobs, where t̃ is ®the Einstein time¯ and mobs is the observable
present-day mass. Such a dependence was used, e.g., in [26] for the FRW metric.
On the other hand, the scaling factor a(t̃) is deˇned by the cosmic equation of
state. For a barotropic �uid, this EoS has the form

Pph = (γ − 1)εph = c2
sεph, (136)
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where Pph and εph are phenomenological pressure and energy density (in contrast
to ®dynamical¯ P and ε, see Subsec. 3.3); γ is the barotropic parameter; cs is the
sound velocity. The solution of the Friedman equation for such EoS leads to the
following scaling factor:

a(t̃) ∼ t̃ 2/3γ . (137)

Kinetics of the vacuum creation of massive vector bosons (Subsec. 3.2) was con-
structed in the �at Jordan frame with the proper conformal time t which is
necessary to introduce now in Eq. (137). The transition to the conformal time is
deˇned by the relation dt = dt̃/a(t̃). From this relation and Eq. (137) it follows

t̃ ∼
[(

1 − 2
3γ

)
t

]3γ/(3γ−2)

. (138)

The substitution of this relation into Eq. (137) establishes the mass evolution law
in the terms of the conformal time

m(t) = (t/tH)α mW , α =
2

3γ − 2
, (139)

where tH = [(1 + α)H ]−1 is the scaling factor (the age of the Universe); H =
70 km/s/Mpc is the the present-day Hubble constant and the W -boson mass is
taken as mW = 80 GeV. Values of the α parameter for some popular EoS are:
γ = 2, α = 1/2 (stiff �uid); γ = 4/3, α = 1 (radiation); γ = 1, α = 2 (dust);
γ < 2/3 (quintessence); γ = 0, α = −1 (cold matter including baryon mass and
dark matter) [72,73].

Due to back reactions and the dynamical mass generation during the cosmic
evolution the detailed mass history remains to be worked out. The central ques-
tion, however, is whether the number density of produced W bosons could be
of the same order as that of the cosmic microwave background (CMB) photons,
nCMB ∼ 465 cm−3. If this question may be answered positively, the vacuum
pair creation of W bosons from a time-dependent scalar ˇeld (mass term) could
be suggested as a mechanism for the generation of matter and radiation in the
early Universe.

The numerical analysis of Eqs. (124) for massive vector bosons is performed
by the standard RungeÄKutta method on a one-dimensional momentum grid. As
one can see in Fig. 11, the creation process ends very quickly and the particle
density saturates at some ˇnite value. The momentum distribution of particles
is formed also very early when m(t) ≈ m0 and frozen in such a form so later
on, for times t � t0, most of particles have very small momenta p � m(t).
The spectrum of created bosons is essentially nonequilibrium; hence we should
continue the analysis of relevant dissipative mechanisms and other observable
manifestations of a nonequilibrium state (e.g., CMB photons; in this connection,
see, for example, [74,75]).
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Fig. 11. Time evolution of the number density for transversal n1 and longitudinal n2

vector bosons with the initial condition m0t0 = 1 for α = 1/2 (a) and the corresponding
momentum distribution at the time t � t0 (b)

Fig. 12. The dependence of the number density of residual vector bosons on the initial
time t0: α = 1/2 (a), α = 1/3 (b)

The dependence of the corresponding ˇnal value of density on the initial time
is shown in Fig. 12. The ˇnal density n1 of the transversal vector bosons with
spin projection ±1 reaches a maximum when for very early initial times we are
close to the birth of the Universe. However, in the same limit, the density f3

of the longitudinal particles with zero spin projection grows beyond all bounds.
The choice of the EoS changes drastically the number of created particles, thus
resulting in values which are too small (α = 1/2) or too large (α = 1/3) in
comparison with the observed CMB photon densities. In order to improve this
model, we should use an improved EoS, assuming that the barotropic parameter γ
characterizing the evolution of particle masses can be changed during the time
evolution. Such a time-dependence could be induced by action of the back-
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Fig. 13. The time dependence of the energy density and the mean value of pressure (133)
at t � t0 (a) as well as pressure (129) (b) with the initial condition m0t0 = 1 for α = 1/2

reaction of created particles on the scalar ˇeld. Furthermore, we could use another
space-time model, e.g., the Kasner space-time [76] instead of the conformally �at
de Sitter one. As compared to the earlier work [16], the main achievement of
this approach is that there is no divergence in the distribution function; thus we
do not need to introduce any ambiguous regularization procedure.

As shown in Fig. 13, the mean pressure remains negative and its magnitude
becomes negligible in comparison with the energy density (as to the role of
the negative pressure in cosmology, see, e.g., [77]). These features can lead
to violation of the energy dominance condition ε + P � 0 that corresponds
to accelerated expansion of the Universe. Such a kind of models is widely
discussed (e.g., [78]). For large time moments, the energy density grows but the
pressure stays very small, P � 0. The energy growth under condition P � 0
results in the conclusion that the massive vector bosonÄantiboson gas created
from the vacuum is cold. It can be seen directly from Eq. (129) that at large
times ε(t) � m(t)ntot(t), because of ω(t) � m(t). This EoS of the massive
vector boson gas (ε �= 0 and p � 0) corresponds to dust-like matter [79], which
would characterize the evolution of the Universe when the vector boson gas is
the dominant component of its matter (energy) content. At a qualitative level,
this conclusion is valid independently of the speciˇc choice of the EoS and, in
particular, in the case of the dust-like EoS. It would be interesting to obtain a
formula like (139) as a result of the solution of the Friedman equation with the
EoS (129), (130) (such a procedure represents the back reaction problem) and
investigate self-consistently the production of vector bosons in the Universe. Let
us remark that vacuum creation of massive vector bosons in the FRW metric was
ˇrst considered in [80].

In order to investigate features of the fermion vacuum creation in the confor-
mal model of the Universe, let us use the corresponding basic KE (63) and, as an
example, choose the system of heavy top quarks with the mass mq = 170 GeV
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Fig. 14. The time dependence of fermion pair
density for a mass evolution with α = 1/2
and mq = 170 GeV

Fig. 15. The ˇnal density of fermions for
the conformal time dependence of mass
(139) as a function of the initial time t0
for α = 1/2

(with the change mw → mq in Eq. (139)). The values of the parameter α are the
same as for the vector boson. As one can see in Fig. 14, the creation process is
completed very quickly and the particle density saturates at some ˇnite value.

Finally, Fig. 15 shows the dependence of the residual density on the initial
time t0 for m(t) given by Eq. (139). At the qualitative level, the same picture
will take place for the vacuum creation of neutralino, which can be the main
component of dark matter (e.g., [81]). An analogous problem in early cosmology
was considered in [15].

5. SYSTEMS WITH METASTABLE VACUUM

5.1. Formulation of the Problem. Here a rather general mechanism of
the mass formation as a result of self-consistent dynamics of mean-ˇeld and
quantum �uctuations will be considered. The separation of the quasi-classical
background ˇeld is a common procedure of different nonperturbative approaches
in QFT [26,34,82,83]. In the framework of this procedure quantum �uctuations
can be described by the perturbation theory.

There is a class of physics problems in which the strong background ˇeld
creates particles which in turn in�uence the background ˇeld (the back reaction
problem). In this respect it is worthy to mention such problems as the decay
of disoriented chiral condensate [84], the resonant decay of CP -odd metastable
states [4,85], the preequilibrium QGP evolution [29,36,37,86], the phase transition
in systems with the broken symmetry [87], etc.

The construction of general kinetic theory of such a kind for various poten-
tials is presented in Subsec. 5.2. We will derive the closed system of equations
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for the self-consistent description of the back reaction problem, including the KE
with nonperturbative source term describing the particle creation in the quasi-
classical background ˇeld and the equation of motion for this background ˇeld.
We use the OR to derive the KE. As an illustrative examples, in Subsec. 5.3 the
one-component scalar theory with Φ4 and double-well potential are considered.
In these examples, we study some features of the proposed approach. In partic-
ular, the problem of the stable vacuum state deˇnition and possibility to emerge
tachyonic regimes is discussed. As a less trivial example, the pseudoscalar sector
of the WittenÄDe VecchiaÄVeneziano model will be considered. Similar analysis
was carried out in some other models of such a kind (e.g., [4,85,88Ä90]). In this
section, we follow paper [1].

5.2. The Set of Basic Equations. Let us consider now the scalar ˇeld La-
grangian with a self-interaction potential V [Φ]

L[Φ] =
1
2
∂μΦ ∂μΦ − 1

2
m2

0Φ
2 − V [Φ], (140)

where m0 is the bare mass and the potential V [Φ] is an arbitrary continuous
function with at least one minimum that is necessary for a correct deˇnition of
the vacuum state. It is assumed that the ˇeld Φ may be decomposed into the
quasi-classical space-homogeneous time-dependent background ˇeld φ0(t) and
�uctuation part φ(x)

Φ(x) = φ0(t) + φ(x). (141)

In accordance with the deˇnition of �uctuations, we have 〈φ〉 = 0 and 〈Φ〉 = φ0,
where the symbol 〈. . .〉 denotes some averaging procedure. The background ˇeld
φ0(t) can be treated as quasi-classical one at the condition [91]

|φ̇0| � 1/(δt)2, (142)

where δt is the characteristic time of the ˇeld averaging.
We consider the case of quite small �uctuations in the vicinity of the back-

ground ˇeld. Therefore, the potential energy expansion in powers of φ(x) can be
performed

V [Φ] = V [φ0] + R1φ +
1
2
R2φ

2 + Vr[φ0, φ], (143)

where

R1 = R1[φ0] =
dV [φ0]

dφ0
, R2 = R2[φ0] =

d2V [φ0]
dφ2

0

(144)

and Vr[φ0, φ] is a residual term containing the higher order contributions to
be neglected in the current consideration (nondissipative approximation). The



INERTIAL MECHANISM: DYNAMICAL MASS AS A SOURCE 1755

decomposition (143) can be ˇnite (for polynomial theories) or inˇnite. After ˇeld
decomposition (141) the equation of motion

∂μ∂μΦ + m2
0Φ +

dV [Φ]
dΦ

= 0 (145)

can be rewritten in the following form:

(−∂μ∂μ − m2)φ = Q[φ0, φ], (146)

where the relation
m2(t) = m2[φ0] = m2

0 + R2[φ0] (147)

deˇnes the time-dependent in-medium mass. The term in the r.h.s. of (146) is

Q[φ0, φ] = φ̈0 + m2
0φ0 + R1[φ0] + Q2[φ0, φ],

Q2[φ0, φ] =
1
2

dR2[φ0]
dφ0

φ2.
(148)

As a result of averaging of Eq. (146), the equation of motion for the background
ˇeld is obtained

φ̈0 + m2
0φ0 + R1[φ0] + 〈Q2[φ0, φ]〉 = 0, (149)

where the time independence of the averaging procedure is taken into account.
The space-homogeneity assumption implies that the function 〈Q2[φ0, φ]〉 in

Eq. (149) can depend only on time. As follows from Eqs. (148) and (149), the
source term in the r.h.s. of Eq. (146) is exclusively deˇned by �uctuations,

Q[φ0, φ] = Q2[φ0, φ] − 〈Q2[φ0, φ]〉. (150)

On the other hand, in a nonstationary situation the ˇeld function φ(x) allows the
decomposition:

φ(x) =
1√
V

∑
p

{
φ(+)(p, t) e−ipx + φ(−)(p, t) eipx

}
, (151)

where φ(±)(p, t) are the positive and negative frequency solutions of the equation
of motion

φ̈(±)(p, t) + ω2(p, t)φ(±)(p, t) = −Q[φ0, φ;±p] (152)

with
ω2(p, t) = m2(t) + p2 (153)

and with the Fourier image Q[φ0, φ;p] of the function Q[φ0, φ],

Q[φ0, φ] =
1√
V

∑
p

Q[φ0, φ;p] e−ipx. (154)
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The function Q[φ0, φ;p] gives a nonlinear contribution to Eq. (152). We suppose

that there exists a ˇnite limit lim
t→−∞

φ(±)(p, t) = φ
(±)
− (p) in the inˇnite past and

assume that solutions φ(±)(p, t) become asymptotically free φ(±)(p, t) → e±iω−t,
where ω−(p) = lim

t→−∞
ω(p, t). The existence of the last limit is based on the

adiabatic hypothesis about switching off the self-interaction in Eq. (147).
After the decompositions (141) and (143), the Hamiltonian density is

H [Φ] = H [φ0] + H1[φ0, φ] + H2[φ0, φ] + Vr[φ0, φ], (155)

where H0[φ0] is the background ˇeld Hamiltonian, and the terms H1 and H2

are the Hamiltonian functions of the ˇrst and second order with respect to the
�uctuation ˇeld

H [φ0] = H0[φ0] + V [φ0] =
1
2
φ̇2

0 +
1
2
m2

0φ
2
0 + V [φ0], (156)

H1[φ0, φ] = φ̇0φ̇ + (m2
0φ0 + R1[φ0])φ, (157)

H2[φ0, φ] =
1
2
φ̇2 +

1
2
(∇φ)2 +

1
2
m2φ2. (158)

The quasiparticle representation for �uctuations is constructed by means of the
decompositions (8). In order to obtain equation of motion for operator a(p, t),
let us write the corresponding action with the Hamiltonian (156)Ä(158) (this way
is alternative to the Hamiltonian approach of Subsec. 1.1)

S[φ] =
∫

d4x {πφ̇ − H1 − H2 − Vr}. (159)

If decompositions (8) are substituted here, we get

S[φ] =
1
2

∑
p

∫
dt

{
i
[
a†(p, t)ȧ(p, t) − a(p, t)ȧ†(p, t)

]
−

− ω̇(p, t)
ω(p, t)

[
a†(p, t)a†(−p, t) − a(−p, t)a†(p, t)

]
−

−ω(p, t)[a†(p, t)a(p, t) + a(p, t)a†(p, t)] − 2Vrp[φ0, φ]
}

+ S1[φ], (160)

where S1[φ] is the part of the action corresponding to the Hamiltonian (157) and
Vp[φ0, φ] is the Fourier image of the residual potential term. Variation with re-
spect to a(p, t) and subsequent transition to the occupation number representation
lead to the Heisenberg-type equations of motion (p �= 0)

ȧ(p, t) =
1
2
W (p, t)a†(−p, t) − i[H2 + Vr, a(p, t)], (161)
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where

W (p, t) =
ω̇(p, t)
ω(p, t)

=
Ṙ2[φ0]
2ω2

. (162)

In Eq. (161) the condensate contribution generated by the action part S1[φ] is
omitted because it corresponds to p = 0 (an appropriate mechanism of the
condensate state with p = 0 and excitations is absent in the present model).

Let us introduce the distribution function of quasiparticles, according to
Eq. (18). Using methods of Sec. 1 and Eq. (161), we get the kinetic equation
in the nondissipative approximation, Vr[φ0, φ] → 0,

ḟ =
1
2
Wu, u̇ = W (1 + 2f) − 2ωv, v̇ = 2ωu, (163)

which is an analog of (26) with the replace of Δ by W . To rewrite Eq. (149) for
the background ˇeld in the nondissipative approximation, one has to calculate the
averaged value 〈in|φ2(x)|in〉. In the space-homogeneous case one can obtain

〈in|φ2(x)|in〉 =
1
2

∫
dp

ω(p, t)
[1 + 2f(p, t) + u(p, t)]. (164)

Then Eq. (149) is reduced to

φ̈0 + m2
0φ0 + R1[φ0] +

1
2

dR2

dφ0

∫
dp

ω(p, t)

[
f(p, t) +

1
2
u(p, t)

]
= 0 (165)

(the vacuum term is omitted in integrand).
The KEs (163) and (165) form the closed set of nonlinear equations describing

the back-reaction problem. In the case of v[Φ0, Φ] = 0, this set of equations
directly follows from nonperturbative dynamics and assumption (141). For the
description of the particle creation we will use the particle density (30) as well
as the background ˇeld energy εcl and energy of created quasiparticles εq

εcl =
1
2
φ̇2

0 +
1
2
m2

0φ
2
0 + V (φ0),

εq =
∫

d3p

(2π)3
ω(p, t)f(p, t).

(166)

The conservation of the full system energy can be shown analytically.
The constructed formalism allows the consideration of certain initial states

at the time t = t0: Initial excitation of the background ˇeld φ0(t0) and φ̇0(t0)
is given under the additional condition that either f(p, t0) = 0 or f(p, t0) �= 0,
where f(p, t0) is some initial plasma distribution.
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5.3. Examples. 5.3.1. Φ4 Potential. The separation of the background
ˇeld (141) in the potential

V [Φ] =
1
4
λΦ4, λ > 0 (167)

leads to the following decomposition coefˇcients (144):

R1[φ0] = λφ3
0, R2[φ0] = 3λφ2

0,

V [φ0] =
1
4
λφ4

0, Vr [φ0, φ] = λ(φ0 + φ/4)φ3.
(168)

Thus, the time-dependent quasiparticle mass of the �uctuating ˇeld (147) is
equal to

m2(t) = m2
0 + 3λφ2

0. (169)

If λ < 0 and the excitation is strong enough, it is possible that a tachyonic mode
will arise that corresponds to an unstable state [92]. The mass (169) determines
the factor (162)

W (p, t) = λ
2φ0φ̇0

ω2(p, t)
. (170)

The KE (163) with this factor is correct in the nondissipative approximation where
the residual potential Vr is neglected.

Let us write down also the equation of motion for the background ˇeld (165)
in this approximation:

φ̈0 + M2(t)φ0 + λφ3
0 = 0 (171)

with the corresponding mass to be equal to

M2(t) = m2
0 + 3λ

∫
d3k

ω(p, t)

[
f(p, t) +

1
2
u(p)

]
, (172)

i.e., the mass of the condensate excitations is deˇned by both the distribution of
quasiparticles and the vacuum polarization.

In numerical calculations we apply zero initial conditions for the distribution
function and nonzero ones for the background ˇeld φ0(t0) = 1.2 (here and below
we use the units � = c = 1). Parameter values are chosen by analogy with [87],
where the authors offered an alternative method for describing quantum systems
under action of the strong background ˇeld (the so-called CornwallÄJackiwÄ
Tomboulis method [93]). As is seen in Fig. 16, at the early evolution stage
all energy is mainly concentrated in ˇeld oscillations. For t < 50, the particle
number density grows slowly. However, density drastically increases at t ∼ 50
and after this time the quantum energy dominates over classical one.

The case λ < 0 (absolutely unstable potential) is associated with a tachyonic
regime which is realized for high enough excitations when the initial amplitude
φ0(t0) satisˇes the condition m2

0 + 3λφ2
0(t0) � 0.
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Fig. 16. Time evolution for the symmetric Φ4 potential: a) the mean ˇeld; b) the particle
density; c) the energy density; d) the momentum spectra of particles at time moments
t = 40 fm/c and t = 50 fm/c. Parameter values used are: λ = 1, m0 = mh = 197 MeV,
φ0(0) = 1.2 fm−1, φ̇0(0) = 0

5.3.2. Double-Well Potential. The potential

V [Φ] =
1
4
λΦ4 − 1

2
μ2Φ2, λ > 0 (173)

leads to the same equation (171) for the background ˇeld but with a new mass
(we put here m0 = 0 and μ2 > 0)

M2(t) = −μ2 + 3λ

∫
dp
ω(t)

[
f(p, t) +

1
2
u(p, t)

]
. (174)

The factor (162) equals

W (p, t) = λ
3φ0φ̇0

2ω2(p, t)
, (175)
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where now the quasiparticle frequency (153) includes the time-dependent mass

m2(t) = −μ2 + 3λφ2
0. (176)

The vicinity of the central point φ0(t) = 0 is an unstable region. In this
region the group velocity vg = dω(k)/dk = k/ω(k) is either superluminous for
k > kc, where kc is the root of the equation ω(k, t) = 0 or undeˇned for k < kc.
Thus, it is the tachyonic region.

Let us denote the minimum position of the potential (173) as Ψ± = ±Ψ0 =
±μ/

√
λ and put the new origin of the reference frame in one of these points,

Φ = Ψ± + Ψ. We discriminate now the background component φ0 and the ˇeld
Ψ, i.e., Ψ = φ0 + φ. We will omit the sign indices (±), which identify the
branch of Ψ± which the ˇelds Ψ, φ0, and φ belong to. Only rather a small
range of excitations in the vicinity of the stable points Ψ± will be considered
below, |φ(x)|, |φ0(t)| �

√
2Ψ0, where ±

√
2Ψ0 are the roots of the equation

V [Ψ] = 0. Using Eq. (145) and methods described in Subsec. 5.2, one can obtain
the following system of equations of motion:

φ̈0 + 2μ2φ0 + 3λΨ±φ2
0 + λφ3

0 + 3λ(Ψ± + φ0)〈φ2〉 + λ〈φ3〉 = 0,

−[∂μ∂μ + m2
±(t)]φ + 3λ(Ψ± + φ0)[〈φ2〉 − φ2] + λ[〈φ3〉 − φ3] = 0,

(177)

where
m2

±(t) = 2μ2 + 3λφ0(φ0 + 2Ψ±). (178)

In the nondissipative approximation only linear terms should be kept in Eq. (177).
This leads to the KE (163) with the factor deˇned by the time-dependent
mass (178)

W±(p, t) =
ω̇(p, t)
2ω(p, t)

=
3λφ̇0(φ0 + Ψ±)

2ω2(p, t)
. (179)

The mean values 〈φ2〉 and 〈φ3〉 are calculated either in the minimal order of
the perturbation theory (for λ � 1) or in the random phase approximation. We
use the result (164) for 〈φ2〉 and 〈φ3〉 = 0. Thus, we have

φ̈0 + λφ0

[
(2 + 3φ0)Ψ± + φ2

0

]
+

+ 3λ(Ψ± + φ0)
∫

dp
2 ω(p, t)

[2f(p, t) + v(p, t)] = 0. (180)

Numerical results for the set of parameters corresponding to [87] are presented in
Fig. 17. The stationary regime is achieved faster than in the case of the symmetric
potential.

Another formalism for describing the strong ˇeld problem in the quantum
ˇeld system with the potential (173) is developed by J. Baacke et al. (see [87],
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Fig. 17. Time evolution for the bistable Φ4 potential (173): a) the mean ˇeld; b) the particle
density; c) the energy density; d) the momentum spectra of particles at time t = 10 fm/c
and t = 40 fm/c. Parameter values are m0 = 0, μ = mh, λ = 6, φ0(0) = 0.58 fm−1,
φ̇0(0) = 0

and papers cited therein). Here the general kinetic approach is developed for arbi-
trary highly-excited nonequilibrium states in the scalar QFT with self-interaction
admitting the existence of unstable vacuum states. We restrict ourselves to the
collisionless (nondissipative) approximation. However, attempts to go beyond this
approximation have been made [42]. As a particular example, φ4 and double-well
potentials were investigated.

It would be of interest to study some other properties of the considered
model, such features as excitation transitions between states with different vacua
(in the same space-time point). Apparently, it is possible at high initial excitation
|φ0(0)| �

√
2Ψ(0) and as a consequence of the tunnelling process through the

central barrier. The last problem is especially interesting in the generalized
double-well potential model with nondegenerated vacuum states.
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5.3.3. η-Meson System. We will use now the developed technique to consider
a more complicated quantum ˇeld system, namely, the η-meson sector of the
WittenÄDi VecchiaÄVeneziano model [2] which describes the low-energy dynam-
ics of the nonet of pseudoscalar mesons in the large Nc limit of QCD. We drow
our attention to the singlet state of this model with the following Lagrangian [85]:

L =
1
2
∂μη∂μη + b2μ2 cos

(η

b

)
− a

2
η2, (181)

where b =
√

3/2bπ, bπ = 92 MeV is the semileptonic pion decay constant,

μ2 =
1
3
(m2

π + 2m2
K) � 0.171 GeV2, mπ and mK are π- and K-meson masses,

a = m2
η + m2

η′ − 2m2
K � 0.726 GeV2 for zero temperature. The corresponding

total Hamiltonian density is given by

H =
1
2
η̇2 +

1
2
(∇η)2 +

1
2
aη2 + 2b2μ2 sin2 η

2b
, (182)

where the constant addend b2μ2 was discarded.
The Hamiltonian density (182) can be reduced to the form [2]

H =
1
2
η̇2 +

1
2
(∇η)2 +

1
2
m2

0η
2 + Hin,

Hin = 2b2μ2

[
sin2 η

2b
−

( η

2b

)2
]

,

(183)

where m2
0 = a + μ2. The effective potential Hin is constructed in such a way

that its formal decomposition with respect to the ˇeld function η(x) does not
contain the corresponding squared contribution to be associated with the mass
term. However, the redeˇnition (183) leads to the absolutely unstable potential
(Subsubsec. 5.3.1) with the corresponding tachyonic modes [2]. In our opinion,
these modes have artiˇcial character and can be eliminated by return to the original
Hamiltonian density (182).

By analogy with Eq. (141), let us select the quasi-classical ˇeld η0(t) and
quantum �uctuation part φ(x),

η(x) = η0(t) + φ(x). (184)

Now we can implement the general formalism of Subsubsec. 5.3.2 to the η-meson
system with the Hamiltonian density (182). The master equation (165) is now
given by

η̈0 + aη0 + bμ2 sin
(η0

b

)[
1 − 1

2b2

∫
dp
ω

(
f +

1
2
v

)]
= 0, (185)
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Fig. 18. The time evolution for the potential (183): the particle density (a) and the mean
ˇeld energy (b). Parameter values are m0 = 0, η̇0(0) = 0

where ω(p, t) is the quasiparticle energy (153) with the mass (147)

m2(t) = a + μ2 cos
η0

b
. (186)

The KE (163) is deˇned via the factor (162) which can be presented as

W (p, t) = − μ2

4b ω2(p, t)
η̇0 sin

η0

b
. (187)

The mass formula (186) allows one to ˇt parameters a, μ2, and m2(t) > 0
for any amplitude of the quasi-classical ˇeld η0(t), as is seen in Fig. 18. The
qualitative behavior of the presented observable is similar to that for the bistable
potential case. Oscillations of the condensate energy are more pronounced for the
symmetric potential that is related with higher initial values of η0.

It was shown that if one vacuum state among a set of vacuum states is ˇxed,
it leads to some speciˇc evolution of the system under action of the mean ˇeld.
But there is an open question concerning occupation of other system states due
to tunnelling process [70]. This problem follows also from our treatment.

SUMMARY

This review is mainly based on the results obtained by the authors in the
last years and aims to summarize the information about the kinetic description
of vacuum particle creation. The latter results for the inertial mechanism with
the time-dependent particle masses are stipulated at the phenomenological level.
Three basic quantum ˇeld models were considered here: massive scalar, vector
and spinor ˇelds. The constructed kinetic theory was applied (Sec. 4) to a confor-
mal cosmology model for investigation of matter created from vacuum in an early
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period of the Universe evolution. In particular, it was shown that the density of
the produced vector bosons is sufˇcient for explanation of the present-day density
of CMB photons.

The obtained results can be used for a subsequent study of different aspects of
matter dynamics created from the vacuum in the early Universe (the equation of
state, the long wave-length acoustic excitations, the back-reaction problem, etc.).
Only the single mechanism of a mass change was considered where this change
is induced by the conformal expansion of the Universe whose action is switched
on for the mass m0(t0) at some arbitrary initial time t0. For construction of
a more elaborated theory, one should eventually take into account the in�ation
mechanism of mass generation acting during an earlier period of the Universe
evolution [72, 94Ä96]. It would be of interest to consider the generation of
particles of different masses and quantum statistics using Eq. (139) which is valid
for all particles independently of their inner symmetry.

Interesting perspectives are opened up also by results of Sec. 5, where some
simplest quantum ˇeld models are investigated for scalar ˇelds with various self-
interactions and a corresponding quasi-classical nonstationary ˇeld (the problem
of a phase transition at the restoration of broken symmetry, particle tunnelling
between states with a different vacua, etc.).

Certainly, the considered examples do not exhaust all variety of systems,
where the vacuum generation of particles is induced by the inertial mechanism.
In particular, a large class of experimentally controlled models of meson and
quark subsystems evolved close to a phase transition has remained beyond our
scope. In addition, the investigation of two-particle correlations is of interest
for description of some delicate experimental effects in nuclear reactions [23].
The extension of the mean-ˇeld approximation to take into account the back-
reaction and collisions is studied intensively with different methods in some
scalar models [85, 87]. The important problem of relevant initial conditions also
attracts attention in the context of heavy-ion collisions [97]. We did not worry
much concerning relativistic invariant form of the developed formalism: it is an
open question. The basis for its solution is the covariant Hamiltonian formalism
in relativistic kinetic theory [13,31,32].

Finally, some effects discussed here take place also in condensed matter
physics and can be interpreted in the conceptual framework of the inertial mech-
anism (e.g., [98, 99] and references therein). Such a kind of analogy is very
promising for an experimental test of the given theory with more accessible
realizations under condensed matter conditions.
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