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The one-loop QCD effective charge αeff
s for quarkÄquark scattering is derived by diagrammatic

resummation of the one-loop amplitude using an arbitrary covariant gauge. Except for the particular
choice of gauge parameter ξ = −3, αeff

s is found to increase with increasing physical scale, Q, as
ln Q or ln2 Q. For ξ = −3, αeff

s decreases with increasing Q and satisˇes a renormalization group
equation. Also, except for the case ξ = 19/9, convergence radii of geometric series are found to
impose upper limits on Q.

�¤´μ¶¥É²¥¢μ° ÔËË¥±É¨¢´Ò° § ·Ö¤ Š•„ αeff
s ±¢ ·±-±¢ ·±μ¢μ£μ · ¸¸¥Ö´¨Ö ´ °¤¥´ ¸ ¶μ-

³μÐÓÕ ¸Ê³³¨·μ¢ ´¨Ö μ¤´μ¶¥É²¥¢μ°  ³¶²¨ÉÊ¤Ò ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶·μ¨§¢μ²Ó´μ° ± ²¨¡·μ¢±¨. ‡ 
¨¸±²ÕÎ¥´¨¥³ ¸¶¥Í¨ ²Ó´μ£μ ¢Ò¡μ·  ± ²¨¡·μ¢μÎ´μ£μ ¶ · ³¥É·  ξ = −3 ´ °¤¥´μ, ÎÉμ αeff

s · ¸É¥É
¸ Ê¢¥²¨Î¥´¨¥³ Ë¨§¨Î¥¸±μ£μ ³ ¸ÏÉ ¡  Q ¶·μ¶μ·Í¨μ´ ²Ó´μ ln Q ¨²¨ ln2 Q. „²Ö ¸²ÊÎ Ö ξ = −3
αeff

s Ê³¥´ÓÏ ¥É¸Ö ¸ Ê¢¥²¨Î¥´¨¥³ Q ¨ Ê¤μ¢²¥É¢μ·Ö¥É Ê· ¢´¥´¨Õ ·¥´μ·³ ²¨§ Í¨μ´´μ° £·Ê¶¶Ò. �μ-
³¨³μ ÔÉμ£μ ´ °¤¥´μ, ÎÉμ §  ¨¸±²ÕÎ¥´¨¥³ ¸²ÊÎ Ö ξ = 19/9 · ¤¨Ê¸Ò ¸Ìμ¤¨³μ¸É¨ £¥μ³¥É·¨Î¥¸±μ£μ
·Ö¤  ´ ² £ ÕÉ ¢¥·Ì´¨¥ ¶·¥¤¥²Ò ´  Q.

PACS: 12.38-t, 12.38.Bx, 12.38.Cy

INTRODUCTION

QuarkÄquark scattering in the next-to-leading order QCD has been calculated
by several different groups [1Ä4]. Coqueraux and De Rafael [1] calculated the
one-loop corrections to the invariant amplitude in the Feynman gauge using an on-
shell renormalization scheme [5]. In [2Ä4] complete expressions for the squared
invariant amplitude were given in the dimensional regularization scheme [6]. The
calculations presented in the present paper generalize those of [1Ä4] in two ways:

(i) An arbitrary covariant gauge is considered.
(ii) The one-loop ultra-violet (UV) divergent loop and vertex diagrams are

resummed to all orders in αs.
The procedure of (ii) yields a scale-dependent ®effective charge¯ as a factor

in the invariant amplitude. The resummation is done, not by solving a renormal-
ization group equation (RGE), but by an exact sum of the relevant diagrams to
give the QCD analogue of the Dyson sum of QED.
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The results are very surprising. The effective charge is gauge-dependent
at O(α3

s) and beyond, and except for one speciˇc choice of gauge, does not
display ®asymptotic freedom¯ but instead increases as ln Q or ln2 Q at large
scales Q. Only for the same special choice of gauge, where contributions from
vertex diagrams vanish, does the effective charge satisfy a RGE of the type that
is valid in QED [7Ä11]. For this special choice of gauge (called ®loop gauge¯)
the effective charge decreases with increasing scale, but only to a ˇxed limit
QL, determined by the convergence radius of the geometric sum of gluon and
fermion loops in the dressed gluon propagator. The measured value of αs suggests
that QL � 300 GeV, already of phenomenological importance at the Fermilab
pp collider.

The plan of the paper is as follows. In the next Section the UV diver-
gent (before renormalization) one-loop corrections to the quarkÄquark scattering
amplitude in Feynman gauge are derived from similar corrections to the quarkÄ
quarkÄgluon vertex given in [12]. The generalization to an arbitrary covariant
gauge is made using results reported in [13]. In Sec. 2 the one-loop corrections
are diagrammatically resummed to yield the QCD analogue of the Dyson sum
of QED. In Sec. 3 the self-similarity and renormalization group properties of the
effective charge derived in Sec. 2 are discussed. In the ˇnal Section the classical
proofs of the asymptotic freedom property of QCD in the literature are critically
examined in the light of the results obtained in the previous Sections. Also,
brie	y discussed are: (i) ®renormalons¯, (ii) the generalization to higher loop
order vacuum polarization and vertex corrections, and (iii) pinch technique and
related calculations of proper self-energy and vertex functions, both in QCD and
in the Standard Electroweak Model (SEM).

The present paper is the ˇfth in a series on fundamental physics aspects of per-
turbative QED and QCD: [15] discusses on-shell renormalization and optimized
perturbation theory in QED and QCD; [16] considers the role of non-vanishing
fermion or gluon masses as physical regulators for diagrams with combined infra-
red (IR) and ultra-violet (UV) divergences; the relation of such IR/UV divergent
diagrams to the LeeÄNauenberg [17] and Kinoshita [18] theorems of QED and
QCD is examined in [19]; convergence conditions for resummed physical am-
plitudes, as discussed in the present paper for quarkÄquark scattering in QCD,
are analyzed for the analogous QED case of scattering of unequal mass charged
fermions in [20].

1. THE QUARKÄQUARK SCATTERING AMPLITUDE
TO O(α2

s) IN AN ARBITRARY COVARIANT GAUGE

The process considered is the scattering of two equal mass quarks through an
angle of 90◦ in their CM system. The lowest order diagram is shown in Fig. 1, a.
The four-vectors of the incoming (outgoing) quarks are p1, p2 (p3, p4). In this
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Fig. 1. Diagrams contributing to M(LO). Solid lines denote quarks, wavy lines Å gluons
and the closed loop in g Å ghosts

conˇguration the exchanged gluon has a virtuality t = −s/2 where

t ≡ (p1 − p3)2 = u ≡ (p1 − p4)2, (1.1)

s ≡ (p1 + p2)2 = (p3 + p4)2. (1.2)

Denoting the invariant amplitude corresponding to the diagram in Fig. 1, a by
M(0) (quark spin and color indices are suppressed), the O(α2

s) amplitude may
be written as

M(1) = M(0)
∑

i

Ai, (1.3)

where the one-loop virtual corrections Ai are given by the diagrams shown
in Fig. 1, bÄi. Three topologically distinct types of diagrams occur:

• vertex corrections as in Fig. 1, b, c and the two similar diagrams given by
the exchange 13 ↔ 24;

• loop corrections (Fig. 1, dÄg);

• box diagrams (Fig. 1,h, i).

The leading logarithmic corrections, Ai, corresponding to the contributions
of diagrams that are UV divergent before renormalization, have been derived in
a straightforward fashion from the corrections to the quarkÄquarkÄgluon vertex
presented in [12]. The results, in Feynman gauge, derived using dimensional
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Table 1. UV divergent (before renormalization) one-loop virtual corrections, at leading
logarithmic accuracy, to the 90◦ quarkÄquark scattering amplitude in Feynman gauge

i
Diagram
in Fig. 1

Type
(αμ

s /π)−1× correction factor,
Ai, to M(0)

1 b) + 13 ↔ 24 Abelian vertex
CA

2
ln

Q

μ

2 c) + 13 ↔ 24 Non-Abelian vertex −3CA

2
ln

Q

μ

3 d) Quark loops
nf

3
ln

Q

μ

4 e) + f) + g) Gluon and ghost loops −5CA

6
ln

Q

μ

regularization [6] are presented in Table 1∗. Here Q =
√
−t =

√
s/2 is the

physical scale, and μ is the renormalization subtraction scale. CA is the usual
QCD color factor (CA = number of colors = 3), while nf is the number of light
quark 	avors contributing to the vacuum polarization loops in Fig. 1, d. αμ

s is the
square of the renormalized on-shell strong coupling constant at the scale μ. The
corrections A1−A4 may be combined to yield a term proportional to the ˇrst
coefˇcient in the perturbation series in αs of the beta function of QCD. Denoting
the quark loop + gluon loop + ghost loop correction, A3 + A4, by Lμ, and the
vertex correction, A1 + A2, by Vμ, and generalizing to an arbitrary covariant
gauge speciˇed by the parameter ξ, in which the gluon propagator is written as

Pμν(q2) = − i

q2

[
gμν − (1 − ξ)

qμqν

q2

]
, (1.4)

∗In two previous versions of the present paper [21] the one-loop corrections to the quarkÄquark
scattering amplitude were taken from Table 1 of [1]. This calculation was performed using on-shell
normalization [5] in which explicit quark and gluon mass parameters were introduced. Comparison
of the results of [1] with those of [12] and [13] and those for the related QED Bhabha scattering
process [22] has revealed a number of inconsistencies with the results of [1]. (i) The ®Vertex(a + b)¯
contribution shown is simply the QED result modiˇed by a single multiplicative color factor. The
QCD-speciˇc UV divergent term found in [12] and [13] and presented in the ˇrst row of Table 1 in
the present paper is absent. (ii) The ®Three Gluon(i + j)¯ contribution should, according to [12],
be 3y/2, not −y. (iii) Adding up the singly logarithmic terms of Table 1 of [1] yields, as the
coefˇcient of the logarithm of the physical scale, β0, but the contribution of ®Vertex(a and b)¯
actually corresponds, not to a UV divergent term, but to an IR divergent one, that is canceled on
adding the contributions of diagrams with real gluon radiation from the external quark lines. Thus,
Eqs. (2.4) and (2.5) of the previous versions of the present paper were incorrect and the appearance
of β0 in Eq. (2.12) was fortuitous. However, Eqs. (1.5) and (1.6) of the present revised and corrected
version are identical to Eqs. (2.15) and (2.16) of the previous versions, so that none of the subsequent
discussion or conclusions are affected by the corrections.
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yields the explicit gauge dependence∗ of Vμ and Lμ [13]

Vμ(ξ) = −αμ
s

π

3
4
(3 + ξ) ln

(
Q

μ

)
, (1.5)

Lμ(ξ) =
αμ

s

π

[
−3

4

(
13
3

− ξ

)
+

nf

3

]
ln

(
Q

μ

)
. (1.6)

Adding Eqs. (1.5) and (1.6):

Vμ(ξ) + Lμ(ξ) = −αμ
s

π

(
11
2

− nf

3

)
ln

(
Q

μ

)
= −αμ

s

π
β0 ln

(
Q

μ

)
, (1.7)

where β0 is the ˇrst coefˇcient of the QCD β function [as ≡ αs/π]:

μ
∂as

∂μ
= β(as) = −β0a

2
s + . . . (1.8)

To O(α2
s), αQ

s may be identiˇed with the solution, αRGE
s (Q), of the RGE (1.8):

MLO = M(0) + M(1) = M(0)(1 + Vμ(ξ) + Lμ(ξ)) =

=
M(0)

αμ
s

[
αμ

s

[
1 − αμ

s

π
β0 ln

(
Q

μ

)]]
=

M(0)αRGE
s (Q)

αμ
s

+ O
(
(αμ

s )2
)
, (1.9)

where

αRGE
s (Q) = αQ

s =
αμ

s

1 +
αμ

s

π
β0 ln

(
Q

μ

) , (1.10)

MLO denotes the amplitude including Leading Order (LO) vertex and vacuum
polarization corrections. In the following section the amplitude M(∞), in which
these corrections are summed to all orders in αs, is derived.

It can be seen that, at one loop, the gauge invariant result (1.7) is obtained
on adding the UV divergent contributions of diagrams bÄg in Fig. 1. The box
diagrams h and i and those obtained by exchanging the internal quark and gluon
propagators, form, together with the diagrams where a single gluon is radiated
from one of the external quark lines of Fig. 1,a, another gauge invariant set.
Indeed the contribution to the cross section of this set of diagrams, which involve
only Abelian quarkÄgluon couplings, is obtained by multiplying the result for
the analogous QED t-channel Bhabha scattering process [22] by the appropriate

∗This gauge dependence of one-loop vertex and vacuum polarization insertions containing triple
gauge boson couplings is universal for all non-Abelian gauge theories. See, for example, [14,
Eqs. (12.114) and (12.122)].
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QCD color factor: C2(Nc) = (N2
c − 1)/2Nc = 4/3. The contribution of the box

diagrams alone is UV ˇnite, but IR divergent for the case of massless gluons.
This IR divergence is canceled on adding the contribution of the real gluon
radiation diagrams. The contributions of the box diagrams and the real radiation
diagrams are however, separately, gauge invariant∗. Since the box diagrams are
UV ˇnite, and so do not require renormalization, they do not contribute to the
QCD effective charge. All the terms that contribute to the latter at one loop are
presented in Table 1; they are UV divergent before renormalization.

2. THE RESUMMED QUARKÄQUARK SCATTERING AMPLITUDE

The topographical structures∗∗ of the diagrams that modify the gluon prop-
agator in the quarkÄquark scattering amplitude at O(α2

s), O(α3
s) and O(α4

s) are
shown in Fig. 2, a, b, c, respectively. V and L denote vertex and loop (vacuum
polarization) contributions:

V = V1 + V2, (2.1)

L =
nf∑
i=1

Fi + G1 + G2 + G3. (2.2)

V1, V2 correspond to the diagrams in Fig. 1, b, c;

nf∑
i=1

Fi to Fig. 1, d and G1, G2, G3

to Fig. 1, e, f , g. In the case that only one vertex insertion occurs there is a factor 2
for the two ends of the gluon propagator. Since the propagator has only two ends
the vertex corrections are never higher than quadratic in the perturbation series
for the amplitude. Although the topographical structure of diagrams containing
vertex corrections is different at O(α3

s) than at O(α2
s) it remains the same at all

higher orders. The all-orders resummed amplitude is

M(∞) = M(0) [1 + 2V + L + V 2 + 2V L + L2 +V 2L + 2V L2 + L3 + . . .
]

=

= M(0)
[
1 + L + L2 + . . . + V 2 (1 + L + L2 + . . . + 2V (1 + L + L2 + . . .

]
=

=
M(0)(1 + V )2

1 − L
. (2.3)

∗See [23] for a complete diagrammatic discussion of gauge cancellations in the one-loop cor-
rected quarkÄquark scattering amplitude.

∗∗The use of the word ®topographical structure¯ to indicate a particular disposition of vertex
and (possibly resummed) self-energy insertions in a diagram is deliberate. Diagrams with internal
lines in the vertex or self-energy insertions have a different topology but the same topography as the
one-loop diagrams shown in Fig. 2.
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Fig. 2. The topographical structure of diagrams contributing to the resummed quarkÄquark
scattering amplitude: a) O(α2

s); b) O(α3
s); c) O(α4

s). In diagrams containing only one
vertex insertion the contribution given by the exchange 13 ↔ 24 (see Fig. 1) is understood
to be included

In an arbitrary covariant gauge with momentum subtraction at scale μ, and in
leading logarithmic approximation, V = Vμ(ξ)/2, L = Lμ(ξ) so that

M(∞) =
M(0)αeff

s (Q)
αμ

s
=

M(0)

(
1 +

1
2
Vμ(ξ)

)2

1 − Lμ(ξ)
(2.4)

leading to the following expression, in leading logarithmic approximation, for the
resummed one-loop effective charge:

αeff
s (Q) = αμ

s

[
1 − 3αμ

s

8π
(3 + ξ) ln

(
Q

μ

)]2

1 +
αμ

s

4π

[
13 − 3ξ − 4nf

3

]
ln

(
Q

μ

) . (2.5)

The conventional one-loop QCD running coupling constant Eq. (1.10) is recovered
only for the special choice of gauge parameter ξ = ξL = −3 (®loop gauge¯).
Only in this case does αeff

s (Q) decrease monotonically with increasing Q. For any
other choice of gauge αeff

s (Q) does not show ®asymptotic freedom¯ as Q → ∞
but instead increases as ln Q when ξ �= ξV and as ln2 Q when ξ = ξV . The
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choice ξ = ξV (®vertex gauge¯) where

ξV = (39 − 4nf )/9

corresponds to a vanishing coefˇcient of ln(Q/μ) in the denominator of Eq. (2.5).
As discussed in more detail below, only in loop gauge is the equation for the effec-
tive charge ®self-similar¯ like the effective charge in QED or the solution (1.10)
of the RGE Eq. (1.8). Even in loop gauge the effective charge of Eq. (2.5) does
not decrease without limit as Q → ∞. The maximum possible scale QL (Landau
scale) is determined by the convergence properties of the geometric sum that
yields the denominator of Eq. (2.5). The geometric series is convergent provided
that |L| < 1 [24]. This implies that∣∣∣∣αμ

s

4π

[
13 − 3ξ − 4nf

3

]
ln

(
Q

μ

)∣∣∣∣ < 1. (2.6)

The corresponding Landau scale is then

QL = μ exp

⎡
⎢⎢⎣ 4π

αμ
s

[
13 − 3ξ − 4nf

3

]
⎤
⎥⎥⎦ (2.7)

and

αeff
s (QL) =

αμ
s

2

[
1 − 3αμ

s

8π
(3 + ξ) ln

(
QL

μ

)]2

. (2.8)

For ξ = −3:

αeff
s (QL) =

αμ
s

2
, (2.9)

so the convergence condition (2.6) implies that in this case αeff
s cannot evolve

down by more than a factor of 1/2 of its initial value before Eq. (2.5) diverges Å
there is no ®asymptotic freedom¯. The convergence conditions for a geometric
series with a negative common ratio, such as that which generates the QCD
running coupling constant, are derived below in Appendix. Unlike in the case
of the Landau pole [25] of QED, with a positive common ratio, r = |r|, where
the running coupling constant is proportional to 1/(1 − |r|), it is not obvious,
by inspection, that the QCD perturbation series is not equal to 1/(1 + |r|) when
|r| > 1. However, (see Appendix) this is quite clear from the exact formula,
Eq. (A.1), giving the sum for any ˇnite number of terms. Physicists have the
right to be as free as possible in making conjectures in their attempts to describe
nature in the simplest way possible, but not to make ones that are contrary to
mathematical laws.
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Table 2. Values of the Landau scale QL (convergence limit) of the QCD effective charge
for μ = 5 GeV, αμ

s = 0.2, nf = 5

Gauge Feynman (ξ = 1) Landau (ξ = 0) Loop (ξ = −3) Vertex (ξ = 19/9)

QL, GeV 7.68 · 108 1.02 · 105 301 ∞

Numerical values of QL for μ = 5 GeV, αμ
s = 0.2 and nf = 5 (correspond-

ing, approximately, to the experimental value of αμ
s ) and four different choices

of gauge parameter are presented in Table 2. For loop gauge (ξ = −3) QL

is only 300 GeV, with phenomenological consequences perhaps already at the
Fermilab pp collider, but certainly at the future LHC pp collider. It may be noted
that, in all cases except vertex gauge, QL lies well below the Grand Uniˇcation
(GUT) scale of � 1015 GeV. Since for any gauge choice except ξ = −3, αeff

s

diverges as ln Q or ln2 Q at large Q, there can be no ®uniˇcation¯ [26,27] of the
strong and electromagnetic interactions at large scales Q, for any choice of gauge
parameter, at least if the running strong coupling constant is identiˇed with an
effective charge such as that in Eq. (2.5). In fact, all studies, to date, of Grand
Uniˇcation have implicitly used loop gauge where the maximum scale QL is only
� 300 GeV. In vertex gauge, since all vacuum polarization contributions vanish,
there is no convergence limitation on Q in Eq. (2.5).

The behavior of αeff
s at large values of Q depends on the value of the Landau

scale and value, Q0, of Q at which the numerator of Eq. (2.5) vanishes:

Q0 = μ exp
[

8π

3αμ
s (3 + ξ)

]
. (2.10)

The value of ξ, ξ0, at which QL and Q0 are equal, is given by (2.7) and
(2.10) as

ξ0(nf ) =
1
9

(
17 − 8nf

3

)
. (2.11)

For nf = 5, ξ0 = 0.4074 . . . When ξ < ξ0 (e.g., Loop and Landau gauges) and
QL < Q0, then αeff

s diverges before vanishing and so decreases monotonically
with increasing Q within its convergence radius. For ξ > ξ0 (e.g., Feynman
and Vertex gauges), QL > Q0. In this case αeff

s ˇrst decreases with increasing
Q, reaching a minimum value at zero, and then increases with increasing Q up
to QL. In vertex gauge QL is inˇnite. Numerical values of Q0 for the same
parameter choices as in Table 2 are presented in Table 3. The scale Q0 is deˇned
(i.e., QL > Q0) only for Feynman gauge (Q0 = 176 TeV) and Vertex gauge
(Q0 = 18.1 TeV).

The diagrams shown in Fig. 2 each contain only a single ®dressed¯ virtual
gluon. It is also possible to consider cases in which the substitution of the series
of diagrams illustrated in Fig. 2, and summed in Eq. (2.3), is made in a diagram
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Table 3. Values of Q0 (the scale at which αeff
s (Q) vanishes). Parameters as in Table 2

Gauge Feynman (ξ = 1) Landau (ξ = 0) Loop (ξ = −3) Vertex (ξ = 19/9)

Q0, TeV 176 Undeˇned Undeˇned 18.1

containing more than one virtual gluon (for example, the box diagrams shown
in Fig. 1,h and i). This will result in a further higher order correction to the
quarkÄquark scattering process. It is clear, however, that the manifest gauge
dependence of the resummed one-loop contribution will be unaffected by the
presence of other virtual gluons (®dressed¯ or not) in the diagram. Every virtual
gluon has only two ends, and so the resummed vertex correction is at most
quadratic. Then no cancellation is possible of the gauge-dependent pieces of
multiple vacuum polarization insertions. However, as further discussed in Sec. 4
below, the box diagrams themselves can be resummed. This typically results in
a Sudakov-like double logarithm, not a geometric series as found for resummed
vacuum polarization diagrams.

3. SELF-SIMILARITY PROPERTIES OF αeff
s

AND THE RENORMALIZATION GROUP

Introducing the abbreviated notation:

v(ξ) ≡ 3
8
(3 + ξ), l(ξ) =

1
4

[
13 − 3ξ − 4nf

3

]
,

αeff
s (Q)/π ≡ aQ, αμ

s /π ≡ aμ, λ ≡ ln(Q/μ),

Eq. (2.5) may be written as

aQ =
aμ[1 − aμv(ξ)λ]2

1 + aμl(ξ)λ
. (3.1)

With ξ = −3, v(−3) = 0, Eq. (3.1) becomes

aQ =
aμ

1 + aμl(−3)λ
. (3.2)

Equation (3.2) is the solution of a one-loop RGE similar to that for the QED
effective charge [10,11]:

Q

aQ

∂aQ

∂Q
= −l(−3)aQ = −β0aQ, (3.3)
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where

β0 = l(−3) =
11
2

− nf

3
. (3.4)

For a gauge choice such that v �= 0, the partial differential equation satisˇed by
aQ is

Q

aQ

∂aQ

∂Q
= −aQ

[
l(ξ)

(1 − aμv(ξ)λ)2
+ 2

v(ξ)(1 + aμl(ξ)λ)
(1 − aμv(ξ)λ)3

]
, (3.5)

so that, in this case, the effective charge aQ does not satisfy the RGE (3.3).
Expanding in powers of aμ on the right-hand side of Eq. (3.5) gives

Q

aQ

∂aQ

∂Q
= −aQ [l(ξ) + 2v(ξ) + O(aμ)] , (3.6)

= −aQ [β0 + O(aμ)] . (3.7)

Thus, neglecting terms of O(aQaμ) � O(a2
μ), so that only the ˇrst term in the

QCD perturbation series is retained, aQ → a
(1)
Q and it can be seen that a

(1)
Q ,

for an arbitrary gauge choice, satisˇes the same partial differential equation as
the one-loop all orders resummed aQ in loop gauge. The relation of this result
to the previous derivations of the QCD running coupling constant, where it has
generally been conjectured that a gauge invariant result is obtained to all orders
in perturbation theory, is discussed in the following Section.

Equation (3.2) is self-similar in the sense that for any values of μ and Q the
equation deˇned by the exchange μ ↔ Q is identical to the original equation. A
consequence of this symmetry property is that aQ in Eq. (3.2) is independent of
μ (with the important caveat that, since the denominator is the sum to inˇnity of
a geometric series, μ must be such that |aμl(−3)λ| < 1), and that in the equation
with μ ↔ Q, aμ is independent of Q. This is the mathematical basis of the
Renormalization Group [7Ä9]. Such a universal self-similarity property is not,
however, shared by Eq. (3.1) when v(ξ) �= 0.

Equation (3.1) is self-similar under the exchange μ ↔ Q provided that the
equation

aμ =
aQ[1 + aQv(ξ)λ]2

1 − aQl(ξ)λ
(3.8)

and Eq. (3.1) are both valid. Simultaneous solution of Eqs. (3.1), (3.8) in the case
that v(ξ) �= 0 leads to a quadratic equation for aμ with the solution:

aμ =
1

v(ξ)λ
+

aQ

2
± 1

2

√(
2

v(ξ)λ
+ aQ

) (
2

v(ξ)λ
− 3aQ

)
. (3.9)

Real solutions of Eq. (3.9) exist provided that either

2
3v(ξ)λ

> aQ > − 2
v(ξ)λ

(3.10)
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(both factors under the square root positive) or

3v(ξ)λ
2

>
1

aQ
> −v(ξ)λ

2
(3.11)

(both factors under the square root negative).
The solution for aμ, Eq. (3.9), is independent of l(ξ). Thus, for ˇxed values

of aQ, Q, μ, v(ξ) �= 0, satisfying the conditions (3.10) or (3.11), there are, in
general, two values of aμ such that Eq. (3.1) is self-similar. This value of aμ

has, however, no relation to the effective charge at the scale μ given by Eq. (3.1)
when Q = μ. Choosing Q = 90 GeV and Landau gauge, then (see Fig. 3)
aQ = 0.095/π = 0.0302. The choice μ = 5 GeV gives 2/(v(0)λ) = 1.933. The
aQ terms under the square root of Eq. (3.9) may then be neglected, leading to the
solutions

a+
μ � 2

v(0)λ
+

aQ

2
= 1.9648, a−

μ � aQ

2
= 0.0152

to be compared with the physical value:

aμ = αeff(5 GeV)/π = 0.2/π = 0.064.

Unlike for the special case v = 0, the ˇrst derivative of aQ in general depends
on the scale μ. For Q = μ the derivative is a negative constant ˇxed by the ˇrst
coefˇcient in the perturbation series for the beta function as in Eq. (3.3). For

Fig. 3. The variation of the Effective Charge (2.5) with the scale Q for different choices
of the gauge parameter ξ. 5 < Q < 300 GeV (αeff

s (5 GeV) = 0.2, nf = 5). The error
bars (±0.005) on the point at Q = 90 GeV on the loop gauge curve are typical of those
on an αs measurement using hadronic Z decays [65]
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any other choice of μ when v �= 0 the derivative varies with Q and μ according
to Eq. (3.5). Thus, if the effective charge is parametrized in terms of aμ, aμ′ at
the reference scale QR:

aQR = aμ
[1 − aμv(ξ)λR]
[1 + aμl(ξ)λR]

= aμ′
[1 − aμ′v(ξ)λ′

R]
[1 + aμ′ l(ξ)λ′

R]
,

(3.12)
λR ≡ ln(QR/μ), λ′

R ≡ ln(QR/μ′),

then for Q �= QR and v(ξ) �= 0 the effective charge aQ predicted by the formula
containing μ (the second member of Eq. (3.12)) will be different to that predicted
by that containing μ′ (the third member of Eq. (3.12)), so that the value of aQ

depends upon the choice of renormalization scale Å it is no longer invariant.
Renormalization group invariance with respect to the choice of the scale μ is
therefore not respected unless v(ξ) = 0, i.e., ξ = −3.

4. DISCUSSION

In the original derivations of the ®asymptotic freedom¯ property of QCD [28,
29] no calculations were performed beyond the lowest nontrivial order, O(α2

s),
and no actual amplitudes for physical processes were considered. It was con-
jectured (without any check by direct diagrammatic calculation) that the QCD
running coupling constant (RCC) could, in general (for any choice of gauge), be
identiˇed with the solution of the differential equation (1.8). The one-loop QCD
beta function was calculated by considering the CallanÄSymanzik [10, 11] equa-
tion for an irreducible n-point function (typically the gluonÄquarkÄquark vertex
or the triple gluon vertex). Calculation of the anomalous dimensions of the quark
and gluon ˇelds then yields the (gauge invariant) expression for the ˇrst beta
function coefˇcient β0 in Eq. (1.8) above. An analogous result is obtained above
by considering the unresummed one-loop correction to the physical quarkÄquark
scattering amplitude. The true high order behavior, however, corresponds to the
sum of all the possible amplitudes for the process of interest. For this, the actual
topographical structure of the diagrams contributing to the amplitude must be
properly taken into account. Renormalization scale invariance of the RCC, and
the asymptotic freedom property, for an arbitrary choice of covariant gauge, are
not conˇrmed by the diagrammatic calculation of higher order corrections in the
case of the quarkÄquark scattering amplitude considered in this paper.

Gauge dependence of the RCC in QCD has been considered previously in the
literature, but usually as an effect only at the two-loop level and at higher orders.
It was pointed out that, in the case when the bare parameters of the theory are held
ˇxed, the gauge parameter becomes scale-dependent, and for certain momentum
subtraction renormalization schemes, the second coefˇcient of the beta function
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is both scheme- and gauge-dependent [30]. For an arbitrary covariant gauge
speciˇed by the ˇxed parameter ξ, as in the one-loop discussion above, the
second beta function coefˇcient is, however, both gauge and renormalization
scheme invariant. Assuming that the RCC, mass and gauge parameter each
satisfy renormalization group equations similar to (1.8), and solving the coupled
system of differential equations, solutions were found for the RCC that strongly
depended on the initial conditions imposed on the running gauge parameter [30].
These solutions exhibit either asymptotic freedom-like behavior or increase with
increasing scale until an ultraviolet ˇxed point is reached [31,32]. As commonly
done in the literature, the RCC was treated as an independent mathematical object,
without reference to any actual physical process, and the renormalization group
equations were assumed to hold without speciˇc diagrammatic justiˇcation. It
is shown above that, if the RCC is identiˇed with the effective charge of the
quarkÄquark scattering amplitude, the one-loop renormalization group equation∗

holds only for the speciˇc gauge choice ξ = −3. The gauge parameter can then
neither vary nor satisfy a RGE.

When quark mass effects are taken into account, the one-loop beta function
coefˇcient is also gauge-dependent, and has a value which depends on the partic-
ular n-point Green's function considered for its derivation. The mass-dependent
corrections to the triple gluon vertex [33] and the gluonÄghostÄghost vertex [34]
are different. A detailed discussion may be found in [35]. A corollary is that
the RCC in physical amplitudes is both gauge- and process-dependent at physical
scales where quark mass effects (other than those contained in the asymptotically
dominant logarithmic terms) are important.

The effective charge (2.7) has been calculated here for the simple case of
quarkÄquark scattering with a unique physical scale Q =

√
−t. In this case the

direct physical interpretation as the strength of the interaction between two cur-
rents varying as a function of their separation (� 1/Q) is particularly transparent.
However, since every dressed propagator has just two ends, similar expressions
for the RCC (in general, a function of some running loop 4-momentum k) are
expected in all physical amplitudes containing virtual gluon lines. Two examples
are shown in Fig. 4. Figure 4, a shows the three topographically distinct classes
of diagrams that contribute to the anomalous magnetic moment of a heavy quark
at O(α3

s). In Fig. 4, b the same classes of diagrams are shown for the four-loop
photon proper self-energy function due to radiatively corrected quark vacuum
polarization loops. As for the quarkÄquark scattering case, the same topographi-
cal structures (giving at most a quadratic dependence on the vertex corrections)
are found at all higher orders in the ®dressed gluon propagator¯. The diagrams

∗In [31,32] the one-loop RGE was assumed to be gauge-independent and given by the conven-
tional formula (1.10).
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Fig. 4. The topographical structure of diagrams contributing to: a) the O(α3
s) contribution

to the anomalous magnetic moment of a quark; b) the four-loop photon proper self-energy
function

of Fig. 4, b are related via the optical theorem and analytical continuation to the
process:

e+e− → γ∗ → qq + X,

where X denotes g, gg or q′q′.
There has been considerable recent interest in the structure, in high orders of

perturbation theory, of diagrams containing chains of vacuum polarization loops
in internal gluon propagators (for example, the generalization to higher orders of
the O(α3

s) diagrams with two vacuum polarization loops shown in Fig. 4). The
ansatz used for these so-called ®renormalon chains¯ [36] is to replace nf/3 in
a calculation considering only nf different 	avors of fermion vacuum polariza-
tion loops with nf/3 − 11/2 = −β0. This is clearly a good approximation in
the limit nf → ∞. As inspection of Fig. 4 shows, however, this will result,
in any gauge in which the vertex correction is nonvanishing, in a miscounting
of the contribution of the latter, which are included at order n in terms of the
form βn

0 , but actually should never appear at higher order than quadratic in the
perturbation series. With the gauge choice ξ = −3 (loop gauge), however, all
vertex corrections vanish and the renormalon chains are correctly given by the
above replacement. This gauge choice is, in any case, the one universally (al-
though tacitly) made in all phenomenological applications of the QCD running
coupling constant, where renormalization group invariance is assumed. Thus,
the ®Naive Non-Abelianization¯ (NNA) ansatz [37] or ®Large β0 Limit¯ that is
typically assumed in phenomenological studies of renormalon effects is a cor-
rect one only in loop gauge. The remark that the choice of gauge ξ = −3
implies the vanishing of all vertex corrections, has been previously made in the
context of two-loop corrections to heavy quark production in e+e− annihila-
tion [41].
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An instructive example of the inconsistent treatment of Feynman diagrams
by the NNA ansatz as well as an illustration of the gauge dependence of ˇxed
order perturbative QCD calculations beyond the next-to-leading order (NLO) is
provided by the analysis of the moments of nonsinglet anomalous dimensions
of deep-inelastic nucleon structure functions in [38]. In this work the effect of
insertion of an arbitrary number of quark or gluon vacuum polarization insertions
in the virtual gluon propagator of a forward Compton scattering amplitude (or
the equivalent diagrams in the Operator Product Expansion, as in Fig. 1 of [38])
is considered. An example of an O(αs) diagram that contributes to this ampli-
tude is shown in Fig. 5, a. One and two vacuum polarization loop insertions as
considered in [38] are shown in the fourth topographical diagrams of Fig. 5, b
and d, respectively. The predictions of this procedure for the loop (ξ = −3)
and Landau (ξ = 0) gauges were compared to the exact massless next-to-next-to-
leading-order (NNLO) calculation in Feynman gauge∗ (ξ = 1) of [42]. Table 4,
extracted from Table 1 of [38], shows the results of this comparison for the n = 2
moment at NLO, as in Fig. 5, b, and NNLO, as in Fig. 5, c and d. In the cal-
culations of [42] the contributions of all 353 Feynman diagrams contributing to
the anomalous dimensions up to NNLO were evaluated, whereas in [38] only
quark and gluon loop vacuum polarization insertions in Fig. 5, a and the other
Compton scattering diagrams with one virtual gluon line (see, for example, Fig. 1
of [43]) were considered. Even so, agreement is found with the Loop gauge
renormalon calculation at the 20% level at NLO for the n = 2 moment. Even
better agreement is found for higher moments Å it is good at 4.7% for the n = 6
moment. However, at NNLO no agreement is found; indeed predictions of the
®renormalon dominated¯ approximation with either choice of gauge have even
a different sign to the exact NNLO calculation. The reasonable agreement at
NLO between the two calculations when loop gauge is employed in [38] can be
understood by inspection of Fig. 5, b. This choice of gauge is equivalent, at NLO,
to performing a calculation in an arbitrary covariant gauge, in which the non-
Abelian one-loop corrections to the quarkÄgluon coupling are included as well
as vacuum polarization insertions. All the NLO vertex and vacuum polarization
corrections are included in the topographical diagrams of Fig. 5, b. The sum of
these contributions is gauge invariant. The situation is quite different at NNLO.
The subset of NNLO diagrams shown in Fig. 5, c, obtained from those of Fig. 5, b

∗The formulas given in [42] are actually in Landau gauge. However, it is stated in the paper
that for low order moments n = 2, 4 ®. . . the diagrams were run with a gauge parameter ξ in the
gluon propagator gμν − ξqμqν/q2¯. The assumed value (or values) of their parameter ξ (1 − ξ in
the notation of the present paper) was not stated and for the moments n = 6, 8 the gauge parameter
was not included (presumably it was set to zero in the calculations) which corresponds to choosing
Feynman gauge. It is assumed here that results compatible with this choice of gauge were also
obtained for the n = 2, 4 moments.
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by inserting an additional virtual gluon between the incoming and outgoing quark
lines also gives a gauge invariant result and is correctly described in loop gauge.
This is not the case for the diagrams of Fig. 5, d Å the corresponding sum of the
diagrams is of the form V 2 + 2V L + L2, which is manifestly gauge-dependent.
Other NNLO contributions with the same color factors as in Table 4 arise from
irreducible two-loop vertex and vacuum polarization diagrams. The topograph-
ical pattern is the same as in Fig. 5, b with the one-loop insertions replaced by
irreducible two-loop insertions. As discussed in more detail below, if these two-
loop insertions satisfy a Ward identity similar to that respected by the one-loop
insertions, this contribution will also be gauge invariant. No possibility exists,
however, to remove the gauge dependence of the contribution of the diagrams
shown in Fig. 5, d. This explains the breakdown of gauge invariance shown by
the CF C2

A NNLO entries of Table 4.
In an attempt to give a diagrammatic justiˇcation of the NNA ansatz, Beneke

in [36] considered NLO loop corrections as in Fig. 2, a or in Fig. 5, b above, for
the case of quark pair production by a vector current. Performing the calculation

Fig. 5. The topographical structure of diagrams contributing to nonsinglet anomalous di-
mensions in deep inelastic scattering: a) leading order; b) next-to-leading order; c, d) next-
to-next-to-leading order. See text for discussion
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Table 4. Contributions to the n = 2 moment of the nonsinglet anomalous dimension
in deep inelastic scattering on a nucleon due to different classes of Feynman diagrams
and for different choices of covariant gauge, ξ. See text for discussion

Gauge
γ(1)(2) (NLO) γ(2)(2) (NNLO)

CF CA CF Nf CF C2
A CF CANf CF N2

f

ξ = 1 [42] 13.9 −64

27
117.70 −38.50 −224

243

ξ = −3 [38] 11.3 Å −76.0 23.0 Å

ξ = 0 [38] 7.6 Å −13.2 12.4 Å

in Landau gauge it was found that the beta function of the corresponding QED
calculation was replaced by the one-loop QCD beta function. If this calculation
had been performed in an arbitrary covariant gauge, the gauge invariance of the
QCD beta function would have been demonstrated. This in no way justiˇes the
general use of the NNA ansatz since manifest gauge dependence as in Fig. 2, b or
in Fig. 5, d ˇrst occurs at NNLO where the gauge dependence of the V 2 term is
not canceled by NNLO vacuum polarization contributions.

In connection with the work presented in the present paper it is important
to notice that the renormalon singularities arise due to loop integrals over the
virtuality of an internal photon or gluon line in a Feynman diagram, as in Figs. 4
and 5. Although the renormalon singularities are related to singular IR or UV
behavior of the running coupling constant Å as discussed by Lautrup in [36], in
QED it is the UV Landau singularity Å the renormalon singularity occurs for
arbitrary values of the external physical scale due to the inˇnite range of the in-
ternal loop momentum∗. In contrast, in the simple case of quarkÄquark scattering
discussed in the present paper, there is no integration over the virtuality of the
gluon line in which the vertex and loop corrections are inserted and the scale
in the running coupling constant is identical to the physical scale of the prob-
lem. The diagrammatic analysis shown in Fig. 2 is therefore much simpler and
the breakdown of gauge invariance appears as soon as the NNLO contributions
of Fig. 2, b are evaluated.

∗In a discussion of renormalons in a review talk by S. Forte [44] the following important
statement can be found: ®If the series had alternating signs the singularity (ultraviolet renormalon)
would not be on the path of the integral¯ (in the Borel transform) ®but the integral would still run
outside the radius of convergence of the series; we will not discuss this any further¯. This is the only
place in the literature, to the present writer's knowledge, where the limited domain of convergence,
in the UV limit, of the QCD RCC (discussed in detail in the present paper) is mentioned. The
perturbation series corresponding to the RCC of QCD indeed has ®alternating signs¯.
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The classiˇcation of diagrams as in Figs. 2, 4 and 5, according to the cate-
gories (in an obvious notation) Ln, V Ln, V 2Ln, will remain when L, V are cal-
culated with an arbitrary number of internal lines. The global structure of Eq. (2.5)
will then remain the same for calculations including an arbitrary number of loops,
though additional nonleading terms in ln Q will result from integration over inter-
nal loops in the basic one-loop vacuum polarization and vertex diagrams shown
in Fig. 1.

As in [1], only the leading logarithmic terms in the one-loop correction (and
hence in the resummed effective charge) have been taken into account in the
above discussion. Constant terms in V and L have been neglected. For a general
renormalization scheme, however, constant gauge and renormalization scheme-
dependent terms also occur, so that Eq. (3.1) is replaced by the expression:

aQ = aμ
{1 − aμ[v(ξ)λ + cv(ξ)]}2

1 + aμ[l(ξ)λ + cl(ξ)]
. (4.1)

In the MS scheme [23]:

cl(ξ) =
10nf

9
− 97

12
− 3

8
ξ − 3

16
ξ2.

By a suitable scale choice μ = μ′ and with ξ = −3 Eq. (4.1) may be written as

aQ =
aμ′

1 + aμ′

[
l(−3) ln

Q

μ′ + cl(−3)
] . (4.2)

So in this (non-asymptotic) case even in loop gauge the effective charge does not
correspond exactly to the solution (1.10) of the one-loop RGE (1.8). Numerically
l(−3) = 3.833, cl(−3) = −3.090 for nf = 5. Thus, in the MS scheme
in loop gauge, the resummed one-loop invariant charge is only asymptotically
renormalization group invariant when constant terms in the one-loop correction
are retained.

Following the observation that the UV divergent parts of the vertex correc-
tions in Fig. 1, b, c may be associated with related diagrams in which the virtual
quark propagators are shrunk to a point (or ®pinched¯), it was suggested [45,46]
to redeˇne a gluon proper self-energy function by adding to the contributions
of Fig. 1, dÄg, that of the pinched vertex diagrams. At one-loop order the re-
sulting gluon proper self-energy function is then gauge invariant. It was then
(incorrectly) stated that a gauge invariant resummed gluon propagator may be
trivially derived from the one-loop result (for example, Eq. (2.19) of [46]). In
fact, it is easy to show, quite generally, that if the one-loop corrected quarkÄquark
scattering amplitude is gauge invariant (the correct initial assumption of the pinch
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technique calculations of [45,46]), then resummed amplitudes at all higher orders
must be gauge-dependent. Introducing the gauge invariant one-loop quantity:

B ≡ L + 2V. (4.3)

The resummed amplitude at O(αn+2
s ) may then be written for n � 1 (see Fig. 2

and Eq. (2.3)) as
M(n+2) = M(0)(L + V )2Ln−1. (4.4)

Expressing M(n+2) in terms of the gauge invariant quantity B and the gauge-
dependent quantity L(ξ) gives

M(n+2) = M(0) 1
4
(B + L(ξ))2L(ξ)n−1, (4.5)

which is manifestly gauge-dependent. The Dyson sum in Eq. (2.19) of [34]
correctly describes the all orders resummed amplitude, not for an arbitrary gauge
parameter ξ, but only for the special choice ξ = −3 when V (ξ) = 0, B = L(−3)
and

M(n+2) = M(0)Bn+1 (ξ = −3). (4.6)

Clearly, the above argument for manifest gauge dependence, shown to be valid at
the resummed one-loop level must also hold at arbitrary loop order if the vertex
and self-energy insertions satisfy a generalized Ward identity giving, at each order
of perturbation theory, a condition such as (4.3). It has been shown [47], by the
application of background ˇeld techniques, that Ward identities relating vertex
and self-energy contributions may indeed be derived that are valid to all orders in
perturbation theory. The gauge independence of the Ward identity at each ˇxed
order then necessarily implies gauge dependence when the corresponding vertex
and self-energy diagrams are resummed.

The manifest gauge dependence of the quarkÄquark scattering amplitude
found, by direct calculation, in this paper, is, apparently, in contradiction with for-
mal proofs [48,49] of the gauge invariance of S-matrix elements in non-Abelian
gauge theories. It seems, however, that what is actually proved in these papers
is the gauge invariance, at all orders in perturbation theory, of generalized Ward
identities. The consequences of resumming diagrams of ˇxed loop order, which
as shown above, necessarily generates gauge dependence, were not considered.
For example, in the standard reference [49], the Lagrangian from which all the
Feynman rules of the theory are derived is introduced, and the change in this La-
grangian due to a change in the gauge parameter is written down. It is then stated
that the theory is gauge invariant if such a variation of the gauge parameter leaves
S-matrix elements invariant. There immediately follows the statement: ®We can
formulate this condition¯ (i.e, that the S-matrix elements are invariant) ®in terms
of a Ward identity that we have written in terms of the diagrams in Fig. 2¯. The
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unproved and unjustiˇed assertion is thus made that the gauge invariance of a
Ward identity is equivalent to gauge invariance of S-matrix elements. This will
only be true of unresummed amplitudes at each loop order, not of the resummed
amplitudes that, according to quantum mechanical superposition, must exist and
are, indeed, essential to generate the RCC. In fact, [49] establishes only the gauge
invariance of Ward identities, and nothing else. As shown above, it is just the
gauge invariance of the unresummed amplitudes that ensures the manifest gauge
dependence of the resummed ones. Indeed an S-matrix element (even a for-
mal, generic one) appears nowhere among the equations of [49]. In [48] such
a formal S-matrix element does appear, but its gauge invariance properties are
derived directly from a Ward identity. No actual physical process, and no effect
of resummation, is considered.

By consideration of a subset of n-loop diagrams for the off-shell gluonÄgluon
scattering amplitude in a noncovariant gauge, it has been claimed [23] to demon-
strate that the RCC of QCD is both gauge invariant and process-independent, and
that it may be identiˇed with the solution (1.10) of the RGE (1.8). The n-loop
diagrams considered are those that may be constructed as a formal ®product¯
of n + 1 tree level four-point functions. The diagrams contain both resummed
one-loop gluon vacuum polarization and vertex diagrams and a subset of irre-
ducible n-loop diagrams. This set of diagrams cannot, as claimed, be identiˇed
with the one-loop RCC in Eq. (1.10), which results solely from the resummation
of one-loop (one-particle irreducible) diagrams. At any order in the perturbation
series these resummed one-loop diagrams contribute the leading powers of both
ln Q and nf . They give, in fact, the ®renormalon¯ contribution [36] (see above)
that dominates the high order behavior of the perturbation series. The irreducible
n-loop (n > 1) diagrams of the subset considered in [23] will contribute con-
stant terms or nonleading powers of ln Q, and therefore cannot be identiˇed with
terms in the diagrammatic expansion of the RCC in (1.10). Similarly, it has
been conjectured (without explicit calculation) in [50] that the ®missing¯ vertex
contributions needed to make, say, M(2) in Eq. (4.5) above, gauge invariant may
be derived from ®pinch parts¯ of two-loop irreducible diagrams. This is not
possible since the required ®missing¯ contributions contain the factor (αs ln Q)2

(see Eq. (2.5)), whereas, as is well known, in both QED [51] and QCD [52]
irreducible two-loop vacuum polarization and vertex diagrams have, at most, the
next-to-leading logarithmic behavior ≈ α2

s ln Q. This is easily demonstrated by
considering the two-loop solution of the renormalization group equation for the
effective charge. In QED, or in QCD in the ξ = −3 gauge, Eq. (3.2) generalizes
to

aQ =
aμ

1 + aμβ0λ +
β1aμ

β0
ln(1 + aμβ0λ)

, (4.7)
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where β1 is the second β-function coefˇcient. Expanding the right side of Eq. (4.7)
up to O(a3

μ) yields

aQ = aμ

[
1 − aμβ0λ + a2

μβ2
0λ2 − a2

μβ1λ − a3
μβ3

0λ3 +
3
2
a3

μβ3
0β1λ

2 + O(a4
μ)

]
.

(4.8)
It can be seen that β1, given by two-particle irreducible vacuum polarization
or vertex diagrams, occurs only in sub-leading logarithmic terms of the form
β1a

n
μλn−1. No possible re-arrangement of these terms can compensate the mani-

fest gauge dependence of the leading-logarithmic terms of the form (β0aμλ)n.
The property exhibited above, for QCD, of gauge dependence of amplitudes

on resumming one-loop corrections that, at lowest order, are gauge invariant, is
expected to be a general property of non-Abelian gauge theories. In such theories
the gauge boson propagator, in an arbitrary covariant gauge is written as [53]

Pμν(q2) = − i

q2 − M2

[
gμν − (1 − ξ)

qμqν

q2 − ξM2

]
, (4.9)

where M is the renormalized gauge boson mass. The topographical structure of
diagrams contributing to, say, neutrinoÄneutrino scattering via Z exchange is the
same as that for quarkÄquark scattering shown in Fig. 1. The one-loop vertex cor-
rection containing the non-Abelian ZW+W− coupling is gauge-dependent [54].
Since the gauge dependence cancels at lowest order (without resummation) then,
just as for QCD, it cannot cancel at any higher order in the resummed one-loop
amplitude. Indeed a similar conclusion as to the necessity of the ξ = −3 gauge in
order to obtain an effective charge that satisˇes a RGE, reached in this paper for
QCD, has previously been obtained, for the case of the WeinbergÄSalam model,
by Baulieu and Coqueraux [55]. These authors pointed out that, with the special
gauge choice (in the notation of the present paper) ξ = −3, the renormaliza-
tion constant of the Z − γ mixing term vanishes, so that, in this case, effective
charges satisfying separate (decoupled) RGEs may be associated with the one-
loop resummed photon and Z-boson propagators. It is also interesting to note
that ξ = −3 is the unique choice of covariant gauge for which the photon mass
counterterms in the renormalized Lagrangian vanish. The case of W exchange
was not considered, but (as may be seen by inspection of the relevant formula
given, in an arbitrary covariant gauge, in [56]) the choice ξ = −3 results in the
vanishing of the renormalization constants associated with the one-loop vertex
corrections to both Z and W exchange fermionÄfermion scattering amplitudes.
As for the QCD case considered in the present paper, it is then expected that,
only for this special choice of gauge, an effective charge satisfying a RGE may
be associated with the resummed W propagator.

The pinch technique, and similar methods to formally shift gauge-dependent
pieces between diagrams, have also been applied to electroweak amplitudes [40,
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46Ä49]. Although gauge invariant boson proper self-energy functions may be
deˇned at one-loop level, any resummed higher order amplitude is demonstra-
bly gauge-dependent, by the same argument as that given above for QCD. So,
although for a particular choice of gauge parameter (such that the sum of all
vertex corrections vanishes) resummed W and Z running propagators may be
deˇned that satisfy a RGE, they cannot, contrary to the claim of [40, 46Ä49],
be so deˇned in a gauge invariant manner. The diagrammatic inconsistency of
these procedures is made manifest by the inclusion in the modiˇed vector bo-
son self-energy function of box diagram contributions. If the effective charge is
expanded as a perturbation series, the box diagram contributions at each order
will give terms of a geometric series. There is no way that such a series can be
meaningfully interpreted in terms of a sum of such diagrams required by quan-
tum mechanical superposition. In fact, the contributions to physical amplitudes
of box diagrams can be systematically resummed [60Ä62], but the result found
is typically the exponential of a double logarithm of the relevant physical scale,
not the sum of a geometric series. For the case of the fermionÄfermion scattering
amplitude the contribution of box diagrams is expected to be important only in
the |t| → 0 limit and to vanish [56] in the |t| → ∞ limit.

A discussion of the gauge dependence, beyond one-loop order, of the resonant
Z-boson amplitude, may be found in [63].

The limited convergence domain imposed by requiring ˇniteness of the geo-
metric series, which occurs in all theories in which the RCC decreases with
increasing scales, can be avoided by choosing a very high renormalization scale∗.
This is equivalent, for such theories, to the choice, in QED, of on-shell renor-
malization, yielding a RCC that is convergent for all scales below the Landau
scale [20]. Although such a choice guarantees convergence for all physical scales
below the chosen renormalization point, it appears artiˇcial from a physical view-
point. If a strong interaction process at, say, the scale of the mass of the charm
quark is to be described using a renormalization point at the GUT scale QGUT,
the formula for the RCC at scale mc will depend upon the masses of all strongly
interacting elementary particles below QGUT and above mc. There will be a
phenomenon of ®inverse decoupling¯ whereby the lower the scale the more high
mass particles must be taken into account. Feynman amplitudes using such a
renormalization scale would loose their correspondence (valid in the on-shell
scheme) with spaceÄtime processes. With on-shell renormalization, the decou-
pling of heavy particles at low scales is understood in terms of a natural hierarchy
of physical scales. It seems reasonable that the physics of the strong interaction at
the scale of the charm quark mass, mc, should be independent of the value of the
top quark mass, mt, when mt 
 mc. According to the Uncertainty Principle, the

∗I am indebted to W. Beenakker for this remark.
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contribution to vacuum polarization loops of particles with masses much greater
than the propagator virtuality is expected to correspond to short lifetime 	uctu-
ations giving only a small contribution to the radiative correction. This is no
longer the case if the RCC is renormalized at scales 
 mt.

An enormously successful phenomenology of the strong interaction has been
developed over the past three decades based on perturbative QCD. Many aspects
of QCD, such as the existence of the color quantum number of spin-one gluons
with self-coupling, the predicted values of color factors, and a coupling constant
that decreases with increasing scales in the experimentally accessible region, are
conˇrmed, beyond doubt, experimentally [64]. However, it might be hoped that
the physical predictions of a candidate gauge theory would be gauge invariant at
all orders in perturbation theory, as is the case in QED. Explicit calculation for
the current non-Abelian gauge theories (both QCD and electroweak theory), as
reviewed in the present paper, seems to show, however, that this is not the case.
The point with error bars at Q = 90 GeV on the loop gauge curve in Fig. 3
shows the uncertainty on αs (±0.005) of an early measurement using hadronic
Z decays at LEP [65]. The input value αs(5 GeV) = 0.2 has been chosen to
be consistent with deep inelastic scattering measurements [66]. If the asymptotic
running coupling constant with time-like argument measured at LEP at the scale
Q = MZ has a similar value to αeff

s (Q) for space-like argument considered in
this paper, it is clear from Fig. 3 that the measured value of the gauge parameter
must be close to −3.

On a more positive note, the phenomenological success, in QCD, of calcu-
lations based on the renormalization group, as well as of ®renormalon¯ based
models, both of which are shown here to require the use of the ξ = −3 gauge,
suggests that further understanding requires a deeper theoretical explanation of
nature's apparent choice of this gauge (see Fig. 3). The question is, why, in
non-Abelian theories, do UV divergent loop diagrams apparently acquire loga-
rithmic corrections after renormalization but not similar vertex diagrams? Since
the non-Abelian triple gluon vertex occurs in both loop (vacuum polarization) and
vertex insertions it seems that consistency with experiment requires the cancella-
tion of vertex contributions when summed over the complete particle content of
the theory. That is, in some conjectured modiˇed version of QCD, complete can-
cellation of triangle vertex insertions similar to the anomaly cancellation provided
by the particle content of the fermion families of the Standard Model. However,
consistency with the diagrammatic description (i.e., with quantum mechanical su-
perposition) must always limit the scale-range of applicability of the RCC due to
the convergence properties of geometric series.

Finally, two important caveats concerning the work presented in this paper
should be mentioned. Firstly, only covariant gauges speciˇed by the parameter
ξ are considered, whereas certain noncovariant gauges [67] such as axial gauge
(A3 = 0) or light-cone gauge (nμAμ = 0, n2 = 0) are frequently employed in
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QCD phenomenology. The second concerns the recently developed successful ap-
plication of Analytical Perturbation Theory (APT) to QCD phenomenology [68].
In order to avoid infra-red divergences when Λ → 0 in the conventional QCD
perturbation series for the RCC, APT introduces, by way of the KéallenÄLehmann
spectral representation of the dressed gluon propagator, the condition of analytic-
ity in the Q2 variable. This also imposes a causality requirement. In this case,
the correspondence between the so-obtained ®Euclidean running couplant¯, αE ,
and the sum of a QCD perturbation series, in which the terms represent the con-
tribution of speciˇc Feynman diagrams, breaks down. No statements may then
be made concerning the gauge dependence and convergence properties of αE .
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ful reading of an early version of this paper and for constructively critical com-
ments. Discussions with M.Consoli are also gratefully acknowledged. I thank
M. Veltman for pointing out to me the work contained in [49], and an anonymous
referee for introducing me to the related work of Mikhailov discussed in Sec. 4.

APPENDIX

The sum of the ˇrst n terms of a geometric series with a negative common
ratio r = −|r| is given by the relation [24]:

Sn = 1 − |r| + |r|2 − . . . + (−|r|)n−1 =
1 − (−|r|)n

1 + |r| . (A.1)

It follows that

Sn =
1 + |r|n
1 + |r| (n− odd), (A.2)

Sn =
1 − |r|n
1 + |r| (n− even). (A.3)

If |r| < 1 , then S∞ ≡ (limit as n → ∞ of Sn) = 1/(1 + |r|). If |r| = 1, then
Sn = 1 for n odd and Sn = 0 for n even. If |r| > 1, S∞ = +∞ for n odd and
S∞ = −∞ for n even.

Table 5 presents values of Sn versus n, demonstrating the convergence of
the series for |r| = 1/2 and its divergence for |r| = 2. The Dyson sum of

Table 5. Values of the sum, Sn, of ˇrst n terms of the geometric series in (A.1) for
|r| = 1/2 (convergent series) and |r| = 2 (divergent series)

n 2 3 4 5 6 7 9 1/(1 + |r|)
|r| = 1/2 0.5 0.75 0.625 0.688 0.656 0.673 0.664 0.667
|r| = 2 Ä1 3 Ä5 11 Ä21 43 Ä85 0.333
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vacuum polarization insertions in the gluon propagator in QCD gives a geometric
series similar to (A.1) above. The impossibility of ®asymptotic freedom¯, which
conjectures that Sn → 0 as n → ∞ is evident from inspection of (A.2) and (A.3)
above and Table 5.
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