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COLLECTIVE MOTION FROM VARIOUS ASPECTS
E. B. Balbutsev

Joint Institute for Nuclear Research, Dubna

Three methods to describe the collective motion Å Random Phase Approximation (RPA),
Wigner Function Moments (WFM) and Green's Function (GF) method are compared in detail, and
their physical content is analyzed with an example of a simple model Å the harmonic oscillator
with quadrupoleÄquadrupole residual interaction. It is shown that they give identical formulae for
eigenfrequencies and transition probabilities of all collective excitations of the model. The exact
relation between the RPA and WFM variables and the respective dynamical equations is established.
The transformation of the RPA spectrum into the one of WFM is explained. The very close connection
of the WFM method with the GF one is demonstrated. A differential equation describing the current
lines of RPA modes is established and the current lines of the scissors mode are analyzed as a
superposition of rotational and irrotational components. The orthogonality of the spurious state to all
physical states is proved rigorously.

‘· ¢´¨¢ ÕÉ¸Ö É·¨ ¶μ¤Ìμ¤  ± μ¶¨¸ ´¨Õ ±μ²²¥±É¨¢´μ£μ ¤¢¨¦¥´¨Ö: ¶·¨¡²¨¦¥´¨¥ ¸²ÊÎ °´ÒÌ
Ë § (�‘”), ³¥Éμ¤ ³μ³¥´Éμ¢ ËÊ´±Í¨¨ ‚¨£´¥·  (Œ”‚) ¨ ³¥Éμ¤ ËÊ´±Í¨° ƒ·¨´  (”ƒ). ˆÌ Ë¨§¨-
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³μ¤¥²¨. “¸É ´μ¢²¥´μ ÉμÎ´μ¥ ¸μμÉ´μÏ¥´¨¥ ³¥¦¤Ê ¶¥·¥³¥´´Ò³¨ �‘” ¨ ³¥Éμ¤  Œ”‚ ¨ ¸μμÉ-
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¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢¸¥³ Ë¨§¨Î¥¸±¨³ ¸μ¸ÉμÖ´¨Ö³ ³μ¤¥²¨.

PACS: 21.60.Ev; 21.60.Jz; 24.30.Cz

INTRODUCTION

The aim of the present paper is the systematic comparison of three meth-
ods to describe the collective motion. As an example, their competition in the
description of the nuclear scissors mode will be considered. This very curious
excitation was predicted thirty years ago [1, 2]. Its experimental discovery [3]
has initiated a cascade of theoretical studies. An excellent review of their twenty
years development was given by D. Zawischa [4]. Very brie	y the situation can
be described in the following way. All microscopic calculations with effective
forces reproduce experimental data with respect to the position and the strength
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of the scissors mode, some of them [5] giving also reasonable fragmentation of
its strength. However, the situation is more obscure in regard to simple phenom-
enological models whose aim is to explain the physics of the phenomenon and to
interpret it in the most simple and transparent terms. A noticeable discord of the
opinions of various authors must be observed here [4]. So, it will be interesting
to compare the possibilities, advantages, and disadvantages of various methods in
the description of all subtleties of this mode.

The full analysis of the scissors mode in the framework of a solvable model
(harmonic oscillator with quadrupoleÄquadrupole residual interaction (HO +QQ))
was given in [6]. Several points in the understanding of the nature of this mode
were clariˇed: for example, its coexistence with the isovector giant quadrupole
resonance (IVGQR), the decisive role of the Fermi surface deformation, and sev-
eral things more. The Wigner Function Moments (WFM) method was applied
to derive analytical expressions for currents of both coexisting modes, their ex-
citation energies, magnetic and electric transition probabilities. Our formulae
for energies turned out to be identical with those derived by Hamamoto and
Nazarewicz [7] in the framework of the RPA. In [8], we investigated the relation
between formulas for transition probabilities derived by two methods. It was
shown there that also these formulas are identical. This coincidence motivated
us to undertake a detailed comparison of the two approaches and understand
the connection and differences between them. One of the important subjects of
this comparison is the current distributions. The WFM method, a priori, cannot
give the exact results, because it deals only with integrals over the whole phase
space. It would therefore be very interesting to evaluate the accuracy of this
approximation by comparing the results with the currents obtained from the RPA.
Unfortunately, even for this simple model (HO+ QQ) it is impossible to derive
in the RPA the closed analytical expressions for currents of the scissors mode
and IVGQR. That is why we consider in addition Green's Function (GF) method
which allows one to ˇnd explicit expressions for currents directly.

The HO+ QQ model is a very convenient ground for this kind of investiga-
tion, because most of the results can be obtained analytically. The basis of all
three methods is the same: Time Dependent HartreeÄFock (TDHF) theory in its
small amplitude approximation. Strictly speaking, the small amplitude approxi-
mation is not compulsory in the WFM method Å it allows one to study the large
amplitude motion, too. There is no need to describe the merits of the RPA or of
the GF method Å they are very well known [9]. It is necessary, however, to say
a few words about the WFM. Its idea is based on the virial theorems of Chan-
drasekhar and Lebovitz. These theorems were derived by the authors in ˇfties in
a series of papers, the results of which were summarized in the book [10]. The
old astrophysical problems were considered: ˇgures of equilibrium of rotating
self-gravitating masses (planets and stars) and their vibration eigenfrequencies.
In the classical mechanics the dynamics of such objects is described with the help



COLLECTIVE MOTION FROM VARIOUS ASPECTS 1773

of the well-known equations of hydrodynamics, the Euler equation and the conti-
nuity equation, which usually leads to very complicated mathematical problems.
Chandrasekhar and Lebovitz have shown that the solution of these problems can
be found in an essentially simpler and elegant way if one works with moments of
the Euler equation (virial theorems). In such a way they reproduced all already
known results (obtained by the efforts of many famous mathematicians) and have
found the solutions of several old long-standing problems of astrophysics.

In the light of these successes it is natural to expect that the method of
moments will also be useful in the nuclear theory, for example, to solve TDHF
equations. Really, it is known that the Wigner transform of the TDHF equation
for the density matrix is similar to the dynamical equation for the distribution
function of the classical kinetic theory (Vlasov equation). In particular, ˇrst two
moments (in momentum space) of this equation are just the continuity equation
and the Euler equation. So, at a glance there is no problem in employing the virial
theorems of Chandrasekhar and Lebovitz in the nuclear theory. However, the
real situation turns out to be a little bit more complicated, because all moments
(in momentum space) of the Vlasov equation are coupled in an inˇnite set of
dynamical equations and, consequently, the problem of their decoupling arises.
The way to the solution of this problem with the help of virial theorems was
proposed in [11] and described in detail in [12]. Instead of writing the equations
of motion for microscopic amplitudes of particle hole excitations (RPA), one
writes the dynamical equations for various multipole phase space moments of a
nucleus. This allows one to achieve a more direct physical interpretation of the
studied phenomenon without going into its detailed microscopic structure and,
what is even more important, solves the problem of decoupling. The obtained
equations are nonlinear, as it should be, when one deals with the HartreeÄFock
theory. In the case of a sufˇciently simple interaction they can be solved without
a standard linearization procedure, i.e., for large amplitudes, which has been done
in [13], where the multiphonon giant resonances were studied. So in this sense the
WFM method is more general than the RPA one. In the approximation of small
amplitudes, the WFM method was successfully applied to study isoscalar and
isovector giant multipole resonances and low-lying collective modes of rotating
and nonrotating nuclei with various realistic forces [14Ä17]. The results of WFM
were always very close to similar results obtained with the help of the RPA,
which allowed one to suspect the intimate relationship between both the methods.
The detailed analysis of the interplay of the two methods turns out to be useful
also from a ®practical¯ point of view: ˇrst, and most importantly, it allows one
to obtain additional insight into the nature of the scissors mode; second, we ˇnd
new exact mathematical results for the considered model.

The paper is organized as follows. In Sec. 1, we recall the principal points
of the WFM formalism and give a summary of the key results of [6] obtained by
applying this method to the HO +QQ model. The same model is considered in
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Sec. 2 in the frame of the RPA: the formulae for eigenfrequencies, electric and
magnetic transition probabilities of the scissors mode are derived, the equations of
motion for Transition Matrix Elements (TME) are constructed and the ®synthetic¯
scissors and spurious state are analyzed. The exact interrelation between the RPA
and WFM methods and between their variables is established in Sec. 3, where
TME equations are derived by the WFM method. Section 4 is devoted to the GF
method. The three methods are applied to derive analytical formulae for lines
of currents in Sec. 5. The mutual interplay of the three methods is discussed in
Conclusion. Various mathematical details are given in Appendices.

1. THE WFM METHOD

The basis of the method is the TDHF equation for the one-body density
matrix ρτ (r1, r2, t) = 〈r1|ρ̂τ (t)|r2〉:

i�
∂ρ̂τ

∂t
=
[
Ĥτ , ρ̂τ

]
, (1)

where Ĥτ is the one-body self-consistent mean ˇeld Hamiltonian depending
implicitly on the density matrix and τ is an isotopic spin index. It is convenient
to modify equation (1) introducing the Wigner transform of the density matrix

f τ (r,p, t) =
∫

d3s exp(−ip · s/�)ρτ
(
r +

s
2
, r − s

2
, t
)

(2)

and of the Hamiltonian

Hτ
W (r,p) =

∫
d3s exp (−ip · s/�)

(
r +

s
2

∣∣∣Ĥτ
∣∣∣ r− s

2

)
. (3)

Using (2), (3) one arrives [9] at

∂f τ

∂t
=

2
�

sin
{

�

2
[
(∇)H · (∇p)f − (∇p)H · (∇)f

]}
Hτ

W f τ , (4)

where the upper index on the bracket stands for the function on which the operator
in these brackets acts. It is shown in [13,17] that by integrating equation (4) over
the phase space {p, r} with the weights xi1xi2 · · ·xik

pik+1 · · · pin−1pin , where k
runs from 0 to n, one can obtain a closed ˇnite set of dynamical equations for
Cartesian tensors of the rank n. Taking linear combinations of these equations
one is able to represent them through irreducible tensors, which play the role of
collective variables of the problem. However, it is more convenient to derive the
dynamical equations directly for irreducible tensors using the technique of tensor
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products [18]. For this it is necessary to rewrite the Wigner function equation (4)
in terms of cyclic variables

∂f τ

∂t
=

=
2
�

sin

{
�

2

1∑
α=−1

(−1)α
[
(∇−α)H · (∇p

α)f − (∇p
−α)H · (∇α)f

]}
Hτ

W f τ , (5)

with

∇+1 = − 1√
2

(
∂

∂x1
+ i

∂

∂x2

)
, ∇0 =

∂

∂x3
, ∇−1 =

1√
2

(
∂

∂x1
− i

∂

∂x2

)
,

r+1 = − 1√
2
(x1 + ix2), r0 = x3, r−1 =

1√
2
(x1 − ix2)

and the analogous deˇnitions for ∇p
+1, ∇

p
0, ∇

p
−1, and p+1, p0, p−1. The required

equations are obtained by integrating (5) with different tensor products of rα and
pα. Here we consider the case n = 2.

1.1. Model Hamiltonian, Equations of Motion. The microscopic Hamil-
tonian of the model, harmonic oscillator plus separable quadrupoleÄquadrupole
residual interaction is given by

H =
A∑

i=1

(
p̂2

i

2m
+

1
2
mω2r2

i

)
+ κ̄

2∑
μ=−2

(−1)μ
Z∑
i

N∑
j

q2−μ(ri)q2μ(rj)+

+
1
2
κ

2∑
μ=−2

(−1)μ

⎧⎨
⎩

Z∑
i�=j

q2−μ(ri)q2μ(rj) +
N∑

i�=j

q2−μ(ri)q2μ(rj)

⎫⎬
⎭ , (6)

where the quadrupole operator q2μ =
√

16π/5 r2Y2μ and N, Z are the numbers
of neutrons and protons, respectively. The mean ˇeld potential for protons (or
neutrons) is

V τ (r, t) =
1
2
m ω2r2 +

2∑
μ=−2

(−1)μZ̃τ
2−μ(t)q2μ(r), (7)

where Z̃n
2μ = κQn

2μ + κ̄Qp
2μ, Z̃p

2μ = κQp
2μ + κ̄Qn

2μ and the quadrupole moments
Qτ

2μ(t) are deˇned as

Qτ
2μ(t) =

∫
d{p, r}q2μ(r)f τ (r,p, t) (8)
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with

∫
d{p, r} ≡ 2(2π�)−3

∫
d3p

∫
d3r, where the factor 2 appears due to

summation over spin degrees of freedom. To simplify notation, we omit spin in-
dices, because we consider spin saturated system without the spin-orbit
interaction.

Substituting spherical functions by tensor products r2Y2μ =

√
15
8π

r2
2μ, where

r2
λμ ≡ {r ⊗ r}λμ =

∑
σ,ν

Cλμ
1σ,1νrσrν

and Cλμ
1σ,1ν is the ClebschÄGordan coefˇcient, one has

V τ =
1
2
m ω2r2 +

∑
μ

(−1)μZτ
2−μr2

2μ. (9)

Here

Zn
2μ = χRn

2μ + χ̄Rp
2μ, Zp

2μ = χRp
2μ + χ̄Rn

2μ, χ = 6κ, χ̄ = 6κ̄,
(10)

Rτ
λμ(t) =

∫
d{p, r}r2

λμf τ (r,p, t).

Integration of equation (5) with the weights r2
λμ, (rp)λμ ≡ {r ⊗ p}λμ, and

p2
λμ yields the following set of equations [6]:

d

dt
Rτ

λμ − 2
m

Lτ
λμ = 0, λ = 0, 2,

d

dt
Lτ

λμ − 1
m

P τ
λμ + m ω2Rτ

λμ−

− 2
√

5
2∑

j=0

√
2j + 1{11j

2λ1}(Zτ
2 Rτ

j )λμ = 0, λ = 0, 1, 2, (11)

d

dt
P τ

λμ + 2m ω2Lτ
λμ − 4

√
5

2∑
j=0

√
2j + 1{11j

2λ1}(Z
τ
2 Lτ

j )λμ = 0, λ = 0, 2,

where {11j
2λ1} is the Wigner 6j-symbol. For the sake of simplicity, the time depen-

dence of tensors is not written out. Further the following notation is introduced:

P τ
λμ(t) =

∫
d{p, r}p2

λμf τ (r,p, t), Lτ
λμ(t) =

∫
d{p, r}(rp)λμf τ (r,p, t). (12)

It is necessary to say some words about the physical meaning of the collective
variables introduced above. By deˇnition Rτ

2μ = Qτ
2μ/

√
6 and Qτ

2μ is the quadru-

pole moment of the system of particles and Rτ
00 = −Qτ

00/
√

3 with Qτ
00 = N τ 〈r2〉
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being the mean square radius of the same system. By analogy with these vari-
ables, deˇned in the coordinate space, we can say that the variables P τ

2μ and
P τ

00 describe the quadrupole moment and the mean square radius of the same
system in a momentum space. The variables Lτ

λμ describe the coupling of mo-
mentum and coordinate spaces. To understand their nature it is useful to recall
the deˇnitions [13,17] of nuclear density and mean velocity:

nτ (r, t) =
∫

2d3p

(2π�)3
f τ (r,p, t),

mnτ (r, t)uτ
i (r, t) =

∫
2d3p

(2π�)3
pif

τ (r,p, t).

(13)

They enter into the deˇnitions (10), (12) of irreducible tensors

Rτ
λμ(t) =

∫
d3r

∫
2d3p

(2π�)3
r2
λμf τ (r,p, t) =

∫
d3r r2

λμnτ (r, t),

Lτ
λμ(t) =

∫
d3r

∫
2d3p

(2π�)3
(rp)λμf τ (r,p, t) = m

∫
d3r (ruτ )λμnτ (r, t).

(14)

The last expression for Lτ
λμ demonstrates in an obvious way the physical meaning

of these variables: being the ˇrst order moments of mean velocities they give
information about the distribution of these velocities in the nucleus (®ˇrst¯ means
that velocities are weighted with the coordinate r). Sometimes, if the motion is
comparatively simple, this information turns out sufˇcient to completely determine
the velocity ˇeld (see Conclusion). In the case of more intricate motions higher
order moments are required for a complete description of velocities [17]. In any
case the moments of velocities are a very convenient tool to describe the collective
motion. For example, the zero order moment of velocity is nothing more than
the linear momentum describing the nucleus' center-of-mass motion. One of the
ˇrst order moments corresponds to the very well known angular momentum of a
nucleus. It is connected with the variable Lτ

1μ by the following relations:

Lτ
10 =

i√
2
Iτ
3 , Lτ

1±1 =
1
2
(Iτ

2 ∓ iIτ
1 ).

It is convenient to rewrite Eqs. (11) in terms of the isoscalar and isovector
variables

Rλμ = Rn
λμ + Rp

λμ, Pλμ = Pn
λμ + P p

λμ, Lλμ = Ln
λμ + Lp

λμ,

R̄λμ = Rn
λμ − Rp

λμ, P̄λμ = Pn
λμ − P p

λμ, L̄λμ = Ln
λμ − Lp

λμ.
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So the equations for the neutron and proton systems are transformed into isoscalar
and isovector ones. The equations for the isoscalar system are given by

Ṙ00 − 2L00/m = 0,

L̇00 − P00/m + m ω2R00 − 2
√

5/3[χ0(R2R2)00 + χ1(R̄2R̄2)00] = 0,

Ṗ00 + 2mω2L00 − 4
√

5/3[χ0(R2L2)00 + χ1(R̄2L̄2)00] = 0,

Ṙ2μ − 2L2μ/m = 0,

L̇2μ − P2μ/m + m ω2R2μ − 2
√

1/3[χ0(R2R0)2μ + χ1(R̄2R̄0)2μ]− (15)

−
√

7/3[χ0(R2R2)2μ + χ1(R̄2R̄2)2μ] = 0,

Ṗ2μ + 2mω2L2μ − 4
√

1/3[χ0(R2L0)2μ + χ1(R̄2L̄0)2μ]−
−2

√
7/3[χ0(R2L2)2μ + χ1(R̄2L̄2)2μ] + 2

√
3[χ0(R2L1)2μ + χ1(R̄2L̄1)2μ] = 0,

L̇1ν = 0

and the ones for the isovector system read:

˙̄R00 − 2L̄00/m = 0,

˙̄L00 − P̄00/m + m ω2R̄00 − 2
√

5/3χ(R2R̄2)00 = 0,

˙̄P00 + 2mω2L̄00 − 4
√

5/3[χ0(R2L̄2)00 + χ1(R̄2L2)00] = 0,

˙̄R2μ − 2L̄2μ/m = 0,

˙̄L2μ − P̄2μ/m + m ω2R̄2μ − 2
√

1/3[χ0(R2R̄0)2μ + χ1(R̄2R0)2μ]− (16)

−
√

7/3χ(R2R̄2)2μ = 0,

˙̄P2μ + 2mω2L̄2μ − 4
√

1/3[χ0(R2L̄0)2μ + χ1(R̄2L0)2μ]−
−2

√
7/3[χ0(R2L̄2)2μ + χ1(R̄2L2)2μ] + 2

√
3[χ0(R2L̄1)2μ + χ1(R̄2L1)2μ] = 0,

˙̄L1ν +
√

5χ̄(R2R̄2)1ν = 0.

Here
χ0 = (χ + χ̄)/2

is an isoscalar strength constant and

χ1 = (χ − χ̄)/2

is the corresponding isovector one. The last equation of (15) demonstrates the
conservation of the isoscalar angular momentum L1ν . The dynamical equation
for the isovector angular momentum L̄1ν (the last equation of (16)) describes the
relative (out of phase) motion of the neutron and proton angular momenta; hence
it must be responsible for the scissors mode.
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Writing out in detail the tensor products one can write out the whole set of
42 coupled equations (including integrals of motion) for the whole set of isoscalar
and isovector variables. There is no problem to solve these equations numerically.
However, we want to simplify the situation as much as possible to get the results
in analytical form giving us a maximum of insight into the nature of the modes.

1) We consider the problem in small-amplitude approximation. Writing all
variables as a sum of their equilibrium value plus a small deviation

Rλμ(t) = Req
λμ + Rλμ(t), Pλμ(t) = P eq

λμ + Pλμ(t), Lλμ(t) = Leq
λμ + Lλμ(t),

R̄λμ(t) = R̄eq
λμ + R̄λμ(t), P̄λμ(t) = P̄ eq

λμ + P̄λμ(t), L̄λμ(t) = L̄eq
λμ + L̄λμ(t),

we linearize the equations of motion in Rλμ, Pλμ, Lλμ and R̄λμ, P̄λμ, L̄λμ.
2) We study nonrotating nuclei, i.e., nuclei with Leq

1ν = L̄eq
1ν = 0.

3) Only axially symmetric nuclei with Req
2±2 = Req

2±1 = R̄eq
2±2 = R̄eq

2±1 = 0
are considered.

4) Finally, we suppose that equilibrium deformation and mean square radius
of neutrons are equal to that of protons:

R̄eq
20 = R̄eq

00 = 0. (17)

Due to the approximation (17) the isoscalar and isovector sets of equations
are decoupled. The isoscalar set is

Ṙ00 − 2L00/m = 0,

L̇00 − P00/m + mω2R00 − 4
√

1/3χ0R
eq
20 R20 = 0,

Ṗ00 + 2mω2L00 − 4
√

1/3χ0R
eq
20 L20 = 0,

Ṙ2μ − 2L2μ/m = 0,

L̇2±2 − P2±2/m +
[
mω2 −

√
4/3χ0(R

eq
00 +

√
2Req

20)
]
R2±2 = 0,

L̇2±1 − P2±1/m +
[
mω2 −

√
4/3χ0(R

eq
00 − Req

20/
√

2)
]
R2±1 = 0, (18)

L̇20 − P20/m +
[
mω2−

√
4/3χ0(R

eq
00 −

√
2Req

20)
]
R20−

√
4/3χ0R

eq
20 R00 = 0,

Ṗ2±2 + 2[mω2 −
√

2/3χ0R
eq
20]L2±2 = 0,

Ṗ2±1 + 2[mω2 +
√

1/6χ0R
eq
20]L2±1 ∓

√
6χ0R

eq
20]L1±1 = 0,

Ṗ20 + 2[mω2 +
√

2/3χ0R
eq
20]L20 − 4

√
1/3χ0R

eq
20 L00 = 0,

L̇1ν = 0.
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The isovector set of equations reads:
˙̄R00 − 2L̄00/m = 0,

˙̄L00 − P̄00/m + mω2R̄00 −
√

4/3χReq
20 R̄20 = 0,

˙̄P00 + 2mω2L̄00 − 4
√

1/3χ0R
eq
20 L̄20 = 0,

˙̄R2μ − 2L̄2μ/m = 0,

˙̄L2±2 − P̄2±2/m +
[
mω2 −

√
2/3χReq

20 −
√

4/3χ1R
eq
00

]
R̄2±2 = 0,

˙̄L2±1 − P̄2±1/m +
[
mω2 +

√
1/6χReq

20 −
√

4/3χ1R
eq
00

]
R̄2±1 = 0, (19)

˙̄L20 − P̄20/m+
[
mω2+

√
2/3χReq

20−
√

4/3χ1R
eq
00

]
R̄20−

√
4/3χ0Req

20 R̄00 = 0,

˙̄P2±2 + 2[mω2 −
√

2/3χ0R
eq
20]L̄2±2 = 0,

˙̄P2±1 + 2[mω2 +
√

1/6χ0R
eq
20]L̄2±1 ∓

√
6χ0R

eq
20 L̄1±1 = 0,

˙̄P20 + 2[mω2 +
√

2/3χ0R
eq
20]L̄20 −

√
4/3χ0R

eq
20 L̄00 = 0,

˙̄L1±1 ±
√

3/2χ̄Req
20R̄2±1 = 0,

˙̄L10 = 0.

Due to the axial symmetry, the angular momentum projection is a good
quantum number. As a result, every set of equations splits into ˇve independent
subsets with μ = 0,±1,±2. It is known [19], that equations with μ = 0 and
μ = ±2 describe the β and γ modes, respectively. The equations with μ = ±1
describe the coupled dynamics of the transvers shear mode [10] and the rotational
motion Å they are the subject of the especial interest in this paper.

1.2. Isoscalar Eigenfrequencies. The dynamics of the isoscalar angular mo-
mentum is trivial Å no vibrations, this variable is conserved. However, it is nec-
essary to treat this mode carefully because, being the nonvibrational mode with
zero eigenfrequency, it gives, nevertheless, a nonzero contribution to the sum rule
(see below). Let us analyze the isoscalar set of equations with μ = ν = 1 in
more detail

Ṙ21 − 2L21/m = 0,

L̇21 − P21/m +
[
mω2 +

√
4/3χ0(R

eq
20/

√
2 − Req

00)
]
R21 = 0,

(20)
Ṗ21 + 2[mω2 +

√
1/6χ0R

eq
20]L21 −

√
6χ0R

eq
20 L11 = 0,

L̇11 = 0.

Using the self-consistent value of the strength constant κ0 = −mω̄2

4Q00
(see Ap-

pendix A), the relations between Qλμ and Rλμ and the standard deˇnition of the
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deformation parameter Q20 = Q00
4
3

δ we reduce (20) to

Ṙ21 − 2L21/m = 0,

L̇21 − P21/m = 0,
(21)

Ṗ21 + 2mω̄2

[(
1 +

δ

3

)
L21 + δL11

]
= 0,

L̇11 = 0.

Imposing the time evolution via e−iΩt for all variables one transforms (21) into a
set of algebraic equations. The eigenfrequencies are found from its characteristic
equation which reads

Ω2

[
Ω2 − 2ω̄2

(
1 +

δ

3

)]
= 0. (22)

The nontrivial solution of this equation gives the frequency of the μ = 1 branch
of the isoscalar GQR

Ω2 = Ω2
is = 2ω̄2

(
1 +

δ

3

)
. (23)

Taking into account the relation (A.7) we ˇnd that this result coincides with that
of [20]. The trivial solution Ω = Ω0 = 0 is characteristic of nonvibrational mode
corresponding to the obvious integral of motion L11 = const responsible for
the rotational degree of freedom. Having in mind that in the case of harmonic
oscillations L11 = 0, we can ˇnd another, not so obvious, integral. The simple
combination of the third and ˇrst equations of (21) gives

P21 + m2ω̄2

(
1 +

δ

3

)
R21 = const.

Assuming here δ = 0, we reproduce our result from [13] for spherical nuclei,
saying that the nuclear density and the Fermi surface oscillate out of phase.

1.3. Isovector Eigenfrequencies. The information about the scissors mode is
contained in the subset of isovector equations with μ = 1. Let us analyze it in
detail:

˙̄R21 − 2L̄21/m = 0,

˙̄L21 − P̄21/m +
[
mω2 +

√
1/6χReq

20 −
√

4/3χ1R
eq
00

]
R̄21 = 0,

(24)
˙̄P21 + 2[mω2 +

√
1/6χ0R

eq
20]L̄21 −

√
6χ0R

eq
20 L̄11 = 0,

˙̄L11 +
√

3/2χ̄Req
20R̄21 = 0.
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Supposing, as usual, the isovector constant κ1 to be proportional to the isoscalar
one, κ1 = ακ0 and using the same deˇnitions as in the isoscalar case we ˇnd

˙̄R21 − 2L̄21/m = 0,

˙̄L21 − P̄21/m + mω̄2(1 − α)
(

1 +
δ

3

)
R̄21 = 0,

(25)
˙̄P21 + 2mω̄2

[(
1 +

δ

3

)
L̄21 + δL̄11

]
= 0,

˙̄L11 − mω̄2δ(1 − α)R̄21 = 0.

Imposing the time evolution via e−iΩt one transforms (25) into a set of algebraic
equations with the characteristic equation

Ω4 − 2Ω2ω̄2(2 − α)
(

1 +
δ

3

)
+ 4ω̄4(1 − α)δ2 = 0. (26)

Its solutions are

Ω2
± = ω̄2(2 − α)

(
1 +

δ

3

)
±

√
ω̄4(2 − α)2

(
1 +

δ

3

)2

− 4ω̄4(1 − α)δ2. (27)

The high-lying solution Ω+ gives the frequency Ωiv of the μ = 1 branch of
the isovector GQR. The low-lying solution Ω− gives the frequency Ωsc of the
scissors mode.

It is worth noticing that in the case L̄11 = 0 the set of equations (25) becomes
quite similar to (21). Its characteristic equation reduces to the equation

Ω3 − 2Ωω̄2(2 − α)
(

1 +
δ

3

)
= 0, (28)

implying that there exists an integral of motion analogous to the isoscalar one:

P̄21 + m2ω̄2

(
1 +

δ

3

)
R̄21 = const.

The nontrivial solution of (28) gives the IVGQR frequency for the case, when
rotational degrees of freedom are neglected:

Ω2 = 2ω̄2(2 − α)
(

1 +
δ

3

)
. (29)

Now let us ˇx the value of the coefˇcient α. The experimental fact is:
the energy of an isovector GQR is practically two times higher than that of an
isoscalar one. Assuming δ = 0, we have

Ω2
+ = Ω2

iv = 2ω2(2 − α).
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The simple comparison of this expression with (23) shows that the experimental
observation is satisˇed by α = −2. Then Eq. (27) gives the following formulae
for both energies:

Ω2
iv = 4ω̄2

⎛
⎝1 +

δ

3
+

√(
1 +

δ

3

)2

− 3
4
δ2

⎞
⎠ ,

Ω2
sc = 4ω̄2

⎛
⎝1 +

δ

3
−

√(
1 +

δ

3

)2

− 3
4
δ2

⎞
⎠ .

(30)

In the limit of small deformations one can write for IVGQR energy

E2
iv 	 8(�ω̄)2

(
1 +

δ

3

)(
1 − 3

16
δ2

)
. (31)

For α = −2, formula (29) gives: E2
iv = 8(�ω̄)2(1 + δ/3). Comparing it with

(31) one sees that the in	uence of rotational degrees of freedom on the IVGQR
energy is very small.

The scissors mode energy in the limit of small deformation is

Esc ≈
√

3
2

�ω0δ, (32)

which is quite close to the result of Hilton [21]: Esc ≈
√

1 + 0.66�ω0δ.
It is interesting to study the role of the Fermi Surface Deformation (FSD) for

the formation of IVGQR and the scissors mode. Neglecting in (25) the variable
P̄21(t), which is responsible for FSD, we ˇnd that the frequency of IVGQR
(being determined mainly by the neutronÄproton interaction) is changed not very
much:

Ω2
iv = 2ω̄2(1 − α)

(
1 +

δ

3

)
.

Comparing this formula (for α = −2) with (30), one sees that in the limit of
small deformation one obtains Ω2

iv 	 6ω2
0 instead of Ω2

iv 	 8ω2
0 . One should

recall that also for the Isovector Giant Dipole Resonance the distortion of Fermi
sphere plays only a minor role.

It is also easy to see that omitting P̄21(t) in (25), one obtains zero energy for
the scissors mode independent of the strength of the residual interaction. Thus,
the nuclear elasticity discovered by G. F. Bertsch [22] is the single origin for the
restoring force of the scissors mode. So one can conclude that this mode is in its
essence a pure quantum mechanical phenomenon. This agrees with the conclusion
of the papers [23, 24]: classically (i.e., without Fermi surface deformation) the
scissors mode is a zero energy mode.
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1.4. Linear Response and Transition Probabilities. A direct way of calcu-
lating the reduced transition probabilities is provided by the theory of the linear
response of a system to a weak external ˇeld

F̂ (t) = F̂ exp (−iΩt) + F̂ † exp (iΩt), (33)

where F̂ =
A∑

s=1

f̂s is a one-body operator. A convenient form of the response

theory is, e.g., given by Lane [25] (see also Sec. 4). The matrix elements of the
operator F̂ obey the relation

|〈ν|F̂ |0〉|2 = � lim
Ω→Ων

(Ω − Ων)〈ψ|F̂ |ψ〉 exp (−iΩt), (34)

where |0〉 and |ν〉 are the stationary wave functions of unperturbed ground and
excited states; ψ is the wave function of the perturbed ground state, Ων = (Eν −
E0)/� are the normal frequencies, the bar means averaging over a time interval
much larger than 1/Ω, Ω being the frequency of the external ˇeld F̂ (t). To use
formula (34) in the frame of WFM method, one must solve two problems [17]:

(1) to express the matrix element 〈ψ|F̂ |ψ〉 in terms of collective variables of
the system,

(2) to ˇnd the solution of the dynamic equations for these variables in the
presence of the external ˇeld.

The ˇrst problem is solved with the help of the formula for the Wigner
transformation of a product of two operators [9]

〈ψ|F̂ |ψ〉τ =
∫

d3r

∫
d3r′ρτ (r, r′, t)F̂ (r′, r) =

∫
d3r

∫
2d3p

(2π�)3
×

× exp
(

�

2i
(∇F

r · ∇f
p −∇F

p · ∇f
r )
)

FW (r,p)f τ (r,p, t). (35)

To deal with the second problem we add the ˇeld (33) to the mean ˇeld
potential (9). The equation for the Wigner function (4) is then modiˇed by the
term

F τ
ext =

2
�

sin
(

�

2
(∇F

r · ∇f
p −∇F

p · ∇f
r )
)
×

× (FW exp (−iΩt) + F ∗
W exp (iΩt)) f τ . (36)

Proceeding in the same way as before one obtains equations for all collective vari-
ables needed to calculate 〈ψ|F̂ |ψ〉τ . The only new element now is the presence
of the term F τ

ext that makes the equations for the moments inhomogeneous.
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1.5. B(M1) Factors. To calculate the magnetic transition probability, it is
necessary to excite the system with the following external ˇeld:

F̂ = F̂ p
λμ′ =

Z∑
s=1

f̂λμ′(s),

(37)

f̂λμ′ = −i
2

λ + 1
∇(rλYλμ′)[r ×∇]μN , μN =

e�

2mc
.

We are interested in the dipole operator (λ = 1). In the cyclic coordinates it
looks like

f̂1μ′ = −μN

√
3
2π

∑
ν,σ

C1μ′

1ν,1σrν∇σ, f̂ †
1μ′ = −f̂∗

1μ′ = (−1)μ′
f̂1−μ′ . (38)

Its Wigner transformation is

(f̂1μ′)W = γ
∑
ν,σ

C1μ′

1ν,1σrνpσ = γ(rp)1μ′ ,

where γ = − i

�

√
3
2π

μN . For its matrix element we have

〈ψ|F̂ p
1μ|ψ〉 = γLp

1μ′ =
γ

2
(L1μ′ − L̄1μ′) =

γ

2
(L1μ′ − L̄1μ′). (39)

Here we have taken into account that Leq
λμ′ = L̄eq

λμ′ = 0. The contribution of

F̂1μ′ (t) to the equation for the Wigner function is

Fext = γ
(
Fμ′ e−iΩt + (−1)μ′

F−μ′ eiΩt
)

with
Fμ′ =

∑
νσ

C1μ′

1ν,1σ [pσ∇p
ν − rν∇r

σ]fp.

Integration of Fμ′ with the weights r2
λμ, (rp)λμ and p2

λμ yields∫
d{p, r}r2

λμFμ′ = 2
√

3(2λ + 1)
∑
k,π

Ckπ
λμ,1μ′{11λ

k11}R
p
kπ(eq),

∫
d{p, r}(rp)λμFμ′ =

√
3(2λ + 1)

∑
k,π

[(−1)λ + (−1)k]Ckπ
λμ,1μ′{11λ

k11}L
p
kπ(eq),

∫
d{p, r}p2

λμFμ′ = 2
√

3(2λ + 1)
∑
k,π

Ckπ
λμ,1μ′{11λ

k11}P
p
kπ(eq).
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A simple analysis of these expressions shows that the external ˇeld modiˇes only
the proton part of the set of equations (11) with λ = 2:

d

dt
Rp

2μ − . . . =

= −γ
√

3
[
C2μ+μ′

2μ,1μ′ R
p
2μ+μ′(eq) e−iΩt + (−1)μ′

C2μ−μ′

2μ,1−μ′R
p
2μ−μ′(eq) eiΩt

]
,

d

dt
Lp

2μ − . . . = 0, (40)

d

dt
P p

2μ + . . . =

= −γ
√

3
[
C2μ+μ′

2μ,1μ′ P
p
2μ+μ′(eq) e−iΩt + (−1)μ′

C2μ−μ′

2μ,1−μ′P
p
2μ−μ′(eq) eiΩt

]
.

The modiˇcations of the respective isoscalar and isovector equations are obvious.
The μ′ = 0 component of the external ˇeld does not disturb a nucleus due

to its axial symmetry. Let us consider the case of μ′ = 1. According to formula
(39) we have to ˇnd the tensors L̄11 and L11. The tensor L̄11 is found by solving
the modiˇed (as in (40)) set of equations (24):

˙̄R21 − 2L̄21/m = −γ
√

3/8Req
20 eiΩt,

˙̄L21 − P̄21/m +
[
mω2 +

√
1/6χReq

20 −
√

4/3χ1R
eq
00

]
R̄21 = 0,

(41)

˙̄P21 + 2[mω2 +
√

1/6χ0R
eq
20]L̄21 −

√
6χ0R

eq
20 L̄11 = −γ

√
3/8P eq

20 eiΩt,

˙̄L11 +
√

3/2χ̄Req
20R̄21 = 0.

It is clear that the time dependence of all variables must be eiΩt. The required
variable is determined by the ratio of two determinants

L̄11 =
ΔL̄
Δiv

eiΩt,

where Δiv is the determinant of (24) and

ΔL̄ =
3
4
γχ̄Req

20

[
Req

20

(
2ω2 +

√
2
3

χ0

m
Req

20 − Ω2

)
+

2
m2

P eq
20

]
.

At equilibrium the set of dynamic equations (11) considerably simplify turning
into the set of equations of equilibrium. Taking into account one of them we ˇnd

1
m

P eq
20 = mω2Req

20 −
2√
3
χ0R

eq
20R

eq
00 +

2√
6
χ0(R

eq
20)

2.
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It turns out, that for the self-consistent value of χ0 this expression is equal to zero,
i.e., P eq

20 = 0. This means that deformed nuclei have spherical Fermi surface. So
we have

ΔL̄ =
3
4
γκ̄Q2

20

[
2ω̄2

(
1 +

δ

3

)
− Ω2

]
.

Looking at the isoscalar counterpart of the set of equations (41) one easily ˇnds
that the isoscalar tensor L11 = 0.

Writing now the determinant Δiv as

Δiv = (Ω2 − Ω2
iv)(Ω

2 − Ω2
sc), (42)

we easily can ˇnd the limit (34). For the case, where |ν〉 = |sc〉, we have

|〈sc|F̂ p
11|0〉|2 =

−γ�ΔL̄(Ωsc)
[(Ω2

sc − Ω2
iv)4Ωsc]

.

The matrix element for |ν〉 = |iv〉 is obtained simply by changing indices sc ↔ iv.
Applying the standard values of parameters

κ1 = ακ0, 4κ0Q00 = −mω̄2, κ0Q20 = − δ

3
mω̄2

we arrive at the following expressions for transition probabilities:

B(M1)sc = 2|〈sc|F̂ p
11|0〉|2 =

1 − α

4π

mω̄2

�
Q00δ

2 Ω2
sc − 2(1 + δ/3)ω̄2

Ωsc(Ω2
sc − Ω2

iv)
μ2

N , (43)

B(M1)iv = 2|〈iv|F̂ p
11|0〉|2 =

1 − α

4π

mω̄2

�
Q00δ

2 Ω2
iv − 2(1 + δ/3)ω̄2

Ωiv(Ω2
iv − Ω2

sc)
μ2

N . (44)

These two formulae can be joined into one expression by a simple transformation
of the denominators. Really, we have from (27)

±(Ω2
iv−Ω2

sc) = ±(Ω2
+−Ω2

−) = ±2

√
ω̄4(2 − α)2

(
1 +

δ

3

)2

− 4ω̄4(1 − α)δ2 =

= 2Ω2
± − 2ω̄2(2 − α)

(
1 +

δ

3

)
= 2Ω2

± − (2 − α)(ω2
x + ω2

z). (45)

Using these relations in formulae (43) and (44), we obtain the expression for the
B(M1) values valid for both excitations

B(M1)ν = 2|〈ν|F̂ p
11|0〉|2 =

=
1 − α

8π

mω̄2

�
Q00δ

2 Ω2
ν − 2(1 + δ/3)ω̄2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

μ2
N . (46)
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Taking into account the relation Q0
00

mω0

�
	 1

2

(
3
2
A

)4/3

, which is usu-

ally [19] used to ˇx the value of the harmonic oscillator frequency ω0, we obtain
the following estimate for the transition probability of the scissors mode:

B(M1)↑= 2 |〈sc|F̂ p
11|0〉|2 =

(3/2)11/6

16π
A4/3δ μ2

N = 0.042A4/3δ μ2
N ,

which practically coincides with the result of [26]: B(M1) ↑= 0.043A4/3δ μ2
N ,

obtained with the help of the microscopic approach based on the evaluation of
the sum rules.

1.6. B(E2) Factors. To calculate the B(E2) factor it is necessary to excite
the system with the external ˇeld operator

F̂ = F̂ p
2μ′ = er2Y2μ′ = βr2

2μ′ , F̂ †
2μ′ = F̂ ∗

2μ′ = (−1)μ′
F̂2−μ′ , (47)

where β = e

√
15
8π

. Its Wigner transform is identical to (47): (F̂ p
2μ′ )W = βr2

2μ′ .

The matrix element is given by

〈ψ|F̂ p
2μ′ |ψ〉 = βRp

2μ′ =
1
2
β(R2μ′ − R̄2μ′). (48)

The contribution of F̂2μ′ (t) to the equation for the Wigner function is

Fext = 2β
(
Fμ′ e−iΩt + (−1)μ′

F−μ′ eiΩt
)

with

Fμ′ =
∑
ν,σ

C2μ′

1ν,1σrν∇p
σfp.

Integration of Fμ′ with the weights r2
λμ, (rp)λμ and p2

λμ yields

∫
d{p, r}r2

λμFμ′ = 0,∫
d{p, r}(rp)λμFμ′ =

√
5(2λ + 1)

∑
k,π

Ckπ
λμ,2μ′{11λ

k21}R
p
kπ(eq),

∫
d{p, r}p2

λμFμ′ = [1 + (−1)λ]
√

5(2λ + 1)
∑
kπ

Ckπ
λμ,2μ′{11λ

k21}L
p
kπ(eq).
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The external ˇeld modiˇes the set of equations (11) in the following way:

d

dt
Lp

1μ+ . . . =

= −β
√

3
[
C2μ+μ′

1μ,2μ′ R
p
2μ+μ′(eq) e−iΩt + (−1)μ′

C2μ−μ′

1μ,2−μ′R
p
2μ−μ′(eq) eiΩt

]
,

(49)
d

dt
Lp

2μ− . . . =
β√
3

[(
2
√

5C00
2μ,2μ′R

p
00(eq) +

√
7C2μ+μ′

2μ,2μ′ R
p
2μ+μ′(eq)

)
e−iΩt =

= +(−1)μ′
(
2
√

5C00
2μ,2−μ′R

p
00(eq) +

√
7C2μ−μ′

2μ,2−μ′R
p
2μ−μ′ (eq)

)
eiΩt

]
.

Let us consider the case of μ′ = 1 (μ′ = −1 gives the same result). According
to formula (48), we have to ˇnd the tensors R̄21 and R21. The value of R̄21 = R̄21

is found by solving the modiˇed (as in (49)) set of equations (25)

˙̄R21 − 2L̄21/m = 0,

˙̄L21 − P̄21/m + mω̄2(1 − α)
(

1 +
δ

3

)
R̄21 =

e

3

√
15
8π

(
1 +

δ

3

)
Q00 eiΩt,

(50)

˙̄P21 + 2mω̄2

[(
1 +

δ

3

)
L̄21 + δL̄11

]
= 0,

˙̄L11 − mω̄2δ(1 − α)R̄21 = −e

√
15
8π

δ

3
Q00 eiΩt.

It is obvious that the time dependence of all variables must be eiΩt. The required
variable is determined by the ratio of two determinants

R̄21 =
ΔR̄
Δiv

eiΩt,

where Δiv is the determinant of (25) and

ΔR̄ = − β

m

[
2
3
Ω2

(
Qeq

00 +
1
4
Qeq

20

)
+

1
m

Qeq
20

√
3
2
χ0R

eq
20

]
=

= −2
3

β

m
Qeq

00

[
Ω2

(
1 +

δ

3

)
− 2ω̄2δ2

]
.

Analogously variable R21 is found from the modiˇed set of equations (21), which
have exactly the same right-hand sides as (50) but with the opposite signs.

The limit (34) is calculated with the help of expression (42) for Δiv and the
analogous expression for Δis (the determinant of (21)):

Δis = (Ω2 − Ω2
0)(Ω

2 − Ω2
is).



1790 BALBUTSEV E.B.

In the case |ν〉 = |sc〉 we ˇnd

|〈sc|F̂ p
21|0〉|2 = −β

�

2
ΔR̄

(Ωsc)
(Ω2

sc − Ω2
iv)2Ωsc

=

=
e2

�

m

5
8π

Q00
(1 + δ/3)Ω2

sc − 2(ω̄δ)2

Ωsc(Ω2
sc − Ω2

iv)
. (51)

In the case |ν〉 = |iv〉 formula (34) gives

|〈iv|F̂ p
21|0〉|2 = −β

�

2
ΔR̄

(Ωiv)
2Ωiv(Ω2

iv − Ω2
sc)

=

=
e2

�

m

5
16π

Q00
(1 + δ/3)Ω2

iv − 2(ω̄δ)2

Ωiv(Ω2
iv − Ω2

sc)
. (52)

In the case |ν〉 = |is〉 formula (34) gives

|〈is|F̂ p
21|0〉|2 = −β

�

2
ΔR

(Ωis)
2Ωis(Ω2

is − Ω2
0)

=

=
e2

�

m

5
16π

Q00
(1 + δ/3)Ω2

is − 2(ω̄δ)2

[Ωis]3
. (53)

Formula (34) allows one to calculate the matrix element |〈ν|F̂ p
21|0〉|2 also in

the case when |ν〉 = |Ω0〉, i.e., for the rotational state corresponding to the trivial
solution of (22):

|〈Ω0|F̂ p
21|0〉|2 = −β

�

2
ΔR

(Ω0)
2Ω0(Ω2

0 − Ω2
is)

=
e2

�

m

5
8π

Q00
δ2

2Ω0(1 + δ/3)
. (54)

The value of this matrix element is obviously inˇnite due to the zero value of Ω0.
However, below this expression will be useful to calculate the energy weighted
sum rule.

Using relations (45) in formulae (51) and (52), we obtain the expression for
the B(E2) values valid for all four excitations

B(E2)ν = 2|〈ν|F̂ p
21|0〉|2 =

e2
�

m

5
16π

Q00
(1 + δ/3)Ω2

ν − 2(ω̄δ)2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

. (55)

The isoscalar values (53), (54) are obtained by assuming α = 1.
1.7. Sum Rules. 1.7.1. Magnetic Case. The magnetic dipole operator (37)

is not Hermitian. By deˇnition it is a linear combination of Hermitian operators
(components of the angular momentum)

F̂11 = − i

2
γ(Îx + iÎy), F̂1−1 =

i

2
γ(Îx − iÎy).
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This fact allows one to derive several useful relations:

[F̂11, [H, F̂1−1]] =
γ2

4
([Îx, [H, Îx]] + [Îy, [H, Îy ]]),

〈0|F̂11|ν〉〈ν|F̂1−1|0〉 =
γ2

2
(|〈ν|Îx|0〉|2 + |〈ν|Îy |0〉|2) =

= −(|〈ν|F̂11|0〉|2 + |〈ν|F̂1−1|0〉|2).

Using these formulae and the standard sum rule for a Hermitian operator [37]

∑
ν

(Eν − E0)|〈ν|Îi|0〉|2 =
1
2
〈0|[Îi, [H, Îi]]|0〉,

one immediately obtains the sum rule for F̂1±1:∑
ν

(Eν − E0)(|〈ν|F̂11|0〉|2 + |〈ν|F̂1−1|0〉|2) = −〈0|[F̂11, [H, F̂1−1]]|0〉. (56)

It can also be calculated in a more direct way:

〈0|[F̂11, [H, F̂1−1]]|0〉 =

=
∑

ν

(Eν − E0)(〈0|F̂11|ν〉〈ν|F̂1−1|0〉 + 〈0|F̂1−1|ν〉〈ν|F̂11|0〉) =

=
∑

ν

(Eν − E0)(〈0|F̂11|ν〉〈0|F̂ †
1−1|ν〉∗ + 〈0|F̂1−1|ν〉〈0|F̂ †

11|ν〉∗). (57)

Using here the Hermitian conjugation properties (38) of the operator F̂1μ, one
reproduces formula (56).

The double commutator is calculated with the help of (6) and (38):

[F̂1φ, [H, F̂1φ′ ]] =
15
2π

χ̄

Z∑
i

N∑
j

∑
ν,σ,ε

(−1)νC1φ
2ν,2σC1φ′

2−ν,2εr
2
2ε(i)r

2
2σ(j)μ2

N . (58)

Taking into account axial symmetry, one ˇnds the ground state matrix element of
(58) (in the HartreeÄFock approximation)

〈0|[F̂1φ, [H, F̂1φ′ ]]|0〉
μ2

N

=
15
2π

χ̄
∑

ν

(−1)νC1φ
2ν,20C

1φ′

2−ν,20R
p
20R

n
20 =

=
15
8π

δφ′,−φχ̄(C1φ
2φ,20R

eq
20)

2.
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It is obvious that this expression is different from zero only for φ = ±1.
Hence, the ˇnal expression for the right-hand side of (56) is

〈0|[F̂11, [H, F̂1−1]]|0〉 =
9

16π
χ̄(Req

20)
2μ2

N =

= −1 − α

4π
Q00mω̄2δ2μ2

N ≡ −(1 − α)Σ0, (59)

where, for the sake of convenience, the notation Σ0 =
mω̄2

4π
Q00δ

2μ2
N is in-

troduced. The left-hand side of (56) is calculated trivially by multiplying the
right-hand side of (43) by Esc and adding it to the right-hand side of (44) multi-
plied by Eiv:

Σtot =
∑

ν

(Eν − E0)
(
|〈ν|F̂11|0〉|2 + |〈ν|F̂1−1|0〉|2

)
=

= 2
(
Esc|〈sc|F̂11|0〉|2 + Eiv|〈iv|F̂11|0〉|2

)
=

= Σsc + Σiv = (1 − α)Σ0, (60)

where

Σsc =
[E2

sc − 2(1 + δ/3)(�ω̄)2]
(E2

sc − E2
iv)

(1 − α)Σ0 (61)

and

Σiv =
[E2

iv − 2(1 + δ/3)(�ω̄)2]
(E2

iv − E2
sc)

(1 − α)Σ0. (62)

So, one sees that the sum rule (56) is fulˇlled.
1.7.2. Electric Case. The sum rule for F̂2±1 can easily be obtained by

replacing in formula (57) the operators F̂1±1 by the operators F̂2±1 and using the
Hermitian conjugation properties (47) of the operator F̂2μ:∑

ν

(Eν − E0)(|〈ν|F̂21|0〉|2 + |〈ν|F̂2−1|0〉|2) = −〈0|[F̂21, [H, F̂2−1]]|0〉. (63)

The double commutator is calculated with the help of (6) and (47):

[F̂2φ, [H, F̂2φ′ ]] = −20β2 �
2

m

Z∑
i

∑
λ,σ

Cλσ
2φ,2φ′{112

λ21}r2
λσ(i). (64)

Taking into account axial symmetry, one ˇnds the ground state matrix element
of (64):

〈0|[F̂2φ, [H, F̂2φ′ ]]|0〉 = −20β2 �
2

m
δφ,−φ′

∑
λ=0,2

Cλ0
2φ,2−φ{112

λ21}R
p
λ0 =

= −2β2 �
2

m
δφ,−φ′

(
(−1)φ 2√

3
Rp

00 +
1√
6
Rp

20

)
. (65)
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Taking here φ = 1 we obtain the ˇnal expression for the right-hand side of (63)

〈0|[F̂21, [H, F̂2−1]]|0〉 = −2β2 �
2

m

(
2
3
Qp

00 +
1
6
Qp

20

)
= −e2 �

2

m

5
4π

Q00

(
1 +

δ

3

)
.

The left-hand side of (63) is calculated by summing expressions (51), (52),
(53), and (54) multiplied by the respective energies. It is convenient to calculate
the isovector and isoscalar contributions separately. The contribution of the
isovector modes is

2
(
Esc|〈sc|F̂21|0〉|2 + Eiv|〈iv|F̂21|0〉|2

)
=

β2
�

2

3m

(
Q00 +

1
4
Q20

)
=

= e2 �
2

m

5
8π

Q00

(
1 +

δ

3

)
. (66)

Exactly the same result is obtained for isoscalar modes:

2
(
�Ω0|〈Ω0|F̂21|0〉|2 + Eis|〈is|F̂21|0〉|2

)
= e2 �

2

m

5
8π

Q00

(
1 +

δ

3

)
. (67)

Hence the sum rule (63) is fulˇlled.
It is interesting to compare the contributions of the scissors mode and the

rotational mode. The scissors mode (for small δ) yields:

2Esc|〈sc|F̂21|0〉|2 	 5
128π

e2 �
2

m
Q00δ

2. (68)

The rotational mode yields:

2�Ω0|〈Ω0|F̂21|0〉|2 =
5
8π

e2 �
2

m
Q00

δ2

1 + δ/3
. (69)

It is seen that the contribution of the rotational mode is approximately 16 times
larger than the one of the scissors mode. This is a very signiˇcant number
demonstrating the importance of excluding the spurious state from the theoretical
results. Indeed, to describe correctly such a subtle phenomenon as the scissors
mode, it is compulsory to eliminate the errors from spurious motion whose value
can be by an order of magnitude larger than the phenomenon under consideration.

2. RANDOM PHASE APPROXIMATION (RPA)

In this section we now want to derive the analogous equations for energies
and transition probabilities from standard RPA theory. RPA equations in the
notation of [9] are∑

n,j

{[δijδmn(εm − εi) + v̄mjin] Xnj + v̄mnijYnj} = �ΩXmi,

∑
n,j

{v̄ijmnXnj + [δijδmn(εm − εi) + v̄inmj ] Ynj} = −�ΩYmi.
(70)
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According to the deˇnition of the schematic model in [9], the matrix elements of
the residual interaction corresponding to the Hamiltonian (6) are written as

v̄mjin = κττ ′Qτ∗
imQτ ′

jn

with Qim ≡ 〈i|q21|m〉 and κnn = κpp = κ, κnp = κ̄. This interaction distin-
guishes between protons and neutrons, so we have to introduce the isospin indices
τ, τ ′ into the set of RPA equations (70):

(ετ
m − ετ

i )Xτ
mi +

∑
n,j,τ ′

κττ ′Qτ∗
imQτ ′

jnXτ ′

nj +
∑

n,j,τ ′

κττ ′Qτ∗
imQτ ′

njY
τ ′

nj = �ΩXτ
mi,

(71)∑
n,j,τ ′

κττ ′Qτ∗
miQτ ′

jnXτ ′

nj + (ετ
m − ετ

i )Y τ
mi +

∑
n,j,τ ′

κττ ′Qτ∗
miQτ ′

njY
τ ′

nj = −�ΩY τ
mi.

The solution of these equations is

Xτ
mi =

Qτ∗
im

E − ετ
mi

Kτ , Y τ
mi = − Qτ∗

mi

E + ετ
mi

Kτ (72)

with E = �Ω, ετ
mi = ετ

m − ετ
i and Kτ =

∑
τ ′

κττ ′Cτ ′
.

The constant Cτ is deˇned as Cτ =
∑
n,j

(Qτ
jnXτ

nj + Qτ
njY

τ
nj). Using here

the expressions for Xτ
nj and Y τ

nj given above, one derives the useful relation

Cτ = 2SτKτ = 2Sτ
∑
τ ′

κττ ′Cτ ′
, (73)

where the following notation is introduced:

Sτ =
∑
mi

|Qτ
mi|2

ετ
mi

E2 − (ετ
mi)2

. (74)

Let us write out the relation (73) in detail

Cn − 2Sn(κCn + κ̄Cp) = 0,

Cp − 2Sp(κ̄Cn + κCp) = 0.
(75)

The condition for existence of a nontrivial solution of this set of equations gives
the secular equation

(1 − 2Snκ)(1 − 2Spκ) − 4SnSpκ̄2 = 0. (76)
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Making linear combinations of the two equations in (75), we write them in terms
of isoscalar and isovector constants C = Cn + Cp, C̄ = Cn − Cp

C − 2(Sn + Sp)κ0C − 2(Sn − Sp)κ1C̄ = 0,

C̄ − 2(Sn − Sp)κ0C − 2(Sn + Sp)κ1C̄ = 0.
(77)

Approximation (17) allows us to decouple the equations for isoscalar and isovector
constants. Really, in this case Sn = Sp ≡ S/2; hence, we obtain two secular
equations

1 − 2Sκ0 = 0, or 1 − Sκ = Sκ̄ (78)

in the isoscalar case and

1 − 2Sκ1 = 0, or 1 − Sκ = −Sκ̄ (79)

in the isovector one, the difference of both lies in the strength constants only.
Having in mind the relation κ1 = ακ0, we come to the conclusion that it is
sufˇcient to analyze the isovector case only Å the results for isoscalar one are
obtained by assuming α = 1.

2.1. Eigenfrequencies. The detailed expression for the isovector secular
equation is

1
2κ1

=
∑
mi

|Qmi|2
εmi

E2 − ε2mi

. (80)

The operator Q = q21 has only two types of nonzero matrix elements Qmi in
the deformed oscillator basis. Matrix elements of the ˇrst type couple states
of the same major shell. All corresponding transition energies are degenerate:
εm − εi = �(ωx − ωz) ≡ ε0. Matrix elements of the second type couple states
of the different major shells with ΔN = 2. All corresponding transition energies
are degenerate, too: εm − εi = �(ωx + ωz) ≡ ε2. Therefore, the secular equation
can be rewritten as

1
2κ1

=
ε0Q0

E2 − ε20
+

ε2Q2

E2 − ε22
. (81)

The sums Q0 =
∑

mi(ΔN=0)

|Qmi|2 and Q2 =
∑

mi(ΔN=2)

|Qmi|2 can be calculated

analytically (see Appendix B):

Q0 =
Q00

mω̄2
ε0, Q2 =

Q00

mω̄2
ε2. (82)

Let us transform the secular equation (81) in the polynomial form

E4 − E2[(ε20 + ε22) + 2κ1(ε0Q0 + ε2Q2)] + [ε20ε
2
2 + 2κ1ε0ε2(ε0Q2 + ε2Q0)] = 0.
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Using here the expressions (82) for Q0, Q2 and the self-consistent value of the
strength constant (A.3), we ˇnd

E4 − E2(1 − α/2)(ε20 + ε22) + (1 − α)ε20ε
2
2 = 0,

or
Ω4 − Ω2(2 − α)ω2

+ + (1 − α)ω4
− = 0, (83)

with the notation ω2
+ = ω2

x + ω2
z and ω4

− = (ω2
x − ω2

z)2. This result coincides
with that of [7]. By a trivial rearrangement of the terms in (83) one obtains the
useful relation

Ω2(Ω2 − ω2
+) = (1 − α)(Ω2ω2

+ − ω4
−). (84)

Inserting expressions (A.3) for ω2
x,ω2

z into (83), we ˇnd ω2
+ = 2ω̄2 (1 + δ/3),

ω4
− = 4δ2ω̄4 and reproduce formula (26) for the isovector case. Taking α = 1,

we reproduce also formula (22) for the isoscalar case.
2.2. B(E2) Factors. According to [9], the transition probability for the

one-body operator F̂ =
A∑

s=1

f̂s is calculated by means of the formulae

〈0|F̂ τ |ν〉 =
∑
mi

(f τ
imXτν

mi + f τ
miY

τν
mi ),

〈ν|F̂ τ |0〉 =
∑
mi

(f τ
miX

τν
mi + f τ

imY τν
mi ).

(85)

Quadrupole excitations are described by the operator (47) with f̂2μ = er2Y2μ =

ẽQ, where ẽ = e

√
5

16π
. Using the expressions (72) for Xτ

mi, Y τ
mi, we get

〈0|F̂ p
21|ν〉 = 2ẽKp

ν

∑
mi

|Qp
mi|2

εp
mi

E2
ν − (εp

mi)2
= 2ẽKp

νSp
ν = ẽCp

ν . (86)

The constant Cp
ν is determined by the normalization condition

δν,ν′ =
∑
mi,τ

(Xτν∗
mi Xτν′

mi − Y τν∗
mi Y τν′

mi ),

that gives

1
(Cp

ν )2
=

= Eν

∑
mi

[
|Qp

mi|2
(Sp

ν )2
εp
mi

[E2
ν − (εp

mi)2]2
+

(Cn
ν )2

(Cp
ν )2

|Qn
mi|2

(Sn
ν )2

εn
mi

[E2
ν − (εn

mi)2]2

]
. (87)
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The ratio Cn/Cp is determined by any of the equations (75):

Cn

Cp
=

1 − 2Spκ

2Spκ̄
=

2Snκ̄

1 − 2Snκ
. (88)

Formula (87) is considerably simpliˇed by the approximation (17), when Sp =
Sn ≡ S/2, εp

mi = εn
mi, Qp

mi = Qn
mi. Applying the second forms of formulae

(78), (79) it is easy to ˇnd that in this case Cn/Cp = ±1. As a result, the ˇnal
expression for B(E2) value is

B(E2)ν = 2|〈0|F̂ p
21|ν〉|2 = 2ẽ2

(
16Eνκ2

1

∑
mi

|Qmi|2
εmi

(E2
ν − ε2mi)2

)−1

. (89)

With the help of formulae (82) this expression can be transformed into

B(E2)ν =
5
8π

e2Q00

mω̄2α2Eν

[
ε20

(E2
ν − ε20)2

+
ε22

(E2
ν − ε22)2

]−1

=

=
5

16π

e2
�Q00

mω̄2Ων

(Ω2
νω2

+ − ω4
−)2

Ω4
νω2

+ − 2Ω2
νω4

− + ω2
+ω4

−
. (90)

At ˇrst sight, this expression has nothing in common with (55). Nevertheless,
it can be shown that they are identical. To this end, we analyze carefully the
denominator of the last expression in (90). Summing it with the secular equa-
tion (83) (multiplied by ω2

+), which obviously does not change its value, we ˇnd
after elementary combinations

Denom = Ω4
νω2

+ − 2Ω2
νω4

− + ω2
+ω4

− + ω2
+[Ω4

ν −Ω2
ν(2− α)ω2

+ + (1−α)ω4
−] =

= ω2
+Ω2

ν [2Ω2
ν − (2 − α)ω2

+] − ω4
−[2Ω2

ν − (2 − α)ω2
+] =

= (Ω2
νω2

+ − ω4
−)[2Ω2

ν − (2 − α)ω2
+]. (91)

This result allows us to write the ˇnal expression as

B(E2)ν =
5

16π

e2
�

mω̄2
Q00

Ω2
νω2

+ − ω4
−

Ων [2Ω2
ν − (2 − α)ω2

+]
, (92)

which coincides with (55). By simple transformations this formula is reduced
to the result of Hamamoto and Nazarewicz [7] (taking into account that they

published it without the constant factor
5

32π

e2
�

mω0
Q0

00).
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2.3. B(M1) Factors. In accordance with formulae (37), (72), (85) the mag-
netic transition matrix element is given by

〈0|F̂ p
11|ν〉 = Kp

ν

∑
mi

[
(f̂p

11)imQp∗
im

Eν − εp
mi

− (f̂p
11)miQp∗

mi

Eν + εp
mi

]
. (93)

As is shown in Appendix B, the matrix element (fp
11)im is proportional to Qp

im

(formula (B.16). So, expression (93) is reduced to

〈0|F̂ p
11|ν〉 = −Kp

ν

ẽ�

2c
√

5
(ω2

x − ω2
z)p

∑
mi

[
Qp

imQp∗
im

εp
im(Eν − εp

mi)
− Qp

miQ
p∗
mi

εp
mi(Eν + εp

mi)

]
=

= Kp
ν

ẽ�

c
√

5
(ω2

x − ω2
z)pEν

∑
mi

|Qp
mi|2

εp
mi[E2

ν − (εp
mi)2]

. (94)

With the help of approximation (17) and expressions (82) for Q0, Q2 we ˇnd

〈0|F̂ p
11|ν〉 =

Cp
ν

2Sp
ν

ẽ�

c
√

5
(ω2

x − ω2
z)

Q00

2mω̄2

(
Eν

E2
ν − ε20

+
Eν

E2
ν − ε22

)
=

= −2κ1C
p
ν

ẽ

c
√

5
(ω2

x − ω2
z)

Q00

mω̄2

Ων(Ω2
ν − ω2

+)
α(Ω2

νω2
+ − ω4

−)
=

=
Cp

ν

2
ẽ

c
√

5
(ω2

x − ω2
z)

1 − α

Ων
. (95)

Relation (84) and the self-consistent value of the strength constant κ1 = ακ0

were used in the last step. For the magnetic transition probability we have

B(M1)ν = 2|〈0|F̂ p
11|ν〉|2 = 2

(Cp
ν )2

4
ẽ2

5c2
ω4
−

(1 − α)2

Ω2
ν

=

=
ω4
−

20c2

(1 − α)2

Ω2
ν

B(E2)ν . (96)

This relation between B(M1) and B(E2) was also found (up to the factor
1/(20c2)) by Hamamoto and Nazarewicz [7]. Substituting expression (92) for
B(E2) into (96) we reproduce (with the help of relation (84)) formula (46).

2.4. ®Synthetic¯ Scissors and Spurious State. The nature of collective
excitations calculated with the method of Wigner function moments is quite easily
revealed analyzing the role of collective variables describing the phenomenon.
The solution of this problem in the RPA approach is not so obvious. That is
why the nature of the low-lying states has often been established by considering
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overlaps of these states with the ®pure scissors state¯ [27, 28] or ®synthetic
state¯ [7] produced by the action of the scissors operator

Ŝx = N−1(〈In
x

2〉Îp
x − 〈Ip

x
2〉În

x )

on the ground state

|Syn〉 = Ŝx|0〉.

In the considered model the overlap of the ®synthetic¯ state with the real scissors
mode (and with IVGQR) can be calculated analytically. Surprisingly, it was not
done until now. Let us at ˇrst modify the deˇnition of the ®synthetic¯ state.
Due to axial symmetry one can use the Îτ

y component instead of Îτ
x , or any of

their linear combinations, for example, the μ = 1 component of the magnetic
operator F̂ τ

1μ, which is much more convenient for us. The terms 〈Iτ
x

2〉 are
introduced to ensure the orthogonality of the synthetic scissors to the spurious
state |Sp〉 = (În + Îp)|0〉. However, we do not need these terms because the
collective states |ν〉 of our model are already orthogonal to |Sp〉 (see below);
hence, the overlaps 〈Syn|ν〉 will be free from any admixtures of |Sp〉. So, we
use the following deˇnitions of the synthetic and spurious states:

|Syn〉 = N−1(F̂ p
11 − F̂n

11)|0〉, |Sp〉 = (F̂ p
11 + F̂n

11)|0〉.

Let us demonstrate the orthogonality of the spurious state to all the rest of the
states |ν〉. As the ˇrst step it is necessary to show that the secular equation (76)
has the solution E = 0. We need the expression for Sτ (E = 0) ≡ Sτ (0). In
accordance with (74), we have

Sτ (E) =
[

ε0Q0

E2 − ε20
+

ε2Q2

E2 − ε22

]τ

, Sτ (0) = −
[
Q0

ε0
+

Q2

ε2

]τ

.

The expressions for Qτ
0 , Qτ

2 are easily extracted from formulae (B.10), (B.11):

Qτ
0 =

�

m
Qτ

00

⎡
⎢⎣1 +

4
3
δ

ωx
−

1 − 2
3
δ

ωz

⎤
⎥⎦

τ

,

(97)

Qτ
2 =

�

m
Qτ

00

⎡
⎢⎣1 +

4
3
δ

ωx
+

1 − 2
3
δ

ωz

⎤
⎥⎦

τ

.
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So we ˇnd

Sτ (0) = − �

m
Qτ

00

⎡
⎢⎣1 +

4
3
δ

ωx

(
1
ε2

+
1
ε0

)
+

1 − 2
3
δ

ωz

(
1
ε2

− 1
ε0

)⎤⎥⎦
τ

=

= −�
2

m

4δτQτ
00

ετ
2ετ

0

= − 1
m

3Qτ
20

(ω2
x − ω2

z)τ
, (98)

where, in accordance with (B.12),

(ω2
x − ω2

z)p = − 6
m

(κQp
20 + κ̄Qn

20), (ω2
x − ω2

z)n = − 6
m

(κQn
20 + κ̄Qp

20). (99)

Finally, we get

2Sp(0) =
Qp

20

κQp
20 + κ̄Qn

20

, 1 − 2Sp(0)κ =
κ̄Qn

20

κQp
20 + κ̄Qn

20

,

2Sn(0) =
Qn

20

κQn
20 + κ̄Qp

20

, 1 − 2Sn(0)κ =
κ̄Qp

20

κQn
20 + κ̄Qp

20

.

It is easy to see that substituting these expressions into (76) we obtain an identity;
therefore, the secular equation has a zero energy solution.

For the second step it is necessary to calculate the overlap 〈Sp|ν〉. Sum-
ming (94) with an analogous expression for neutrons, we get

〈Sp|ν〉 =
ẽ�

c
√

5
Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)τ

∑
mi

|Qτ
mi|2

ετ
mi(E2

ν − ε2mi)τ
=

=
ẽ�

c
√

5
Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)τ

∑
mi

|Qτ
mi|2ετ

mi

(ε2mi)τ (E2
ν − ε2mi)τ

. (100)

Applying the algebraical identity

1
ε2(E2 − ε2)

=
1

E2

(
1
ε2

+
1

E2 − ε2

)

and remembering the deˇnition (74) of Sτ , we rewrite (100) as

〈Sp|ν〉 =
ẽ�

c
√

5Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)τ (Sτ − Sτ (0)) =

ẽ�

c
√

5
Kp

ν

Eν
×

×
[
(ω2

x − ω2
z)p(Sp − Sp(0)) + (ω2

x − ω2
z)

n(Sn − Sn(0))
Kn

ν

Kp
ν

]
. (101)
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In accordance with (73) and (88),

Kn
ν

Kp
ν

=
1 − 2Spκ

2Snκ̄
. (102)

Noting now (see formula (98)) that (ω2
x − ω2

z)τSτ (0) = − 3
m

Qτ
20 and taking into

account relations (99), we ˇnd

〈Sp|ν〉 = β

{
[(κQp

2 + κ̄Qn
2 )2Sp − Qp

2]+[(κQn
2 + κ̄Qp

2)2Sn−Qn
2 ]

1−2Spκ

2Snκ̄

}
=

= β

{
[(2Spκ − 1)Qp

2 + 2Spκ̄Qn
2 ] + [(2Snκ − 1)Qn

2 + 2Snκ̄Qp
2)]

1 − 2Spκ

2Snκ̄

}
=

= β

{
2Spκ̄Qn

2 + (2Snκ − 1)Qn
2

1 − 2Spκ

2Snκ̄

}
=

= β
Qn

2

2Snκ̄
{2Snκ̄2Spκ̄ − (1 − 2Snκ)(1 − 2Spκ)} = 0, (103)

where β = − 3
m

ẽ�

c
√

5
Kp

ν

Eν
and Q2 ≡ Q20. The expression in the last curly brackets

coincides obviously with the secular equation (76) that proves the orthogonality
of the spurious state to all physical states of the considered model. So we can
conclude that, strictly speaking, this is not a spurious state, but one of the exact
eigenstates of the model corresponding to the integral of motion In +Ip. In other
words [9]: ®In fact these excitations are not really spurious, but they represent a
different type of motion which has to be treated separately¯. The same conclusion
was made by N. Lo Iudice [29] who solved this problem approximately with the
help of several assumptions (a small deformation limit, for example).

The problem of the ®spurious¯ state being solved, the calculation of the
overlaps 〈Syn|ν〉 becomes trivial. Really, we have shown that 〈0|F̂n

11 + F̂ p
11|ν〉 =

0. That means that 〈0|F̂n
11|ν〉 = −〈0|F̂ p

11|ν〉; hence, 〈Syn|ν〉 = N−1〈0|F̂ p
11 −

F̂n
11|ν〉 = 2N−1〈0|F̂ p

11|ν〉 and

U2 ≡ |〈Syn|ν〉|2 = 2N−2B(M1)ν . (104)

The nontrivial part of the problem is the calculation of the normalization factor
N . It is important not to forget about the time dependence of the synthetic state
which should be determined by the external ˇeld:

|Syn (t)〉 = N−1[(F̂ p
11 − F̂n

11) e−iΩt + (F̂ p
11 − F̂n

11)
† eiΩt]|0〉.
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Then we have

N 2 = 2〈0|(F̂ p
11 − F̂n

11)
†(F̂ p

11 − F̂n
11)|0〉 =

= 2
∑
ph

〈0|(F̂ p
11 − F̂n

11)
†|ph〉〈ph|(F̂ p

11 − F̂n
11)|0〉 = 2

∑
ph

|〈ph|(F̂ p
11 − F̂n

11)|0〉|2 =

= 2
∑
τ,ph

|〈ph|F̂ τ
11|0〉|2 = 2

∑
τ,ph

|(f τ
11)ph|2. (105)

With the help of relation (B.16) we ˇnd

N 2 =
2
5

(
e�

2c

)2 ∑
τ,ph

(
ω4
−
|〈ph|r2Y21|0〉|2

ε2ph

)τ

=

=
1
8π

(
e�

2c

)2 ∑
τ

(ω4
−)τ

(
Q0

ε20
+

Q2

ε22

)τ

. (106)

Expressions for Qτ
0 , Qτ

2 , ωτ
x, ωτ

z are given by formulae (97), (B.12). To get a
deˇnite number, it is necessary to make some assumption concerning the relation
between neutron and proton equilibrium characteristics. As usual, we apply the
approximation (17), i.e., suppose Qn

00 = Qp
00, Qn

20 = Qp
20. It is easy to check

that in this case formulae for ωτ
x,z are reduced to the ones for the isoscalar case,

namely (A.3), and Qτ
0 = Q0/2, Qτ

2 = Q2/2, where Q0 and Q2 are given by (82).
So we get

N 2 =
ω4
−

8π

(
e�

2c

)2
Q00

mω̄2

(
1
ε0

+
1
ε2

)
=

δ

2π

mωx

�
Q00μ

2
N . (107)

The estimation of the overlap for 156Gd with δ = 0.27 gives N 2 = 34.72μ2
N and

U2 = 0.53 (see Eq. (104)), that is two times larger than the result of [27] obtained
in QRPA calculations with the Skyrme forces. The disagreement can naturally be
attributed to the difference in forces and especially to the lack of pair correlations

in our approach. In a small deformation limit U2 =
1
2

√
3
2
≈ 0.6.

This is the maximum possible overlap of the ®pure¯ (or ®synthetic¯) scissors
with the real scissors. The increasing of δ and /or taking into account pairing
correlations decreases its value, which is conˇrmed by numerous microscopic
calculations with various forces [4]. Such small overlap leads inevitably to the
conclusion that the original model of counter rotating rigid rotors [30] has not
very much in common with the real scissors mode, the correct description of
which requires the proper treatment of the Fermi surface deformation and the
coupling with IVGQR.
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2.4.1. Superdeformation. The pair correlations are not considered in this
paper. Nevertheless, our formulae (30), (46) can be successfully used for the
description of superdeformed nuclei where the pairing is very weak [7, 30]. For
example, applying them to the superdeformed nucleus 152Dy (δ 	 0.6, �ω0 =
41/A1/3 MeV), we get

Eiv = 20.8 MeV, B(M1)iv = 15.9μ2
N

for the isovector GQR and

Esc = 4.7 MeV, B(M1)sc = 20.0μ2
N

for the scissors mode. There are not so many results of other calculations to
compare with. As a matter of fact, there are only two papers considering this
problem.

The phenomenological TRM model [30] predicts

Eiv 	 26 MeV, B(M1)iv 	 26μ2
N , Esc 	 6.1 MeV, B(M1)sc 	 22μ2

N .

The only existing microscopic calculation [7] in the framework of QRPA with
separable forces gives

Eiv 	 28 MeV, B(M1)iv 	 37μ2
N , Esc 	 5−6 MeV, B(M1)1+ 	 23μ2

N .

Here B(M1)1+ denotes the total M1 orbital strength carried by the calculated
Kπ = 1+ QRPA excitations modes in the energy region below 20 MeV.

It is easy to see that in the case of IVGQR one can speak, at least, about
qualitative agreement. Our results for Esc and B(M1)sc are in good agreement
with that of phenomenological model and with Esc and B(M1)1+ of Hamamoto
and Nazarewicz.

It is possible to extract from the histogram of [7] the value of the overlap of
calculated low-lying 1+ excitations with the synthetic scissors state: |〈Syn|1+〉|2 ≈
0.4. The result of our calculation U2 = 0.43 agrees with it very well. So, the
comparison of our calculations with that of QRPA shows, that we have excellent
agreement in superdeformed nuclei and rather large disagreement in moderately
deformed nuclei. On the other hand, it is known [7] that pairing is very weak at
the superdeformation and becomes important at moderate deformations. There-
fore, as a consequence, the correct treatment of pair correlations is important for
an accurate description of the scissors mode.

2.5. Equations of Motion. Let us look on WFM equations of motion from
the RPA point of view. Is it possible to construct something similar in the RPA
approach? Equations (11) are written for average values of operators and are valid
for the description of the arbitrary amplitude motion. One should compare with
RPA their linearized version (18), (19). The variables of these equations are the
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variations of the above-mentioned average values. It is natural to suppose some
correspondence between the variation of the average value of the operator F̂ and
the matrix element of the type 〈0|F̂ |ν〉 used to calculate transition probabilities.
To check this idea we have to derive dynamical equations for matrix elements
of the operators r2

λμ, p̂2
λμ, and (rp̂)λμ and to compare them with the linearized

equations (11). To this end, we combine the RPA equations (71) in accordance
with the deˇnition (85) of matrix elements:

�Ων

∑
mi

(f τ
imXτν

mi + f τ
miY

τν
mi ) =

∑
mi

εmi(f τ
imXτν

mi − f τ
miY

τν
mi )+

+ Kτ
ν

∑
mi

(f τ
imQτ∗

im − f τ
miQτ∗

mi). (108)

Taking into account the relations

εmifim = [f̂ , H0]im, εmifmi = −[f̂ , H0]mi,

one rewrites Eq. (108) as

�Ων〈0|F̂ τ |ν〉 =
∑
mi

{[f̂ τ , Hτ
0 ]imXτν

mi + [f̂ τ , Hτ
0 ]miY

τν
mi +

+ Kτ
ν (f τ

imQτ∗
im − f τ

miQτ∗
mi)}. (109)

The Hamiltonian of the axially deformed harmonic oscillator corresponding to the
mean ˇeld (9) is

Hτ
0 (r) =

Nτ∑
s=1

{
p̂2

s

2m
+

1
2
mω2r2

s + Zτ
20(eq)r2

20(s)
}

. (110)

Let us consider the operator f̂ =
√

6 r2
21 = q21 = Q. Calculating the commu-

tator
[r2

21, H0] = i�
2
m

(rp̂)21

we ˇnd from (109) the following equation:

�Ων

〈
0

∣∣∣∣∣
Nτ∑
s=1

Qτ
s

∣∣∣∣∣ ν
〉

= i�
√

6
2
m

∑
mi

{((rp̂)21)τ
imXτν

mi + ((rp̂)21)τ
miY

τν
mi }+

+ Kτ
ν

∑
mi

(Qτ
imQτ∗

im −Qτ
miQτ∗

mi). (111)

Taking into account relations (Q∗)im = (Q)∗mi and |Qmi|2 = |Qim|2, we ˇnd
that the last sum in (111) is equal to zero. Applying again formula (85) and
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introducing the notation R̂λμ =
A∑

s=1

(r2
s)λμ, L̂λμ =

A∑
s=1

(rsp̂s)λμ, we write (111) as

−iΩν〈0|R̂τ
21|ν〉 =

2
m
〈0|L̂τ

21|ν〉. (112)

Identifying the matrix elements 〈0|R̂τ
21|ν〉 and 〈0|L̂τ

21|ν〉 with variables Rτ
21 and

Lτ
21, respectively, we reproduce the variation of the ˇrst equation in (11), or ˇrst

equations of (18), (19) (having in mind the time dependence via e−iΩt).
Let us consider the operator f̂ = (rp̂)21. The required commutator is evalu-

ated to be

[(rp̂)21, H0] = i
�

m
p̂2
21 − i�mω2r2

21 − i
�√
6
Z20(eq)r2

21.

With this result equation (109) looks as

�Ων〈0|L̂τ
21|ν〉 = i

�

m
〈0|P̂ τ

21|ν〉 − i�mω2〈0|R̂τ
21|ν〉−

− i
�√
6
Zτ

20(eq)〈0|R̂τ
21|ν〉 + Kτ

ν

∑
mi

[((rp̂)τ
21)imQτ∗

im − ((rp̂)τ
21)miQτ∗

mi], (113)

where the notation P̂λμ =
A∑

s=1

(p̂2
s)λμ has been introduced. The last sum in (113)

is calculated with the help of formula (B.17). Using the fact that εim = −εmi,
one gets

∑
mi

[((rp̂)21)τ
imQτ∗

im − ((rp̂)21)τ
miQτ∗

mi] =

= −i
m

2�

∑
mi

ετ
mi[(r

2
21)

τ
imQτ∗

im + (r2
21)

τ
miQτ∗

mi] =

= −i
m

�
√

6

∑
mi

ετ
mi|Qτ

mi|2 = −i
m

�
√

6
(ετ

0Qτ
0 + ετ

2Qτ
2) = −i�

4√
6

(
1 +

δ

3

)
Qτ

00.

According to the deˇnitions (see formulae (73), (85)) we have

Kn
ν =

∑
τ

κnτCτ
ν =

χ〈0|R̂n
21|ν〉 + χ̄〈0|R̂p

21|ν〉√
6

,

Kp
ν =

∑
τ

κpτCτ
ν =

χ〈0|R̂p
21|ν〉 + χ̄〈0|R̂n

21|ν〉√
6

.
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So, equation (113) (let us say, for neutrons) is transformed into

− iΩν〈0|L̂n
21|ν〉 = +

1
m
〈0|P̂n

21|ν〉 − mω2〈0|R̂n
21|ν〉 −

1√
6
Zn

20(eq)〈0|R̂n
21|ν〉−

− 2
3

(
1 +

δ

3

)
Qn

00(χ〈0|R̂n
21|ν〉 + χ̄〈0|R̂p

21|ν〉). (114)

The equation for protons is obtained by interchanging indices n and p. One has
to compare this equation with the variation of the second equation in (11) with
λ = 2, μ = 1. Let us write this variation in detail:

d

dt
Lτ

21 −
1
m
Pτ

21 + mω2Rτ
21 − 2

√
5
∑

j=0,2

√
2j + 1{11j

221}×

×
∑
σ,ν

C21
2σ,jν [Zτ

2σ(eq)Rτ
jν + δZτ

2σRτ
jν(eq)] = 0.

We recall that only Rτ
00(eq) and Rτ

20(eq) have nonzero values, so this equation
is reduced to

d

dt
Lτ

21 −
1
m
Pτ

21 + mω2Rτ
21 − 10{112

221}C21
20,21Z

τ
20(eq)Rτ

21−

− 2
√

5δZτ
21[{110

221}C21
21,00R

τ
00(eq) +

√
5{112

221}C21
21,20R

τ
20(eq)] = 0.

In agreement with deˇnition (9) of Zτ
λμ its variation is

δZn
2μ = χRn

2μ + χ̄Rp
2μ, δZp

2μ = χRp
2μ + χ̄Rn

2μ.

Substituting 6j symbols and ClebschÄGordan coefˇcients by their numerical val-
ues, we obtain ˇnally (e.g., for neutrons)

d

dt
Ln

21 −
1
m
Pn

21 + mω2Rn
21 +

1√
6
Zn

20(eq)Rn
21+

+
2
3

(
1 +

δ

3

)
Qn

00(χRn
21 + χ̄Rp

21) = 0. (115)

This equation coincides obviously with (114) if we assume the time dependence
via e−iΩt and identify the matrix elements 〈0|R̂τ

21|ν〉, 〈0|L̂τ
21|ν〉, and 〈0|P̂ τ

21|ν〉
with the variables Rτ

21, Lτ
21, and Pτ

21, respectively.
Let us consider ˇnally the operator f̂ = (p̂2)21. The required commutator is

[(p̂2)21, H0] = −2i�mω2(rp̂)21 + 4
√

5i�
2∑

j=1

√
2j + 1{11j

221}C21
20,j1Z20(eq)(rp̂)j1,
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and one obtains from (109) the following equation:

�Ων〈0|P̂ τ
21|ν〉 = −2i�mω2〈0|L̂τ

21|ν〉+

+ 4
√

5i�
2∑

j=1

√
2j + 1{11j

221}C21
20,j1Z

τ
20(eq)〈0|L̂τ

j1|ν〉+

+ Kτ
ν

∑
mi

[((p̂2)τ
21)imQτ∗

im − ((p̂2)τ
21)miQτ∗

mi]. (116)

It is easy to show (with the help of formula (B.18)) that the last sum is equal
to zero. This equation must be compared with the variation of the last equation
in (11) with λ = 2, μ = 1. Let us write it in detail. Taking into account that
Lτ

λμ(eq) = 0, we ˇnd the equation

d

dt
Pτ

21 + 2mω2Lτ
21 − 4

√
5

2∑
j=1

√
2j + 1{11j

221}C21
20,j1Z

τ
20(eq)Lτ

j1 = 0, (117)

which obviously coincides with (116), if we assume the e−iΩt time dependence
and identify the proper RPA matrix elements with the respective WFM variables.

We will show in the next section that Eqs. (112), 114), (116) can be derived
from the proper equations of (11) exactly, without the primitive procedure of
identifying RPA matrix elements with WFM variables.

3. WFM VERSUS RPA

The exact relation between RPA matrix elements and the respective WFM
variables can be established with the help of the linear response theory. Let us
ˇrst recall, following Appendix D of [9], the necessary deˇnitions concerning the
density and the density matrix.

The density operator is deˇned as

ρ̂(r) =
A∑

s=1

δ(r − r̂s) =
∑
kq

dkq(r)a
†
kaq, (118)

where dkq(r) = 〈k|δ(r − r̂)|q〉 =
∑
σ,τ

φ∗
k(rστ)φq(rστ) and φq(rστ) are single-

particle wave functions. Indices k, q include spin and isospin quantum numbers
σ and τ .
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The density of particles in the system depends on its state Ψ and is deˇned
as the average value of a density operator over this state:

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 =
∑
kq

dkq(r)ρqk =

= A
∑

σ,τ,...,σA,τA

∫
d3r2 · · ·d3rA|Ψ(rστ, r2σ2τ2, . . . , rAσAτA)|2, (119)

where ρqk = 〈Ψ|a†
kaq|Ψ〉. The particle density (119) can be interpreted as the

diagonal element (in the coordinate space representation) of the density matrix
which is deˇned as

ρ(rστ, r′σ′τ ′) =
∑
kq

φ∗
k(r′σ′τ ′)φq(rστ)〈Ψ|a†

kaq|Ψ〉 =

=
∑
kq

dkq(r′σ′τ ′, rστ)ρqk (120)

with dkq(r′σ′τ ′, rστ) = φ∗
k(r′σ′τ ′)φq(rστ). The average value of the arbitrary

one-body operator

F̂ =
A∑

s=1

f̂s =
∑
kq

fkqa
†
kaq (121)

is written in terms of the density matrix as

〈Ψ|F̂ |Ψ〉 =
∑
kq

fkq〈Ψ|a†
kaq|Ψ〉 =

∑
kq

fkqρqk = Tr (fρ).

Let us consider the system to be in the weak external time-dependent ˇeld

Ŵ (t) = Ŵ exp (−iΩt) + Ŵ † exp (iΩt), (122)

where Ŵ =
∑
kq

wkqa
†
kaq is a one-body operator. The change of the ground

state wave function produced by this ˇeld is found by using the time-dependent
perturbation theory [31]:

Ψ(t) = |0〉 +
∑

ν

|ν〉
[
cν e−iΩt − c̄∗ν eiΩt

]
. (123)
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Here |0〉 and |ν〉 are stationary eigenstates of the unperturbed system and

cν =
〈ν|Ŵ |0〉

�(Ω − Ων)
=
∑
kq

〈ν|a†
kaq|0〉

�(Ω − Ων)
wkq ,

(124)

c̄ν =
〈0|Ŵ |ν〉

�(Ω + Ων)
=
∑
kq

〈0|a†
kaq|ν〉

�(Ω + Ων)
wkq .

Inserting this expression into formula (120), we obtain the perturbed density
matrix

ρ(rστ, r′σ′τ ′, t) = ρ0(rστ, r′σ′τ ′) + δρ(rστ, r′σ′τ ′, t),

where ρ0(rστ, r′σ′τ ′) is the unperturbed (equilibrium) density matrix

ρ0(rστ, r′σ′τ ′) =
∑
kq

dqk(r′σ′τ ′, rστ)〈0|a†
qak|0〉 =

∑
kq

dqk(r′σ′τ ′, rστ)ρ(0)
kq

and δρ(rστ, r′σ′τ ′, t) is the change of the density matrix

δρ(rστ, r′σ′τ ′, t) =
∑
kq

dqk(r′σ′τ ′, rστ)ρ(1)
kq (t) (125)

with

ρ
(1)
kq (t) =

∑
ν

[
(〈0|a†

qak|ν〉cν − 〈ν|a†
qak|0〉c̄ν) e−iΩt +

+(〈ν|a†
qak|0〉c∗ν − 〈0|a†

qak|ν〉c̄∗ν) eiΩt
]
. (126)

Deriving (125) we neglected the terms proportional to |Ŵ |2. At this stage it
is necessary to remind that we work in a HartreeÄFock approximation. This

means that stationary states |0〉, |ν〉 are Slater determinants; matrix ρ
(0)
kq = ρqδkq

is diagonal with ρq = 1 for levels below the Fermi level and ρq = 0 for levels
above the Fermi level. The requirement (ρ0 + δρ)2 = (ρ0 + δρ) leads to the

well-known [9] property of the matrix ρ
(1)
kq : it has only particleÄhole nonvanishing

matrix elements. Looking to formula (126) we see that it is possible for the matrix
elements 〈0|a†

qak|ν〉 to be different from zero only for particleÄhole combinations
of indices q, k. Consequently, the summation over k, q in formula (124) for cn

and c̄n will also be restricted only to particleÄhole pairs. So we can write ρ
(1)
kq as

ρ
(1)
kq (t) =

∑
k′q′

[
Rkq,k′q′(Ω) e−iΩt + R∗

qk,k′q′(Ω) eiΩt
]
wk′q′ ,



1810 BALBUTSEV E.B.

where

Rkq,k′q′(Ω) =
∑

ν

(
〈0|a†

qak|ν〉〈ν|a†
k′aq′ |0〉

�(Ω − Ων)
−

〈0|a†
k′aq′ |ν〉〈ν|a†

qak|0〉
�(Ω + Ων)

)

is the RPA response function [9], where the index pairs kq and k′q′ are restricted
to particleÄhole pairs. For the change of the arbitrary operator average value we
have

δ〈Ψ|F̂ |Ψ〉 =
∑
kq

fkqρ
(1)
qk . (127)

We now are ready to analyze the WFM variables. The ˇrst one is

Rτ
λμ(t) = 2(2π�)−3

∫
d3p

∫
d3rr2

λμf τ (r,p, t).

Using here deˇnitions of the Wigner function and the δ function we ˇnd

Rτ
λμ(t) =

2
(2π�)3

∫
d3r r2

λμ

∫
d3s

∫
d3p exp (−ip · s/�)ρτ

(
r+

s
2
, r− s

2
, t
)

=

= 2
∫

d3r r2
λμρτ (r, r, t) =

∑
σ

∫
d3r r2

λμρ(rστ, rστ, t) =

=
∑
kq

∑
σ

∫
d3r r2

λμφ∗
k(rστ)φq(rστ)〈Ψ|a†

kaq|Ψ〉 =

=
∑
kq

(r2
λμ)τ

kq〈Ψ|a†
kaq|Ψ〉 = 〈Ψ|

∑
kq

(r2
λμ)τ

kqa
†
kaq|Ψ〉 =

= 〈Ψ|
Nτ∑
s=1

r2
λμ(s)|Ψ〉 = 〈Ψ|R̂τ

λμ|Ψ〉, (128)

i.e., this is just the ground state expectation value of the operator R̂λμ =
A∑

s=1

(r2
s)λμ. In accordance with (127) the variation of this variable is

δRτ
λμ(t) ≡ Rτ

λμ(t) =
∑
kq

(r2
λμ)τ

kqρ
(1)
qk (t) =

=
∑

ν

(〈0|R̂τ
λμ|ν〉cν − 〈ν|R̂τ

λμ|0〉c̄ν) e−iΩt+

+
∑

ν

(〈ν|R̂τ
λμ|0〉c∗ν − 〈0|R̂τ

λμ|ν〉c̄∗ν) eiΩt. (129)
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Equation (129) demonstrates in an obvious way the structure of the variable
δRλμ. It is a linear combination of the transition matrix elements 〈0|R̂λμ|ν〉
which are, in turn, linear combinations of RPA amplitudes Xkq, Ykq . In a similar
way we can show that the variables Lτ

λμ(t) and P τ
λμ(t) deˇned by (12) are just

the ground state expectation values of the operators L̂λμ =
A∑

s=1

(rsp̂s)λμ and

P̂λμ =
A∑

s=1

(p̂2
s)λμ, respectively:

Lτ
λμ(t) = 〈Ψ|L̂τ

λμ|Ψ〉, P τ
λμ(t) = 〈Ψ|P̂ τ

λμ|Ψ〉.

Variations of these variables are

δLτ
λμ(t) ≡ Lτ

λμ(t) =
∑
kq

((rp̂)λμ)τ
kqρ

(1)
qk (t) =

=
∑

ν

(〈0|L̂τ
λμ|ν〉cν − 〈ν|L̂τ

λμ|0〉c̄ν) e−iΩt+

+
∑

ν

(〈ν|L̂τ
λμ|0〉c∗ν − 〈0|L̂τ

λμ|ν〉c̄∗ν) eiΩt, (130)

and

δP τ
λμ(t) ≡ Pτ

λμ(t) =
∑
kq

(p2
λμ)τ

kqρ
(1)
qk (t) =

=
∑

ν

(〈0|P̂ τ
λμ|ν〉cν − 〈ν|P̂ τ

λμ|0〉c̄ν) e−iΩt+

+
∑

ν

(〈ν|P̂ τ
λμ|0〉c∗ν − 〈0|P̂ τ

λμ|ν〉c̄∗ν) eiΩt. (131)

Inserting the expressions for δRλμ, δLλμ into the variation of the ˇrst equa-
tion of (11)

d

dt
Rλμ − 2

m
Lλμ = 0,

we ˇnd

−iΩ
∑

ν

(〈0|R̂λμ|ν〉cν − 〈ν|R̂λμ|0〉c̄ν) =
2
m

∑
ν

(〈0|L̂λμ|ν〉cν − 〈ν|L̂λμ|0〉c̄ν).

It is sufˇcient to consider only the part with the e−iΩt time dependence. Multi-
plying this equation by (Ω−Ων) and taking the limit Ω → Ων , we reproduce the
RPA equation (112).
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Inserting the expressions for δRλμ, δLλμ, and δPλμ into Eq. (115) and per-
forming the described limiting procedure we obtain Eq. (114). Analogously,
inserting formulae (131), (130) into Eq. (117) and performing the same limiting
procedure we get the RPA equation (116).

So, there exists one-to-one correspondence between the set of dynamical
equations for WFM variables and the set of dynamical equations for Transition
Matrix Elements (TME). This correspondence makes obvious the fact that both
the sets have the same eigenvalues. On the other hand, the TME equations are
just linear combinations of the RPA equations. Therefore we can conclude that
RPA and WFM approaches generate identical eigenvalues. In this sense both
approaches are equivalent in all aspects. This concerns, for instance, also the
transition probabilities. However, for this equivalence to be exact, one needs to
work in the full space in both approaches, that is in the complete particle hole
space in RPA and taking all phase space moments of all powers in WFM, a task
which can hardly be tackled in general.

The difference of the two approaches then shows up if truncations of the
dimension of the equations have to be operated. In RPA one usually solves
the equations with a restricted number of discrete particle hole pairs, i.e., the
dimension of the RPA matrix is ˇnite (in some works the RPA equations for ˇnite
nuclei are, however, solved in full space, including continuum states [32, 33]).
The result of such a diagonalization usually yields a huge number of discrete
eigenvalues approximating more or less the spectrum one would obtain from a
solution in the full space. For instance, resonances in the continuum (e.g., giant
resonances) will be mocked up by a bunch of discrete states whose envelope may
simulate the full solution. Reducing of the dimension of the particle hole space
too much may lead to a situation where the full solution is only approximated
rather badly and in an uncontrolled manner.

In the WFM method, the dynamical equations for Cartesian tensors of the
rank n = 2 are coupled (by the interaction terms in (5)) with dynamical equa-
tions for tensors of the rank n = 3, these equations being coupled with the
ones for tensors of the rank n = 4 and so on up to n = ∞. Here one hopes
that the essential part of physics is described by a small number of the lowest
rank tensors. The hope is based on the assumption that the higher rank tensors
(moments) are responsible for the more reˇned details and that neglecting them
does not appreciably in	uence the description of the more global physics which
is described with the lower rank tensors. This assumption is substantiated in
the past applications of the WFM method to realistic situations with the Skyrme
forces for the description of collective nuclear modes [14,15,17]. In those works
it has indeed been demonstrated that even with a very limited number of low-
rank phase space moments one can faithfully reproduce the centroid position of
the collective states. From these studies it is then permitted to assume that the
inclusion of higher and higher rank moments will just give raise to a reˇnement
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of the gross structure obtained with the low rank tensors. A formal convergence
study of this type has been performed in the inˇnite matter case [34] where it was
indeed shown that the moment method allows one to approach the full solution
in an optimized way.

The net result is, that WFM and RPA approximate the exact inˇnite spectrum
of the quantum mechanical problem by a ˇnite number of eigenfrequencies of the
classical problem with, however, different convergence.

An analogous situation occurs with transition probabilities. Let us analyze,
for example, the expression (129) for the WFM variable δRτ

λμ(t) = Rτ
λμ(t).

Using the deˇnition (124) of cν with the external ˇeld operator Ŵ = R̂τ†
λμ, we

ˇnd

δRτ
λμ(t) =

Nc∑
ν=1

(
〈0|R̂τ

λμ|ν〉〈ν|R̂
τ†
λμ|0〉

�(Ω − Ων)
−

〈ν|R̂τ
λμ|0〉〈0|R̂

τ†
λμ|ν〉

�(Ω + Ων)

)
e−iΩt =

=
Nc∑
ν=1

(
|〈0|R̂τ

λμ|ν〉|2

�(Ω − Ων)
−

|〈0|R̂τ†
λμ|ν〉|2

�(Ω + Ων)

)
e−iΩt. (132)

The summation limit Nc depends on the method of calculation. In the case of the
exact solution Nc = ∞, for RPA Nc is usually of the order of several hundreds or
thousands, for WFM Nc usually is not more than around a dozen. Naturally, the
eigenvalues Ων and eigenstates |ν〉 are different in each case. So, the strength,
which in RPA was distributed over hundreds or thousands levels, in WFM is
concentrated only on several levels, i.e., averaging of levels is accompanied by
the redistribution of the strength. The variable δRτ

λμ(t) is the quantum mechanical
observable, so its value should not depend on the basis |ν〉. Hence, the right-
hand sides of (132), calculated by two methods, should coincide if both methods
are mutually consistent. This statement can, e.g., be checked with the help of
sum rules. Generally, in RPA sum rules are well fulˇlled for a sufˇciently large
particle hole space which in realistic cases can become quite signiˇcant, whereas
in WFM sum rules are generally already well fulˇlled even with a small number
of low rank moments (see, e.g., [14,15,17,35]).

The essential difference between WFM and RPA methods lies in their prac-
tical use. The RPA equations (70) are constructed in such a way that the increase
in dimension does not cause any formal problems and ˇnally it is only a question
of computer power what dimension can be handled. Quite on the contrary, the
increase of dimension in WFM is a nontrivial task. Beyond a certain order of
the moments even the reduction of the Cartesian tensors to the irreducible ones
becomes a very difˇcult task. However, the spirit of WFM is rather to reproduce
the gross structure of a couple of prominent collective states, a situation which it
can handle very efˇciently.
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In conclusion WFM and RPA are equivalent when the full particle hole
conˇguration space in RPA and the inˇnite number of moments in WFM are
considered. However, under truncation of the spaces both methods have different
convergence properties. In the general case for WFM only a few moments are
sufˇcient to get the correct gross structure of the collective part of the spectrum,
whereas in RPA one in general must take into account a quite large conˇguration
space to produce reasonable results.

4. GREEN'S FUNCTION METHOD

One of the important subjects of comparing RPA and WFM methods are the
current distributions. The WFM method, a priori, cannot give the exact results,
because it deals only with integrals over the whole phase space. It would therefore
be very interesting to evaluate the accuracy of this approximation by comparing
it with the exact result. Unfortunately, even for the simple model HO+QQ it
is impossible to derive in RPA closed analytical expressions for currents of the
scissors mode and IVGQR. That is why we consider in this section Green's
Function (GF) method, which allows one to ˇnd explicit expressions for the
currents directly.

Following the paper of H.Kohl, P. Schuck, and S. Stringari [36] we will
consider at ˇrst the isoscalar case. Conserving on the right-hand side of Eq. (4)
only the ˇrst term of the sin-function expansion leads to the Vlasov equation

∂f

∂t
= ∇HW · ∇pf −∇pHW · ∇f. (133)

In our case the Wigner transform HW coincides with the classical Hamiltonian
Hc. Having in mind small amplitude vibrations we have to linearize (133):
f = f0 + f1 , Hc = H0 + H1, with f0 being the solution of the time independent
equation. The linearized version of (133) is

∂f1

∂t
+ ∇pH0 · ∇f1 −∇H0 · ∇pf1 = S(r,p, t), (134)

where S(r,p, t) = ∇H1 · ∇pf0. This equation will be solved with Green's
function method. We have(

∂

∂t
+ ∇pH0 · ∇ −∇H0 · ∇p

)
G(t−t′)(rp, r′p′) =

= δ(r − r′)δ(p − p′)δ(t − t′) (135)

with [36]

G(t−t′)(rp, r′p′) = δ[rc(r,p, t′ − t) − r′]δ[pc(r,p, t′ − t) − p′]θ(t − t′),
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where rc(r,p, t′−t), pc(r,p, t′−t) are solutions of classical equations of motion
with initial conditions r, p. The solution of (134) can be written as

f1(r,p, t) = fh
1 +

∞∫
−∞

dt′
∫

d3r′d3p′G(t−t′)(rp, r′p′)S(r′,p′, t′) =

= fh
1 +

t∫
−∞

dt′S(rc,pc, t
′), (136)

where fh
1 is the solution of the homogeneous equation, which does not play any

role at resonance and therefore will be omitted in the forthcoming.
We consider the axially deformed harmonic oscillator H0 with the quadrupoleÄ

quadrupole residual interaction Vres = H1. The derivation of the proper single-
particle Hamiltonian from the original microscopic Hamiltonian (6) can be found
in Appendix A. We have

H0 =
p2

2m
+

m

2
[ω2

x(x2 + y2) + ω2
zz2].

We are interested in the part of the residual interaction with |μ| = 1. In
accordance with formula (A.1) it can be written as

Vres = −κ0[Q21(t)q2−1(r) + Q2−1(t)q21(r)] = 12κ0Q1(t)[xz + yz]

with

Q1(t) = 2
∫

d{p, r}f(r,p, t)xz = 2
∫

d{p, r}f(r,p, t)yz =

= 2
∫

d{p, r}[f0(r,p) + f1(r,p, t)]xz = 2
∫

d{p, r}f1(r,p, t)xz.

With the help of the ThomasÄFermi approximation for the static distribution
function

f0 = θ(εF − H0)

the right-hand side of (134) is found to be

S(r,p, t) = −12
κ0

m
Q1(t)δ(εF − H0)[pxz + pzx + pyz + pzy].

The classical trajectories are determined by the solution of the Hamilton

equations ṙc,i =
∂H0

∂pi
, ṗc,i = −∂H0

∂ri
with i = x, y, z. In our case they are

rc,i(t) = ri cos ωit +
pi

mωi
sin ωit, pc,i(t) = pi cos ωit − mωiri sin ωit.
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Formula (136) then gives

f1(r,p, t) = −6
κ0

m
δ(εF − H0)

t∫
−∞

dt′Q1(t′)×

×
{

1
ωx

(px + py)z [ω+ cos ω+(t′ − t) + ω− cos ω−(t′ − t)]+

+
1
ωz

pz(x + y)[ω+ cos ω+(t′ − t) − ω− cos ω−(t′ − t)]+

+
1

mωxωz
(px + py)pz [ω+ sin ω+(t′ − t) − ω− sin ω−(t′ − t)]−

− m(x + y)z[ω+ sin ω+(t′ − t) + ω− sin ω−(t′ − t)]
}

, (137)

where ω± = ωx ± ωz.

So, we have derived a complicated integral equation for the perturbed dis-
tribution function which may not easily be solved in general. As a matter of
fact, the analytic possibilities of Green's function method are, without further
consideration, exhausted at this point.

In order to proceed to the evaluation of the eigenfrequencies and transition
probabilities we again apply the method of moments. Integrating (137) over the
whole phase space with the weights xz, pxpz, zpx + xpz, and zpx − xpz, we
obtain the following set of coupled integral equations:

Q1(t) = β

t∫
−∞

dt′Q1(t′)[ω+ sinω+(t′ − t) + ω− sinω−(t′ − t)],

P1(t) = −βm2ωxωz

t∫
−∞

dt′Q1(t′)[ω+ sin ω+(t′ − t) − ω− sinω−(t′ − t)],

(138)

L1(t) = −βm

t∫
−∞

dt′Q1(t′)[ω2
+ cosω+(t′ − t) + ω2

− cosω−(t′ − t)],

Iy(t) = −βmω+ω−

t∫
−∞

dt′Q1(t′)[cosω+(t′ − t) + cosω−(t′ − t)],
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where

β =
2κ0π

3ε4F
m2ω4

xω3
z

4
(2π�)3

=

= 12κ0

∫
d{p, r}x2z2δ(εF − H0) =

12κ0

m4ω2
xω2

z

∫
d{p, r}p2

xp2
zδ(εF − H0) =

=
12κ0

m2ω2
z

∫
d{p, r}x2p2

zδ(εF − H0) =
12κ0

m2ω2
x

∫
d{p, r}z2p2

xδ(εF − H0)

and the following notation is introduced

P1(t) = 2
∫

d{p, r}f1(r,p, t)pxpz,

L1(t) = 2
∫

d{p, r}f1(r,p, t)(zpx + xpz),

Iy(t) = 2
∫

d{p, r}f1(r,p, t)(zpx − xpz).

By simple means these equations are reduced to a set of differential equations.
At ˇrst, we perform time derivatives of all equations in (138):

Q̇1(t) = −β

t∫
−∞

dt′Q1(t′)[ω2
+ cosω+(t′ − t) + ω2

− cosω−(t′ − t)],

Ṗ1(t) = βm2ωxωz

t∫
−∞

dt′Q1(t′)[ω2
+ cosω+(t′ − t) − ω2

− cosω−(t′ − t)],

(139)

L̇1(t) = −βm

{
(ω2

+ + ω2
−)Q1(t)+

+

t∫
−∞

dt′Q1(t′)[ω3
+ sin ω+(t′ − t) + ω3

− sin ω−(t′ − t)]

}
,

İy(t) = −βmω+ω−

{
2Q1(t)+

+

t∫
−∞

dt′Q1(t′)[ω+ sin ω+(t′ − t) + ω− sin ω−(t′ − t)]

}
.
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Solving (138) with respect of obvious time integrals we can exclude them
from (139). We have

2βm2ωxωzω−

t∫
−∞

dt′Q1(t′) sin ω−(t′ − t) = m2ωxωzQ1(t) + P1(t),

2βm2ωxωzω+

t∫
−∞

dt′Q1(t′) sin ω+(t′ − t) = m2ωxωzQ1(t) − P1(t),

(140)

4βmωxωz

t∫
−∞

dt′Q1(t′) cosω−(t′ − t) = L1(t) +
ω+

ω−
Iy(t),

−4βmωxωz

t∫
−∞

dt′Q1(t′) cosω+(t′ − t) = L1(t) +
ω−
ω+

Iy(t).

Substituting the time integrals in (139) by the proper expressions from (140) we
ˇnd

Q̇1(t) =
1
m

L1(t),

L̇1(t) = −m(2β + 1)(ω2
x + ω2

z)Q1(t) +
2
m

P1(t),
(141)

Ṗ1(t) = −m

2
[(ω2

x + ω2
z)L1(t) − (ω2

x − ω2
z)Iy(t)],

İy(t) = −m(2β + 1)ω+ω−Q1(t).

Due to the conservation of the angular momentum the right-hand side of the last
equation must be equal to zero. So we have the requirement

2β + 1 = 0, or κ0 = −m2ω4
xω3

z

4π3ε4F

(2π�)3

4
. (142)

With the help of the relation

A〈r2〉 = 2
∫

d{p, r}r2f0 = 2
∫

d{p, r}r2θ(εF − H0) =

=
π3ε4F (ω2

x + 2ω2
z)

3mω4
xω3

z

4
(2π�)3

(143)

and formulae (A.3) for ωx, ωz, the expression for κ0 is reduced to

κ0 = −m(ω2
x + 2ω2

z)
12A〈r2〉 = − mω̄2

4A〈r2〉 , (144)
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which is just the familiar expression for the self-consistent value of the strength
constant (see Appendix A). This is a rather interesting result, because the well-
known formula is obtained without the usual self-consistency requirement [37].
As is known, in the absence of external ˇelds the angular momentum of any
system is conserved. The short range interparticle interactions depending on the
module of the interparticle distance |ri − rj | create the scalar, i.e., rotational
invariant, mean ˇeld, which exactly repeats the shape of the nucleus. When we
imitate the mean ˇeld by a rotational invariant function, the angular momentum
will be conserved independently of the shape of this function due to a pure
mathematical reason: angular momentum operator commutes with a scalar ˇeld.
If we use the nonrotational invariant function (as in our case), mathematics does
not help and the shape of the function becomes important. If the function does not
follow exactly the shape of the system, the latter will react on this inconsistency as
on the external ˇeld, that leads to the nonconservation of an angular momentum.
Therefore the requirement of the angular momentum conservation in this case
becomes equivalent to the requirement of the self-consistency. This is seen very
well in the method of moments. Integrating equation (134) over the phase space
with the weight zpx − xpz , we obtain the dynamical equation for Iy

d

dt
Iy = m(ω2

z − ω2
x)Q1 + 12κ0(〈x2〉 − 〈z2〉)Q1. (145)

The requirement of the angular momentum conservation gives the following re-
lation:

m(ω2
z − ω2

x) = 12κ0(〈z2〉 − 〈x2〉). (146)

Obviously, it is the requirement of the consistency between the shapes of the
potential and the nucleus. In principle, this relation is less restrictive than the
standard self-consistency requirement [37]. However, the latter satisˇes equation
(146) which can be easily checked with the help of Appendix A.

So, ˇnally the set of Eqs. (141) is reduced to

Q̇1(t) =
1
m

L1(t),

L̇1(t) =
2
m

P1(t),
(147)

Ṗ1(t) = −mω̄2

[(
1 +

1
3
δ

)
L1(t) − δIy(t)

]
,

İy(t) = 0.

Taking into account the relations between the deˇnitions of variables in (21)
and (147)

Q1 = −ReR21, P1 = −ReP21, L1 = −2ReL21
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(which follow from formulae r2
21 = −z(x + iy) and (rp)21 = −1

2
[zpx + xpz +

i(zpy + ypz)]) and Iy = 2 ReL11, it is easy to see that the last set of equations
is identical to (21).

With the help of relations (140) the Wigner function (137) can be written in
terms of the Wigner function moments

f1(r,p, t) =
3κ0

βm2
δ(εF − H0)

{
[L1(t) + Iy(t)]

1
ω2

x

(px + py)z+

+ [L1(t) − Iy(t)]
1
ω2

z

pz(x + y) + P1(t)
(

2
m2ω2

xω2
z

)
(px + py)pz+

+ Q1(t)2m2z(x + y)
}

. (148)

Taking into account equations of motion (147) and the time dependence of vari-
ables via e−iΩt (which leads to the equality Iy = 0) one ˇnds

f1(r,p, t) =
3κ0

βm2
δ(εF − H0)

{
−iΩm

[
1
ω2

x

(px + py)z +
1
ω2

z

pz(x + y)
]
−

−
(

1
ω2

x

+
1
ω2

z

)
(px + py)pz + 2m2z(x + y)

}
Q1(t).

In the case of δ = 0 it reproduces the result of [36].
Having the Wigner function one can calculate transition probabilities in the

same way as in WFM method.
Let us consider now the problem with two sorts of particles: neutrons and

protons. All variables and parameters acquire isotopic index τ . The part of
the residual interaction with |μ| = 1, in accordance with formula (9) becomes
V τ

1 = Zτ
1 (t)[xz + yz] with Zn

1 (t) = 12(κQn
1 + κ̄Qp

1), Zp
1 (t) = 12(κQp

1 + κ̄Qn
1 )

and Qτ
1 =

∫
d{p, r}f τ

1 (r,p, t)xz. The expression for the Wigner function is

obtained from formula (137) by changing the factor 6κQ1(t′) by
1
2
Zτ

1 (t′). The

dynamical equations for isovector variables Q̄1 = Qn
1 − Qp

1, P̄1 = Pn
1 − P p

1 ,
L̄1 = Ln

1 −Lp
1, and Īy = In

y − Ip
y can be derived (in approximation (17)) exactly

in the same way as the equations for isoscalar ones. As is expected, they coincide
with (25).

As we see, in the considered simple model all results of WFM method are
identical to that of Green's Function (GF) method. Having in mind also that both
methods generate the same set of dynamical equations for collective variables
(Wigner function moments), one could suspect their identity. In general, this is
not quite true. The principal difference between the two methods is more or less
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obvious. In the GF method, one ˇnds ˇrst the formal solution of Eq. (5) and only
afterwards one takes the phase space moments of the found Wigner function to
obtain the ˇnal solution of the physical problem. In the WFM method one takes
from the beginning the phase space moments of Eq. (5) without any attempts to
ˇnd the ®natural¯ expression for the Wigner function. It is worth noting also,
that the initial conditions in the two methods are quite different. It is the static, or
equilibrium, distribution function f0 in GF method, which is not always known
exactly, and one is forced to use some approximations. In the WFM method
the initial conditions are given by the equilibrium values of the natural nucleus
characteristics (such as the mean square radius, the quadrupole moment, etc.)
which can be taken from the experiment.

The reason of coincidence of all results is quite simple. For the harmonic
oscillator with multipoleÄmultipole residual interaction of arbitrary rank (mul-
tipolarity) the equations of both methods can be derived without any approxi-
mations Å the interaction of the multipolarity n generates the set of dynamical
equations for tensors (moments) of the rank n. For the GF method this is easily
seen from formula (136). In the case of the WFM method it is seen very well
from the structure of Eq. (134). When one takes the moments of rank n, neither
the left-hand side nor the right-hand side of this equation, can generate moments
of rank higher than n. The coincidence of results in the case of n = 3 was
demonstrated in [38].

The power and simplicity of the GF method are restricted by the potentials for
which the analytical solutions for classical trajectories are known. In the case of
realistic forces the GF method loses its simplicity and transparency, whereas the
WFM method does not meet any difˇculties and continues to be a convenient and
powerful tool for the description of the collective motion what was demonstrated
by calculations with Skyrme forces [17]. For an illustration of this property of
the WFM method, currents are a good example, because the procedure of their
construction with WFM is general enough to be used for any type of force (see
Subsec. 5.1 below and [6]).

5. FLOWS

We are interested in the trajectories of inˇnitesimal displacements of neutrons
and protons during their vibrational motion, i.e., in the lines of currents. The
inˇnitesimal displacements are determined by the magnitudes and directions of
the nucleon velocities u(r, t), given by

mn(r, t)u(r, t) =
∫

4d3p

(2π�)3
pf(r,p, t) =

=
4

(2π�)3

∫
d3s

∫
d3pp exp (−ip · s/�)ρ

(
r +

s
2
, r − s

2
, t
)

=
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= −2i�{(∇−∇′)ρ(r, r′, t)}r=r′ = − i�

2

∑
σ,τ

{(∇−∇′)ρ(rστ, r′στ, t)}r=r′ =

= − i�

2

∑
pq

∑
σ,τ

{φ∗
p(rστ)∇φq(rστ) − φq(rστ)∇φ∗

p(rστ)}〈Ψ|a†
paq|Ψ〉 =

= m
∑
pq

jpq(r)ρqp(t) = m〈Ψ|
∑
pq

jpq(r)a†
paq|Ψ〉 = m〈Ψ|Ĵ(r)|Ψ〉. (149)

The current density operator Ĵ(r) has the standard quantum mechanical deˇni-
tion [9]:

Ĵ(r) =
A∑

s=1

ĵs(r) = − i�

2m

A∑
s=1

[δ(r − r̂s)∇s + ∇sδ(r − r̂s)] =
∑
pq

jpq(r)a†
paq,

jpq(r) = − i�

2m
〈p|[δ(r − r̂)∇ + ∇δ(r − r̂)]|q〉 =

=
i�

2m

∑
σ,τ

[φq(rστ)∇φ∗
p(rστ) − φ∗

p(rστ)∇φq(rστ)] =

= 4
i�

2m
[φq(r)∇φ∗

p(r) − φ∗
p(r)∇φq(r)].

The variation of u generated by the external ˇeld (122) is

neq(r)δu(r, t) =
∑
pq

jpq(r)ρ(1)
qp (t) =

=
∑

ν

[〈0|Ĵ(r)|ν〉cν − 〈ν|Ĵ(r)|0〉c̄ν ] e−iΩt+

+
∑

ν

[〈ν|Ĵ(r)|0〉c∗ν − 〈0|Ĵ(r)|ν〉c̄∗ν ] eiΩt. (150)

To proceed further, three options are possible.
5.1. WFM Method. The ˇrst way was developed within the WFM ap-

proach [17]. It allows one to derive an approximate analytical expression for
δu(r, t). The main idea lies in the parameterization of inˇnitesimal displace-
ments ξi(r, t) ≡ dxi, which are represented by the expansion

ξi(r, t) = Gi(t) +
3∑

j=1

Gi,j(t)xj +
3∑

j,k=1

Gi,jk(t)xjxk+

+
3∑

j,k,l=1

Gi,jkl(t)xjxkxl + . . . (151)
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This series, in principle, is inˇnite, however one makes the approximation keeping
only the ˇrst terms and neglecting the remainder. For example, in [6] only the
two ˇrst terms were kept. It turns out that the Gi do not contribute to the ˇnal
results due to the triplanar symmetry of considered nuclei, hence

ξτ
i (r, t) =

3∑
j=1

Gτ
i,j(t)xj .

The coefˇcients Gi,j can be expressed analytically in terms of the variables
R̄21(t) and L̄11(t). Really, small variations Rτ

λμ ≡ δRτ
λμ and Lτ

λμ ≡ δLτ
λμ are

naturally expressed in terms of variations of nτ (r, t) and uτ
i (r, t) (13):

Rτ
λμ(t) =

∫
d3r r2

λμδnτ (r, t),

(152)

Lτ
λμ(t) = m

∫
d3r [(ruτ

eq)λμδnτ + (rδuτ )λμnτ
eq] = m

∫
d3r (rδuτ )λμnτ

eq.

In the last equation we have supposed that uτ
eq = 0, i.e., there is no motion at

equilibrium. The variations δn and δui are not independent. A relation between
them is obtained by means of the continuity equation [10]

δn = −
3∑

i=1

∇i(nξi), δui =
∂ξi

∂t
.

It is convenient to introduce the ®cyclic¯ combinations of ξi analogously to the
cyclic variables in (5):

ρτ
+1 = − 1√

2
(ξτ

1 + iξτ
2 ), ρτ

0 = ξτ
3 , ρτ

−1 =
1√
2
(ξτ

1 − iξτ
2 )

and to write them as ρτ
μ(r, t) =

+1∑
ν=−1

(−1)νSτ
μ,−ν(t)rν . Then

δnτ = −
3∑

i=1

∇i(nτξτ
i ) = −

+1∑
ν=−1

(−1)ν∇ν(nτρτ
−ν),

δuτ
μ =

∂ρτ
μ

∂t
=

+1∑
ν=−1

(−1)ν Ṡτ
μ,−ν(t)rν .
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Using these expressions one ˇnds

Rτ
λμ(t) = −

∫
d3r

∑
σ,ν

Cλμ
1σ,1νrσrν

+1∑
φ=−1

(−1)φ∇φ(nτρτ
−φ) =

=
∑
σ,ν

Cλμ
1σ,1ν

∫
d3r nτ

eq(ρ
τ
σrν + ρτ

νrσ) =

= 2
∑
φ,σ,ν

Cλμ
1σ,1ν(−1)φ

∫
d3r nτ

eqS
τ
σ,−φrφrν =

= 2
∑
k,κ

∑
φ,σ,ν

Cλμ
1σ,1ν(−1)φSτ

σ,−φCkκ
1φ,1νRτ

kκ(eq).

Now taking into account the axial symmetry (κ = 0) one gets

Rτ
λμ =

2√
3

[
(
√

2Rτ
20 − Rτ

00)C
λμ
1μ,10S

τ
μ,0−

−
(

1√
2
Rτ

20 + Rτ
00

)
(Cλμ

1μ+1,1−1S
τ
μ+1,−1 + Cλμ

1μ−1,11S
τ
μ−1,1)

]
.

Exactly the same derivation for Lτ
λμ leads to the following result:

Lτ
λμ = m

∑
σ,ν

Cλμ
1σ,1ν

∫
d3r nτ

eqρ̇
τ
νrσ =

= (−1)λ m√
3

[
(
√

2Rτ
20 − Rτ

00)C
λμ
1μ,10Ṡ

τ
μ,0−

−
(

1√
2
Rτ

20 + Rτ
00

)
(Cλμ

1μ+1,1−1Ṡ
τ
μ+1,−1 + Cλμ

1μ−1,11Ṡ
τ
μ−1,1)

]
.

We are interested in R̄21 and L̄11. Remembering that R00 = −Q00/
√

3, R20 =(
2
3

)3/2

Q00δ, and Qτ
00 =

1
2
Q00 (due to approximation (17)), we ˇnd

R̄2±1 =
1

3
√

2
Q00

[(
1 − 2

3
δ

)
S̄0,±1 +

(
1 +

4
3
δ

)
S̄±1,0

]
,

L̄1±1 =
m

6
√

2
Q00

[(
1 − 2

3
δ

)
˙̄S0,±1 −

(
1 +

4
3
δ

)
˙̄S±1,0

]
,

where S̄σ,ν = Sn
σ,ν − Sp

σ,ν (and Sσ,ν = Sn
σ,ν + Sp

σ,ν). Having in mind the eiΩt

time dependence (vibrational motion), we can substitute ˙̄Sσ,ν by iΩS̄σ,ν . Solving
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these equations with respect to S̄σ,ν , we have

S̄0,1 =
3√
2

[
R̄21 −

2i

mΩ
L̄11

]/[
Q00

(
1 − 2

3
δ

)]
,

S̄1,0 =
3√
2

[
R̄21 +

2i

mΩ
L̄11

]/[
Q00

(
1 +

4
3
δ

)]
.

Now we use the set of Eqs. (24) to ˇnd that L̄11 = − i

Ω
mω̄2δ(1−α)R̄21 and, as

a result,

R̄21 ∓
2i

mΩ
L̄11 =

[
1 ∓ 2

ω̄2

Ω2
(1 − α)δ

]
R̄21.

Introducing the notation

A =
3√
2

[
1 − 2

ω̄2

Ω2
(1 − α)δ

]/[
Q00(1 − 2

3
δ)
]

,

(153)

B =
3√
2

[
1 + 2

ω̄2

Ω2
(1 − α)δ

]/[
Q00(1 +

4
3
δ)
]

,

we ˇnally get
S̄0,1 = AR̄21, S̄1,0 = BR̄21.

A similar analysis of R̄2−1 and L̄1−1 allows us to write immediately

S̄0,−1 = AR̄2−1, S̄−1,0 = BR̄2−1.

So we have for isovector ®cyclic¯ displacements:

ρ̄+1 = S̄1,0r0 = BR̄21x3,

ρ̄−1 = S̄−1,0r0 = BR̄2−1x3,

ρ̄0 = −S̄0,1r−1 − S̄0,−1r+1 =
√

2A(J̄13x1 + J̄23x2),

where J̄13 = (R̄2−1 − R̄21)/2, J̄23 = i(R̄2−1 + R̄21)/2. The variable J τ
ij is a

small variation of the tensor Jτ
ij =

∫
d{p, r}xixjf

τ (r,p, t). Isovector cartesian

displacements are found by elementary means:

ξ̄1 =
1√
2
(ρ̄−1 − ρ̄+1) =

√
2BJ̄13x3,

ξ̄2 =
i√
2
(ρ̄−1 + ρ̄+1) =

√
2BJ̄23x3, (154)

ξ̄3 = ρ̄0 =
√

2A(J̄13x1 + J̄23x2).
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By deˇnition, the inˇnitesimal displacements ξi are the differentials (ξ1 = dx, ξ2 =
dy, ξ3 = dz). This fact allows one to construct the differential equations for cur-
rent ˇelds. For example, for the current ˇeld in the plane x = 0 we have

dy

dz
=

B

A

z

y
→ ydy − B

A
zdz = 0. (155)

Integrating this equation we ˇnd

y2 + σz2 = const ≡ c → y2

c
+

z2

c/σ
= 1, (156)

where σ = −B/A. Depending on the sign of σ this curve will be either an ellipse
or a hyperbola. The careful analysis [6] of the δ dependence of σ shows that in
the case of the scissors mode σ > 0 for all permitted δ (i.e., −3/4 < δ < 3/2)
and in the case of IVGQR σ < 0 for all permitted δ. Therefore the curve (156) is
an ellipse for the scissors mode and it is a hyperbola for IVGQR (see Figs. 1, 2).

One can easily see in Fig. 1 that the main constituent of the scissors-mode
motion is the rotation (out of phase rotation of neutrons and protons). It is also
seen that the rotation is accompanied by the distortion of the nuclear shape Å at
least it is evident that the long semiaxis becomes smaller. To get a quantitative
measure for the contribution of each kind of motion, it is sufˇcient to write the
displacement ξ as the superposition of a rotational component with the coefˇcient
a and an irrotational one with the coefˇcient b [4]:

ξ = aex × r + b∇(yz) = a(0,−z, y) + b(0, z, y).

Comparing the components ξy = (b−a)z, ξz = (b+a)y with ξ2, ξ3 in (154),
we ˇnd

b − a =
√

2J̄23B, b + a =
√

2J̄23A → a = η(1 + σ), b = η(1 − σ),

where η = J̄23A/
√

2. So, for the scissors mode in the small δ limit we have

a = 2η

(
1 − 3

4
δ

)
, b =

3
2
ηδ,

b

a
	 3

4
δ

(
1 +

3
4
δ

)
≈ 3

4
δ, (157)

i.e., the current of the scissors mode is dominated by the rotational motion. The
contributions of the two kinds of motion to the IVGQR are

a =
1
2
ηδ, b = 2η

(
1 − 1

4
δ

)
,

a

b
	 1

4
δ

(
1 +

1
4
δ

)
≈ 1

4
δ, (158)

i.e., the current of the IVGQR is dominated by the irrotational motion.
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Fig. 1. Schematic picture of isovector dis-
placements for the scissors mode. Thin
ellipses are the lines of currents. The
thick oval is the initial position of the nu-
cleus' surface (common for protons and
neutrons). The dashed oval is the ˇnal
position of the protons' (or neutrons') sur-
face as a result of inˇnitesimal displace-
ments shown by the arrows

Fig. 2. Schematic picture of isovector
displacements for the high-lying mode
(IVGQR). The lines of currents are shown
by thin lines (hyperbolae). The thick oval
is the initial position of the nucleus' sur-
face (common for protons and neutrons).
The dashed oval is the ˇnal position of the
protons' (or neutrons') surface as a result
of inˇnitesimal displacements shown by
the arrows

Transition currents are calculated in WFM analogously to transition proba-
bilities. The pole structure of the right-hand side of Eq. (150) tells us that the
transition current can be calculated by means of an expression similar to (34):

〈0|Ĵi(r)|ν〉 = � lim
Ω→Ων

(Ω − Ων)neq(r)ξ̇i(r, t) exp (iΩt)/〈ν|Ŵ |0〉. (159)
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For the ξi from above we obtain (using formulae (129) and (124))

〈0|Ĵ3(r)|ν〉 = −iΩνneq(r)
A√
2
[〈0|R̂2−1 − R̂21|ν〉x1 + i〈0|R̂2−1 + R̂21|ν〉x2],

〈0|Ĵ2(r)|ν〉 = Ωνneq(r)
B√
2
〈0|R̂2−1 + R̂21|ν〉x3, (160)

〈0|Ĵ1(r)|ν〉 = −iΩνneq(r)
B√
2
〈0|R̂2−1 − R̂21|ν〉x3.

As is seen, transition currents are proportional to transition probabilities.
If necessary, one can ˇnd the next term of the series (151). To calculate

the respective coefˇcients Gi,jkl(t) in the WFM method one is obliged to derive
(and solve) the set of dynamical equations for higher (fourth) order moments of
the Wigner function. Examples of similar calculations for third-rank tensors can
be found in [12].

5.2. RPA Method. The procedure of constructing the 	ow distributions in
RPA is more complicated. It is necessary at ˇrst to calculate transition currents.
Having solutions (72) for Xν

mi, Y ν
mi, one can do it with the help of formula (85):

〈0|Ĵ(r)|ν〉 =
∑
mi

(jimXν
mi + jmiY

ν
mi) = Kν

∑
mi

{
jimQ∗

im

Eν − εmi
− jmiQ∗

mi

Eν + εmi

}
=

= Kν

{ ∑
mi(ΔN=0)

[
jimQ∗

im

Eν − ε0
− jmiQ∗

mi

Eν + ε0

]
+

+
∑

mi(ΔN=2)

[
jimQ∗

im

Eν − ε2
− jmiQ∗

mi

Eν + ε2

]}
. (161)

The operator Q has a ˇnite number of particle hole matrix elements Qmi, so, in
principle, the sums in (161) can be calculated exactly. The same is true for the
coefˇcients cν (124). Therefore, in accordance with (150) one could hope to ˇnd
the exact RPA result for the velocity distribution δu(r, t). Unfortunately, because
of the pole structure of coefˇcients cν(Ω), it can be done for any Ω except the
required frequency Ων corresponding to the considered mode (resonance). Of
course, it is clear that in the case of Ω close enough to Ων the main contribution
into δu comes from the single matrix element 〈0|Ĵ(r)|ν〉. That is why, to get an
idea about the distribution of currents in the RPA eigenstate |ν〉 it is sufˇcient
to know the transition matrix element 〈0|Ĵ(r)|ν〉. However, even in this simple
model one cannot ˇnd a compact analytical expression for sums in (161) Å the
ˇeld of velocities can be constructed only numerically.

As we have already seen it is much more convenient to deal with lines
of currents. The differential equation for them can be derived with the help of
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formula (150). With a e−iΩt time dependence we rewrite it in the more convenient
form

−neq(r)iΩξi(r) =
∑

σ

[〈0|Ĵi(r)|σ〉cσ − 〈σ|Ĵi(r)|0〉c̄σ]

and deˇne the ratio

ξ2(r)
ξ3(r)

=

∑
σ

[〈0|Ĵ2(r)|σ〉cσ − 〈σ|Ĵ2(r)|0〉c̄σ]

∑
σ

[〈0|Ĵ3(r)|σ〉cσ − 〈σ|Ĵ3(r)|0〉c̄σ]
.

Remembering the deˇnition of ξi and cσ , multiplying the numerator and the
denominator of the right-hand side by (Ω − Ων) and taking the limit Ω → Ων ,
we arrive to the differential equation

dy

dz
=

〈0|Ĵ2(r)|ν〉
〈0|Ĵ3(r)|ν〉

, (162)

which determines the lines of currents for the resonance state |ν〉.
5.3. Green's Function Method. The distribution function being known, one

can calculate the distribution of nuclear currents jτ (r, t) = mnτ (r, t)uτ (r, t).
There are no any currents in the equilibrium state, so we have

jτ
x(r, t) = mnτ (r, t)δuτ

x(r, t) =
∫

2d3p

(2π�)3
pxf τ

1 (r,p, t) =

= − z

2mωx
[Cτ

+(t)ω+ + Cτ
−(t)ω−]

∫
2d3p

(2π�)3
p2

xδ(εF − H0) =

= − z

ωx

2π

3
[2mεF − m2ω2

x(x2 + y2) − m2ω2
zz2]3/2[Cτ

+(t)ω+ + Cτ
−(t)ω−] =

= − z

2mωx
nτ

0(r)[Cτ
+(t)ω+ + Cτ

−(t)ω−], (163)

where the following notation is introduced:

Cτ
±(t) =

t∫
−∞

dt′Zτ
1 (t′) cos ω±(t′ − t).

Deriving (163) we used the approximation (17) which means, in particular, that
ωn

i = ωp
i and nn

0 = np
0 = n0/2. Another component of the 	ow is

jτ
z (r, t)=

∫
2d3p

(2π�)3
pzf

τ
1 (r,p, t) = − x + y

2mωz
nτ

0(r)[Cτ
+(t)ω+ − Cτ

−(t)ω−]. (164)
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With the help of the isovector counterpart of formulae (138) the functions Cτ
±(t)

can be written via dynamical variables

Cτ
−(t) =

[
Lτ

1(t) − ω+

ω−
Iτ
y (t)

]
/ζ, Cτ

+(t) = −
[
Lτ

1(t) − ω−
ω+

Iτ
y (t)

]
/ζ

with ζ =
2π3ε4F

3mω3
xω2

z

2
(2π�)3

= βmωxωz/6κ0, and the required combinations are

Cτ
+(t)ω+ + Cτ

−(t)ω− = −2ωz[Lτ
1(t) + Iτ

y (t)]/ζ,

(165)
Cτ

+(t)ω+ − Cτ
−(t)ω− = −2ωx[Lτ

1(t) − Iτ
y (t)]/ζ.

We are interested in isovector 	ows j̄x = jn
x − jp

x and j̄z = jn
z − jp

z . With the
help of the ˇrst and last equations of (25) we ˇnd

C̄+(t)ω+ + C̄−(t)ω− = −2ωziΩm

[
1 + 2

ω̄2

Ω2
(1 − α)δ

]
Q̄1

ζ
,

(166)

C̄+(t)ω+ − C̄−(t)ω−7 = −2ωxiΩm

[
1 − 2

ω̄2

Ω2
(1 − α)δ

]
Q̄1

ζ
.

As a result, we have the explicit expressions for currents

j̄z(r, t) =
iΩ
2ζ

[
1 − 2

ω̄2

Ω2
(1 − α)δ

]
Q̄1(t)n0(r)

ωx

ωz
(x + y),

(167)

j̄x(r, t) =
iΩ
2ζ

[
1 + 2

ω̄2

Ω2
(1 − α)δ

]
Q̄1(t)n0(r)

ωz

ωx
z.

Following the recipe of Subsec. 5.2 (formula (162)) we can derive the differential
equation for lines of currents, for example, in the plane x = 0:

dy

dz
=

j̄y

j̄z
→ dy

dz
=

z

y

ω2
z

ω2
x

1 + 2
ω̄2

Ω2
(1 − α)δ

1 − 2
ω̄2

Ω2
(1 − α)δ

=
z

y

B

A
(168)

with A and B deˇned by (153). Obviously, this expression coincides exactly with
formula (155). It is necessary to emphasize the principal point: the result (168)
is obtained from the GF method in a direct way, whereas deriving formula (155)
we made the strong approximation about truncating the expansion (151) which
parameterizes the displacements. The agreement of both expressions is not sur-
prising Å at the end of Sec. 5 we have shown that in the case of the harmonic
oscillator with multipoleÄmultipole residual interactions the WFM and GF meth-
ods give identical results.
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5.4. Summary of Flow Calculations. In conclusion, in full RPA one must
calculate the currents numerically leading to ˇne details (shell effects) whereas
in WFM and GF treatments one obtains their gross structure with analytical
formulas. The latter feature is quite important in order to understand the real
character of the motion under study since current patterns produced numerically
from complicated formulas with a lot of summations like in (161) can hardly be
interpreted physically. A good example is the interplay of the scissors mode and
the isovector giant quadrupole resonance. Looking only at the 	ow patterns (see
Figs. 1, 2) one would not be able to tell that the former is mostly rotational with a
small amount of an irrotational component and the other way round for the latter,
as can be seen from Eqs. (157), (158).

CONCLUSION

In this paper, we made an exhaustive comparison of different methods to treat
collective excitations in nuclei, like the scissors mode, isovector and isoscalar
giant quadrupole resonances. This comparison was exempliˇed by the harmonic
oscillator plus separable quadrupoleÄquadrupole force model, but it has a more
general character.

We investigated the WFM, RPA, and Green's Function (GF) methods. Un-
der certain circumstances all three methods give essentially the same results. For
example, all methods give in our model the same analytical expressions for en-
ergies and transition probabilities for all the excitations considered. It turned
out that the WFM and GF methods are very close to one another. Contrary
to the RPA, both work in phase space and incorporate semiclassical aspects,
with no need to introduce a single particle basis. Finally, both the meth-
ods yield identical sets of dynamical equations for the moments. However,
in the case of realistic forces the GF method loses its simplicity and a more
complicated pseudoparticle method [39] has to be applied, whereas the WFM
method continues to be a convenient and powerful tool for the description of
the collective motions, as was demonstrated in [14Ä17] by employing Skyrme
forces.

To show the analytical equivalence between the WFM and RPA methods one
needs to introduce the dynamical equations for the transition matrix elements.
They can be derived either from the RPA equations for the amplitudes Xkq ,
Ykq or from the WFM dynamical equations for the moments. This proves the
identity of eigenvalues in both methods under the condition that a complete basis
is used in both the cases. However, both the methods behave differently when the
dimension of the space is reduced. Actually, the WFM is designed to use only
rather a few moments of low rank, which play the role of collective coordinates
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of the model. The restricted number of eigenvalues approximate the collective
states in an optimal way, representing, e.g., their centroid positions, as this was
shown in [14, 15, 17, 34]. In this sense, the WFM has similarity with the sum
rule approach [9] which works, however, only in the cases when practically all
strength is exhausted by one state, whereas the WFM method works also in
situations when the strength is distributed among several excitations. On the
contrary, in the RPA one needs in general rather large space to correctly account
for the collectivity of, e.g., the giant resonances. This demonstrates very well the
difference between the two approaches: the RPA describes the ˇne structure of
collective excitations, whereas the WFM method yields the corresponding gross
structure.

It makes no sense to speak about advantages or disadvantages of one of the
two discussed methods Å they are complementary. Of course, RPA gives com-
plete, exhaustive information concerning the microscopic (particleÄhole) structure
of collective excitations. However, sometimes a considerable additional effort is
required to understand their physical nature. On the contrary, the WFM method
gives direct information on the physical nature of excitations. One should note
that from the quantum mechanical point of view Wigner function moments (being
the average values of some operators) are the quantum observables, which relieves
the physical interpretation of the corresponding excitation. Our results serve as a
very good illustration of this situation. What do we learn about the scissors mode
and IVGQR from each of the two methods? RPA says that the scissors mode
is mostly created by ΔN = 0 particleÄhole excitations with a small admixture
of ΔN = 2 particleÄhole excitations and vice versa for IVGQR. Without further
effort Å this is about all. One does not even suspect the key role of the relative
angular momentum in the creation of the scissors mode. On the other hand, the
WFM method directly reveals that the scissors mode appears due to oscillations
of the relative angular momentum with a small admixture of the quadrupole mode
and vice versa for IVGQR. Further, it informs us about the extremely important
role of the Fermi surface deformation in the formation of the scissors mode.

The principal difference between the two methods is revealed in their practical
use (applications). The RPA equations (70) are written in the very general and
convenient for calculations form: the equations for every new pair of amplitudes
Xkq , Ykq are obtained simply by changing the indices k, q. As a result, there are
no big problems to write the set of equations of arbitrary large dimension which
can be solved by modern computers without any difˇculties. The situation with
moments is quite different. It is difˇcult to write in general terms the dynamical
equation for tensors of arbitrary rank n. The equations for Cartesian tensors of
every rank must be derived separately (see the text after formula (4)). Even
the procedure of the reduction of Cartesian tensors to irreducible ones becomes
practically hopeless for large n. And, as a matter of fact, there is no necessity in
further increasing n, because it contradicts the grand idea of the WFM method Å
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to describe the main features of the phenomenon (its gross structure) by the
minimal set of the most essential physical characteristics. Nevertheless, taking
into account moments of higher and higher rank, one can produce a more and
more detailed description of the phenomenon, achieving (at least in principle) the
maximally fragmented picture given by the experiment (and RPA).

Two new mathematical results are obtained for the HO+ QQ model. We have
proved exactly, without any approximations, the orthogonality of the ®spurious¯
state to all physical states. In this sense, we have generalized the result of
Lo Iudice [29] derived in a small deformation approximation. The analytical
expressions are derived for the normalization factor of the synthetic scissors state
and overlaps of this state with eigenstates of the model. We suggested also the
differential equation to construct the current lines in the RPA.

Future work in this direction will deal with super	uidity and spin degrees of
freedom.

APPENDIX A

It is known that the deformed harmonic oscillator Hamiltonian can be ob-
tained in a Hartree approximation ®by making the assumption that the isoscalar
part of the QQ force builds the one-body container well¯ [21]. In our case it is
obtained quite easily by summing the expressions for V p and V n (formula (7)):

V (r, t) =
1
2
(V p(r, t) + V n(r, t)) =

=
1
2
mω2r2 + κ0

2∑
μ=−2

(−1)μQ2−μ(t)q2μ(r). (A.1)

In the state of equilibrium (i.e., in the absence of an external ˇeld) Q2±1 =

Q2±2 = 0. Using the deˇnition [37] Q20 = Q00
4
3
δ and the formula q20 =

2z2 − x2 − y2 we obtain the potential of the anisotropic harmonic oscillator

V (r) =
m

2
[ω2

x(x2 + y2) + ω2
zz2]

with oscillator frequencies

ω2
x = ω2

y = ω2(1 + σδ), ω2
z = ω2(1 − 2σδ),

where σ = −κ0
8Q00

3mω2
. The deˇnition of the deformation parameter δ must be

reproduced by the harmonic oscillator wave functions, which allows one to ˇx
the value of σ. We have

Q00 =
�

m

(
Σx

ωx
+

Σy

ωy
+

Σz

ωz

)
, Q20 = 2

�

m

(
Σz

ωz
− Σx

ωx

)
,
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where Σx =
A∑

i=1

(
nx +

1
2

)
i

and nx is the oscillator quantum number. Using the

self-consistency condition [37]

Σxωx = Σyωy = Σzωz = Σ0ω0,

where Σ0 and ω0 are deˇned in the spherical case, we get

Q20

Q00
= 2

ω2
x − ω2

z

ω2
x + 2ω2

z

=
2σδ

1 − σδ
=

4
3
δ.

Solving the last equation with respect to σ, we ˇnd

σ =
2

3 + 2δ
. (A.2)

Therefore, the oscillator frequencies and the strength constant can be written as

ω2
x = ω2

y = ω̄2

(
1 +

4
3
δ

)
, ω2

z = ω̄2

(
1 − 2

3
δ

)
, κ0 = −mω̄2

4Q00
(A.3)

with ω̄2 = ω2/(1 + 2
3δ). The condition for volume conservation ωxωyωz =

const = ω3
0 makes ω δ-dependent

ω2 = ω2
0

1 + (2/3)δ

(1 + (4/3)δ)2/3 (1 − (2/3)δ)1/3
.

So the ˇnal expressions for oscillator frequencies are

ω2
x = ω2

y = ω2
0

(
1 + (4/3)δ
1 − (2/3)δ

)1/3

, ω2
z = ω2

0

(
1 − (2/3)δ
1 + (4/3)δ

)2/3

. (A.4)

It is interesting to compare these expressions with the very popular [9, 37]
parameterization

ω2
x = ω2

y = ω′2
(

1 +
2
3
δ′
)

, ω2
z = ω′2

(
1 − 4

3
δ′
)

.

The volume conservation condition gives

ω′2 =
ω2

0

(1 + (2/3)δ′)2/3 (1 − (4/3)δ′)1/3
,

so the ˇnal expressions for oscillator frequencies are

ω2
x = ω2

y = ω2
0

(
1 + (2/3)δ′

1 − (4/3)δ′

)1/3

, ω2
z = ω2

0

(
1 − (4/3)δ′

1 + (2/3)δ′

)2/3

. (A.5)
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The direct comparison of expressions (A.4) and (A.5) allows one to establish the
following relation between δ and δ′:

δ′ =
δ

1 + 2δ
, δ =

δ′

1 − 2δ′
.

One more parameterization of oscillator frequencies can be found in the re-
view [4]:

ω2
x = ω2

y =
ω′′2

1 − (2/3)δ′′
, ω2

z =
ω′′2

1 + (4/3)δ′′
.

One has from the volume conservation condition

ω′′2 = ω2
0

(
1 − 2

3
δ′′
)2/3 (

1 +
4
3
δ′′
)1/3

,

so the ˇnal expressions for oscillator frequencies are

ω2
x = ω2

y = ω2
0

(
1 + (4/3)δ′′

1 − (2/3)δ′′

)1/3

, ω2
z = ω2

0

(
1 − (2/3)δ′′

1 + (4/3)δ′′

)2/3

, (A.6)

that coincide exactly with (A.4), i.e., δ′′ = δ.
It is easy to see that equations (A.4) correspond to the case when the de-

formed density n(r) is obtained from the spherical density n0(r) by the scale
transformation [20]

(x, y, z) → (x eα/2, y eα/2, z e−α)

with

eα =
(

1 + (4/3)δ
1 − (2/3)δ

)1/3

, δ =
3
2

e3α − 1
e3α + 2

, (A.7)

which conserves the volume and does not destroy the self-consistency, because
the density and potential are transformed in the same way.

It is necessary to note that Q00 also depends on δ

Q00 =
�

m

(
Σx

ωx
+

Σy

ωy
+

Σz

ωz

)
=

�

m
Σ0ω0

(
2
ω2

x

+
1
ω2

z

)
=

= Q0
00

1

(1 + (4/3)δ)1/3 (1 − (2/3)δ)2/3
,

where Q0
00 = A

3
5
R2, R = r0A

1/3. As a result, the ˇnal expression for the

strength constant becomes

κ0 = −mω2
0

4Q0
00

(
1 − (2/3)δ
1 + (4/3)δ

)1/3

= −mω2
0

4Q0
00

e−α,

that coincides with the respective result of [20].
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APPENDIX B

To calculate the sums Q0 =
∑

mi(ΔN=0)

|Qmi|2 and Q2 =
∑

mi(ΔN=2)

|Qmi|2

we employ the sum-rule techniques of Suzuki and Rowe [20]. The well-known
harmonic oscillator relations

xψnx =
√

�

2mωx
(
√

nxψnx−1 +
√

nx + 1ψnx+1),
(B.1)

p̂xψnx = −i

√
m�ωx

2
(
√

nxψnx−1 −
√

nx + 1ψnx+1)

allow us to write

xzψnxψnz =
�

2m
√

ωxωz
(
√

nxnzψnx−1ψnz−1+

+
√

(nx + 1)(nz + 1)ψnx+1ψnz+1 +
√

(nx + 1)nzψnx+1ψnz−1+

+
√

nx(nz + 1)ψnx−1ψnz+1),
(B.2)

p̂xp̂z

m2ωxωz
ψnxψnz = − �

2m
√

ωxωz
(
√

nxnzψnx−1ψnz−1+

+
√

(nx + 1)(nz + 1)ψnx+1ψnz+1 −
√

(nx + 1)nzψnx+1ψnz−1−
−
√

nx(nz + 1)ψnx−1ψnz+1).

These formulae demonstrate in an obvious way that the operators

P0 =
1
2

(
zx +

1
m2ωxωz

p̂xp̂z

)
and P2 =

1
2

(
zx − 1

m2ωxωz
p̂xp̂z

)

contribute only to the excitation of the ΔN = 0 and ΔN = 2 states, respec-
tively. Following [20], we express the zx component of r2Y21 =

√
5/16πQ =

−
√

15/8πz(x + iy) as
zx = P0 + P2.

Hence, we have

ε0
∑

mi(ΔN=0)

∣∣∣∣∣〈0|
A∑

s=1

zsxs|mi〉
∣∣∣∣∣
2

= ε0
∑
mi

∣∣∣∣∣〈0|
A∑

s=1

P0(s)|mi〉
∣∣∣∣∣
2

=

=
1
2
〈0|

[
A∑

s=1

P0(s),

[
H,

A∑
s=1

P0(s)

]]
|0〉, (B.3)
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where ε0 = �(ωx − ωz). The above commutator is easily evaluated for the
Hamiltonian with the potential (A.1) as

〈0|
[

A∑
s=1

P0(s),

[
H,

A∑
s=1

P0(s)

]]
|0〉 =

=
�

2m
ε0

⎛
⎜⎜⎜⎜⎝
〈0|

A∑
s=1

z2
s |0〉

ωx
−

〈0|
A∑

s=1

x2
s|0〉

ωz

⎞
⎟⎟⎟⎟⎠ . (B.4)

Taking into account the axial symmetry and using the deˇnitions

Q00 = 〈0|
A∑

s=1

(2x2
s + z2

s)|0〉, Q20 = 2〈0|
A∑

s=1

(z2
s − x2

s)|0〉, Q20 = Q00
4
3
δ,

we transform this expression to

〈0|
[

A∑
s=1

P0(s),

[
H,

A∑
s=1

P0(s)

]]
|0〉 =

=
�

6m
ε0Q00

(
1 + (4/3)δ

ωx
− 1 − (2/3)δ

ωz

)
. (B.5)

With the help of the self-consistent expressions for ωx, ωz (A.3) one comes to
the following result:

〈0|
[

A∑
s=1

P0(s),

[
H,

A∑
s=1

P0(s)

]]
|0〉 =

Q00

6m

ε20
ω̄2

=
�

2

6m
Q0

00

(
ω0

ωz
− ω0

ωx

)2

. (B.6)

By using the fact that the matrix elements for the zy component of r2Y21 are
identical to those for the zx component, because of axial symmetry, we ˇnally
obtain

ε0
∑

mi(ΔN=0)

∣∣∣∣∣〈0|
A∑

s=1

r2
sY21|mi〉

∣∣∣∣∣
2

=
5

16π

Q00

mω̄2
ε20 =

=
5

16π

Q0
00

m

ε20
ω2

0

(
1 + (4/3)δ
1 − (2/3)δ

)1/3

. (B.7)
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By calculating the double commutator for the P2 operator, we ˇnd

ε2
∑

mi(ΔN=2)

∣∣∣∣∣〈0|
A∑

s=1

r2
sY21|mi〉

∣∣∣∣∣
2

=
5

16π

Q00

mω̄2
ε22 =

=
5

16π

Q0
00

m

ε22
ω2

0

(
1 + (4/3)δ
1 − (2/3)δ

)1/3

, (B.8)

where ε2 = �(ωx + ωz).
We need also the sums Qτ

0 and Qτ
2 calculated separately for neutron and

proton systems with the mean ˇelds V n and V p, respectively. The necessary
formulae are easily derivable from the already obtained results. There are no any
reasons to require the fulˇllment of the self-consistency conditions for neutrons
and protons separately, so one has to use formula (B.5). The trivial change of
notation gives

〈0|
[

Z∑
s=1

P0(s),

[
Hp,

Z∑
s=1

P0(s)

]]
|0〉 =

=
�

6m
εp
0Q

p
00

(
1 + (4/3)δp

ωp
x

− 1 − (2/3)δp

ωp
z

)
, (B.9)

εp
0

∑
mi(ΔN=0)

∣∣∣∣∣〈0|
Z∑

s=1

r2
sY21|mi〉

∣∣∣∣∣
2

=

=
5

16π

�

m
εp
0Q

p
00

(
1 + (4/3)δp

ωp
x

− 1 − (2/3)δp

ωp
z

)
, (B.10)

εp
2

∑
mi(ΔN=2)

∣∣∣∣∣〈0|
Z∑

s=1

r2
sY21|mi〉

∣∣∣∣∣
2

=

=
5

16π

�

m
εp
2Q

p
00

(
1 + (4/3)δp

ωp
x

+
1 − (2/3)δp

ωp
z

)
. (B.11)

The nontrivial information is contained in oscillator frequencies of the mean ˇelds
V p and V n (formula (7))

(ωp
x)2 = ω2

[
1− 2

mω2
(κQp

20 + κ̄Qn
20)

]
, (ωp

z)2=ω2

[
1+

4
mω2

(κQp
20 + κ̄Qn

20)
]
,

(B.12)

(ωn
x )2 = ω2

[
1− 2

mω2
(κQn

20 + κ̄Qp
20)

]
, (ωn

z )2= ω2

[
1+

4
mω2

(κQn
20 + κ̄Qp

20)
]
.
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The above-written formulae can also be used to calculate the analogous
sums for operators containing various combinations of momenta and coordinates,
for example, components of an angular momentum, tensor products (rp̂)21 and
(p̂2)21. By deˇnition Î1 = yp̂z − zp̂y, Î2 = zp̂x − xp̂z. In accordance with (B.1),
we have

xp̂zψnxψnz = −i
�

2

√
ωz

ωx

(√
nxnzψnx−1ψnz−1−

−
√

(nx + 1)(nz + 1)ψnx+1ψnz+1 +
√

(nx + 1)nzψnx+1ψnz−1−
−
√

nx(nz + 1)ψnx−1ψnz+1

)
. (B.13)

Therefore,

Î2ψnxψnz = i
�

2

(√
ωz

ωx
−
√

ωx

ωz

)
×

×
(√

nxnzψnx−1ψnz−1−
√

(nx+1)(nz+1)ψnx+1ψnz+1

)
+i

�

2

(√
ωz

ωx
+
√

ωx

ωz

)
×

×
(√

(nx + 1)nzψnx+1ψnz−1 −
√

nx(nz + 1)ψnx−1ψnz+1

)
. (B.14)

Having formulae (B.2) and (B.14), one derives the following expressions for
matrix elements coupling the ground state with ΔN = 2 and ΔN = 0
excitations:

〈nx + 1, nz + 1|Î2|0〉 = i
�

2
(ω2

x − ω2
z)

ωx + ωz

√
(nx + 1)(nz + 1)

ωxωz
,

〈nx + 1, nz − 1|Î2|0〉 = i
�

2
(ω2

x − ω2
z)

ωx − ωz

√
(nx + 1)nz

ωxωz
,

(B.15)

〈nx + 1, nz + 1|xz|0〉 =
�

2m

√
(nx + 1)(nz + 1)

ωxωz
,

〈nx + 1, nz − 1|xz|0〉 =
�

2m

√
(nx + 1)nz

ωxωz
.

It is easy to see that

〈nx + 1, nz + 1|Î2|0〉 = im
(ω2

x − ω2
z)

ωx + ωz
〈nx + 1, nz + 1|xz|0〉,

〈nx + 1, nz − 1|Î2|0〉 = im
(ω2

x − ω2
z)

ωx − ωz
〈nx + 1, nz − 1|xz|0〉.
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Due to the degeneracy of the model all particle hole excitations with ΔN = 2
have the same energy ε2 and all particle hole excitations with ΔN = 0 have the
energy ε0. This fact allows one to join the last two formulae into one general
expression

〈ph|Î2|0〉 = i�m
(ω2

x − ω2
z)

εph
〈ph|xz|0〉.

Taking into account the axial symmetry we have an analogous formula for Î1:

〈ph|Î1|0〉 = −i�m
(ω2

x − ω2
z)

εph
〈ph|yz|0〉.

The magnetic transition operator (37) is proportional to the angular momentum:

f̂1±1 = − ie

4mc

√
3
2π

(Î2 ∓ iÎ1). Therefore, we can write

〈ph|f̂1±1|0〉 = − e�

2c
√

5
(ω2

x − ω2
z)

εph
〈ph|r2Y2±1|0〉. (B.16)

Similar calculations for the tensor product (rp̂)21 = −1
2
[zp̂x+xp̂z +i(zp̂y +yp̂z)]

lead to the following relation:

〈ph|(rp̂)21|0〉 = i
m

�

√
2π

15
εph〈ph|r2Y2±1|0〉 = i

m

2�
εph〈ph|r2

21|0〉. (B.17)

Two kinds of particle hole matrix elements are obtained from the second
formula of (B.2):

〈nx + 1, nz + 1|p̂xp̂z|0〉 = −�mωxωz

√
(nx + 1)(nz + 1)

2ωx2ωz
,

〈nx + 1, nz − 1|p̂xp̂z|0〉 = �mωxωz

√
(nx + 1)nz

2ωx2ωz
.

Simple comparison with (B.15) shows that

〈nx + 1, nz + 1|p̂xp̂z|0〉 = −m2ωxωz〈nx + 1, nz + 1|xz|0〉,
〈nx + 1, nz − 1|p̂xp̂z|0〉 = m2ωxωz〈nx + 1, nz − 1|xz|0〉.

With the help of the obvious relations

2ωxωz = ω2
x + ω2

z − ε20/�
2, −2ωxωz = ω2

x + ω2
z − ε22/�

2
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these two formulae can be joined into one expression

〈ph|p̂xp̂z|0〉 =
m2

2
(ω2

x + ω2
z − ε2ph/�

2)〈ph|xz|0〉.

By deˇnition p̂2
21 = −p̂z(p̂x + ip̂y) and r̂2

21 = −z(x + iy), hence,

〈ph|p̂2
21|0〉 =

m2

2
(ω2

x + ω2
z − ε2ph/�

2)〈ph|r2
21|0〉. (B.18)
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