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CLASSICAL INTEGRABLE SYSTEMS
AND GAUGE FIELD THEORIES

M.Olshanetsky∗,∗∗

Chern Institute of Mathematics, Nankai University, Tianjin, China

In this review we consider the Hitchin integrable systems and their relations with the self-
duality equations and twisted supersymmetric YangÄMills theory in four dimensions. We deˇne the
symplectic Hecke correspondence between different integrable systems. As an example, we consider
elliptic CalogeroÄMoser system and integrable Euler-Arnold top on coadjoint orbits of the group
GL(N , C) and explain the symplectic Hecke correspondence for these systems.
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INTRODUCTION

Some interrelations between classical integrable systems and ˇeld theories in
dimensions 3 and 4 were proposed by N.Hitchin twenty years ago [1, 2]. This
approach to integrable systems has some advantages. It immediately leads to the
Lax representation with a spectral parameter, allows one to prove in some cases
the algebraic integrability and to ˇnd separated variables [3,4]. It was found later
that some well-known integrable systems can be derived in this way [5Ä12].

It was demonstrated in [13] that there exists an integrable regime in N = 2
supersymmetric YangÄMills theory in four dimensions, which is described by
Sieberg and Witten [14]. A general picture of interrelations between integrable
models and gauge theories in dimensions 4, 5, and 6 was presented in review [15].

Some new aspects of interrelations between integrable systems and gauge
theories were found recently in the framework of four-dimensional reformulation
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of the geometric Langlands program [16Ä18]. This review takes into account this
approach, but also is based on the papers and reviews [1,2, 11,12,19Ä22].

The derivation of integrable systems from ˇeld theories is based on the
symplectic or the Poisson reduction. This construction is familiar in gauge ˇeld
theories. The physical degrees of freedom in gauge theories are deˇned upon
imposing the ˇrst- and the second-class constraints. The ˇrst-class constraints are
analogs of the Gauss law generating the gauge transformations. A combination
of the Gauss law and constraints coming from the gauge ˇxing yields the second-
class constraints.

We start with gauge theories that have some important properties. First,
they have at least a ˇnite number of independent conserved quantities. After the
reduction they will play the role of integrals of motion. Next, we assume that af-
ter a gauge ˇxing and solving the constraints, the reduced phase space becomes a
ˇnite-dimensional manifold and its dimension is twice of the number of integrals.
The latter property provides the complete integrability. It is, for example, the
theory of the Higgs bundles describing the Hitchin integrable systems [1]. This
theory corresponds to a gauge theory in dimension three. On the other hand, the
similar type of constraints arises in reduction of the self-duality equations in the
four-dimensional YangÄMills theory [1], and in the four-dimensional N = 4
supersymmetric YangÄMills theory [16] after reducing them to a space of dimen-
sion two.

We also analyze the problem of the classiˇcation of integrable systems.
Roughly speaking, two integrable systems are called equivalent if the original
ˇeld theories are gauged equivalent. We extend the gauge transformations by al-
lowing singular gauge transformations of a special kind. On the ˇeld theory side,
these transformations correspond to monopole conˇgurations, or, equivalently,
to the including of the 't Hooft operators [23, 24]. For some particular exam-
ples we establish in this way an equivalence of integrable systems of particles
(the CalogeroÄMoser systems) and integrable EulerÄArnold tops. It turns out
that this equivalence is the same as equivalence of two types of R matrices: of
dynamical and vertex type [25,26].

Before considering concrete cases we remind the main deˇnitions of com-
pletely integrable systems [20,21,27].

1. CLASSICAL INTEGRABLE SYSTEMS

Consider a smooth symplectic manifold R of dim (R) = 2l. It means that
there exists a closed nondegenerate two-form ω, and the inverse bivector π
(ωa,bπ

bc = δc
a), such that the space C∞(R) becomes a Lie algebra (the Poisson

algebra) with respect to the Poisson brackets,

{F, G} = 〈dF |π|dG〉 = ∂aFπab∂bG.
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Any H ∈ C∞(R) deˇnes a Hamiltonian vector ˇeld on R

H → 〈dH |π = ∂aHπab∂b = {H, .}.

A Hamiltonian system is a triple (R, π, H) with the Hamiltonian 	ow

∂tx
a = {H, xa} = ∂bHπba.

A Hamiltonian system is called completely integrable if it satisˇes the following
conditions:

• There exists l Poisson commuting Hamiltonians on R (integrals of motion)
I1, . . . , Il;

• Since the integrals commute, the set Tc = {Ij = cj} is invariant with
respect to the Hamiltonian 	ows {Ij , .}. Then being restricted on Tc, Ij(x) are
functionally independent almost for all x ∈ Tc, i.e., det(∂aIb)(x) �= 0.

In this way we come to the hierarchy of commuting 	ows on R

∂tjx = {Ij(x),x} . (1.1)

Tc is a submanifold Tc ⊂ R. It is a Lagrangian submanifold, i.e., ω vanishes on
Tc. If Tc is compact and connected, then it is diffeomorphic to an l-dimensional
torus. The torus Tc is called the Liouville torus. In a neighborhood of Tc there
is a projection

p : R → B, (1.2)

where the Liouville tori are generic ˇbers, and the base of ˇbration B is para-
meterized by the values of integrals. The coordinates on a Liouville torus (®the
angle¯ variables) along with dual variables on B (® the action¯ variables) describe
a linearized motion on the torus. Globally, the picture can be more complicated.
For some values of cj , Tc ceases to be a submanifold. In this way the action-angle
variables are local.

Here we consider a complex analog of this picture. We assume that R
is a complex algebraic manifold, and the symplectic form ω is a (2, 0) form,
i.e., locally in the coordinates (z1, z̄1, . . . , zl, z̄l) the form is represented as
ω = ωa,bdza ∧ dzb. General ˇbers of (1.2) are Abelian subvarieties of R,
i.e., they are complex tori Cl/Λ, where the lattice Λ satisˇes the Riemann con-
ditions. Integrable systems in this situation are called algebraically integrable
systems.

Let two integrable systems be described by two isomorphic sets of the action-
angle variables. In this case, the integrable systems can be considered as equiva-
lent. Establishing equivalence in terms of angle-action variables is troublesome.
There exists a more direct way based on the Lax representation. The Lax repre-
sentation is one of the commonly accepted methods of construction and investiga-
tion of integrable systems. Let L(x, z), M1(x, z), . . . , Ml(x, z) be a set of l + 1
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matrices depending on x ∈ R with a meromorphic dependence on the spectral
parameter z ∈ Σ, where Σ is a Riemann surface∗. It is called a basic spectral
curve. Assume that the commuting 	ows (1.1) can be rewritten in the matrix
form

∂tj L(x, z) = [L(x, z), Mj(x, z)] . (1.3)

Let f be a nondegenerate matrix of the same order as L and M . The transfor-
mation

L′ = f−1Lf, M ′
j = f−1∂tj f + f−1Mjf (1.4)

is called the gauge transformation because it preserves the Lax form (1.3). The
	ows (1.3) can be considered as special gauge transformations

L(t1, . . . , tl) = f−1(t1, . . . , tl)L0f(t1, . . . , tl),

where L0 is independent of time and deˇnes an initial data, and Mj = f−1∂tj f .
Moreover, it follows from this representation that the quantities tr (L(x, z))j are
preserved by the 	ows and thereby can produce, in principle, the integrals of
motion. As we mentioned above, it is reasonable to consider two integrable
systems to be equivalent if their Lax matrices are related by nondegenerate gauge
transformation.

We relax the deˇnition of the gauge transformations and assume that det f
can have poles and zeroes on the basic spectral curve Σ with some additional
restrictions on f . This equivalence is called the symplectic Hecke correspondence.
This extension of equivalence will be considered in this review in detail. The
following systems are equivalent in this sense:

EXAMPLES
1. Elliptic CalogeroÄMoser system ⇔ Elliptic GL(N, C) Top [11];
2. CalogeroÄMoser ˇeld theory ⇔ LandauÄLifshitz equation [10,11];
3. Painlevé VI ⇔ ZhukovskyÄVolterra gyrostat [12].
The ˇrst example will be considered in Sec. 3.
The gauge invariance of the Lax matrices allows one to deˇne the spectral

curve

C ={(λ ∈ C , z ∈ Σ) | det (λ − L(x, z)) = 0}. (1.5)

The Jacobian of C is an Abelian variety of dimension g, where g is the genus
of C. If g = l = 1/2 dim R, then J plays the role of the Liouville torus and
the system is algebraically integrable. In generic cases g > l, and to prove
the algebraic integrability one should ˇnd additional reductions of the Jacobians,
leading to Abelian spaces of dimension l.

∗It will be explained below that L and M are sections of some vector bundles over Σ.
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Finally we formulate two goals of this review:
• derivation of the Lax equation and the Lax matrices from a gauge theory;
• explanation of the equivalence between integrable models by inserting

't Hooft operators in a gauge theory.

2. 1D FIELD THEORY

The simplest integrable models such as the rational CalogeroÄMoser system,
the Sutherland model, the open Toda model can be derived from matrix models of
a ˇnite order. Here we consider a particular case Å the rational CalogeroÄMoser
system (RCMS) [32,33].

2.1. Rational CalogeroÄMoser System (RCMS). The phase space of the
RCMS is

RRCM = C
2N = {(v,u)}, v = (v1, . . . vN ), u = (u1, . . . uN )

with the canonical symplectic form

ωRCM =
N∑

j=1

dvj ∧ duj , {vj , uk} = δjk. (2.1)

The Hamiltonian describes interacting particles with complex coordinates u =
(u1, . . . uN) and complex momenta v = (v1, . . . vN )

HRCM =
1
2

N∑
j=1

v2
j + ν2

∑
j>k

1
(uj − uk)2

.

The Hamiltonian leads to the equations of motion

∂tuj = vj , (2.2)

∂tvj = −ν2
∑
j>k

1
(uj − uk)3

. (2.3)

The equations of motion can be put in the Lax form

∂tL(v,u) = [L(v,u), M(v,u)]. (2.4)

Here L, M are the N × N matricies of the form

L = P + X, M = D + Y,

P = diag (v1, . . . vN ), Xjk = ν(uj − uk)−1, (2.5)
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Yjk = −ν(uj − uk)−2, D = diag (d1, . . . dN ), (2.6)

dj = ν
∑
k �=j

(uj − uk)−2.

The diagonal part of the Lax equation (2.4) implies ∂tP = [X, Y ]diag. It coincides
with (2.3). The nondiagonal part has the form

∂tX = [P, Y ] + ([X, Y ]nondiag − [X, D]).

It can be found that [X, Y ]nondiag = [X, D] and the equation ∂tX = [P, Y ]
coincides with (2.2).

The Lax equations produce the integrals of motion

Im =
1
m

tr (Lm), ∂t tr (Lm) = 0, m = 1, 2, . . .N. (2.7)

It will be proved later that they are in involution {Im, In} = 0. In particular,
I2 = HRCM. Eventually, we come to the RCMSS hierarchy

∂jf(v,u) = {Ij , f(v,u)}. (2.8)

2.2. Matrix Mechanics and the RCMS. This construction was proposed
in [35, 36]. Consider a matrix model with the phase space R = gl(N, C) ⊕
gl(N, C)

R = (Φ, Ā), Φ, Ā ∈ gl (N, C), ∗ dim R = 2N2.

The symplectic form on R is

ω = tr (dΦ ∧ dĀ) =
∑
j,k

dΦjk ∧ dĀkj . (2.9)

The corresponding Poisson brackets have the form

{Φjk, Āil} = δkiδjl.

Choose N commuting integrals

Im =
1
m

tr (Φm), {Im, In} = 0, m = 1, . . .N.

Take as a Hamiltonian H = I2. Then we come to the free motion on R

∂tΦ = {H, Φ} = 0, (2.10)

∂tĀ = {H, Ā} = Φ. (2.11)

Generally, we have a free matrix hierarchy

∂jΦ = 0, ∂jĀ = Φj−1 (∂j = {Ij , }). (2.12)

∗These notations will be justiˇed in the next Section.
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2.2.1. Hamiltonian Reduction for RCMS. The form ω and the integrals Im

are invariant with respect to the action of the gauge group

G = GL(N, C),

Φ → f−1Φf, Ā → f−1Āf, f ∈ GL(N, C).

The action of gauge Lie algebra Lie (G) = gl (N, C) is represented by the vector
ˇelds

VεΦ = [Φ, ε], VεĀ = [Ā, ε]. (2.13)

Let ıε be the contraction operator with respect to the vector ˇeld Vε

(
ıε =

∑
j,k

(Vε)jk
∂

∂jk

)
, and Lε = dıε + ıεd be the corresponding Lie derivative. The

invariance of the symplectic form and the integrals means that

Lεω = 0, LεIm = 0.

Since the symplectic form is closed dω = 0, we have dıεω = 0. Then, on the
afˇne space R the one-form ıεω is exact

ıεω = dF (Φ, Ā, ε). (2.14)

The function F (Φ, Ā, ε) is called the momentum Hamiltonian. The Poisson brack-
ets with the momentum Hamiltonian generate the gauge transformations:

{F, f(Φ, Ā} = Lεf(Φ, Ā).

The explicit form of the momentum Hamiltonian is

F (Φ, Ā, ε) = tr (ε[Φ, Ā]).

Deˇne the moment map

μ : R → Lie∗(gauge group) ∼ gl (N, C),

μ(Φ, Ā) = [Φ, Ā], (Φ, Ā) �→ [Φ, Ā]. (2.15)

Let us ˇx its value as
μ = [Φ, Ā] = νJ, (2.16)

J =

⎛
⎜⎜⎜⎝

0 1 · · · · · · 1
1 0 1 · · · 1
...

. . .
. . . · · ·

...
1 · · · · · · 1 0

⎞
⎟⎟⎟⎠ . (2.17)
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It follows from the deˇnition of the moment map that (2.16) is the ˇrst-class
constraint. In particular, {F (Φ, Ā, ε), F (Φ, Ā, ε′)} = F (Φ, Ā, [ε, ε′]). Note, that
the matrix J is degenerate and is conjugated to the diagonal matrix diag (N −
1,−1, . . . ,−1). Let G0 be a subgroup of the gauge group preserving the moment
value

G0 = {f ∈ G | f−1Jf = J} (dim (G0) = (N − 1)2 + 1).

In other words, G0 preserves the surface in R

F−1(νJ) = {[Φ, Ā] = νJ}. (2.18)

Let us ˇx a gauge on this surface with respect to the G0 action. It can be proved
that generic matrices Ā can be diagonalized by G0

f−1Āf = u = diag (u1, . . . un), f ∈ G0. (2.19)

In other words, we have two conditions Å the ˇrst-class constraints (2.16) and
the gauge ˇxing (2.19). The reduced phase space Rred is the result of a putting
both the types of constraints

Rred = R//G = F−1(νJ)/G0.

It has dimension

dim (Rred) = dim (R) − dim (G) − dim (G0),

2N − 2 = 2N2 − N2 − (N − 1)2 + 1).

Let us prove that Rred = RRCM and that the hierarchy (2.12) being restricted
on RRCM coincides with the RCMS hierarchy (2.8). Let f ∈ G0 diagonalize Ā in
(2.19). Deˇne

L = f−1Φf. (2.20)

Then it follows from (2.10) that L satisˇes the Lax equation

∂tΦ = 0 ⇒ ∂tL = [L, M ] (M = −f−1∂tf).

The moment constraint (2.18) allows one to ˇnd the off-diagonal part of L.
Evidently, it coincides with X (2.5). The diagonal elements of L are free pa-
rameters. In a similar way the off-diagonal part Y (2.6) of M can be derived
from the equation of motion for Ā (2.11). Thereby, we come to the Lax form
of the equations of motion for RCMS. Since Φ → L and Ā → u, the symplectic
form ω (2.9) coincides on RRCM with ωRCM (2.1). It follows from (2.20) that the
integrals (2.7) Poisson commute. Therefore, we obtain the RCMS hierarchy.
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The same system can be derived starting with the matrix mechanics based
on SL(N, C). In this case I1 = tr Φ = 0 and thereby in the reduced system∑

vj = 0.
2.2.2. Hamiltonian Reduction for 4d YangÄMills Theory. In this subsection

we make a step aside to illustrate the Hamiltonian reduction in terms of the
familiar phase space of the YangÄMills theory. For this purpose consider 4d YM
theory with a group G in the Hamiltonian formalism [37,38]. The phase space is
generated by the space components on R3 = (x1, x2, x3) of the vector potential
and the electric ˇeld

R = {A = (A1, A2, A3), E = (E1, E2, E3)} ,

where
Ej = F0j = ∂0Aj − ∂jA0 + [A0, Aj ].

Here we suppressed the Lie algebra indices. It is a symplectic space with the
canonical form

ω =
∫
R3

〈dE ∧ dA〉 =
3∑

j=1

∫
R3

tr (dEj ∧ dAj).

The Hamiltonian is quadratic in ˇelds and has the form

H =
1
2

∫
R3

〈E2〉 + 〈B2〉,

where B = (B1, B2, B3) is the magnetic ˇeld

Bj = εjklFkl = εjkl(∂kAj − ∂jAk + [Ak, Aj ]).

We assume that the ˇelds are smooth and vanish on inˇnity such that the Hamil-
tonian and the symplectic form are well deˇned. The Hamiltonian deˇnes the
classical equations of motion

∂tAj = Ej , ∂tEj =
∑

k

[∂k + Ak, Fkj ].

The Hamiltonian and the form are invariant with respect to the gauge trans-
formations

A → Af = f−1df + f−1Af, e → Ef = f−1Ef,



196 OLSHANETSKY M.

where d = (∂1, ∂2, ∂3). We assume that f is a smooth map f ∈ G = C∞(R3 →
G), vanishing on inˇnity and at some marked points

f(ya) = 0, ya = (ya
1 , ya

2 , ya
3 ) (a = 1, . . . , n).

Inˇnitesimal gauge transformations deˇne the vector ˇeld on the phase space

VεE = [E, ε], VεA = dε + [A, ε], ε ∈ Lie (G).

The corresponding momentum Hamiltonian is

F (E,A, ε) =
∫
R3

〈
ε

⎛
⎝ 3∑

j=1

∂jEj + [Aj , Ej ]

⎞
⎠
〉

(compare with (2.14)). Therefore the moment takes the form

μ(E,A) =
3∑

j=1

∂jEj + [Aj , Ej ].

It is an element of the gauge co-algebra Lie∗(G). In other words, the moment
belongs to the map of the phase space R to the distributions on R3 with values
in Lie∗ (G).

Let us ˇx it as

3∑
j=1

∂jEj + [Aj , Ej ] =
∑

a

δ(x − ya)ρa, (2.21)

where ρa ∈ Lie∗ (G). The moment constraint (2.21) is none other than the Gauss
law, and ρa are the electric charges.

To come to the reduced phase space Rred = R//G we should add to the
Gauss law a gauge ˇxing condition. Note that the gauge transformations vanish
at the points ya, and in this way they preserve the right-hand side of (2.21).
Starting with six ˇelds (Aj , Ej) deˇning R, we put two types of constraints Å
the Gauss law and the gauge ˇxing. Roughly speaking, they kill two ˇelds and
the reduced phase space describes the ®transversal degrees of freedom¯.

3. 3D FIELD THEORY

3.1. Hitchin Systems. 3.1.1. Fields. Deˇne a ˇeld theory on (2 + 1)-dimen-
sional space-time of the form R × Σg,n, where Σg,n is a Riemann surface of
genus g with a divisor D = (x1, . . . , xn) of n marked points.
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The phase space of the theory is deˇned by the following ˇeld content:
1) Consider a vector bundle E of rank N over Σg,n equipped with the

connection d′′ = ∇z̄ ⊗ dz̄. It acts on the sections sT = (s1, . . . , sN ) of E as
d′′s = ∂̄s + Ās. The vector ˇelds Ā(z, z̄) are C∞ maps Σg,n → gl (N, C).

2) The scalar ˇelds (the Higgs ˇelds) Φ(z, z̄) ⊗ dz, Φ : Σg,n → gl (N, C).
The Higgs ˇeld is a section of the bundle Ω(1,0)(Σg,n,EndE). It means that Φ
acts on the sections sj → Φkjsj ⊗ dz. We assume that Φ has holomorphic poles

at the marked points Φ ∼ Φa

z − xa
+ . . . Let (α1, . . . , αg; β1, . . . , βg) be a set of

fundamental cycles of Σg,n,
(∏

j

αjβjα
−1
j β−1

j = 1
)
. The bundle E is deˇned

by the monodromy matrices (Qj , Λj)

αj : s → Q−1
j s, βj : Λ−1

j s.

Similarly, for Ā and Φ we have

αj : Ā → Qj ∂̄Q−1
j + QjĀQ−1

j , βj : Ā → Λj ∂̄Λ−1
j + ΛjĀΛ−1

j ,

αj : Φ → QjΦQ−1
j , βj : Φ → ΛjΦΛ−1

j .
(3.1)

3) The spin variables are attributed to the marked points Sa ∈ gl (N, C),
a = 1, . . . , n, Sa = g−1Sa(0)g, where Sa(0) is a ˇxed element of gl (N, C). In
other words, Sa belong to coadjoint orbits Oa of GL(N, C). They play the role
of non-Abelian charges located at the marked points.

Let {Tα} (α = 1, . . . , N2) be a basis in the Lie algebra gl (N, C), [Tα,
Tβ] = Cγ

α,βTγ . Deˇne the Poisson structure on the space of ˇelds:
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1) The Darboux brackets for the ˇelds (A, Φ):

Ā(z, z̄) =
∑

α

Āα(z, z̄)Tα, Φ(w, w̄) =
∑

β

Φβ(w, w̄)Tβ ,

{Φα, (w, w̄), Āβ(z, z̄)} = 〈TαTβ〉δ(z − w, w − w̄) (〈 〉 = trace in ad).

2) Linear Lie brackets for the spin variables:

Sa =
∑

α

Sa
αTα

{Sa
α, Sb

β} = δa,bCγ
α,βSa

γ .

In this way we have deˇned the phase space

R = (Ā, Φ,Sa). (3.2)

The Poisson brackets are nondegenerate and the space R is symplectic with the
form

ω = ω0 −
n∑

a=1

∫
Σg,n

ωaδ(z − xa, z̄ − x̄a), (3.3)

ω0 =
∫

Σg,n

〈DΦ ∧ DĀ〉, (3.4)

ωa = 〈D(Sag−1) ∧ Dg〉. (3.5)

The last form is the KirillovÄKostant form on the coadjoint orbits. The ˇelds
(Φ, Ā) are holomorphic coordinates on R and the form ω0 is the (2, 0) form in this
complex structure on R. Similarly, (Sag−1, g) are the holomorphic coordinates
on the orbit Oa, and ωa is also (2, 0) form.

3.1.2. Hamiltonians. The traces 〈Φj〉 (j = 1, . . . , N) of the Higgs ˇeld are
periodic (j, 0) forms Ω(j,0)(Σg,n) with holomorphic poles of order j at the marked
points. To construct integrals from 〈Φj〉 one should integrate them over Σg,n and
to this end prepare (1, 1) forms from the (j, 0) forms. For this purpose consider
the space of smooth (1 − j, 1) differentials Ω(1−j,1)(Σg,n \ D) vanishing at the

marked points. Locally, they are represented as μj = μj(z, z̄)
(

∂

∂z

)j−1

⊗ dz̄.

In other words, μj are (0, 1) forms taking values in degrees of vector ˇelds T on
Σg,n \ D. For example, μ2 is the Beltrami differential.

The product 〈Φj〉μj can be integrated over the surface. We explain below
that μj can be chosen as elements of basis in the cohomology space H1(Σg,n \
D, T ⊗j−1). This space has dimension

nj = dimH1(Σg,n, T ⊗(j−1)) =
{

(2j − 1)(g − 1) + jn, j > 1,
g, j = 1.

(3.6)
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Let μj,k be a basis in H1(Σg,n, T ⊗(|−∞)) (k = 1, . . . , nj). The product μj,k〈Φj〉
can be integrated to deˇne the Hamiltonians

Ij,k =
1
j

∫
Σg,n

μj,k〈Φj〉, j = 1, . . .N. (3.7)

It follows from (3.6) that the number of the independent integrals
∑

nj for

GL(N, C) is

dN,g,n =
N∑

j=1

nj = (g − 1)N2 + 1 + n
N(N − 1)

2
. (3.8)

Since 〈Φ〉 = 0 for SL(N, C) the number of the independent integrals is

dN,g,n =
N∑

j=2

nj = (g − 1)(N2 − 1) + n
N(N − 1)

2
. (3.9)

The integrals I(j,k) are independent and Poisson commute

{I(j1,k1), I(j2,k2)} = 0. (3.10)

Thus, we come to dN,g,n commuting 	ows on the phase space R(Ā, Φ,Sa)

∂

∂tj,k
Φ = {∇Ij,k, Φ} = 0, (3.11)

∂

∂tj,k
Ā = μj,kΦj−1, (3.12)

∂

∂tj,k
Sa = 0. (3.13)

3.1.3. Action and Gauge Symmetries. The same theory can be described by
the action

S =
N∑

j=2

nj∑
k=1

∫
Rj,k

∫
Σg,n

×

×
(
〈Φ∂j,kĀ〉 +

n∑
a=1

δ(z − xa, z̄ − x̄a)〈Sag−1
a ∂j,kga〉 − Ij,k

)
dtj,k,

where the time-like Wilson lines at the marked points are included.
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The action is gauge-invariant with respect to the gauge group

GC = {smooth maps : Σg,n → GL(N, C)}.

The elements f ∈ GC are smooth and have the same monodromies as the Higgs
ˇeld (3.1).

The action is invariant with respect to the gauge transformations

Ā → f−1∂̄f + f−1Āf, Φ → f−1Φf,

ga → gafa, Sa → (fa)−1Safa, fa = f(z, z̄)|z=xa .

Consider the inˇnitesimal gauge transformations

VεĀ = ∂̄ε + [Ā, ε], VεΦ = [Φ, ε],

Vεga = gaε(xa), VεS
a = [Sa, ε(xa)], ε ∈ Lie (GC).

The Hamiltonian F generating the gauge vector ˇelds ıεω = DF has the form

F =
∫

Σg,n

〈
ε(∂̄Φ + [Ā, Φ] −

n∑
a=1

Saδ(z − xa, z̄ − x̄a))

〉
.

The moment map

μ : R(Ā, Φ,Sa) → Lie∗ (GC), μ = ∂̄Φ + [Ā, Φ] −
n∑

a=1

Saδ(z − xa, z̄ − x̄a).

The Gauss law (the moment constraints) takes the form

∂̄Φ + [Ā, Φ] =
n∑

a=1

Saδ(z − xa, z̄ − x̄a). (3.14)

Upon imposing these constraints, the residues of the Higgs ˇelds become equal
to the spin variables ResΦz=xa = Sa by analogy with the YangÄMills theory,
where the Higgs ˇeld corresponds to the electric ˇeld and Sa are analogs of the
electric charges.

The reduced phase space

Rred = R(Ā, Φ,Sa)/(Gauss law) + (gauge ˇxing)

deˇnes the physical degrees of freedom, and the reduced phase space is the
symplectic quotient

Rred = R(Ā, Φ,Sa)//GC. (3.15)
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3.1.4. Algebra-Geometric Approach. The operator d′′ acting on sections
deˇnes a holomorphic structure on the bundle E. A section s is holomorphic if

(∂̄ + Ā)s = 0.

The moment constraint (3.14) means that the space of sections of the Higgs ˇeld
over Σg \ D is holomorphic.

Consider the set of holomorphic structures L = {dĀ} on E. Two holo-
morphic structures are called equivalent if the corresponding connections are
gauge-equivalent. The moduli space of holomorphic structures is the quotient
L/GC. Generically the quotient has very singular structure. To have a reasonable
topology one should consider the so-called stable bundles. The stable bundles
are generic and we consider the space of connection Lstable corresponding to the
stable bundles. The quotient is called the moduli space of stable holomorphic
bundles

M(N, g, n) = Lstable/G.

It is a ˇnite-dimensional manifold. The tangent space to M(N, g, n) is isomorphic
to H1(Σg,n, EndE). Its dimension can be extracted from the RiemannÄRoch
theorem and for curves without marked points (n = 0)

dimH0(Σ,End E) − dimH1(Σ,End E) = (1 − g) dimG.

For stable bundles and g > 1 dim(H0(Σ,End E)) = 1 and

dimM(N, g, 0) = (g − 1)N2 + 1

for GL(N, C), and

dimM(N, g, 0) = (g − 1)(N2 − 1)

for SL(N, C).
Thus, in the absence of the marked points we should consider bundles over

curves of genus g � 2. But the curves of genus g = 0 and 1 are important
for applications to integrable systems. Including the marked points improves the
situation.

We extend the moduli space by adding an additional data at the marked
points. Consider an N -dimensional vector space V and choose a 	ag Fl= (V1 ⊂
V2 ⊂ . . . VN = V ). Note that 	ag is a point in a homogeneous space called the
	ag variety Fl ∈ GL(N, C)/B, where B is a Borel subgroup. If (e1, . . . , eN ) is
a basis in V and Fl is a 	ag

Fl = {V1 = {a11e1}, V2 = {a21e1 + a22e2}, . . . , VN = V },
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then B is the subgroup of lower triangular matrices. The 	ag variety has dimen-

sion
1
2
N(N − 1). The moduli space M(N, g, n) is the moduli space M(N, g, 0)

equipped with maps ga ∈ GL(N, C) of V to the ˇbers over the marked points
V → E|xa , preserving Fl in V . In other words, ga are deˇned up to the right
multiplication of B and therefore we supply the moduli space M(N, g, 0) with
the structure of the 	ag variety GL(N, C)/B at the marked points. We have a
natural ®forgetting¯ projection π : M(N, g, n) → M(N, g, 0). The ˇber of this
projection is the product of n copies of the 	ag varieties. The bundles with this
structure are called the quasi-parabolic bundles. The dimension of the moduli
space of quasi-parabolic holomorphic bundles is

dim M(N, g, n) = dim M(N, g, 0) +
1
2
nN(N − 1).

For curves of genus g > 1, dim (M(N, g, n)) is independent of degree of
the bundles d = deg (E) = c1(det E). In fact, we have a disjoint union of
components labeled by the corresponding degrees of the bundles M =

⊔
M(d).

For elliptic curves (g = 1) one has

dimH1(Σ,End E) = dim H0(Σ,End E),

and dimH0(Σ,End E) does depend on deg (E). Namely,

dim (M(N, 1, 0, d)) = g.c.d.(N, d). (3.16)

In this case the structures of the moduli space for the trivial bundles (i.e., with
deg (E) = 0) and, for example, for bundles with deg (E) = 1 are different.

Now consider the Higgs ˇeld Φ. As we already mentioned, Φ deˇnes an
endomorphism of the bundle E

Φ : Ω(0)(Σg,n, E) → Ω(1,0)(Σg,n, E), s → Φs ⊗ dz.

Similarly, they can be described as sections of Ω0
C∞(Σg,n, EndE ⊗ KD). Here

KD is the canonical class on Σ \ D that locally apart from D is represented as
dz. Remind that Φ has poles at D. On the other hand, as it follows from the
deˇnition of the symplectic structure (3.4) on the set of pairs (Φ, Ā), the Higgs
ˇeld plays the role of a ® covector¯ with respect to the vector Ā. In this way the
Higgs ˇeld Φ is a section of the cotangent bundle T ∗Lstable.

The pair of the holomorphic vector bundle and the Higgs ˇeld (E, Φ) is
called the Higgs bundle. The reduced phase space (3.15) is the moduli space of
the quasi-parabolic Higgs bundles. It is the cotangent bundle

Rred = T ∗M(N, g, n, d). (3.17)
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Due to the Gauss law (3.14) the Higgs ˇelds are holomorphic on Σ \ D.
Then, on the reduced space Rred

Φ ∈ H0(Σg,n,End∗ E ⊗ KD). (3.18)

A part of T ∗M(N, g, n, d) comes from the cotangent bundle to the 	ag
varieties T ∗(G/B)a located at the marked points. Without the null section,
T ∗(G/B)a is isomorphic to a unipotent coadjoint orbit, while the null section is
the trivial orbit. Generic coadjoint orbits passing through a semisimple element
of gl (N, C) is an afˇne space over T ∗(G/B)a. In this way we come to the
moduli space of the quasi-parabolic Higgs bundles [29]. It has dimension

dimRred = 2N2(g − 1) + 2 + N(N − 1)n. (3.19)

This formula is universal and valid also for g = 0, 1 and does not depend on
deg (E). At the ˇrst glance, for g = 1 this formula contradicts to (3.16). In fact,
we have a residual gauge symmetry generated by subgroup of the Cartan group
of GL(N, C). The symplectic reduction with respect to this symmetry kills these
degrees of freedom and we come to dimRred = 2 + N(N − 1)n (see (3.6)). We
explain this mechanism on a particular example in Subsubsec. 3.2.2. Formula (3.6)
suggests that the phase spaces corresponding to bundles of different degrees may
be symplectomorphic. We will see soon that it is the case.

It follows from (3.18) that 〈Φj〉 ∈ H0(Σg,n, Kj
D). In other words, 〈Φj〉 are

meromorphic forms on the curve with the poles of order j at the divisor D. Let
ςjk be a basis of H0(Σg,n, Kj

D). Then

1
j
〈Φj〉 =

nj∑
k=1

Ijkςjk. (3.20)

The above-introduced basis μjk in H1(Σg,n \ D, T ⊗j−1) is dual to the basis ςjk

∫
Σg,n

μjkς lm = δl
jδ

m
k .

Then the coefˇcients of the expansion (3.20) coincide with the integrals (3.7).
The dimensions nj (3.6) can be calculated as dimH0(Σg,n, Kj

D).
The symplectic reduction preserves the involutivity (3.10) of the inte-

grals (3.7). Since

1
2

dim T ∗M(N, g, n) = number of integrals

(see (3.8), (3.9)), we come to integrable systems on the moduli space of the
quasi-parabolic Higgs bundles Rred.
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For GL(N, C) the Liouville torus is the Jacobian of the spectral curve C (1.5).
Consider bundles with the structure group replaced by a reductive group G. The
algebraic integrability for g > 1 and G as a classical simple group was proved
in [1]. The case of exceptional groups was considered in [30,31].

3.1.5. Equations of Motion on the Reduced Phase Space. Let us ˇx a gauge
Ā = Ā0. For an arbitrary connection Ā deˇne a gauge transform

f [Ā] : Ā → Ā0, Ā0 = (f−1∂̄f)[Ā] + f−1[Ā]Āf [Ā].

Then f [Ā] is an element of the coset space GC/G0, where the subgroup G0

preserves the gauge ˇxing

G0 = { f |∂̄f + [Ā0, f ] = 0}.

The same gauge transformation brings the Higgs ˇeld to the form

L = f−1[Ā]Φf [Ā].

The equations of motion for Φ (3.11) in terms of L take the form of the Lax
equation

∂j,kL = [L, Mj,k] , (3.21)

where Mj,k = f−1[Ā]∂j,kf [Ā]. Therefore, the Higgs ˇeld becomes after reduc-
tion the Lax matrix. Equation (3.21) describes the Hitchin integrable hierarchy.

The matrix Mj,k can be extracted from the second equation (3.12)

∂̄Mj,k − [Mj,k, Ā0] = ∂j,kĀ0 − Lj−1μj,k. (3.22)

The Gauss law restricted on Rred takes the form

∂̄L + [Ā0, L] =
n∑

a=1

Saδ(xa, x̄a). (3.23)

Thus, the Lax matrix is the matrix Green function of the operator ∂̄ + Ā0 on Σg,n

acting in the space Ω(1,0)(Σg,n,EndE).
The linear system corresponding to the integrable hierarchy takes the follow-

ing form. Consider a section ψ of the vector bundle E. The section is called the
BaikerÄAkhiezer function if it is a solution of the linear system for⎧⎪⎨

⎪⎩
1. (∂̄ + Ā0)ψ = 0,

2. (λ − L)ψ = 0,

3. (∂j,k + Mj,k)ψ = 0.
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The ˇrst equation means that ψ is a holomorphic section. Compatibility of the ˇrst
equation and the second equation is the Gauss law (3.23), and the ˇrst equation
and the last equation are the Lax equations (3.21).

In term of the Lax matrix the integrals of motion Ijk are expressed by the
integrals (3.7)

Ijk =
1
j

∫
Σg,n

μjk tr (L(x, z))j , (3.24)

or by the expansion (3.20)

1
j
〈Lj〉 =

nj∑
k=1

Ijkςjk. (3.25)

The moduli space of the Higgs bundles (3.17) is parameterized by the
pairs (A0, L). The projection (1.2)

T ∗M(N, g, n) → B =
N∑

j=1

H0(Σg,n \ D, Kj
D)

is called the Hitchin ˇbration.
An illustrative example of the Hitchin construction are the Higgs bundles over

elliptic curves. These cases will be described explicitly in the next subsections.
3.2. N-Body Elliptic CalogeroÄMoser System (ECMS). 3.2.1. Description of

the System. Let Cτ be an elliptic curve C/(Z + τZ), (Im τ > 0). The phase
space RECM of ECMS is described by N complex coordinates and their momenta

u = (u1, . . . , uN), (uj ∈ Cτ ) − coordinates of particles,
v = (v1, . . . , vN ), (vj ∈ C) − momentum vector

with the Poisson brackets {vj, uk} = δjk.

The Hamiltonian takes the form

HCM =
1
2
|v|2 + ν2

∑
j<k

℘(uj − uk). (3.26)
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Here ν2 is a coupling constant and ℘(z) is the Weierschtrass function. It is a
double periodic meromorphic function ℘(z + 1) = ℘(z + τ) = ℘(z), with the
second order pole ℘(z) ∼ z−2, z → 0.

The system has the Lax representation [39] with the Lax matrix

LCM = iV + X, V = diag (v1, . . . , vN ), (3.27)

Xjk = νe
(

z − z̄

τ − τ̄
(uj − uk)

)
φ(uj − uk, z), e(x) = exp (2πix), (3.28)

where

φ(u, z) =
θ(u + z)θ′(0)

θ(u)θ(z)
, (3.29)

and

θ(z) = q1/8
∑
n∈Z

(−1)n exp
(

2πı

(
1
2
n(n + 1)τ + nz

))
,

q = exp (2πiτ)

(3.30)

is the standard theta-function with a simple zero at z = 0 and the monodromies

θ(z + 1) = −θ(z), θ(z + τ) = −q−1/2 e−2πiz θ(z). (3.31)

Then from (3.31) we have that

φ(u, z + 1) = φ(u, z), φ(u, z + τ) = e(−u)φ(u, z), (3.32)

and φ(u, z) has a simple pole at z = 0

Resφ(u, z)|z=0 = 1. (3.33)

3.2.2. ECMS and the Higgs Bundles [6, 7]. To describe the ECMS as the
Hitchin system consider a vector bundle E of rank N and degree 0 over an elliptic
curve Σ1,1 with one marked point. We assume that the curve is isomorphic to
Cτ = C/(Z + τZ). The quasi-parabolic Higgs bundle T ∗E has coordinates

R0 = {Φ(z, z̄), Ā(z, z̄), S}, Φ, Ā ∈ gl (N, C), S ∈ O,

where O is a degenerate orbit at the marked point z = 0

O = {S = g−1S0g | g ∈ GL(N, C), S0 = νJ},

and J is the matrix (2.17). The orbit has dimension dim (O) = 2N − 2.
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For degree zero bundles the monodromies around the two fundamental cycles
can be chosen as Q1 = Id and Λ1 = e(u), where e(u) = diag (exp (2πiu1, . . . ,
2πiuN)). A section with this monodromies is

sT = (s1, . . . , sN ), sj = φ(uj , z). (3.34)

where φ(uj , z) is (3.29). It follows from (3.32) that the section has the prescribed
monodromies.

For the ˇelds and the gauge group we have the same monodromies

Ā(z + 1) = Ā(z), Φ(z + 1) = Φ(z),

Ā(z + τ) = e(u)Ā(z) e(−u), Φ(z + τ) = e(u)Φ(z) e(−u),

f(z + 1, z̄ + 1) = f(z, z̄), f(z + τ, z̄ + τ̄ ) = e(u)f(z, z̄) e(−u).

It can be proved that for bundles of zero degree, generic connection is trivial
Ā = −∂̄ff−1 and therefore

Ā → Ā0 = 0. (3.35)

It means that stable bundles E of rank N are decomposed into the direct sum of
line bundles

E = ⊕N
j=1Lj ,

with the sections (3.34). The elements uj are the points of the Jacobian Jac (Στ ).
They play the role of the coordinates, and thereby, Cτ ∼ Jac (Στ ).

This gauge ˇxing is invariant with respect to the constant diagonal sub-
group D0. It acts on the spin variables S ∈ O. This action is Hamiltonian. The
moment equation of this action is diag (O) = 0. This condition dictates the form
of S0 = J . The gauge ˇxing allows one to kill the degrees of freedom related to
the spin variables, because dim (O) = 2(N − 1) and dim (D0) = N − 1. Thus,
the symplectic quotient is a point (dim (O//D0) = 0).

Remark 3.1. One can choose an arbitrary orbit O. In this case we come to
the symplectic quotient O//D0. It has dimension dim (O) − 2(N − 1).

Now consider solutions of the moment equation (3.23) with the prescribed
monodromies and prove that Φ becomes the Lax matrix Φ → LCM = V +
+X (3.27). Since Ā0 = 0, V does not contribute in (3.23) and its ele-
ments are free parameters. We identify them with momenta of the particles
V = diag (v1, . . . , vN ). Due to the term with the delta-function in (3.23) the
off-diagonal part should have a simple pole with the residue νJ and the pre-
scribed monodromies. It follows from (3.32) and (3.33) that Xjk satisˇes these
conditions. They uniquely ˇx its matrix elements.
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The reduced space is described by the variables v and u. The symplectic
form on the reduced space∫

Σ1,1

〈LCM, Ā0〉 =
∑

Dvj ∧ Duj

leads to the brackets {vj , uk} = δjk .
From the general construction the integrals of motion come from the expan-

sion of tr (LCM)j(v,u, z). They are double-periodic meromorphic functions with
poles at z = 0. It is ˇnite-dimensional space generated by a basis of derivative
of the Weierschtrass functions. They are elements of the basis ςjk in (3.25).

1
j

tr (LCM)j(v,u, z) = I CM
0,j + I CM

2,j ℘(z) + . . . + I CM
j,j ℘(j)(z). (3.36)

There are
N(N + 1)

2
− 1 integrals. Due to a special choice of the orbit only

N − 1 integrals are independent. In particular,

1
2

tr (LCM)2(v,u, z) = −HCM + ν2℘(z).

For generic orbits (see Remark 4.1) the Hamiltonian takes the form

HCM =
1
2
|v|2 +

∑
j<k

SjkSkj℘(uj − uk).

It is the ECMS with spin [34]. Note, that Ij,j are the Casimir functions deˇning

a generic orbit O. Therefore we have
N(N + 1)

2
− 1 − (N − 1) =

N(N − 1)
2

commuting integrals of motion. The number of independent commuting integrals
is always equal to 1/2 dim (O).

3.3. Elliptic Top (ET) on GL(N,C). 3.3.1. Description of the System. The
elliptic top is an example of EulerÄArnold top related to the group GL(N, C).
Its phase space is a coadjoint orbit of GL(N, C). The Hamiltonian is a quadratic
form on the coalgebra g∗ = gl (N, C)∗. The ET is an integrable EulerÄArnold
top. Before to deˇne the Hamiltonian, let us introduce a special basis in the Lie
algebra gl (N, C). Deˇne the ˇnite set

Z
(2)
N = (Z/NZ ⊕ Z/NZ), Z̃

(2)
N = (Z/NZ ⊕ Z/NZ) \ (0, 0)

and let eN (x) = exp
(

2πi

N
x

)
. Then a basis is generated by N2 − 1 matrices

Tα =
N

2πi
eN

(α1α2

2

)
Qα1Λα2 , α = (α1, α2) ∈ Z̃

(2)
N ,
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where
Q = diag (1, eN(1), . . . , eN(N − 1)), (3.37)

Λ =
∑

j=1,N, (mod N)

Ej,j+1. (3.38)

The commutation relations in this basis have a simple form

[Tα, Tβ] =
N

π
sin

π

N
(α × β)Tα+β .

Let S =
∑

α∈Z
(2)
N \(0,0)

SαTα ∈ g∗. The Poisson brackets for the linear functions Sα

come from the Lie brackets

{Sα, Sβ} =
N

π
sin

π

N
(α × β)Sα+β .

The phase space RET of the ET is a coadjoint orbit

RET ∼ O = {S ∈ g∗ |S = gS0g
−1, g ∈ GL(N, C)}.

A particular orbit passes through S0 = νJ , as for the spinless ECMS.
The EulerÄArnold Hamiltonian is deˇned by the quadratic form

HET = −1
2

tr (S · J(S)),

where J is diagonal in the basis Tα

J(S) : Sα → ℘αSα, ℘α = ℘

(
α1 + α2τ

N

)
, α ∈ Z̃

(2)
N .

The equations of motion corresponding to this Hamiltonian take the form

∂tS = {HET,S} = [J(S),S],

∂tSα =
N

π

∑
γ∈Z̃

(2)
N

SγSα−γ℘γ sin
π

N
(α × γ).

3.3.2. Field Theory and the Higgs Bundles. The curve Σ1,1 is the same as
for the CalogeroÄMoser system. Consider a vector bundle E of a rank N and
degree one over Σ1,1. It is described by its sections s = (s1(z, z̄), . . . , sN (z, z̄))
with monodromies

sT (z + 1, z̄ + 1) = Q−1sT (z, z̄), sT (z + τ, z̄ + τ̄ ) = Λ̃−1sT (z, z̄), (3.39)
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where Q is (3.37), Λ̃ = e−(z+τ/2)
N Λ, and Λ is (3.38). Since detQ = ±1 and

det Λ̃ = ±e−(z+τ/2)
1 , the determinants of the transition matrices have the same

quasi-periods as the Jacobi theta-functions. The theta-functions have a simple
pole in Σ1,1. Thereby, the vector bundle EN has degree one.

The Higgs bundle has the same ˇeld content as the ECMS

R = {Ā, Φ,S}, Ā, Φ ∈ gl (N, C), S ∈ O.

The orbit
O = {S = g−1S0g, g ∈ GL(N, C)}

is located at the marked point z = 0.
It follows from (3.39) that the ˇelds Φ, Ā have the monodromies

Ā(z + 1) = QĀ(z)Q−1, Φ(z + 1) = QΦ(z)Q−1,

Ā(z + τ) = ΛĀ(z)Λ−1, Φ(z + τ) = ΛΦ(z)Λ−1.

The group of the automorphisms GC = {f} of E should have the same
monodromies

f(z + 1) = Qf(z)Q−1, f(z + τ) = Λf(z)Λ−1.

Due to the monodromy conditions the generic ˇeld Ā is gauge equivalent to
the trivial f−1Āf + f−1∂̄f = 0. Therefore

Ā = −∂̄f [Ā]f−1[Ā]. (3.40)

It allows us to choose Ā = 0 as an appropriate gauge. It means that there
are no moduli of holomorphic vector bundles. More precisely, the holomorphic
moduli are related only to the quasi-parabolic structure of E related to the spin
variables S. The monodromies of the gauge matrices prevent to have nontrivial
residual gauge symmetries. Let f [Ā](z, z̄) be a solution of (3.40). Consider the
transformation of Φ by solutions of (3.40)

LET[Ā, g](z, z̄) = f [Ā](z, z̄)Φ(z, z̄)f−1[Ā](z, z̄). (3.41)

The moment constraints (3.14) take the form

∂̄LET = δ(z, z̄)S.

The solution takes the form

LET =
∑

α∈Z
(2)
N \(0,0)

Sαϕα(z)Tα,
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where ϕα(z) = eN(α2z)φ
(

α1 + α2τ

N
, z

)
. The Lax matrix was found in [40]

using another approach. It is the Lax matrix of the vertex spin chain. The Lax
matrix is meromorphic on Σ1,1 with a simple pole with ResLET|z=0 = S. The
monodromies of ϕα(z) are read off from (3.32)

ϕα(z + 1) = eN(α2)ϕα(z), ϕα(z + τ) = eN (−α1)ϕα(z).

Then LET has the prescribed monodromies. The reduced phase space RET is the
coadjoint orbit:

RET = {O = S = gS0g
−1},

S =
∑

α∈Z
(2)
N \(0,0)

SαTα ∈ g∗. The symplectic form on RET is the KirillovÄKostant

form (3.5).
For a particular choice of the orbit passing through J (ref J) its dimension

coincides with the dimension of the phase of the spinless ECMS

dim RET = dim RCMS = 2N − 2.

It is not occasional and we prove below that RCM is symplectomorphic to RET.
Since the traces tr (LET)j are double periodic and have poles at z = 0, the

integrals of motion come from the expansion (see (3.36))

tr (LET(z))k = I0,k + I2,k℘(z) + . . . + Ik,k℘(k−2)(z).

In particular,
tr (LET)2 = HET + C2℘(z).

The coefˇcients Is,k are in involution

{Is,k, Im,j} = 0.

In particular, all functions Is,k Poisson commute with the Hamiltonian HET.
Therefore, they play the role of conservation laws of elliptic rotator hierarchy on

GL(N, C). We have a tower of
N(N + 1)

2
independent integrals of motion

I0,2 I2,2

I0,3 I2,3 I3,3

. . . . . . . . . . . .
I0,n I2,N . . . . . . IN,N .

There are no integrals I1,k because there are no double periodic meromorphic
functions with one simple pole. The integrals Ik,k , k = 0, 2, 3 . . . , N are the
Casimir functions corresponding to the coadjoint orbit

RET = {S ∈ gl (N, C), S = g−1S(0)g}.
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The conservation laws Is,k generate commuting 	ows on Rrot

∂s,kS = {Is,k,S}1 (∂s,k := ∂ts,k
).

3.4. Symplectic Hecke Correspondence. Let E and Ẽ be two bundles over
Σ of the same rank. Assume that there is a map Ξ+ : E → Ẽ (more precisely
a map of the space of sections Γ(E) → Γ(Ẽ)) such that it is an isomorphism on
the complement to z0 and it has one-dimensional cokernel at x ∈ Σ:

0 → E
Ξ+

→ Ẽ → C|z0 → 0.

The map Ξ+ is called upper modiˇcation of the bundle E at the point z0. Let
w = z − z0 be a local coordinate in a neighborhood of z0. We represent locally
E as a sum of line bundles E = ⊕N

j=1L| with holomorphic sections

s = (s1, s2, . . . , sN ). (3.42)

After the modiˇcation we come to the bundle Ẽ = ⊕N
j=1Lj ⊗ O(z0). The

sections of Ẽ are represented locally as s̃ = (g1(w)s1, . . . , w
−1gN(w)sN ), where

gj(0) �= 0. In this basis the upper modiˇcation at the point z0 is represented by
the matrix

Ξ+ =
(

IdN−1 0
0 w

)
.

It is a modiˇcation of order 1, since it increases the degree of E

deg (Ẽ) = deg (E) + deg (O(‡′) = deg (E) + ∞. (3.43)

On the complement to the point z0 consider the map

E
Ξ−
← Ẽ,

such that Ξ−Ξ+ = Id. It deˇnes the lower modiˇcation at the point z0. The upper
modiˇcation Ξ+ is represented by the vector (0, . . . , 1); and Ξ−, by (0, . . . ,−1).

For the Higgs bundles the modiˇcation acts as

(E, Φ) Ξ→ (Ẽ, Φ̃),

ΞΦ = Φ̃Ξ, Ξ ˜̄A = ∂̄Ξ + ĀΞ. (3.44)

The Higgs ˇelds Φ and Φ̃ should be holomorphic with prescribed simple poles
at the marked points. The holomorphity of the Higgs ˇeld puts restrictions on its
form. Consider the upper modiˇcation Ξ+ ∼ (0, . . . , 1) and assume that Φ in the
deˇned above basis takes the form

Φ =
(

a b
c d

)
,
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where a is a matrix of order N − 1. Then

Ξ
(

a b
c d

)
=
(

a bw−1

cw d

)
Ξ.

We see that a generic Higgs ˇeld acquires the ˇrst order pole after the modiˇca-
tion. To escape it we assume that there exists an eigenvector Φξ = λξ such that
it belongs to the Ker Φ. Let ξ = (0, 0, . . . , 1) and

Φ =
(

a 0
c d

)
.

Then the Higgs ˇeld Φ̃ does not have a pole

Φ̃ =
(

a 0
cw d

)
.

In other words, the matrix elements (Φ)jN should have ˇrst order null.
In this way the upper modiˇcation is lifted from E to the Higgs bundle.

After the reduction we come to the map (see (3.17))

T ∗M(N, g, n, d) → T ∗M(N, g, n, d + 1).

We call it the upper Symplectic Hecke Correspondence (SHC).
Generically the modiˇed bundle Ẽ is represented locally as a sum of line

bundles Ẽ = ⊕N
j=1(Lj ⊗O(z0)m

j (mj ∈ Z) with holomorphic sections

s̃ = (s̃1, . . . , s̃N ) = (w−m1g1s1, w
−m2g2s2, . . . , w

−mN gNsN ). (3.45)

It has degree

deg (Ẽ) = deg (E) +
N∑

j=1

mj .

This modiˇcation is represented by the vector (m1, . . . , mn).
Remind that the Higgs ˇeld is an endomorphism of E s → Φs and near z0

it acts as

Φ · sj = (Φ)k
j sk.

Similarly the modiˇed Higgs ˇeld acts on sections of the modiˇed bundle
Ẽs̃ → Φ̃s̃. Then it follows from (3.45) that

Φ̃ · s̃j = Φ̃k
j s̃k, Φ̃k

j = wmk−mj gk(w)g−1
j (w)Φk

j .
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Since Φ̃ is holomorphic and gj(0) �= 0, Φk
j (z − z0)mk−mj must be regular at

z = z0. If we order m1 � m2 � . . . � mN , then the number of parameters of

the endomorphisms is
∑
j<k

(mj − mk). In general case

T ∗M(N, g, n, d) → T ∗M

⎛
⎝N, g, n, d +

N∑
j=1

mj

⎞
⎠ .

If
N∑

j=1

mj = 0, the SHC does not change the topological type of the bundle.

Therefore, such SHC deˇnes a Bäcklund transformation of integrable hierarchy.
3.5. Symplectic Hecke Correspondence RCM → RET [11]. We work directly

with the Lax matrices
LET × Ξ = Ξ × LCM.

The modiˇcation matrix should intertwine the multipliers corresponding to the
fundamental cycles

Ξ(z + 1, τ) = Q × Ξ(z, τ), (3.46)

Ξ(z + τ, τ) = Λ̃(z, τ) × Ξ(z, τ) × diag (e(uj)). (3.47)

Consider the modiˇcation at z = 0. The Lax matrix of the CMS has the ˇrst
order pole

LCM ∼ 1
z
νJ.

Its residue has an eigenvector ξt = (1, . . . , 1) with the eigenvalue N − 1. The
matrix Ξ satisfying (3.46) and (3.47) that annihilate the vector ξ has the form

Ξ(z) = Ξ̃(z) × diag

⎛
⎝(−1)l

∏
j<k;j,k �=l

θ(uk − uj , τ)

⎞
⎠ ,

Ξ̃ij(z, u1, . . . , uN ; τ) = θ

⎡
⎢⎣

i

N
− 1

2
N

2

⎤
⎥⎦(z − Nuj, Nτ).

Here θ

⎡
⎢⎣

i

N
− 1

2
N

2

⎤
⎥⎦(z−Nuj, Nτ) is the theta-function with a characteristic. The

determinant of Ξ can be calculated explicitly

det

[
Ξ̃ij(z, u1, . . . , uN ; τ)

iη(τ)

]
=

θ(z)
iη(τ)

∏
1�k<l�N

θ(ul − uk)
iη(τ)

,
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where η(τ) = q1/24
∏
n>0

(1− qn) is the Dedekind function. It has a simple pole at

z = 0 and therefore Ξ is degenerate.
We use the modiˇcation to write down the interrelations between the coor-

dinates and momenta of the CalogeroÄMoser particles and the orbit variables of
the elliptic top in the SL(2, C) case

S1 = −v
θ10(0)
θ′(0)

θ10(2u)
θ(2u)

− ν
θ2
10(0)

θ00(0)θ01(0)
θ00(2u)θ01(2u)

θ2(2u)
,

S2 = −v
θ00(0)
iθ′(0)

θ00(2u)
θ(2u)

− ν
θ2
00(0)

iθ10(0)θ01(0)
θ10(2u)θ01(2u)

θ2(2u)
, (3.48)

S3 = −v
θ01(0)
θ′(0)

θ01(2u)
θ(2u)

− ν
θ2
01(0)

θ00(0)θ10(0)
θ00(2u)θ10(2u)

θ2(2u)
.

Here θ1,0 =
∑
n∈Z

q1/2n2
exp π(2n−1)z, θ0,0 =

∑
n∈Z

q1/2(n−1/2)2 exp 2πnz, θ0,1 =

∑
n∈Z

(−1)
n
q1/2(n−1/2)2 exp 2πnz. These relations describe the Darboux coordi-

nates (v, u) ∈ C2 of the coadjoint SL(2, C)-orbit
∑

S2
α = ν2.

It turns out that this modiˇcation is equivalent to the twist of R matrices.
Namely, it describes the passage from the dynamical R matrix of the IRF models
to the vertex R matrix [25,26]. We don't discuss this aspect of SHC here.

4. 4D THEORIES

4.1. Self-Dual YM Equations and Hitchin Equations. 4.1.1. 2D Self-Dual
Equations. Consider a rank N complex vector bundle E over R

4 with coordinates
x = (x0, x1, x2, x3). Assume that the space of sections is equipped with a
nondegenerate Hermitian metric h, (h+ = h). It satisˇes the following condition
dh(x, y) = h(∇x, y) + h(x,∇y), where ∇ is a connection on E. If dh(x, y) = 0
for vectors in ˇbers y ∈ V, x ∈ V̄ t, then there exist connections ∇j = ∂xj + Aj

such that

A+ = −h−1dh − h−1Ah

⎛
⎝A =

3∑
j=0

Ajdxj

⎞
⎠ .

In this situation the transition functions are reduced to the unitary group SU(N) ⊂
GL(N, C).

Let F (A) ∈ Ω(2)(R4, su(N)) be the curvature Fij = [∇i,∇j ] or F (A) =
dA + A2. Here su(N) = {x |x+ = −h−1xh}.
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The self-duality equation
F = �F,

where � is the Hodge operator in R
4, takes the form

F01 = F23, F02 = F31, F03 = F12. (4.1)

Assume that Aj depend only on (x1, x2). It means that the ˇelds are invariant
under the shifts in directions x0, x3. Then (A0, A3) become adjoint-valued scalar
ˇelds which we denote as (φ1, φ2). They are called the Higgs ˇelds. In fact,
they will be associated below with the Higgs ˇeld Φ. In this way we come to the
self-dual equations on the plane R2 = (x1, x2)

F12 = [φ1, φ2], (4.2)

[∇1, φ1] = [φ2,∇2], (4.3)

[∇1, φ2] = [∇2, φ1]. (4.4)

Introduce complex coordinates z = x1 + ix2, z̄ = x1 − ix2 and let d′ = ∇z ,
d′′ = ∇z̄ . Consider the ˇelds, taking values in the Lie algebra sl(N, C)

Φz =
1
2
(φ1 − iφ2) dz ∈ Ω(1,0)(R2, adE),

Φz̄ =
1
2
(φ1 + iφ2) dz̄ ∈ Ω(0,1)(R2, adE).

They are not independent since the Hermitian conjugation acts as

Φ+
z̄ = −h−1Φzh. (4.5)

Similarly,

Az =
1
2
(A1 − iA2), Az̄ =

1
2
(A1 + iA2),

A+
z̄ = −h−1dh − h−1Azh.

(4.6)

In terms of ˇelds
W = (A, Az̄ , Φz, Φz̄), (4.7)

(4.2)Ä(4.4) can be rewritten in the coordinate invariant way:⎧⎪⎨
⎪⎩

1. F + [Φz, Φz̄ ] = 0,

2. d′′Φz = 0,

3. d′Φz̄ = 0,

(4.8)
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where [Φz, Φz̄] = ΦzΦz̄ + Φz̄Φz . Due to (4.5) and (4.6) the third equation is not
independent. Thus, we have two equations with the left side of type (1, 1) for
two complex valued ˇelds (Φz, Az̄) and the Hermitian matrix h.

Equations (4.8) are conformal invariant and thereby can be deˇned on a
complex curve Σg . In this case

Φz ∈ Ω(1,0)(Σg, su(N)), Φz̄ ∈ Ω(0,1)(Σg, su(N)),

d′′ : Ω(j,k)(Σg, su(N)) → Ω(j,k+1)(Σg, su(N)).

The self-duality equations (4.9) on Σg are called the Hitchin equations.
In fact, instead of (4.8) we will consider further a modiˇed system⎧⎪⎨

⎪⎩
1. F − [Φz, Φz̄ ] = 0,

2. d′′Φz = 0,

3. d′Φz̄ = 0.

(4.9)

It comes from the self-duality on R4 with a metric of signature (2, 2). Consider
the gauge group action on solutions of (4.9)

G = {f ∈ Ω0(Σg, SU(N))}, (4.10)

Φz → f−1Φzf, Φz̄ → f−1Φz̄f, (4.11)

d′′ → f−1d′′f. (4.12)

If (A, Az̄ , Φz, Φz̄) are solutions of (4.9), then the transformed ˇelds are also
solutions. If f takes values in GL(N, C), then it again transforms solutions to
solutions. As above, we denote this gauge group as GC.

Deˇne the moduli space of solutions of (4.9) as a quotient under the gauge
group action

MH(Σg) = solutions of (4.9)/G. (4.13)

Now look at the second equation in (4.9). It is the moment constraint
equation for the Higgs bundles in the absence of marked points (3.14). The gauge
group GC transforms solutions of (4.9) to other solutions but breaks (4.5), (4.6).
Now restrict ourself with the second equation in (4.9). Dividing the space of its
solution on the gauge group GC we come to the moduli space of the Higgs bundles
T ∗M(N, g, 0, d) (3.17). There exists a dense subset of moduli space of stable
Higgs bundles (T ∗M(N, g, 0, d))stable ⊂ T ∗M(N, g, 0, d). The moduli space of
stable Higgs bundles parameterizes the smooth part of MH(Σg) (4.13) [2].

Consider a Higgs bundle with data (Φ, Ā) satisfying Eq. 2 in (4.9) and re-
construct from it solutions (Az , Φz, Az̄, Φz̄) of (4.9). Deˇne them as

Φz̄ = −h−1Φ+h, Φz = Φ,

Az̄ = Ā, Az = −h−1∂̄h − h−1Ā+h.
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Then (Φz̄ , Az) satisfy Eq. 3 in (4.9). Eq. 1 in (4.9) takes the form

∂̄(h−1∂̄h + h−1Ā+h) − ∂Ā + [Ā, (h−1∂̄h + h−1Ā+h)] − [Φ, h−1Φ+h] = 0.

For almost all (Φ, Ā) there exists a solution h of this equation (see Appendix of
Donaldson in [2]). In this way we pass from the holomorphic data to solutions
of system (4.9).

Summarizing, to deˇne MH(Σg) one can act in two ways:
1. Divide the space of solutions of (4.9) on the SU(N)-valued gauge group G.
2. Consider the moduli space of stable Higgs bundles.

4.1.2. Hyper-Kähler Reduction. In this section we explain how to derive the
moduli space MH(Σg) (4.13) via an analog of the symplectic reduction. It is the
so-called hyper-Kähler reduction [41]. We prove that inˇnite-dimensional space
W (4.7) is a hyper-Kähler manifold, and MH is its hyper-Kähler quotient, where
(4.9) play the role of the moment equations.

To deˇne a hyper-Kähler manifold we need three complex structures and a
metric satisfying certain axioms. Deˇne a 	at metric on W depending on the
complex structure on Σ

ds2 = − 1
4π

∫
Σ

Tr (δAz ⊗ δAz̄ + δAz̄ ⊗ δAz + δΦz ⊗ δΦz̄ + δΦz̄ ⊗ δΦz). (4.14)

Introduce three complex structures I, J, K on W . The corresponding operators
act on the tangent bundle TW , such that they obey the imaginary quaternion
relations I2 = J2 = K2 = −Id, IJ = K, . . . The complex structures are
integrable because W is 	at. Introduce a basis of the space of one-forms in T ∗W

V = (δAz̄ , δΦz, δAz , δΦz̄).

Then the action of the conjugated operators on T ∗W in this basis takes the form

IT =

⎛
⎜⎜⎝

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

⎞
⎟⎟⎠ , JT =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

KT =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎠ .
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Linear functions on W are holomorphic with respect to a complex structure if
they are transformed under the action of the corresponding operator with eigen-
value +i. Thus Az , Φz are holomorphic in the complex structure I , Az̄ + iΦz̄,
Az + iΦz are holomorphic in the complex structure J , and Az̄ −Φz̄, Az +Φz are
holomorphic in the complex structure K .

To be hyper-Kähler on W , the metric ds2 should be of type (1, 1) in each
complex structure. It means that ds2 ∼ (IT ⊗ IT ) ds2 = (JT ⊗ JT ) ds2 =
(KT ⊗ KT ) ds2. In this way we have described a 	at hyper-Kähler metric on
W . A linear combination of the complex structures produces a family of complex
structures, parameterized by CP1.

We deˇne three symplectic structures associated with the complex structures
on W as ωI = (IT ⊗ Id) ds2, ωJ = (JT ⊗ Id) ds2, ωK = (KT ⊗ Id) ds2:

ωI = − i

2π

∫
Σg

tr (DAz̄ ∧ DAz − DΦz ∧ DΦz̄),

ωJ =
1
2π

∫
Σg

tr (DΦz̄ ∧ DAz + DΦz ∧ δAz̄), (4.15)

ωK =
i

2π

∫
Σg

tr (DΦz̄ ∧ DAz − DΦz ∧ DAz̄).

These forms are closed and of type (1, 1) with respect to the corresponding
complex structures.

Now consider the gauge transformations (4.10) of the ˇelds (4.11), (4.12).
Since the gauge transform takes values in SU(N), the forms (4.15) are gauge-
invariant. Therefore we can proceed as in the case of the standard symplectic
reduction (2.14). But now we obtain three generating momentum Hamiltonians
with respect to the three symplectic forms

FI =
i

2π

∫
Σg

tr (ε(Fz,z̄ − [Φz, Φz̄])) (ε ∈ Lie (G)),

FJ = − 1
2π

∫
Σg

tr (ε(d′Φz̄ + d′′Φz)),

FK = − i

2π

∫
Σg

tr (ε(d′Φz̄ − d′′Φz))

and the three moment maps W → Lie∗(G)

μI = iF − i[Φz, Φz̄], μJ = d′Φz̄ + d′′Φz , μK = i(d′Φz̄ − d′′Φz).
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The zero-valued moments coincide with the Hitchin systems. The hyper-Kahler
quotient W///G is deˇned as

W///G = μ−1
I (0) ∩ μ−1

J (0) ∩ μ−1
K (0)/G.

To come to the system (4.9) consider the linear combination

νI = μJ + iμK = d′′Φz̄. (4.16)

This moment map is derived from the symplectic form

ΩI = ωJ + iωK =
1
π

∫
Σ

tr (DΦz ∧ DAz̄).

It is a (2, 0) form in the complex structure I . Thus we have the holomorphic
moment map νI in the complex structure I . Vanishing of the holomorphic mo-
ment map νI and the real moment map μI is equivalent to the Hitchin equations.
Dividing their solutions on the gauge group G we come to the moduli space
MH(Σg) (4.13).

Now consider an analog of (4.16) corresponding to the complex structure J

νJ = μK + iμI = Fz,z̄, Fz,z̄ = F(Az ,Az̄),

Az = Az + iΦz, Az̄ = Az̄ + iΦz̄. This moment map comes from the symplectic
form

ΩJ =
1
2π

∫
Σg

tr (DA ∧ DA).

It is (2, 0) form in the complex structure J . Putting νJ = 0 we come to 	atness
condition of the bundle E. Dividing the set of solutions Fz,z̄ = 0 on the
GL(N, C) valued gauge transformations GC we come to the space

Y = (Fz,z̄ = 0)/GC (4.17)

of homomorphisms π1(Σg) → GL(N, C) deˇned up to conjugations. According
to [42] and Donaldson (the Appendix in [2]), generic 	at bundles parameterize
MH(Σg) (4.13) in the complex structure J . This space is a phase space of non-
autonomous Hamiltonian systems leading to monodromy preserving equations
(see Conclusion). Thus, the space MH(Σg) describes phase spaces of integrable
systems Rred (3.17) in the complex structure I and phase spaces of monodromy
preserving equations Y (4.17) in the complex structure J .
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4.2. N = 4 SUSY YangÄMills in Four Dimensions and Hitchin Equations.
Here we consider a twisted version of N = 4 super YangÄMills theory in four
dimensions. This theory was analyzed in detail in [16Ä18] to develop a ˇeld-
theoretical approach to the Geometric Langlands Program. The quantum Hitchin
systems are a one side of this construction and we use here only a minor part
of [16]. The twisted theory is a topological theory that contains a generalization
of the Hitchin equations (4.9) as a condition of the BRST invariance. Our goal is
to describe the Hecke transformations in terms of the theory. In Sec. 3 we have
deˇned the Hecke transformations as an instant singular gauge transformation.
The four-dimensional theory allows one to consider gauge transformations varying
along a space coordinate x3. They become singular at some point, say x3 = 0,
where a singular 't Hooft operator is located. It gives a natural description of
the symplectic Hecke correspondence in terms of a monopole conˇguration in the
twisted theory.

4.2.1. Twisting of N = 4 SUSY SU(N) YangÄMills Theory. N = 4 SUSY
SU(N) YangÄMills action in four dimensions can be derived from the N = 1
SUSY SU(N) YangÄMills action in ten dimensions by the dimensional reduction.
We need only the bosonic part of the reduced theory.

The bosonic ˇelds of the 4d YangÄMills theory are four-dimensional gauge
potential

A = (A0, A1, A2, A3),

and six scalar ˇelds coming from six extra dimensions

φ = (φ0, φ1, φ2, φ3, φ4, φ5).

The bosonic part of the action has the form

I =
1
e2

∫
d4x tr

⎛
⎝1

2

3∑
μ,ν=0

FμνFμν +
3∑

μ=0

6∑
i=1

DμφiD
μφi +

1
2

6∑
i,j=1

[φiφj ]2

⎞
⎠ .

The symmetry of the action is Spin (4) × Spin (6) (or Spin (1, 3) × Spin (6) in
the Lorentz signature). The sixteen generators of the 4d supersymmetry are
transformed under Spin (1, 3)×Spin (6) ∼ SL(2)×SL(2)×Spin (6) as (2, 1, 4̄)⊕
(1, 2, 4):

{Q̄AX} ⊕ {QY
Ȧ
} (A = 1, 2; X = 1, . . . , 4), (Ȧ = 1, 2; Y = 1, . . . , 4).

They satisfy the supersymmetry algebra

{Q̄AX , QY
Ȧ
} = δY

X

3∑
μ=0

Γμ

AȦ
Pμ, {Q, Q} = 0, {Q̄, Q̄} = 0. (4.18)
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The action of Q on the ˇeld X takes the form

δX = [Q, X}.

Let κ be a map Spin (4) → Spin (6) and set

Spin′(4) = (Id × κ)Spin (4).

Deˇne κ in such a way that the action of Spin′(4) on the chiral spinor S+ has
an invariant vector. Let Q be the corresponding supersymmetry. It follows
from (4.18) that it obeys Q2 = 0. The twisted theory is deˇned by the physical
observables from the cohomology groups H•(Q). The twisted four scalar ˇelds
φ = (φ0, . . . , φ3) are reinterpreted as adjoint-valued one-forms on R4, while
untwisted σ, σ̄ = φ4 ± ıφ5 remain adjoint-valued scalars.

In fact, there is a family of topological theories parameterized by t ∈ CP1.
The bosonic ˇelds to be invariant under Q should satisfy the equations

1) (F − φ ∧ φ + tDφ)+ = 0,

2) (F − φ ∧ φ − t−1Dφ)− = 0,

3) �D � φ = 0,

(4.19)

where + and − denote the self-dual and the anti-self-dual parts for four-dimensio-
nal two-forms, D = d + [A, ] and � is the Hodge operator in four dimensions.
We are interested in solutions of this system up to gauge transformations.

This theory deˇned on 	at R4 can be extended on any four-manifold M
in such a way that it preserves the Q symmetry and contributions of metric
come only from Q-exact terms. The bosonic part of the theory is described by
connections A = (A0, A1, A2, A3) in a bundle E over M in a presence of the
adjoint-valued one-forms φ = (φ0, φ1, φ2, φ3) satisfying (4.19).

The important for integrable systems case is M = R2 × Σg , where R2 =
(time = x0)×{x3 = y} and Σg will play the role of the basic spectral curve. R2

is not involved in the twisting and the ˇelds (φ0, φ3) remain scalars, while φ1, φ2

become one-forms on Σg . It turns out that after the reduction the system (4.19)
becomes equivalent to the Hitchin equations (4.9).

4.2.2. Hecke Correspondence and Monopoles. The system (4.19) for t = 1
can be replaced by

F − φ ∧ φ + �Dφ = 0, (4.20)

�D � φ = 0. (4.21)

Assume that the ˇelds are time-independent and consider the system on the three-
dimensional manifold W = I(x3) × Σg , where −∞ � x3 � ∞. In terms of the
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three-dimensional ˇelds Ã and Φ̃ (A = (A0, Ã), φ = (Φ0dx0, Φ̃)), the equations
take the form [16]

F̃ − Φ̃ ∧ Φ̃ = �(DΦ0 − [A0, Φ̃]),

�DΦ̃ = [Φ0, Φ̃] + DA0, �D � Φ̃ + [A0, Φ0] = 0.
(4.22)

Here the Hodge operator � is taken in the three-dimensional sense. Replace the
coordinates x = (x1, x2, x3) on x3 → y and (x2, x3) → (z, z̄), where (z, z̄) are
local coordinates on Σg. Let g(z, z̄)|dz|2 be a metric on Σg . The metric on W
is ds2 = g|dz|2 + dy2. Then the Hodge operator takes the form

�dy =
1
2
igdz ∧ dz̄, �dz = −idz ∧ dy, �dz̄ = idz̄ ∧ dy.

It is argued in [16] that Φy = 0 and A0 = 0 are solutions of the system. Then
we come to the equations

1. F (Az , Az̄) − [Φz, Φz̄] =
1
2
igDAyΦ0,

2. DAz̄Φz = 0,

3. F (Ay, Az̄) = iDAz̄Φ0,

4. DAyΦz = −i[ΦzΦ0],

(4.23)

where as before Φ+
z = −h−1Φz̄h. The system is simpliˇed in the gauge Ay = 0.

In particular, for Φ0 = 0 the system (4.23) becomes essentially two-dimensional
and coincides with the Hitchin equations (4.9).

Let Σg be an elliptic curve (g = 1). This case is important to application
to integrable systems. The nonlinear system (4.23) can be rewritten as a com-
patibility condition for the linear system depending on the spectral parameter
λ ∈ C

(∂z + λ−1a∂y + Az + iλ2Φz + iλ−1aΦ0)ψ = 0, (4.24)

(∂z̄ + λa∂y + Az̄ + iλ−2Φz̄ − iλaΦ0)ψ = 0. (4.25)

Here a2 =
1

τ̄ − τ
. This linear system allows one to apply the methods of

the inverse scattering problem or the Whitham approximation to ˇnd solutions
of (4.23).

Deˇne the complex connection Az = Az + iΦz. In terms of (Az ,Az̄ , Ay)
the systems (4.23) assume the form of the Bogomolny equation

F = �DΦ0. (4.26)
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Consider a monopole solution of this equation. Let W̃ = (W \ x0 = (y = 0, z =
z0)). The Bianchi identity DF = 0 in the space W̃ implies that Φ0 is the Green
function for the operator �D � D

�D � DΦ0 = Mδ(x − x0),

where M ∈ gl (N, C).
Consider ˇrst the Abelian case G = U(1). Then F (Az, Az̄) is a curvature

of a line bundle L. Locally near x0 = (y = 0, z = z0, z̄ = z̄0) Φ0 has a
singularity

Φ0 ∼ im

2|x − x0| , (4.27)

where m is a magnetic charge. Due to Eq. 1 in (4.23), F takes the form

F (Az, Az̄) =
1
2
g∂yΦ0,

F (Az, Az̄) ∼
1
2
mg(z, z̄)

y

|x − x0|3/2
.

Consider a small sphere S2 enclosing x0. Due to (4.26) and (4.27)∫
S2

F = m.

This solution describes the Dirac monopole of charge m corresponding to a line
bundle over S2 of degree m.

Let Σ±
g = Σg × (±∞) and L± be the line bundles over Σ±

g . The two-
dimensional cycle C describing the boundary C = ∂((W = I × Σg) \ x0) is
Σ+

g − Σ−
g − S2. Taking the integral over C we ˇnd that

∫
C

F = 0.

In other words, for the Chern classes of the bundles c(L) = deg (L) we have

deg (L+) = deg (L−) + m

or L+ = L⊗O(z0)m. Here O(z0)m is a line bundle whose holomorphic sections
are holomorphic functions away from z0 with a possible single pole of degree m
at z0. The line bundles over Σg are topologically equivalent for y < 0 or y > 0.
The gauge transformation Φ0 is smooth away from x0. The singularity changes
the degree of the bundle.
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In the four-dimensional Abelian theory we have the Dirac monopole singular
along the time-like line L = (x0,x0). It corresponds to including the 't Hooft
operator in the theory saying that the connections have the monopole singularity
along the line L.

A generic vector bundles E near x0 split Ey ∼ L1⊕L2⊕ . . .⊕LN . Consider
the gauge transformation

Φ0 ∼ i

2|x − x0|
diag (m1, . . . , mN). (4.28)

It causes the transformation Lj → Lj ⊗O(z0)mj . The degree of the bundles E

changes after crossing y = 0 by
∑

mj , as it was described for bundles over Σ
in Subsec. 3.4.

To be more precise we specify the boundary conditions of solutions on the
ends y = −∞ and y = +∞. Since Φ0 → 0 for y → ±∞ the system (4.23)
coincides with the Hitchin system (4.9). If MH(N, g, n, m±) is the moduli
space of solutions on the boundaries y = ±∞, the gauge transformation with

the monopole singularity stands that m+ = m− +
∑

mj . It deˇnes the SHC

between two integrable systems related to MH(N, g, n, m±). In particular, we
have described it at the point y = 0 for MH(N, 1, n, 0) and MH(N, 1, n, 1).

CONCLUSION

Here we shortly discuss some related issues not included in the review.
1. Solutions of the Hitchin equations (4.9) corresponding to quasi-parabolic

Higgs bundles were analyzed in [17]. In the three-dimensional gauge theory
considered in Subsec. 3.3 we have the Wilson lines located at the marked points.
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In the four-dimensional YangÄMills theory they correspond to singular operators
along two-dimensional surfaces. Locally on a punctured disc around a marked
point, the Hitchin system (4.9) assumes the form of the Nahm equations [43].
It was proved in [46] that the space of its solutions after dividing on a special
gauge group is symplectomorphic to a coadjoint orbit of SL(N, C). A hyper-
Kähler structure on the space of solutions induces a hyper-Kähler structure on
the orbits. It establishes the interrelations between the Hitchin equations and the
Higgs bundles with the marked points (the quasi-parabolic Higgs bundles).

2. There exists a generalization of this approach to Higgs bundles of inˇnite
rank. In other words, the structure group G = GL(N, C) or SL(N, C) of
the bundles is replaced by an inˇnite-rank group. One way is to consider the
central extended loop group S1 → G. Then the Higgs ˇeld depends on additional
variable x ∈ S1 and instead of the Lax equation we come to the ZakharovÄShabat
equation

∂jL − ∂xMj + [Mj , L] = 0.

This equation describes an inˇnite-dimensional integrable hierarchy like the KdV
hierarchy. The two-dimensional version of the ECMS was constructed in [10,11].
In particular, the SHC establishes an equivalence of the two-particle (N = 2)
elliptic CalogeroÄMoser ˇeld theory with the LandauÄLifshitz equation [44, 45].
The latter system is the two-dimensional version of the SL(2, C) elliptic top. The
relations (3.48) are working in the two-dimensional case.

Another way is to consider GL(∞) bundles. In [48], the ECMS for inˇnite
number of particles N → ∞ was analyzed. The elliptic top on the group of
the noncommutative torus was considered in [47]. It is a subgroup of GL(∞).
This construction describes an integrable modiˇcation of the hydrodynamics of
the ideal 	uid on a noncommutative two-dimensional torus.

3. Consider dynamical systems where the role of times is played by parame-
ters of complex structures of curves Σg,n. In this case we come to monodromy
preserving equations, like the Schlesinger system or the Painlev
e equations. They
can be constructed in the similar fashion as the integrable Hitchin systems [8].
To this purpose, one should replace the Higgs bundles by the 	at bundles and
afterwards use the same symplectic reduction (see (4.17)). In this situation the
Lax equations take the form

∂jL − ∂zMj + [Mj, L] = 0.

An analysis of this system is more complicated in comparison with the standard
Lax equations due to the presence of derivative with respect to the spectral para-
meter. Note that Mj corresponds only to the quadratic Hamiltonians, since they
are responsible for the deformations of complex structures. Concrete examples of
this construction were given in [8,52,53]. Interrelations with Higgs bundles were
analyzed in [8,49]. It is remarkable that the symplectic Hecke correspondence is
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working in this case. It establishes an equivalence of the Painlev
e VI equation
and a nonautonomous ZhukovskiÄVolterra gyrostat [12].

4. A modiˇcation of the Higgs bundles allows one to construct relativistic
integrable systems [50]. The role of Higgs ˇeld is played by a group element g =
exp (cK−1Φ) where K is a canonical class on Σ and c is the relativistic parameter.
This construction is working only for curves of genus g � 1. This approach was
realized in [28] to derive the elliptic Rujesenaars system and in [51,53] to derive
the elliptic classical r matrix of BelavinÄDrinfeld [54] and a quadratic Poisson
algebra of the SklyaninÄFeiginÄOdesski type [55,56].

Including the relativistic systems allows one to deˇne a duality in integrable
systems [57, 58] (see [59] for recent developments). This type of dualities has a
natural description for the corresponding quantum integrable systems in terms of
Hecke algebras [60]. It is called there the Fourier transform and takes the form of
S duality. Another form of duality in the classical Hitchin system is considered
in [61Ä63]. It is related to Langlands duality and is similar to T duality of ˇbers
in the Hitchin ˇbration.

5. There exists useful description of the moduli space of holomorphic vector
bundles closely related to the modiˇcation described in Subsec. 3.4. It is the
so-called Tyurin parameterization [64]. This construction was applied to describe
Higgs bundles and integrable systems related to curve of arbitrary genus in [10,
52,65]. Using this approach, classical r matrices with a spectral parameter living
on curves of arbitrary genus were constructed in [67].
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