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In the algebraic Interacting Vector Boson Model (IVBM) it is assumed that the nuclear dynamics
can be described by means of two types of vector ®quasiparticles¯, which are also characterized by
another quantum number Å a ®T spin¯ (an analogue to the F spin). The noncompact symplectic
group Sp (12, R) appears as the group of dynamical symmetry for the problem of two interacting
vector bosons. The symplectic structure allows the change in the number of phonons, needed to build
the collective states, that results in larger model spaces, which can accommodate the more complex
structural effects as observed in the contemporary experiment.

The applications of the IVBM are extended by exploiting three new subgroup chains in the
reduction of Sp (12, R) to the physical angular momentum subgroup SO(3). The corresponding
exactly solvable limiting cases are applied to achieve a description of complex nuclear collective
spectra of evenÄeven nuclei in the rare-earth and actinide regions up to states of very high angular
momentum.

The ˇrst reduction that we exploit is one that extends the rotational limit of the number preserving
version of the model; namely, Sp (12, R) ⊃ U(6) ⊃ U(2)⊗SU(3). Another limit of the symplectic
IVBM, Sp (12, R) ⊃ Sp (2, R) ⊗ SO(6), contains in a natural way the six-dimensional Davidson
potential. In both of these cases, because collective modes can be mixed, we obtain successful
descriptions of both positive and negative parity band conˇgurations.

The structure of band-head conˇgurations, whose importance is established in the ˇrst two
limits, is also examined in the third reduction, Sp (12, R) ⊃ Sp (4, R) ⊗ SO(3). The distribution
of energies that are obtained in this limit with respect to the number of bosons that build each of
the states with ˇxed angular momentum, enables one to distinguish typical collective vibrational and
rotational spectra. This algebraic chain also provides important links between the subgroups of the
other limits.

The symplectic extension of the IVBM permits a richer classiˇcation of the states than its unitary
version and is shown to be appropriate for a description of rather diverse nuclear spectra.

�²£¥¡· ¨Î¥¸± Ö ³μ¤¥²Ó ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¢¥±Éμ·´ÒÌ ¡μ§μ´μ¢ (Œ‚‚	) ¶·¥¤¶μ² £ ¥É μ¶¨-
¸ ´¨¥ Ö¤¥·´μ° ¤¨´ ³¨±¨ ¢ É¥·³¨´ Ì ¶ · ¢¥±Éμ·´ÒÌ Ëμ´μ´μ¢, · §²¨Î ÕÐ¨Ì¸Ö ¶μ ±¢ ´Éμ¢μ³Ê
Î¨¸²Ê Å ®T -¸¶¨´Ê¯ ( ´ ²μ£ F -¸¶¨´ ). �¥±μ³¶ ±É´ Ö ¸¨³¶²¥±É¨Î¥¸± Ö £·Ê¶¶  Sp (12, R) ¶·¥¤-
¸É ¢²Ö¥É ¸μ¡μ° £·Ê¶¶Ê ¤¨´ ³¨Î¥¸±μ° ¸¨³³¥É·¨¨ ¤²Ö ¶ · ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¢¥±Éμ·´ÒÌ ¡μ§μ´μ¢,
· ¸Ï¨·¥´´μ¥ ³μ¤¥²Ó´μ¥ ¶·μ¸É· ´¸É¢μ ¶μ§¢μ²Ö¥É ±μ´¸É·Ê¨·μ¢ ÉÓ ±μ²²¥±É¨¢´Ò¥ ¸μ¸ÉμÖ´¨Ö ¶·¨ ¨§-
³¥´¥´¨¨ Î¨¸²  Ëμ´μ´μ¢ ¨ μ¡ÑÖ¸´ÖÉÓ ¡μ²¥¥ Éμ´±¨¥ ÔËË¥±ÉÒ ±μ²²¥±É¨¢´μ° Ö¤¥·´μ° ¸É·Ê±ÉÊ·Ò,
´ ¡²Õ¤ ¥³Ò¥ ¢ Ô±¸¶¥·¨³¥´É¥.

� ¸Ï¨·¥´¨¥ Œ‚‚	 μ¶·¥¤¥²Ö¥É¸Ö É·¥³Ö ´μ¢Ò³¨ Í¥¶μÎ± ³¨ ·¥¤Ê±Í¨¨ Sp (12, R) ± Ë¨§¨-
Î¥¸±μ° ¶μ¤£·Ê¶¶¥ Ê£²μ¢μ£μ ³μ³¥´É  SO(3). ’μÎ´μ ·¥Ï ¥³Ò¥ ¶·¥¤¥²Ó´Ò¥ ¸²ÊÎ ¨ ¸ Ìμ·μÏ¥°
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¸É¥¶¥´ÓÕ ÉμÎ´μ¸É¨ μ¶¨¸Ò¢ ÕÉ ¸¶¥±É·Ò Î¥É´μ-Î¥É´ÒÌ Ö¤¥· ¨§ ·¥¤±μ§¥³¥²Ó´μ° μ¡² ¸É¨ ¨  ±É¨´¨-
¤μ¢, ¢¶²μÉÓ ¤μ μÎ¥´Ó ¡μ²ÓÏ¨Ì §´ Î¥´¨° Ê£²μ¢ÒÌ ³μ³¥´Éμ¢ ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨°.

�¥·¢ Ö · ¸¸³μÉ·¥´´ Ö ´ ³¨ Í¥¶μÎ±  ·¥¤Ê±Í¨¨ ¶·¥¤¸É ¢²Ö¥É ¸μ¡μ° · ¸Ï¨·¥´¨¥ ·μÉ Í¨μ´-
´μ£μ ¶·¥¤¥²  ¶μ¤Ìμ¤ , ¸μÌ· ´ÖÕÐ¥£μ Î¨¸²μ ¡μ§μ´μ¢ Sp (12, R) ⊃ U(6) ⊃ U(2) ⊗ SU(3). ‚Éμ-
· Ö Å Sp (12, R) ⊃ Sp (2, R) ⊗ SO(6) Å ¢±²ÕÎ ¥É ¢ ¸¥¡Ö 6-³¥·´Ò° ¶μÉ¥´Í¨ ² „ ¢¨¤¸μ´ . ‚
μ¡μ¨Ì ¸²ÊÎ ÖÌ ¨§-§  ¸³¥Ï¨¢ ´¨Ö ±μ²²¥±É¨¢´ÒÌ ³μ¤ Ê¤ ¥É¸Ö μ¤´μ¢·¥³¥´´μ ¨ Ê¸¶¥Ï´μ μ¶¨¸Ò¢ ÉÓ
¶μ²μ¸Ò ¸ ¶μ²μ¦¨É¥²Ó´μ° ¨ μÉ·¨Í É¥²Ó´μ° Î¥É´μ¸ÉÓÕ.

‘É·Ê±ÉÊ·  μ¸´μ¢´ÒÌ ¸μ¸ÉμÖ´¨° ¶μ²μ¸, ¨¸¸²¥¤μ¢ ´´ÒÌ ¢ ¤¢ÊÌ ¶¥·¢ÒÌ ¶·¥¤¥²Ó´ÒÌ ¸²ÊÎ ÖÌ,
· ¸¸³ É·¨¢ ¥É¸Ö ¨ ¢ ¸²ÊÎ ¥ ·¥¤Ê±Í¨¨ Sp (12, R) ⊃ Sp (4, R) ⊗ SO(3). �μ²ÊÎ¥´´μ¥ · ¸¶·¥¤¥²¥-
´¨¥ Ô´¥·£¨° ± ± ËÊ´±Í¨¨ Î¨¸²  ¡μ§μ´μ¢, μ¶·¥¤¥²ÖÕÐ¨Ì ± ¦¤μ¥ ¸μ¸ÉμÖ´¨¥, ¶μ§¢μ²Ö¥É · §²¨Î ÉÓ
¶·¨´ ¤²¥¦´μ¸ÉÓ ÔÉμ£μ ¸μ¸ÉμÖ´¨Ö ±μ²¥¡ É¥²Ó´μ³Ê ¨²¨ ¢· Ð É¥²Ó´μ³Ê ¸¶¥±É·Ê. Š·μ³¥ Éμ£μ, ¶μ-
¸²¥¤´ÖÖ Í¥¶μÎ±  § ¤ ¥É ¢ ¦´ÊÕ ¸¢Ö§Ó ³¥¦¤Ê ¶μ¤£·Ê¶¶ ³¨ ¶·¥¤Ò¤ÊÐ¨Ì ·¥¤Ê±Í¨°.

�μ ¸· ¢´¥´¨Õ ¸ É· ¤¨Í¨μ´´μ° ¢¥·¸¨¥°, É·¥¡ÊÕÐ¥° ¸μÌ· ´¥´¨Ö Î¨¸²  ¡μ§μ´μ¢, ¶·¥¤²μ¦¥´-
´μ¥ ¸¨³¶²¥±É¨Î¥¸±μ¥ · ¸Ï¨·¥´¨¥ Œ‚‚	 ¶μ§¢μ²Ö¥É ¶·μ¢μ¤¨ÉÓ ¡μ²¥¥ ÉμÎ´ÊÕ ±² ¸¸¨Ë¨± Í¨Õ
¸¶¥±É·μ¢ ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨° Ö¤¥·, ¶·¨´ ¤²¥¦ Ð¨Ì · §²¨Î´Ò³ ¶μ²μ¸ ³,   É ±¦¥ ÊÎ¨ÉÒ¢ ÉÓ
¢§ ¨³μ¤¥°¸É¢¨Ö ÔÉ¨Ì ¶μ²μ¸.

PACS: 21.60.Fw

1. INTERACTING TWO-VECTOR-BOSON MODEL
OF COLLECTIVE MOTIONS IN NUCLEI

1.1. Introduction. With the advent of ever improving experimental nuclear
physics facilities, a large repository of data on the structure of atomic nuclei is
being amassed [1]. This data reveals the complex nature of nuclear degrees of
freedom, requiring different mixings of the basic rotational and vibrational col-
lective modes. This in turn calls for better and often more sophisticated nuclear
structure models, that should remain tractable and easy to apply while yielding
very reasonable theoretical interpretations of the data. Algebraic models that are
based on symmetry principles, such as the Interacting Boson Model (IBM) [2],
have proven themselves to be useful for this purpose. Most importantly, these
models have established good benchmarks for gaining a better understanding of
the evolution of nuclear structure [3] and have provided an underpinning for our
beginning to understand the nature of phase and shape transitions between collec-
tive modes [4]. Nevertheless, it seems that along the way some of the beauty and
simplicity of the group theoretical approach to the nuclear structure has yielded
to more geometrical considerations in terms of collective model variables [4, 5]
and/or to more brute force large-scale shell-model investigations [6].

It is a well-known fact that nuclear collective motions can be described
qualitatively by means of interacting bosons [7]. A typical example of this is the
anharmonic quadrupole oscillator model. Its Hamiltonian is

H =
∑
M

(−1)M b†2Mb2−M + V (b†2M , b2M ),
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where b†2M and b2M are creation and annihilation operators of quadrupole phonons

with an angular momentum projection M , and V (b†2M , b2M ) is a scalar function
(usually a polynomial) describing the phonon anharmonic interaction.

The analytical diagonalization of H and the exact (nonperturbational) solu-
tion of the Schréodinger equation can be signiˇcantly simpliˇed provided that the
space of the eigenstates of the system forms a basis of a single unitary irreducible
representation (UIR) of a certain group G, which is a group of dynamical sym-
metry in the sense of Dashen and Gell-Mann [8]. The Hamiltonian H breaks the
G symmetry and reduces it to the symmetry of the rotational group O(3) deˇned
by the angular momentum operators. In this way the degeneracy of the states is
removed and the observable energy spectrum is generated.

A number of algebraic models describing the collective properties of nuclei
have been built on this basis. The ˇrst one that is based on the symmetry group
SU(3) for the classiˇcation of the many nucleon states is the microscopic Elliott's
model of nuclear rotations [9]. This model not only simpliˇes the calculations of
the rotational states in the p- and sd-shell nuclei, but gives a physical insight into
the structure of the nuclear wave functions and provides a way of constructing
the effective internucleon interactions. Additionally the SU(3) classiˇcation of
many-body states allows for a geometrical analysis of the eigenstates of the
nuclear system [10] and hence gives an interpretation of phenomena associated
with nuclear deformation. It became a basis for the development of the algebraic
approaches into the nuclear structure, many of which just explore the symmetries
on a pure phenomenological level using the tensor properties of the involved
physical observables.

For example, a two-vector-boson model has been constructed by
Raychev [11], Raychev and Roussev [12], and Karadjov et al. [13] for the de-
scription of the collective properties of heavy evenÄeven deformed nuclei in the
framework of the broken SU(3) symmetry. In the early 1980s, a boson-number-
preserving version of the phenomenological algebraic Interacting Vector Boson
Model (IVBM) [14], including the interactions of the bosons of different types
and based on U(6) spectrum generating algebra was introduced. This version
of the IVBM was applied successfully [15] to a description of the low-lying
collective rotational spectra of the evenÄeven medium and heavy mass nuclei.

Another example is the phenomenological model of interacting bosons (IBM)
of Arima and Iachello [16Ä19], which introduces s and d bosons considered as
fermion pairs coupled to a total angular momentum L = 0 and L = 2, respec-
tively. This brings in again the group U(6) as a group of dynamical symmetry
of collective motions in nuclei. It had been shown even earlier [20], that in the
framework of a microscopic description of the collective modes, it is quite nat-
ural to introduce six collective variables related to the monopole and quadrupole
degrees of freedom, as the same type of algebraic structure is generated by the
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ˇve generalized coordinates of the quadrupole degree of freedom, their conju-
gated momenta and the commutators between them [21]. These variables also
generate the group U(6) proposed by Arima and Iachello [16Ä18] and Castanos et
al. [19]. Using the method of boson representations of fermion operators, the two-
quasiparticle structure of the generalized coordinates and impulses is obtained and
the structure constants of the algebra are expressed as sums of products of the four
amplitudes that deˇne their microscopic structure [22]. The so-obtained collective
quadrupole nuclear Hamiltonian deˇnes the Truncated Quadrupole Phonon Model
(TQM), which has successful applications in the description of nuclear collective
spectra not only of spherical nuclei, but of deformed ones as well [23].

On the other hand, even during early stages of development of algebraic
methods for application in nuclear structure theory [24Ä26], the separation of
collective and intrinsic degrees of freedom was realized within the framework of
the overarching symplectic geometry of the nuclear many-body problem. The
Symplectic Shell Model (for example, [25, 27, 28]) which is considered as a mi-
croscopic realization of the successful BorhÄMottelsonÄFrankfurt [29] collective
model is realized as a multy-�Ω extension of the Elliott's SU(3) model and is
based on the noncompact sp (6, R) algebra, which has a very rich subalgebraic
structure. This allows for the description of rotational dynamics in a continuous
range from irrotational to rigid rotor 
ows. Recently, the expansion of the most
important sp (6, R) symmetry adapted components of the symplectic shell model
wave functions [30] in the spherical harmonic oscillator basis, utilized by the
prominent Å no-core shell model [31], demonstrated convincingly the impor-
tance of the symplectic symmetry in light nuclei, while reafˇrming the value of
the simpler SU(3) model upon which it is based.

In general, the advantages of exploiting symplectic structures, in addition to
gaining a direct geometrical interpretation, are quite transparent when a change in
the number of phonons needed to build collective states is included in the theory
as this results in larger model spaces that can accommodate the more complex
structural effects as realized in nuclei with nucleon numbers that lie far from the
magic numbers of closed shells.

The model discussed in this review is a natural generalization of the SU(3)
model developed by Raychev and co-workers [11Ä13]. Its main assumption
is that nuclear dynamics can be described by means of two types of vector
quasiparticles, which are also characterized by another quantum number, which
was initially called a ®pseudospin¯ [14]. Here we will use the more appropriate
term ®T spin¯ (an analogue to the F spin in IBM-2), as the term ®pseudospin¯ is
now known as introduced for single particle levels in [32]. These vector bosons
form a ®T -spin¯ doublet and they differ in their ®T -spin¯ projection α = ±1/2.
The introduction of this additional degree of freedom leads to the extension of the
SU(3) dynamical symmetry to U(6). It is not necessary to consider the bosons
as fermion pairs coupled to L = 1 in order to justify this assumption; we would
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rather treat them as kinds of ®oscillator quarks¯ or ®Elliott quarks¯ as in the
well-known model of Elliott [9] (see also Lipkin [33]).

In general, instead of considering the vector bosons as real nuclear excitations,
there can be another approach to the problem. It is only the tensor characteristics
of the operators built from the generators of some group G and belonging to its
universal enveloping algebra that play an important role in the diagonalization
of the Hamiltonian in the basis of the UIR of the dynamical group G, as well
as in the determination of the matrix elements of the transition operators. The
construction of the representations of G and the realization of its generators can
be achieved by means of boson operators, which in this case will not have an
immediate physical signiˇcance but will only play the role of formal auxiliary
apparatus. On the other hand, however, the idea, that the bosons used in this case
represent the real excitations, is more attractive, and for this reason we will retain
it in our further considerations.

As suggested by Rargmann and Moshinsky in [34], two types of bosons are
needed for the description of nuclear dynamics. It is shown there that the consid-
eration of only a two-body system consisting of two different interacting particles
will sufˇce to give a complete description of N three-dimensional oscillators with
a quadrupoleÄquadrupole interaction.

One of the purposes of the present investigation is to show that the non-
compact symplectic group Sp (12, R) is the group of dynamical symmetry for
the problem of two interacting vector bosons. In this sense the two-vector-boson
model is an expansion of the Sp (6, R) model of Rosensteel and Rowe [27,28,35].
It should be noted that the Sp (6, R) model was originally suggested for the
description of deformed evenÄeven nuclei by Raychev [36] and was further in-
vestigated microscopically by Asherova et al. [37], where a more general group
decomposition Sp (6A, R) ⊃ Sp (6, R)⊗O(A) (A is the number of nucleons) was
introduced. Although the IVBM is developed on a pure phenomenological level,
the clear similarities of its group structure to the one of the SU(3), SU(6), and
Sp (6, R) microscopic approaches gives an open possibility to explore its relations
to these models, which, as a future task, will lead to establishing its relations to
the microscopic foundations of the nuclear collective motion.

With the aim of extending the earlier applications of the IVBM to incorporate
new experimental data on states with higher spins and to incorporate new excited
bands, we explore the symplectic extension of the IVBM, for which the dynamical
symmetry group is Sp (12, R). This extension is realized from, and has its
physical interpretation over basis states of its maximal compact subgroup U (6) ⊂
Sp (12, R), which was identiˇed as the rotational limit [15] of the model. This
led naturally to the description [38] of not just energies, but of ˇner structural
effects like a staggering of levels between the ground and octupole bands up to
states of very high spins.
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The symplectic extension of the IVBM provided a useful tool to obtain its
relation [39] to a version of the IBM that contains the s and d bosons with
F spin F = 1 and a p boson with F = 0, by means of a mapping procedure
that uses pairs of vector bosons as constituents of the IBM ones. Even earlier
the equivalence of the IBM and the microscopic TQM [27] has been established
in respect to the matrix elements of their physical observables and their corre-
sponding operators [40]. Something more, the strict mathematical proof of the
unitary equivalence of the physical boson spaces of the basis states of the two
models also exists [41], which is the reason for considering the two models as
different realizations of the same phenomenological SU(6)-boson model. The
established relationship between the IVBM and the IBM [39] with its equivalence
to the TQM reveals another possibility to explore the microscopic foundation of
the model presented in this review.

In the dynamical Sp (12, R) group there are as well additional chains of sub-
groups, starting with noncompact symplectic subalgebras which in larger inˇnite
boson spaces lead to some new structural effects. One interesting example is
the reduction of Sp (2, R) ⊗ SO(6) ⊂ Sp (12, R), which allows for the inclusion
of a six-dimensional Davidson potential [42] into the theory that is known to
accommodate mixing of rotational and vibrational modes and hence allows one
to reproduce the spectra of transitional nuclei.

The next important chain [43] Sp (4, R)⊗SO(3) ⊂ Sp (12, R) allows the se-
lection of states with ˇxed angular momentum L, given by the SO(3) irreducible
representations (irreps). The physics behind this dynamical symmetry outlines the
importance of the structure of the band-head conˇgurations in the development
of the nuclear spectra, established in the applications of the ˇrst two reductions
and yields important relations between the subgroups of the ˇrst two limits.

At the end, the dynamical symmetries mentioned above are uniˇed in a
generalized reduction scheme for the symplectic extension of the IVBM that
contains the relations between the subgroups from the different chains. These
clarify the physical meaning and motivation of the model and lead to rather
successful applications for the description of the large amount of experimental
data on the nuclear structure, while still retaining the advantages of the use of
dynamical symmetries, namely the exact analytic solutions for the energy spectra
of nuclei.

We start our review, by presenting the rich and beautiful structure of the
maximal compact subgroup of Sp (12, R), namely the group U(6), on which we
base the symplectic extension of the Interacting Vector Boson Model.

1.2. Building Blocks of the Model. If x(α), y(α), and z(α) are the Cartesian
coordinates of a quasiparticle with projection of the ®T spin¯ α = ±1/2, the
corresponding cyclic coordinates are

x±1(α) = ∓x(α) ± iy(α)√
2

, x0(α) = z(α). (1)
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The momenta associated with these coordinates are

qm(α) = −i ∂/∂xm(α), (2)

where
xm =

∑
n

gmnxn, gmn = gmn = (−1)nδm,−n.

Using (1) and (2) one can introduce creation and annihilation operators of bosons
with angular momentum l = 1, projection m, and ®T -spin¯ projection α as
follows:

u†
m(α) =

(
xm(α) − iqm(α)

)
/
√

2, (3)

um(α) =
(
xm(α) + iqm(α)

)
/
√

2.

These operators satisfy the commutation relations[
um(α), u†

n(β)
]

= δ(α, β) δm, n

and Hermitian conjugation rules

[
u†

m(α)
]† = um(α),

[
um(α)

]† = u†
m(α).

When convenient, we also use the notations

u†
m

(
α =

1
2

)
= p†m, u†

m

(
α = −1

2

)
= n†

m. (4)

The operators p† and n† can be considered as three-dimensional vectors (with
respect to the group O(3)) belonging to two independent representations (1, 0)
of the group SU(3) (the operators p and n belong to the representation (0, 1)).
The operators (3) can also be realized as double tensors with respect to the
angular momentum soL(3) algebra, labelled by l = 1 (−l � m � l), and of rank
f = 1/2 (−f � τ � f) (with respect to the suT (2) algebra), which satisfy the
commutation relations: [

ulm
fτ , u† l′m′

f ′τ ′

]
= δll′δmm′δff ′δττ ′. (5)

The vector bosons presented by (3) and (4) play the role of ®quasiparticle
quarks¯ and can be used for the construction of other quasiparticle excitations
with different angular momenta. Thus, for example, the s and d bosons from the
IBM can be considered as bound states of the bosons (4). In this sense the group
SU(3) is the group describing the fundamental collective excitations in nuclei.
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Now we introduce the following operators:

FL
M (α, β) =

∑
k,m

CLM
lk, lm u†

k(α)u†
m(β), (6a)

GL
M (α, β) =

∑
k,m

CLM
lk, lm uk(α)um(β), (6b)

which create or annihilate a pair of bosons with angular momentum L and pro-
jection M . We also introduce the operators

AL
M (α, β) =

∑
k,m

CLM
lk, lm u†

k(α)um(β), (6c)

which preserve the number of bosons. The operators (6a)Ä(6c) introduced so far
have the following properties:

FL
M (α, β) = (−1)LFL

M (β, α), GL
M (α, β) = (−1)LGL

M (β, α),

[FL
M (α, β)]† = (−1)MGL

−M (β, α), [GL
M (α, β)]† = (−1)MFL

−M (β, α). (7)

[AL
M (α, β)]† = (−1)MAL

−M (β, α),

We will show further that the operators (6a)Ä(6c) play the role of the gen-
erators of the sp (12, R) algebra (or, in the general case, sp (2d, R) algebra with
d = (2l + 1)(2f + 1)). They can also be expressed in terms of double tensors of
the angular momentum L and the T -spin T .

FLM
Tt = (GLM

Tt )† =
1√
2

∑
m1 m2 τ1 τ2

CLM
lm1, lm2

CTt
fτ1, fτ2

u† lm1
fτ1

u† lm2
fτ2

=

=
1√
2

(
u† l

f ⊗ u† l
f

)LM

Tt
, (8a)

ALM
Tt =

∑
m1 m2 τ1 τ2

CLM
lm1, lm2

CTt
fτ1, fτ2

u† lm1
fτ1

ulm2
fτ2

(−1)l−m2(−1)f−τ2 =

=
(
u† l

f ⊗ ũl
f

)LM

Tt
, (8b)

where
ũlm

fτ = (−1)l+m(−1)f+τul−m
f −τ . (9)

The symmetry properties of the ClebshÄGordan coefˇcients CLM
lm, ln result in

some restrictions on the possible values of the angular momentum L and isospin
T of two-boson generators FLM

Tt and GLM
Tt (8a), namely

(−1)2l−L(−1)2f−T = 1. (10)
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2. THE ALGEBRAIC STRUCTURE GENERATED
BY THE TWO VECTOR BOSONS

The algebraic structure, generated by the operators FL
M (α, β), GL

M (α, β) and
AL

M (α, β) (78 in number) is clariˇed by their commutation relations:

[AL1
M1

(α, β), FL2
M2

(α′, β′)] =

= (−1)L2 [(2L1 + 1)(2L2 + 1)]1/2
∑
L,M

CLM
L1M1, L2M2

{
L1 L2 L
1 1 1

}
×

×
[
FL

M (α′, α)δ(β, β′) + (−1)L1FL
M (β′, α)δ(α′, β)

]
, (11a)

[AL1
M1

(α, β), GL2
M2

(α′, β′)] =

= (−1)L1 [(2L1 + 1)(2L2 + 1)]1/2
∑
L,M

CLM
L1M1, L2M2

{
L1 L2 L
1 1 1

}
×

×
[
(−1)L2GL

M (α′, β)δ(α, β′) + GL
M (β′, β)δ(α, α′)

]
, (11b)

[FL1
M1

(α, β), GL2
M2

(α′, β′)] =

= [(2L1 + 1)(2L2 + 1)]1/2
∑
L,M

(−1)LCLM
L1M1, L2M2

{
L1 L2 L
1 1 1

}
×

×
[
(−1)L2AL

M (α, α′)δ(β, β′) + AL
M (α, β′)δ(α′, β)+

+ (−1)L1+L2AL
M (β, α′)δ(α, β′) + (−1)L1AL

M (β, β′)δ(α, α′)
]
+

+ (−1)M1+1δL1, L2δM1,−M2

[
δ(α, β′)δ(α′, β) + (−1)L2δ(α, α′)δ(β, β′)

]
,

(11c)

[AL1
M1

(α, β), AL2
M2

(α′, β′)] =

= [(2L1 + 1)(2L2 + 1)]1/2
∑
L,M

CLM
L1M1, L2M2

{
L1 L2 L
1 1 1

}
×

×
[
(−1)L1+L2AL

M (α′, β)δ(α, β′) − (−1)LAL
M (α, β′)δ(α′, β)

]
. (11d)

It is evident from (11a)Ä(11c) and the deˇnitions (6a)Ä(6c) that these operators
deˇne an algebra of the noncompact symplectic group Sp (12, R) and also that
the 36 operators AL

M (α, β), (α, β = ±1/2, L = 0, 1, 2) generate an algebra of the
maximal compact subgroup of Sp (12, R), namely the group U(6).
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In terms of the double tensors (8b) the commutation relations (11d) can be
expressed in a more compact form:

[
AL1M1

T1t1
, AL2M2

T2t2

]
= L̂1L̂2T̂1T̂2

∑
LT

[
(−1)L+T − (−1)L1+L2+T1+T2

]
×

× CLM
L1M1, L2M2

CTt
T1t1, T2t2

{
L1 L2 L
l l l

}{
T1 T2 T
f f f

}
ALM

Tt . (12)

Here and later on we use the notation L̂ =
√

2L + 1, and the curly brackets {}
denote the 6 − j symbols. It is evident from (12) that, in general, operators
ALM

Tt , which do not change the number of bosons, generate a maximal compact
subalgebra of sp (2d, R), namely the u(d) algebra. The operator of the total
number of bosons

N =
∑
mτ

u†m
τ um

τ

is connected with the multipole operator A00
00 in the following way:

N =
√

(2l + 1)(2f + 1)A00
00 =

√
dA00

00.

The commutation relations for the rest of the sp (2d, R) generators are generalized
in the following way:

[
AL1M1

T1t1
, GL2M2

T2t2

]
= −2L̂1L̂2T̂1T̂2(−1)M1+t1

∑
LT

CLM
L1M1, L2M2

CTt
T1t1, T2t2×

×
{

L1 L2 L
l l l

}{
T1 T2 T
f f f

}
GLM

Tt , (13)

[
GL1M1

T1t1
, FL2M2

T2t2

]
= δL1L2δM1M2δT1T2δt1t2 + 2L̂1L̂2T̂1T̂2(−1)M1+t1×

×
∑
LT

CLM
L1M1, L2M2

CTt
T1t1, T2t2

{
L1 L2 L
l l l

}{
T1 T2 T
f f f

}
ALM

Tt , (14)

[
FL1M1

T1t1
, FL2M2

T2t2

]
=
[
GL1M1

T1t1
, GL2M2

T2t2

]
= 0. (15)

These commutation relations are similar to the commutation relations of the
corresponding bifermion operators [44] except for opposite signs at some terms.
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2.1. U(6) Subalgebraic Structure. From the commutation relations (11a)Ä
(11c) it follows that the U(6) algebra contains the following chains of subgroups:

U(6)

O(6) SU(3) ⊗ SU(3) U(3) ⊗ U(2)

SU(3) ⊗ O(2) O(3) ⊗ O(3) U(3) ⊗ U(1) ⊗ U(1)

O(3) ⊗ O(2) O(3)

� ��

� � � �

� � �
�

(16)

Now we are going to brie
y enumerate these algebras, their generators, and
second-order Casimir operators:

(1) The U(6) algebra is generated by the operators AL
M (α, β) (6c) (L =

0, 1, 2; α, β = +1/2 → (p),−1/2 → (n)). They satisfy the commutation rela-
tions (11c) and their second-order Casimir operator is

K6 =
∑
L,M

∑
α,β

(−1)MAL
M (α, β)AL

−M (β, α) = N(N + 5),

where
N = −

√
3
(
A0(p, p) + A0(n, n)

)
(17)

is the operator of the number of particles.
(2) The angular momentum algebra O(3), deˇned by the angular momentum

operators

LM = −
√

2
(
A1

M (p, p) + A1
M (n, n)

)
, (18)

which satisfy the usual commutation relations

[LM1 , LM2 ] = −
√

2C1M1+M2
1M1, 1M2

LM1+M2 . (19)

This group inevitably appears at the end of each chain of subgroups and has the
following second-order Casimir operator:

π3 =
∑

M,α,β

(−1)MA1
M (α, α)A1

−M (β, β) =
1
2
L2.
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(3) SU(3) ⊗ U(2) algebra consists of two commuting sets of operators:
(a) The U(2) algebra, deˇned by the operator of a number of particles N (17)

and the ®T -spin¯ operators T 1
m, (m = 0,±1) introduced through

T1 =

√
3
2

A0(p, n),

T−1 = −
√

3
2

A0(n, p), (20)

T0 = −1
2

√
3
(
A0(p, p) − A0(n, n)

)
.

The above operators T 1
m (m = 0,±1) commute with N and satisfy the standard

commutation relations of the type (19). Thus (20) deˇne the subalgebra su(2) ⊂
u(2). These operators (20) play an important role in the consideration of the
nuclear system as composed by two interacting neutron and proton subsystems.
The second-order Casimir operator of U(2) is

K2 =
4
3
T 2 +

1
3
N2.

(b) The U(3) algebra. It consists of the operators N (17), LM (18) and

Q̃M =
√

6
(
A2

M (p, p) + A2
M (n, n)

)
, (21)

which can be interpreted as operators of the truncated (®Elliott¯) quadrupole
momentum [9]. The operators LM and Q̃M commute with N and deˇne the
subalgebra su(3) ⊂ u(3). The standard commutation relations between these
operators are

[LM1 , Q̃M2 ] =
√

30C1 M1+M2
2M1, 2M2

Q̃M1+M2 ,

[Q̃M1 , Q̃M2 ] = 3
√

10.

The second-order Casimir operator of U(3) is

K3 =
1
6
Q̃2 +

1
2
L2 +

1
3
N2,

where
Q̃2 = 6

∑
M,α,β

(−1)MA2
M (α, α)A2

M (β, β).

It should be pointed out that the groups U(2) and U(3) are mutually complemen-
tary in the sense that the eigenvalues of K2 are completely determined by the
eigenvalues of K3. This is due to the relation

K3 =
3
2
K2 + N. (22)
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This means that the representations of U(3) and U(2) can be labeled by the
same quantum numbers (for instance, the number of quasiparticles N and the
®T -spin¯ T ).

(4) U(1) ⊗ U(1) algebra. It is determined by the operators

A0(p, p) + A0(n, n), A0(p, p) − A0(n, n)

proportional to N (17) and T0 (20) and its second-order Casimir operator is

K1 =
1
3
N2 +

4
3
T 2

0 .

(5) SU(3) ⊗ SU(3) algebra. It consists of two sets of commuting operators
(L = 1, 2)

PL
M =
(
AL

M (p, p) + AL
M (n, n) + AL

M (p, n) + AL
M (n, p)

)
/
√

2 (23a)

and

SL
M =
(
AL

M (p, p) + AL
M (n, n) − AL

M (p, n) − AL
M (n, p)

)
/
√

2. (23b)

This group has two second-order Casimir operators

G3 =
∑

L=1,2

∑
M

(−1)M (PL
MPL

−M + SL
MSL

−M ) =

=
∑

L=1,2

∑
M

(−1)M
(
AL

M (p, n)AL
−M (p, n) + AL

M (n, p)AL
−M (n, p)

)
=

= K3 −
2
3
T 2 − 4

3
T 2

0 +
1
6
N2 + 3N (24)

and

G′
3 =
∑

L=1,2

∑
M

(−1)M (PL
MPL

−M − SL
MSL

−M ) =

=
∑

L=1,2

∑
M

(−1)M
(
AL

M (p, p)AL
−M (n, p) + AL

M (p, n)AL
−M (p, p)+

+AL
M (n, n)AL

−M (p, n)+AL
M (n, p)AL

−M (n, n)
)
− 16

3

√
3
(
A0(p, n)+A0(n, p)

)
.

(6) O(3) ⊗ O(3) algebra. Its generators are determined by the opera-
tors (23a), (23b) with L = 1. This group also has two second-order Casimir
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operators

π̃3 =
∑

L=1,2

∑
M

(−1)M (P 1
MP 1

−M + S1
MS1

−M ) =

=
∑
M

(−1)M
(
2A1

M (p, p)A1
−M (n, n) + A1

M (p, n)A1
−M (p, n)+

+ A1
M (n, p)A1

−M (n, p)
)

= π3 − T 2 +
1
4
N(N + 6)

and

π̃′
3 =
∑

L=1,2

∑
M

(−1)M (P 1
MP 1

−M − S1
MS1

−M ) =

= 2
∑
M

(−1)M
(
A1

M (p, p)A1
−M (n, p) + A1

M (p, n)A1
−M (p, p)+

+ A1
M (n, n)A1

−M (p, n) + A1
M (n, p)A1

−M (n, n)
)
− 2

√
3
(
A0(p, n) + A0(n, p)

)
.

(7) O(6) algebra. The set of generators is

A1
M (p, n) + A1

M (n, p), i(A2
M (p, n) + A2

M (n, p)), (25)
i(A0(p, n) − A0(n, p)), A1

M (p, p), A1
M (n, n),

and its second-order Casimir operator is

π6 =
∑

L=0,1,2

∑
M

(−1)L+M+1
(
AL

M (p, n)AL
−M (p, n) + AL

M (n, p)AL
−M (n, p)

)
+

+
1
2
N2 − 2T0 + 3N. (26)

(8) SU(3) algebra. It consists of eight generators, which are part of the
generators of O(6), namely

X2
M = i(A2

M (p, n) − A2
M (n, p)), M = 0,±1,±2, (27)

Y 1
M = A1

M (p, p) + A1
M (n, n) = − 1√

2
LM , M = 0,±1.

Its second-order Casimir operator is

Ḡ3 =
∑
M

(−1)M (XMX−M + YMY−M ). (28)

(9) O(2) algebra. It is given by the operator

i(A0(p, n) − A0(n, p))
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and its second-order Casimir operator is

π2 =
2
3
T 2 − 2

3
T 2

0 − A0(p, n)A0(p, n) − A0(n, p)A0(n, p).

2.2. Hamiltonian of the Model. The most general one- and two-body Hamil-
tonian, which is invariant with respect to Hermitian conjugation and with respect
to the group O(3), can be expressed in the form

� =�0 +�int, (29a)

where
�0 =

∑
α

(
εαA0(α, α) + ε+

α F 0(α, α) + ε−α G0(α, α)
)
, (29b)

and �int is a linear combination of all possible scalar products of the opera-
tors (6a), (6b).

As a ˇrst approximation of the model we assumed the additional condition
that the Hamiltonian should preserve the number of bosons [14, 15]. This con-
dition restricts the region of application of the model, but makes it possible to
construct in a comparatively simple way bases that can be further used for the di-
agonalization of the complete Hamiltonian (6a)Ä(6c). The truncated Hamiltonian
which preserves the number of bosons is of the form

H = H0 + Hint =

=
∑
α

εαA0(α, α) +
∑
L

∑
αβγδ

V L(αβ; γδ)FL(α, β)GL(γ, δ) (29c)

and its structure is investigated below in detail.
The coefˇcients V L(αβ; γδ) in (29c) are real phenomenological constants

related to the two-boson interaction. From (7) it follows that they have the
following properties:

V L(αβ; γδ) = V L(γδ; αβ), (30)

V L(αβ; γδ) = (−1)L V L(βα; γδ) = (−1)L V L(αβ; δγ).

In particular
V L(αα; γδ) = V L(αβ; γγ) = 0, if L = 1.

It is obvious from (30) that the number of independent constants V L(αβ; γδ)
is 13. This number can be reduced provided that H in (29b) is subject to certain
additional restrictions. In order to deˇne the latter it is necessary to introduce the
operators of the basic physical observables of the system.
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In future papers our model will be applied to evenÄeven nuclei so that the spin
of the ground state of the system is equal to zero. Its angular and quadrupole
momenta are the most important physical observables in this case. Using the
standard deˇnitions and relations (1) and (2) one can express the operators of the
angular and quadrupole momenta as follows:

LM = −i
∑

α,k,m

C1 M
1k, 1mxm(α)qk(α) = −

√
2
∑

α

A1
M (α, α), (31a)

and

QM =
∑

α,k,m

C2 M
1k, 1mxk(α)xm(α) =

=
√

6
∑

α

(1
2
F 2

M (α, α) + A2
M (α, α) +

1
2
G2

M (α, α)
)
, (31b)

where it is obvious that (31a) coincides with the operator (18) and the middle
term in QM (31b) is the operator deˇned by (21). The ®T spin¯ and its pro-
jection play an essential role in the classiˇcation of the states of the many-body
system. Using (20) it is not difˇcult to show that −FL(p, p)/

√
2, FL(p, n) and

FL(n, n)/
√

2 (−GL(n, n)/
√

2, GL(n, p) and GL(p, p)/
√

2) form a tensor of rank
one with respect to the ®T -spin¯ group deˇned by the operators Tk, (k = 0,±1).
It is therefore evident that in general the Hamiltonians (29a), (29b) do not com-
mute with the operators of the ®T -spin¯ group. On the other hand, the difference
between the p and n bosons is irrelevant in this case, and it is reasonable to
consider Hint in (29b) invariant if p and n are mutually substitutable (a ®T -spin¯
symmetry). We introduce an operator

Rx = exp (iπTx), Tx = (−T1 + T−1)/
√

2,

which has the property

R−1
x u†

k(α)Rx = −iu†
k(−α), R−1

x uk(α)Rx = iuk(−α)

and brings about the substitution p � n. It is obvious that

R−1
x FL

M (α, β)Rx = −FL
M (−α,−β),

R−1
x GL

M (α, β)Rx = −GL
M (−α,−β),

R−1
x AL

M (α, β)Rx = AL
M (−α,−β)

and that Hint is invariant with respect to the ®T spin¯ under the condition

R−1
x HintRx = Hint. (32a)
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The latter means that

V L(αβ; γδ) = V L(−α − β;−γ − δ) (32b)

and the number of independent constants in (29c) is reduced from 13 to 9.
The Hamiltonians (29a), (29c) are expressed by the generators of Sp (12, R).

The eigenvectors of Hint or H can be expanded by the basic vectors of a cer-
tain irreducible representation of the group Sp (12, R). On the other hand, (29a)
and (29c) are invariant only with respect to the group O(3) deˇned by the oper-
ators of the angular momentum (31a). Therefore, each of the Hamiltonians splits
the irreducible multiplet of Sp (12, R) and generates the energy spectrum of the
system, i.e., Sp (12, R) is a dynamical group for the interactions (29a), (29c).
Moreover, the transition operators Q2

M of (31b) are also expressed by the genera-
tors of Sp (12, R). This means that if one knows the representations of Sp (12, R)
algebra, then not only the energy levels can be calculated but also the transition
probabilities between them.

It should be noted that if xm(μ) (m = 0,±1; μ = 1, 2, . . . , A) are the cyclic
coordinates of a particle in a system of A particles, then using the formulae of
Subsec. 1.2 one can construct the operators FL

M (μ, ν), AL
M (μ, ν), and GL

M (μ, ν)
(μ, ν = 1, 2, . . . , A). These operators satisfy the commutation relations (11a)Ä
(11c) and generate the algebra of the group Sp (6A, R) Å the noncompact group
of canonical transformations of a system of A particles [45]. Summing over the
particle indices one obtains the generators of Sp (6, R) (21 in number) [27,28,36]:

FL
M =

A∑
μ=1

FL
M (μ, μ), AL

M =
A∑

μ=1

AL
M (μ, μ), GL

M =
A∑

μ=1

GL
M (μ, μ).

The latter commute with the set of operators

Iμν =
∑

m=0,±1

(
u†

m(μ)um(ν) − u†
m(ν)um(μ)

)
which generate the group O(A) of rotations in A-dimensional space of the parti-
cles [37].

If the system consists of two types of particle differing, for example, in their
®T -spin¯ projection, then the number of cyclic coordinates is doubled and the
generators of the groups Sp (12A, R) and Sp (12, R) can be constructed. These
generators also commute with the generators of O(A).

This explains to a certain extent the basic assumption of our model Å we
accept that the collective properties of a system of A particles of two different
types are determined by an algebraic structure generated by the group Sp (12, R).

We recall here that the group Sp (12, R) is not compact and its representa-
tions are of inˇnite dimension, which makes it rather difˇcult to diagonalize the
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Hamiltonians (29a), (29c) in the basis of Sp (12, R). However, in the case of
the truncated Hamiltonian (29c), this difˇculty can be overcome if one uses the
standard technique of recoupling noncommuting operators [46]:

∑
M

(−1)MFL
M (α, β)GL

−M (γ, δ) =
2L + 1√

3
A0(α, δ)δ(γ, β)+

+
∑
J,�

(−1)� (2L + 1)
{

1 1 L
1 1 J

}
AJ
� (α, γ)AJ

−� (β, δ).

In this way the truncated Hamiltonian can be written in terms of the generators
of the group U(6) only:

H ′
0 =
∑
α,β

h0(α, β)A0(α, β),

H ′
int =

∑
L,J,�

∑
α,β,γ,δ

(2L + 1)
{

1 1 L
1 1 J

}
V L(αβ; γδ)× (33)

× (−1)�AJ
� (α, γ)AJ

−� (β, δ),

where

h0(α, β) =
1√
3

∑
L,λ

(2L + 1)V L(αλ; λβ) +
1
2
εαδ(α, β).

Now we can discuss the role of the group Sp (12, R) in the problem. First
of all, the eigenvalues of the truncated Hamiltonian belong to a given UIR of
Sp (12, R). Apart from that there are only two types of UIR of Sp (12, R) Å
even and odd, which can be constructed by means of six creation operators [23]
(as is our case). On the other hand, under the decomposition Sp (12, R) ⊃ U(6)
the UIR of Sp (12, R) splits into a countless number of symmetric UIR of U(6)
of the type [N, 0, 0, 0, 0, 0], where N = 0, 2, 4 . . ., for the even UIR of Sp (12, R),
and N = 1, 3, 5 . . ., for the odd UIR of Sp (12, R). This means that the matrix
elements of the truncated Hamiltonian (29b) in the basis of Sp (12, R) vanish
between states of different UIR of U(6) given by the number N , i.e., in the basis
of Sp (12, R) the matrix of H (29b) is block-diagonal. In this way the problem
is reduced to the diagonalization of H in the ˇnite subspaces of the different UIR
of U(6), which can always be done, at least numerically.

From all this one can get the impression that the role of Sp (12, R) in this
problem has been somewhat exaggerated and that we can restrict ourselves to the
dynamical U(6). This, however, is not the case, because the complete spectrum
of the system can be calculated only through the diagonalization of the truncated
H (29b) in the subspaces of all the UIR of U(6), belonging to a given UIR of
Sp (12, R). On the other hand, the operators describing the transitions between
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the states of different UIR of U(6) belong to the enveloping algebra of Sp (12, R).
Finally, in the case of the complete Hamiltonian (29a), the terms which do not
preserve the number of particles mix the different UIR of U(6) and, in this sense,
Sp (12, R) is the dynamical group for the system.

2.3. The Dynamical Symmetries of the IVBM. The diagonalization
of H (29c) or (33) can easily be carried out if one is able to express the term
in the sum (33) by means of the Casimir operators of the group U(6) and its
subgroups (16). Taking the symmetry properties (32a), (32b) into account and
the recoupling relation in the case of α �= β:∑

L,M

∑
α�=β

(−1)MAL
M (α, β)AL

−M (β, α) =

= − 1√
3

∑
α

A0(α, α)
∑
L

(2L + 1) +
∑

L,J,�

∑
α�=β

(−1)L+J(2L + 1)×

×
{

1 1 L
1 1 J

}
AJ
� (α, α)AJ

� (β, β).

The truncated Hamiltonian can be written explicitly in the form

H̃0 =
(
εp +

1
3

√
3V 0(pp; pp) +

5
3

√
3V 2(pp; pp)

)(
A0(p, p) + A0(n, n)

)
,

H̃int =
∑

L,J,�

(2L+1)
{

1 1 L
1 1 J

}
(−1)�

[
V L(pp; pp)

(
AJ
� (p, p)AJ

−� (p, p)+

+ AJ
� (n, n)AJ

−� (n, n)
)

+ 4V L(pn; pn)AJ
� (p, p)AJ

−� (n, n)+

+ V L(pp; nn)
(
AJ
� (p, n)AJ

−� (p, n) + AJ
� (n, p)AJ

−� (n, p)
)
+

+ 2V L(pp; nn)
(
AJ
� (p, p)AJ

−� (n, p) + AJ
� (p, n)AJ

−� (p, p)+

+ AJ
� (n, n)AJ

−� (p, n) + AJ
� (n, p)AJ

−� (n, n)
)]

. (34)

From the U(6) structure of the truncated Hamiltonian (the results of Sec. 2)
it becomes clear that the two-boson interaction H̃int can also be written in terms
of the second-order Casimir operators of the algebras belonging to the reduction
scheme (16):

H̃int = α6K6 + α3K3 + α2K2 + α1K1 + ᾱ′
3G

′
3 + β6π6 + β̄3π̄3+

+ β̄′
3π̄

′
3 + β3π3 + β2π2 + γ

(
A0(p, n) + A0(n, p)

)
. (35)

The Casimir operators G3 (24) and Ḡ3 (28) have not been taken into account
in (35) because of the relations

G3 =
2
3
K6 +

2
3
K3 + K2 − 2K1 − 2π2
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and

Ḡ3 = −2
3
π6 +

1
3
π̄3 +

4
3
π3.

Now it is easy to express the real independent constants of (34) by the coefˇcients
of the expansion (35):

V 0(pp; pp) = α6 + α +
2
3
α1 − β6 − β̄3 − β3,

V 2(pp; pp) = α6 + α +
2
3
α1 +

1
2
β6 +

1
2
β̄3 +

1
2
β3,

V 0(pn; pn) =
1
2
α6 +

1
2
α +

1
2
β6 − β̄3 −

1
2
β3 +

1
6
β2,

V 1(pn; pn) = −1
2
α6 +

1
2
α − 1

2
β6 +

1
4
β3 +

1
6
β2,

V 2(pn; pn) =
1
2
α6 +

1
2
α +

1
2
β6 +

1
2
β̄3 +

1
4
β3 +

1
6
β2,

V 0(pp; nn) = −3β6 − β̄3 −
1
3
β2,

V 2(pp; nn) =
1
2
β̄3 −

1
2
β2,

V 0(pp; pn) =
2
3
ᾱ′

3 − β̄′
3,

V 2(pp; pn) =
2
3
ᾱ′

3 +
1
2
β̄′

3,

γ =
16
3

√
3 ᾱ′

3 + 2
√

3 β̄′
3,

where

α = α3 +
2
3
α2,

which is due to the fact that U(3) and U(2) are mutually complementary
groups (22).

If one is able to ˇnd examples of nuclei for which the parameters in (35) are
so special as to realize only one of the chains in the reduction scheme (16), then
the truncated Hamiltonian can be diagonalized immediately in a basis of states
labelled by the eigenvalues of the corresponding Casimir operators. The limiting
cases realized in such a way are of interest for the determination of the region
of application of the two-vector boson model, and are to be investigated in this
review.

In short, the most general one- and two-body interaction has been constructed
by means of two interacting vector bosons. The group of dynamical symmetry for
the complete Hamiltonian is the noncompact symplectic Sp (12, R). In the basis
of the group Sp (12, R) the matrix of the truncated Hamiltonian, which preserves
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the number of bosons, is block-diagonal with respect to the maximal compact
subgroup of Sp (12, R), namely the group U(6). In this way the diagonalization
of the truncated H in the inˇnite space of a given UIR of Sp (12, R) is reduced to
a diagonalization in the ˇnite subspaces of the different UIR of U(6). The U(6)
structure of the truncated Hamiltonian has been investigated. All possible types
of two-boson interactions preserving the number of bosons have been expressed
by linear combinations of second-order Casimir operators of the groups in the
reduction scheme (16). As a result of the proposed representation of the truncated
Hamiltonian the eigenvalue problem can be solved explicitly.

3. RELATIONSHIP OF THE INTERACTING VECTOR BOSON MODEL
TO THE VERSIONS OF THE INTERACTING BOSON

APPROXIMATIONS

The interacting vector boson model [14], where nuclear states are considered
as a system of an even number of the p bosons with isospin T = 1/2, is in some
aspects similar to the standard IBM [47] (for example, there is an exactly solvable
su(3) rotational limit and so on), but there are some differences, too. The natural
question about the connections between IVBM and the standard versions of IBM
arises. The answer could be obtained by means of mapping of the boson pairs
with angular momentum L and isospin T (LT = 01, 21, 10) on the space of the
ideal S and D bosons with isospin T = 1 and P bosons with T = 0.

The boson mapping technique, which is widely applied to the problems of
microscopic foundation of the IBM [48], can be applied to our problem, too.
The noncompact algebra sp (12, R) is a dynamical symmetry algebra for IVBM.
The algebraic structure of lVBM allows one to use a number of results obtained
for the boson mapping of symplectic algebras [49]. The vector coherent states
(VCS) and the mixed boson realization [50] are of particular importance in this
case. The VCS theory is an extension of the standard theory of the generalized
coherent states [51] which allows the inclusion of vector-valued functions. At
ˇrst sight this approach seems a complication but in fact it brings about a major
simpliˇcation because it allows the separation of the intrinsic degrees of freedom
from the collective ones, thereby greatly simplifying the description of the latter.
Besides, a simple K-matrix technique has recently been elaborated, which allows
one to solve the long-standing problem of transformation of the Dyson [52]
representation into the HolsteinÄPrimakoff [53] representation. Our aim is to
obtain the boson realization of the sp (2d, R) algebra generators written in a
form of double spherical tensors (8a), (8b) with respect to the SOL(3)⊗SUT (2)
group. A similar problem has been studied in a number of papers [44,54] where
the representations of the compact sp (2d) algebra were mapped on the boson
space. The technique suggested there for the construction of boson images of the
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sp (2d) algebra generators written in a tensor form includes a solution of some
additional equations. Besides, that method is applicable only to the so-called
vacuum representations and cannot be used for the construction of the boson
realization in a general case. In our investigation we use a different approach
based on a general technique [49,50,55Ä57] that allows the results we are looking
for to be obtained directly avoiding subsidiary calculations.

First we obtain the nonunitary Dyson mapping of the generators of the
sp (2d, R) algebra. As a result, it is shown that the IVBM states with an even
number of p bosons can be exactly mapped onto the states of some speciˇc ver-
sion of the IBM with S, D, and P bosons, i.e., the model that is intermediate
between IBM-3 and IBM-4 and that could be conditionally named IBM-3.5. As
in the case of mapping of the fermion space onto the boson space [23, 58], the
IVBM states are mapped only on the part of the space (physical subspace) of the
IBM-3.5 model. Thus the problem of separating the physical subspace and of the
identiˇcation and cancellation of the nonphysical (spurious) states arises.

It should be noted that this problem has been discussed in detail in connection
with the mapping of fermion pairs (i.e., the representations of compact algebras)
in [23Ä59]. As for the boson mapping of the boson pairs (i.e., the representations
of noncompact algebras), the problem of spurious states has not been considered
earlier. The reason for the appearance of spurious states when fermion pairs
are mapped is usually considered to be the Pauli exclusion principle. Our con-
siderations indicate that the spurious states can also appear in the case of the
bosonÄboson mapping. A method of identifying and removing of spurious states
from the low-lying part of the energy spectrum has been suggested by Park [58].
We will show that this method, based on pure group-theoretical analysis, can be
reformulated and applied to the problem under consideration.

3.1. Mixed Dyson Boson Realization of sp (2d, R) Algebra. In order to
ˇnd the relationship between the IVBM and the standard versions of IBM, the
sp (12, R) algebra generated by operators ALM

Tt , FLM
Tt , GLM

Tt should be mapped
on the space of S, D, and P bosons with the isospins 1, 1, and 0, respectively.
First we concider the general construction of Dyson mapping of the sp (2d, R)
algebra and then the explicit expressions for sp (12, R) algebra are given.

In order to determine the VCS of the Sp (2d, R) group we take the subal-
gebra u(d) ⊂ sp(2d, R) which contains the Cartan subalgebra and carry out the
generalized Gauss decomposition

g = n− + h + n+, (36)

where n−(n+) is a nilpotent subalgebra of lowering GLM
Tt (raising FLM

Tt ) opera-
tors and the subalgebra h is the u(d) algebra.

According to the commutation relations (13)Ä(15) the operators GLM
Tt and

FLM
Tt are tensors with respect to the u(d) subalgebra. An arbitrary irreducible
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representation (IR) [σ] belonging to the positive discrete series of the sp (2d, R)
algebra, may be expanded in terms of the IRs [Λ] of the u(d) algebra. Of all
these representations the so-called lowest-weight representation is deˇned by the
equation

GLM
Tt |σΛλ〉 = 0. (37)

Here {|σΛλ〉} is a basis of the corresponding lowest-weight representation and
|σΛΛ〉 is the highest weight vector with respect to the h subalgebra of the
sp (2d, R) algebra. The VCS can be written as

|Z〉 =
∑

λ

exp

( ∑
LMTt

Z∗LM
Tt FLM

Tt

)
|σΛλ〉, (38)

where ZLM
Tt are complex parameters and ∗ denotes complex conjugation.

The VCS representation of an arbitrary state |Ψ〉 is deˇned by

|Ψ(Z)〉 =
∑

λ

|σΛλ〉〈σΛλ| exp

( ∑
LMTt

ZLM
Tt GLM

Tt

)
|Ψ〉. (39)

The VCS representation of an operator E

Γ(E)|Ψ(Z)〉 =
∑

λ

|σΛλ〉〈σΛλ| exp

( ∑
LMTt

ZLM
Tt GLM

Tt

)
E|Ψ〉 =

=
∑

λ

|σΛλ〉〈σΛλ|
∑

n

1
n!

[
ZLM

Tt GLM
Tt , . . .

[
ZLM

Tt GLM
Tt , E

]
. . .︸︷︷︸
n

]
×

× exp

( ∑
LMTt

ZLM
Tt GLM

Tt

)
|Ψ〉 (40)

is equivalent to some partial differential operator with respect to ZLM
Tt .

Since vectors |σΛλ〉 belong to the lowest-weight representation we have

∑
λ

|σΛλ〉〈σΛλ|FLM
Tt exp

( ∑
LMTt

ZLM
Tt GLM

Tt

)
|Ψ〉 = 0. (41)

The intrinsic operators ALM
Tt act in a standard way on the basis vectors of

the lowest-weight representation {|σΛλ〉} of the u(d) algebra

∑
λ

|σΛλ〉〈σΛλ|ALM
Tt exp

( ∑
LMTt

ZLM
Tt GLM

Tt

)
|Ψ〉 = ALM

Tt |Ψ(Z)〉. (42)
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It is assumed that the operators ALM
Tt commute with ZLM

Tt and ∂/∂ZLM
Tt .

Using the commutation relations (13)Ä(15) of the sp (2d, R) algebra and for-
mulae (40)Ä(42), the explicit VCS representation of generators GLM

Tt , FLM
Tt , and

ALM
Tt can be derived. This yields immediately the Dyson boson realization of the

sp (2d, R) algebra in terms of u(d)-boson algebra by means of the isomorphism

ZLM
Tt → b†LM

Tt ,
∂

∂ZLM
Tt

→ bLM
Tt . (43)

The latter algebra is a direct sum of the u(d) algebra and the HeisenbergÄ
Weyl algebra hw(d(d + l)/2).

The ideal boson creation and annihilation operators b†LM
Tt and bLM

Tt with
the angular momentum L and isospin T satisfy the standard boson commutation
relations [

bLM
Tt , b†L

′M ′

T ′t′

]
= δLL′δMM ′δTT ′δtt′ , (44)

b̃LM
Tt = (−1)L+M (−1)T+t bL−M

T−t . (45)

In the particular case of sp (12, R) algebra we deal with S and D bosons
of T = 1 isospin and P bosons of T = 0 isospin, and (44) and (45) take the
following form:

[St, S
†
t′ ] = δtt′ , [PM , P †M ′

] = δMM ′ , [DM
t , D†M ′

t′ ] = δMM ′δtt′ , (46)

S̃t = (−1)1+tS−t, D̃M
t = (−1)2+M (−1)1+tD−M

−t , P̃M = (−1)1+MP−M .
(47)

The Dyson images of the GLM
Tt generators take a simple form:

ρD(GLM
Tt ) = bLM

Tt . (48)

The Dyson images of the ALM
Tt generators

ρD(ALM
Tt ) = ALM

Tt + 2(−1)L+T
∑

L1L2T1T2

L̂1L̂2T̂1T̂2

{
L1 L2 L
l l l

}
×

×
{

T1 T2 T
f f f

}
(b†L1

T1
⊗ b̃L2

T2
)LM
Tt (49)

contain the intrinsic operators ALM
Tt of the u(d) algebra which commute with the

boson creation and annihilation operators b†LM
Tt , bLM

Tt . Finally the Dyson images
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of the FLM
Tt generators are determined by the expressions

ρD(FLM
Tt ) = b†LM

Tt +2
∑

L1L2T1T2

L̂1L̂2T̂1T̂2

{
L1 L2 L
l l l

}{
T1 T2 T
f f f

}
×

× (−1)L2+T2

[
(b†L1

T1
⊗AL2

T2
)LM
Tt + (−1)L2+T2

∑
L1L2T1T2

L̂1L̂2T̂1T̂2×

×
{

L3 L4 L2

l l l

}{
T3 T4 T2

f f f

}(
(b†L1

T1
⊗ (b†L3

T3
⊗ b̃L4

T4
)L2
T2

)LM

Tt

]
. (50)

The last formula can be written in a different form using another coupling
scheme of the tensors in the last term. The corresponding transformation can be
obtained by means of the standard technique of the angular momenta recoupling
and results in:

ρD(FLM
Tt ) = b†LM

Tt +2
∑

L1L2T1T2

L̂1L̂2T̂1T̂2

{
L1 L2 L
l l l

}{
T1 T2 T
f f f

}
×

× (−1)L2+T2(b†L1
T1

⊗AL2
T2

)LM
Tt + 2

∑
L1L3L4L5T1T3T4T5

L̂1L̂3L̂4L̂5T̂1T̂3T̂4T̂5×

×

⎧⎨
⎩

L1 L3 L5

l l L4

l l L

⎫⎬
⎭
⎧⎨
⎩

T1 T3 T5

f f T4

f f T

⎫⎬
⎭
(
(b†L1

T1
⊗ b†L3

T3
)L5
T5

⊗ b̃L4
T4

)LM

Tt
. (51)

The Dyson image of the generator FLM
Tt can be presented in more compact

form [50]. To obtain it we use the Dyson image of the second-order Casimir
operator of the algebra u(d), written as

C2(u(d)) =
∑
LT

(−1)L(−1)T L̂T̂
(
ρD(AL

T ) ⊗ ρD(AL
T )
)00

00
. (52)

It is convenient to separate ρD(ALM
Tt ) in two terms:

ρD(ALM
Tt ) = ALM

Tt + ρ(ALM
Tt ). (53)

Let us denote

Cc
2(u(d)) =

∑
LT

(−1)L+T L̂T̂
(
ρ(AL

T ) ⊗ ρ(AL
T )
)00

00
. (54)

By direct calculation it can be shown that

ρD(FLM
Tt ) = −d − 1

2
b†LM
Tt +

1
2

(
C2(u(d)) − 1

2
Cc

2(u(d))b†LM
Tt

)
. (55)
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According to the general expression (49), the Dyson image of the primary
number operator N of the u bosons is

ρD(N) = N + 2Nb, (56)

where

Nb =
∑
LT

L̂T̂
(
b†LT ⊗ b̃L

T

)00
00

(57)

is the b-boson number operator.
The explicit form of the Dyson images of the multipole generators ALM

Tt in
the case of IVBM can be written explicitly as

ρD(A1M
00 ) = A1M

00 +

√
15
2

(D† ⊗ D̃)1M
00 +

1√
2
(P † ⊗ P̃ )1M

00 , (58a)

ρD(A2M
00 ) = A2M

00 +

√
7
2
(D† ⊗ D̃)2M

00 − 1√
2
(P † ⊗ P̃ )2M

00 +

+
√

2
(
(S† ⊗ D̃)2M

00 + (D† ⊗ S̃)2M
00

)
, (58b)

ρD(A00
1t ) = A00

1t +
2√
3

(
(S† ⊗ S̃)001t +

√
5(D† ⊗ D̃)001t

)
, (58c)

ρD(A1M
1t ) = A1M

1t −
√

2
3

(
(S† ⊗ P̃ )1M

1t + (P † ⊗ S̃)1M
1t

)
+
√

5(D† ⊗ D̃)1M
1t +

+

√
5
6

(
(D† ⊗ P̃ )1M

1t + (P † ⊗ D̃)1M
1t

)
, (58d)

ρD(A2M
1t ) = A2M

1t +
2√
3

(
(S† ⊗ D̃)2M

1t + (D† ⊗ S̃)2M
1t

)
+

√
7
3
(D† ⊗ D̃)2M

1t +

+

√
3
2

(
(S† ⊗ D̃)2M

1t + (D† ⊗ S̃)2M
1t

)
. (58e)

The Dyson images ρD(ALM
Tt ) can be used to construct the image of the IVBM

Hamiltonian.
3.2. Boson Mapping of the IVBM Hamiltonian. From now on we will

restrict ourselves to the investigation of the most simple Dyson mapping which
corresponds to the vacuum (scalar) representation of the u(d) algebra, where

ALM
Tt = 0, i.e., ALM

Tt |σΛλ〉 = 0. (59)

This particular case of boson mapping is sufˇcient to investigate the connections
between the various versions of the interaction boson model.
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It was noted in [14] that vector bosons can be treated as quarks, or elementary
building blocks and the s and d bosons of the IBM can be considered as a bound
states of elementary excitations generated by two vector bosons. The interaction
between these secondary S, D, and P bosons is induced by the interaction
between vector bosons like the nucleonÄnucleon interaction which is induced
by the quarkÄquark interaction. The comparison of the IVBM with the usual
versions of the IBM is rather instructive, because in some aspects IVBM is richer
than IBM. For example, two vector bosons can be coupled to create states having
L = 1, which are absent in the IBM. In other aspects the IVBM is more restrictive,
because the physical space of the IBM-3.5 corresponding to the IVBM takes up
only a part of the total IBM-3.5 space.

Using the exact Dyson boson realization of the sp (12, R) algebra given
by (58) we will discuss the construction of the S-, D-, and P -boson Hamiltonian
based on the lVBM Hamiltonian which conserves the number of vector bosons and
is invariant with respect to the rotations in the angular momentum L and isospin
T spaces. This Hamiltonian can be written only in terms of the generators of the
u(3) algebra

H = ε1N + ε2N
2 + ε3L2 + ε4Q2, (60)

where QM are the components of Elliott quadrupole operator (21) and LM are the
angular momentum components (18). The Dyson image of the angular momentum
operator (58a) contains, together with the standard D-boson term, an additional
contribution corresponding to the P bosons, as well as the Dyson image of the
quadrupole operator (58b).

Thus the Dyson image of the Hamiltonian (60) is of the form

ρD(H) = 2ε1(NS + NP + ND)+

+ 4ε2(N2
S + N2

P + N2
D + 2NSNP + 2NSND + 2NDNP )+

+ ε3

[
30(D† ⊗ D̃)10 · (D† ⊗ D̃)10 + 4

√
15(D† ⊗ D̃)10 · (P † ⊗ P̃ )10+

+ 2(P † ⊗ P̃ )10 · (P † ⊗ P̃ )10
]

+ ε4

[
42(D† ⊗ D̃)20 · (D† ⊗ D̃)20+

+ 24((S† ⊗ D̃)20 + (D† ⊗ S̃)20) · ((S† ⊗ D̃)20 + (D† ⊗ S̃)20)+

+ 24
√

7(D† ⊗ D̃)20 · ((S† ⊗ D̃)20 + (D† ⊗ S̃)20)+

+ 6(P † ⊗ P̃ )20 · (P † ⊗ P̃ )20 − 6
√

7(D† ⊗ D̃)20 · (P † ⊗ P̃ )20−

− 12(P † ⊗ P̃ )20 · ((S† ⊗ D̃)20 + (D† ⊗ S̃)20)
]
, (61)

where T k · Rk =
∑
q

(−1)qT kqRk −q is the scalar product of two tensors.

This expression contains almost all terms that can be constructed from
S-, D-, and P -interacting bosons. In the general case, the one- and two-boson
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interaction Hamiltonian that conserves the total number of S, D, and P bosons
and is invariant with respect to the rotations in the angular momentum and isospin
spaces contains 23 independent constants. In the rotational limit [15] of the IVBM
discussed in this section, all these constants can be reduced to the four constants
of the Hamiltonian (60).

3.3. Spurious States. It is well known [23,58] that the Dyson boson mapping
of a fermion space on the ideal boson space gives rise to spurious states. It was
shown by Park [58] that this problem can be solved by pure algebraic analysis.
We show in [39] that the mapping of the boson pairs on the space of ideal bosons
leads to a similar problem and that Park's approach can be applied to the case of
bosonÄboson mapping.

In the case under consideration, there are only two types of IRs of the
sp (2d, R) algebra [N, 0, . . . , 0] Å even with N = 0, 2, 4, . . . and odd with N =
1, 3, 5, . . ., which can be constructed by means of d = (2l + 1)(2f + 1) creation
operators u†lm

fτ [60]. The wave function, corresponding to the ˇxed boson number
N , belongs to the symmetric IR [N ] of the u(d) algebra and is constructed from
the vacuum state using the creation boson operators u†lm

fτ :

N∏
i=1

u†lmi

fτi
|0〉, (62)

where |0〉 is the u-boson vacuum.
The two-boson operators FLM

Tt of noncompact symplectic algebras sp (2d, R)
transform under the algebra u(d) as symmetric tensors of the rank [2]. After the
Dyson mapping the so-obtained boson images ρD(FLM

Tt ) will also have the same
tensor property with respect to u(d) algebras. A wave function in the ideal boson
space is constructed using the operators b†LM

Tt :

Nb∏
i=1

b†LiMi

Titi
|0), (63)

where |0) is b-boson vacuum.
The biboson combinations of the new boson operators

b†LM
Tt bL′M ′

T ′t′ (64)

can be considered as the generators of the algebra u(d(d + 1)/2) and the wave
function |n), corresponding to a ˇxed boson number Nb, belongs to the symmetric
IR [Nb] of this algebra. The symmetric representation [Nb] of the algebra u(d(d+
1)/2) is reducible with respect to the u(d) algebra. It can be expanded in terms
of the IRs of the u(d) algebra [61] in the following way:

[Nb]U(d(d+1)/2) =
∑

g

[g]U(d), (65)
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where

[g] = [g1, g2, . . . , gd], g1 � g2 � . . . � gd,
d∑

k=1

gk = 2Nb = N

and gk are even positive integer numbers.
However, the true wave function belongs only to the symmetric IR [N ] of the

u(d) algebra. As a result only part of the ideal boson space, which contains the
states with the correct transformation property with respect to the u(d) algebra,
will correspond to the true wave function. These states form the so-called physical
subspace. In the problem under consideration, the symmetric IR [N ] appears at
each value of Nb in the decomposition (65). Thus the true component always
exists in the wave function.

The dimension of the boson space corresponding to the symmetric IR [Nb]
of u(d(d + 1)/2) algebra is

dim [Nb] = CNb

Nb+
d(d+1)

2 −1
, (66)

where Cn
m is a binomial coefˇcient. On the other hand, the dimension of the

physical subspace corresponding to the symmetric IR [2Nb] of u(d) algebra is

dim [2Nb] = C2Nb

2Nb+d−1. (67)

The greater the boson number Nb is, the smaller part of ideal boson space is
occupied by the physical subspace.

As an explicit example we consider the case of the IVBM. The decomposition
of a symmetric IR [Nb] of u(21) algebra formed by the bilinear combinations of
the ideal boson operators St, S†

t , Pm, P †m, Dm
t , D†m

t in tems of the IRs of the
u(6) algebra is

U(21) U(6)
[1] [2]
[2] [4]; [22]
[3] [6]; [42], [222]
[4] [8]; [62], [44], [422], [2222]
...

...
[Nb] [2Nb]; . . .

In analogy with [58], one can introduce the classiˇcation operator Ŝ

Ŝ = N̂2
H − N̂2

HN , (68)
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where

N̂2
H =

∑
m1m2τ1τ2

u†m1
τ1

um1
τ1

u†m2
τ2

um2
τ2

, (69)

N̂2
HN =

∑
mτ

u†m
τ um

τ +
∑

m1m2τ1τ2

u†m1
τ1

u†m2
τ2

um1
τ1

um2
τ2

. (70)

Strictly speaking the operator S is the vanishing operator, i.e., Ŝ, because
N2

HN is simply the N2
H written in the normal ordered form. Its Dyson image is

S = 4NbNb − 2Nb − 2
∑

LMTt

ρ(FLM
Tt )bLM

Tt . (71)

It is a Majorana-type operator whose eigenvalues depend only on the U(d)
symmetry. The operator S is scalar with respect to the u(d) algebra and contains
one- and two-body boson operators. Hence, it could also be written as a linear
combination of one- and two-body Casimir operators of the u(d) algebra

S = N(N + d − 1) − C2(u(d)). (72)

The eigenvalues of the Casimir operator C2(u(d)) [62] for the symmetric repre-
sentation [N ] are C2(u(d))[N ] = N(N + d − 1). Hence, the eigenvalues of the
operator S are equal to zero for the symmetric IRs of u(d) algebra, while they
are positive for all other IRs which occur. As a result by including the S operator
with a suitable amplitude factor into the Hamiltonian all spurious states can be
shifted to the higher part of the energy spectrum without affecting the physical
eigenvalues and eigenfunctions. Other ways of separation of the spurious states
are given in [59,63].

3.4. Hermitization of Dyson Mapping. The main advantage of Dyson map-
ping is that the generators of the sp (2d, R) algebra are expressed as ˇnite boson
expansions and include only two-boson terms in the case of ρ(ALM

Tt ) operators, or
one-boson and three-boson terms in the case of ρ(FLM

Tt ) and ρ(GLM
Tt ) operators.

The price for this advantage is its non-Hermiticity which is evident from (48)
and (50):

(ρ(GLM
Tt ))† �= ρ(FLM

Tt ). (73)

However, this disadvantage can be avoided by performing similarity trans-
formation [44,50,54,64] that converts a Dyson boson realization into a HolsteinÄ
Primakoff-type boson realization. This transformation makes the ρD(GLM

Tt )
and ρD(FLM

Tt ) operators Hermitian, without changing the multipole operators
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ρD(ALM
Tt ), i.e.,

Kρ(FLM
Tt )K−1 = ρHP(FLM

Tt ), (74a)

Kρ(GLM
Tt )K−1 = ρHP(GLM

Tt ), (74b)

Kρ(ALM
Tt )K−1 = ρHP(ALM

Tt ) = ρ(ALM
Tt ), (74c)

(ρHP(GLM
Tt ))† = ρHP(FLM

Tt ). (74d)

If we impose the condition K† = K = real, we can deˇne an operator V :

V = K†K = K2. (75)

Note that V † �= V −1. From (74a)Ä(74d) and (75) we can write

V −1(ρ(FLM
Tt ))†V = ρ(GLM

Tt ), (76a)

V −1(ρ(GLM
Tt ))†V = ρ(FLM

Tt ), (76b)

V −1ρ(ALM
Tt )V = (ρ(ALM

Tt ))† = ρ(ALM
Tt ). (76c)

It follows from (76c) that V commutes with the operators ρ(ALM
Tt ) (satisfying

((ρ(ALM
Tt ))† = ρ(ALM

Tt ))). This, in turn, implies that V , and therefore S, are
functions of the Casimir invariants of the u(d) algebra.

Within the physical subspace only the Casimir operators C2(u(d)) (52) may
be replaced by functions of the number operator. This replacement leads to an
essential simpliˇcation of (55):

ρ(FLM
Tt ) = b†LM

Tt (1 + 2Nb). (77)

It is important to emphasize that the FLM
Tt and GLM

Tt operators, when applied
to the wave function corresponding to the symmetric IR [N ], transform it to
the wave function corresponding to the symmetric IRs [N ± 2] again. This
allows the Hermitian boson realization to be obtained in a simple analytic form.
Substituting (77) and (48) in (76b) we get

V −1b†LM
Tt V = b†LM

Tt (1 + 2Nb). (78)

Let us choose a basis in the IR [2Nb] of the u(d) algebra. For our aims it
is sufˇcient to mark this basis only by the boson number operator eigenvalue.
The operator V is diagonal in this basis: V |[2Nb]〉 = V ([2Nb])|[2Nb]〉. The
operators b†LM

Tt lead only to a change of the boson number in the wave function,

as b†LM
Tt |[2Nb]〉 ∼ |[2Nb + 2]〉. Hence we have from (78)

V −1([2Nb + 2])V ([2Nb]) = (1 + 2Nb), (79)

K−1([2Nb + 2])K([2Nb]) =
√

(1 + 2Nb). (80)
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Formula (80) can be used as a recurrent relation to ˇnd the matrix elements of
the K operator. Thus we have in an operator form

ρHP(GLM
Tt ) =

√
(1 + 2Nb) bLM

Tt , (81a)

ρHP(FLM
Tt ) = b†LM

Tt

√
(1 + 2Nb). (81b)

These formulae are similar to the well-known boson realization of sp (2, R) al-
gebra. As a matter of fact this analogy is deeper. Actually the origin of the
non-Hermiticity of the Dyson mapping lies in the fact that it maps a general
nonorthogonal basis of a Lie algeba IR on an orthonormal basis in the ideal
boson space [50]. Dyson mapping is therefore, by deˇnition, nonunitary (non-
Hermitian). However, in the case of odd and even IR of the sp (2d, R) algebra,
which are under consideration only, the vectors forming the basis in the primary
u-boson space are orthogonal to each other but this basis is not normalized.
Hence, the Hermitization procedure is reduced to the calculation of the necessary
normalization factor in order to restore the norm of the basis.

In summary, the general features of the mapping of the pairs of bosons were
investigated. The general results obtained for the exact boson mapping of the
sp (2d, R) algebra on the u(d)-boson algebra are then applied to the special case
of algebra sp (12, R) which is the dynamical symmetry algebra of the IVBM. The
Dyson boson image of the IVBM Hamiltonian is written and its connection with
a version of standard IBM is discussed.

From physical point of view, a similar situation occurs in the isospin-invariant
version of the fermion dynamical symmetry model (FDSM) [65, 66] applied to
the sd-shell nuclei. In this version of the FDSM, the nucleons occupying the
single-particle levels 2s(1/2), d(3/2), and d(5/2) are considered as the particles
with the pseudoorbital angular momentum k = 1, the pseudospin i = 3/2, and
the isospin t = 1/2. In the k-invariant version of the FDSM it is assumed that
the pseudospins of the particles are paired and only the states constructed from
the nucleon pairs in the states with K = 0, 2; I = 0, J = K; T are taken into
account. In correspondence with the Pauli principle such pairs have the following
combinations of the total angular momentum and isospin:

(J, T ) = (0, 1), (2, 1), (1, 0).

In order to describe these states in the framework of the interacting boson
model it is necessary to introduce S, D bosons with the isospin T = 1 and
P boson with T = 0. This set of bosons coincides identically with the bosons
taking part in the IVBM mapping discussed in the present paper. It is important
to note also that in the microscopic FDSM picture these bosons are constructed
from two p objects (k = 1) as well as S, P , D bosons in the IVBM.

The similarity of the k-active version of the FDSM and the IVBM allows
us to hope that the structure of the sd-shell nuclei (or some other medium mass
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nuclei with k = 1) can be interpreted in terms of the IVBM in the same manner,
as it was done in [67] for the nuclei from the beginning of the sd shell in the
framework of the IBM-4. The investigation in this direction will be the subject
of our further investigation.

4. THE SYMPLECTIC EXTENSION OF THE IVBM

We consider Sp (12, R) to be the group of the dynamical symmetry of the
model [14], because the most general one- and two-body Hamiltonian can be
expressed in terms of its generators (29a). Using the commutation relations (11c)
between the FL

M (α, β) and GL
M (α, β), the full range of number of bosons preserv-

ing Hamiltonian (33), (34) can be expressed in terms of the operators AL
M (α, β).

Being a noncompact group, the representations of Sp (12, R) are of inˇnite
dimension, which makes it difˇcult to diagonalize the most general Hamiltonian.
The operators AL

M (α, β) generate the maximal compact subgroup of Sp (12, R),
namely the group U(6) ⊂ Sp (12, R). The U(6) subspaces contained in the
even and odd boson representations of Sp (12, R) are of ˇnite dimension, which
simpliˇes the problem of diagonalization. Therefore the complete spectrum of the
system can be calculated only through the diagonalization of the Hamiltonian in
the subspaces of all the UIR of U(6), belonging to a given UIR of Sp (12, R).

In this section we will present an application of this approach, where we use
the ®unitary¯ limit [15] of the model, in the sense that the basis states and the
Hamiltonian are deˇned by means of the dynamical symmetry along the chain
(see the right-hand side reduction chain of (16)):

Sp (12, R) ⊃ U(6) ⊃ SU(3) ⊗ U(2) ⊃ SO(3) ⊗ U(1), (82)

[N ] (λ, μ) (N, T ) K L T0, (83)

where the labels below the subgroups are the quantum numbers (83) correspond-
ing to their irreducible representations. Their values are obtained by means of
standard reduction rules and are given in [15]. As already shown, in this limit
the operators of the physical observables are the angular momentum operator
LM (18) and the truncated (®Elliott's¯) quadrupole operator QM (21) which
deˇne the algebra of SU(3). The ®T -spin¯ operators (20) and the number of
bosons N (17) deˇne the algebra of U(2). Since the reduction from U(6) to
SO(3) is carried out by the mutually complementary groups SU(3) and U(2),
their quantum numbers are related in the following way:

T =
λ

2
, N = 2μ + λ. (84)

Making use of the latter we can write the basis as

| [N ]6; (λ, μ); K, L; T0〉 =| (N, T ); K, L; T0〉. (85)
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The ground state of the system is | 0〉 =| (N = 0, T = 0); K = 0, L = 0; T0 = 0〉
the vacuum state for the Sp (12, R) group.

4.1. The Basis in the Symplectic Extension of IVBM. The Sp (12, R) clas-
siˇcation scheme for the SU(3) boson representations obtained by applying the
reduction rules [15] for the irreps in the chain (82) for even value of the number
of bosons N is shown in Table 1. Each row (ˇxed N ) of the table corresponds to
a given irreducible representation of the U(6) algebra. Then the possible values
for the ®T spin¯, given in the column next to the respective value of N , are
T = N/2, N/2 − 1, . . . , 0. Thus when N and T are ˇxed, 2T + 1 equivalent
representations of the group SU(3) arise. Each of them is distinguished by the
eigenvalues of the operator T0 : −T,−T + 1, . . . , T, deˇning the columns of
Table 1. The same SU(3) representations (λ, μ) arise for the positive and nega-
tive eigenvalues of T0.

Table 1. Classiˇcation of the basis states in the even H+ space of Sp (12, R) in the U(6)
limit of the IVBM

N T T0\ . . . ± 4 ±3 ±2 ±1 0

0 0 ↙ F
[2]6
[2]3[2]2

(0, 0)

2
1

0
F

[2]6
[1,1]3[0]2

↓
=⇒

A
[1−1]6
[2,1]3[0]2

(2, 0)

Å
(2, 0)

(0, 1)

4

2

1

0

(4, 0)

Å
Å

A
[1−1]6
[2,1]3[2]2

⇓
(4, 0)

(2, 1)

Å

(4, 0)

(2, 1)

(0, 2)

6

3

2

1

0

A
[1−1]6
[0]3[2]2
→

(6, 0)

Å
Å
Å

(6, 0)

(4, 1)

Å
Å

(6, 0)

(4, 1)

(2, 2)

Å

(6, 0)

(4, 1)

(2, 2)

(0, 3)

8

4

3

2

1

0

(8, 0)
Å
Å
Å
Å

(8, 0)

(6, 1)

Å
Å
Å

(8, 0)

(6, 1)

(4, 2)

Å
Å

(8, 0)

(6, 1)

(4, 2)

(2, 3)

Å

(8, 0)

(6, 1)

(4, 2)

(2, 3)

(0, 4)
...

...
...

...
...

...

Hence, in the framework of the discussed boson representation of the
Sp (12, R) algebra all possible irreducible representations of the group SU(3)
are determined uniquely through all possible sets of the eigenvalues of the Her-
mitian operators N and T 2. The equivalent use of the (λ, μ) labels facilitates the
ˇnal reduction to the SO(3) representations, which deˇne the angular momen-
tum L and its projection M , as we make use of the standard reduction rules for
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the SU(3) ⊃ SO(3) chain [9]:

K = min (λ, μ), min (λ, μ) − 2, . . . , 0(1),
L = max (λ, μ), max (λ, μ) − 2, . . . , 0(1); K = 0, (86)

L = K, K + 1, . . . , K + max(λ, μ); K �= 0.

The multiplicity index K appearing in this reduction is related to the projection
of L on the body ˇxed frame and is used with the parity (π) to label the different
bands (Kπ) in the energy spectra of the nuclei. We deˇne the parity of the states
as π = (−1)T . This allows us to describe both positive and negative parity bands.

4.2. The Energy Spectrum. The Hamiltonian, corresponding to the consid-
ered unitary limit of IVBM, is expressed in terms of the ˇrst and the second order
invariant operators of the different subgroups in the chain (82):

H = a′N + α6K6 + α3K3 + α1K1 + β3π3, (87)

where Kn are the quadratic invariant operators of the U(n) groups; π3 is the
second order Casimir operator of the SO(3) group. As a result of the connec-
tions (84), the Casimir operator K3 with eigenvalue (λ2 + μ2 + λμ + 3λ + 3μ) is
expressed in terms of the operators N and T :

K3 = 2Q2 +
3
4
L2 =

1
2
N2 + N + T 2.

Making use of the above relation, the Hamiltonian (87) takes the form

H = aN + bN2 + α3T
2 + β3π3 + α1T

2
0 (88)

and is obviously diagonal in the basis (85) labelled by the quantum numbers (83)
of the subgroups of the chain (82). Its eigenvalues are the energies of the basis
states of the boson representations of Sp (12, R):

E((N, T ); KLM ; T0) = aN + bN2 + α3T (T + 1) + β3L(L + 1) + α1T
2
0 . (89)

The energy of the ground state of the system is obviously 0.
4.3. Application of IVBM for the Description of the Ground and Octupole

Bands Energies. The existence of nuclei with stable deformed shapes was realized
early in the history of nuclear physics. The observation of large quadrupole mo-
ments led to the suggestion that some nuclei might have spheroidal shapes, which
was conˇrmed by the observation of rotational band structures and measurements
of their properties. For most deformed nuclei, a description as an axial- and
re
ection-symmetric spheroid is adequate to reproduce the band's spectroscopy.
Because such a shape is symmetric under space inversion, all members of the
rotational band have the same parity. However, with the ˇrst observation of
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negative parity states near the ground state, the possibility that some nuclei might
have an asymmetric shape under re
ection arose.

On the other hand, whenever symmetry breaking appears new behavior of
the many-body system is expected. Re
ection symmetry breaking is associated
with a static octupole deformation which is expected to determine new collective
features for the nuclear system.

Extensive investigations into the structure of nuclei with low-lying negative
parity states have led to the conclusion that, while re
ection asymmetric shapes
can play a role in the band structure, they are not as stable as the familiar
quadrupole deformations. The rotational spectra of some evenÄeven nuclei in the
rare-earth and light actinide regions exhibit, next to the ground band, a negative
parity band with Kπ = 0−, which consists of the states with Iπ = 1−, 3−, 5−, . . .
These two bands are displaced from each other, which means that 
uctuations
back to space symmetric shapes must also be signiˇcant. Experimentally, the
presence of ®octupole¯ bands for some isotopes from the light actinide and rare-
earth region [68] is ˇrmly established.

There is a large variety of models that try to describe this behaviour of the
low-lying states of deformed nuclei [69]. Particularly successful are the algebraic
ones, that are based on symmetry principles. The introduction of an additional
octupole degrees of freedom is a common feature of the most of those models.

The prescription for describing negative parity states by the addition of an f
boson to the usual s and d bosons of the IBM was ˇrst mentioned by Iachello
and Arima [2]. It was suggested [70] that the inclusion of a p boson to the s, d,
and f bosons may play an important role in the description of these collective
states.

The coherent state method (CSM) was applied by Alonso et al. to the spdf
SU(3) Hamiltonian with quadrupole and octupole interactions [71]. A.A. Raduta
and D. Ionescu [72, 73] have used a generalization of the CSM. They suggested
that both ground and octupole bands may be considered as being projected from
a single deformed intrinsic state that exhibits both quadrupole and octupole de-
formations.

The introduction of an octupole degrees of freedom in the presence of com-
paratively large number of free parameters in all of these models allows for the
reproduction of the experimental data of the energies of the negative parity states,
at least in the low-spin region.

As mentioned earlier, the Interacting Vector Boson Model (IVBM), intro-
duced [14] in the beginning of the 1980s, was a generalization of the phenomeno-
logical broken SU(3)-symmetry model [12], which provided a good description
of the low-lying ground and γ bands of the well-deformed evenÄeven nuclei. Its
advantages were incorporated into the rotational limit of the IVBM [15], resulting
in a good description of all the positive parity bands of nuclei in the rare-earth
and the actinide regions. Moreover, the U(6) extension of the model contains
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such sequences of SU(3) multiplets, some of which prove to be convenient for
the description of the low-lying negative parity bands [74].

With the recent advance of the experimental technique the investigated bands
are extended to very high angular momenta [68]. This motivated a new approach
within the framework of the model aimed at a description of the ˇrst positive
and negative bands, up to very high spins. In this new application, we make use
of the symplectic extension of the IVBM [38, 75]. This allows these bands to
be considered as yrast bands in the sense, that we take into account the states
with a given L, which minimize the energy values with respect to N . N is
the eigenvalue of the total number of bosons that build the basis states of the
model. As a ˇrst test of the symplectic extension of the IVBM [74], we modify
its earlier application for the description of the ˇrst excited even and odd parity
bands in order to reach much higher angular momentum states in both band
types. We will apply the model to evenÄeven deformed nuclei, which exhibit a
low-lying negative parity band next to the ground band traditionally considered
to be an octupole band [68]. In order to do this we ˇrst have to identify these
experimentally observed bands with the sequences of basis states for the even
representation of Sp (12, R) given in Table 1. We choose the SU(3) multiplets
(0, μ) for a description of the ground band, whereas for the octupole band the
SU(3) multiplets (2, μ− 1) are used. In terms of (N, T ) this choice corresponds
to (N = 2μ, T = 0) for the positive (Kπ = 0+) and (N = 2μ + 2, T = 1)
for the negative (Kπ = 0−) parity band, respectively. Hence in the framework
of the symplectic extension of boson representations of number preserving U(6)
symmetry we are able to consider all even eigenvalues of the number of vector
bosons N with the corresponding set of T values.

First, we deˇne the energies of each state with given L as yrast energy with
respect to N in the two considered bands. This approach is based on the fact that
the energies (89) increase with increasing of N . Hence their minimum values are
obtained at N = 2L for the ground band, and N = 2L+2 for the octupole band,
respectively. So for the description of the ground band our choice corresponds
to the sequence of states with different numbers of bosons, N = 0, 4, 8, . . . and
®T spin¯ T = 0 in the column labelled T0 = 0 of Table 1. Respectively for a
description of the negative parity band, we choose the set of states with quantum
numbers N = 8, 12, . . . and T = 1 from the same column T0 = 0. In the so-
deˇned SU(3) representations for each N the maximal values of L appear for
the ˇrst time (see Table 1).

Because for the basis states corresponding to the experimental ones of the
ground and octupole bands, T0 = 0, the last term in the energy formula (89)
vanishes. The phenomenological model parameters a, b, α3, and β3 are evaluated
by a ˇt to the experimental data. The comparison between the experimental
spectra and our calculations using the values of the model parameters given in the
ˇgure caption for the ground and octupole bands of the nuclei 226Th and 168Yb is
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Fig. 1. Comparison between the calculated (89) (Theory) and experimental (Exp.) energies
of the ground and octupole bands for the nuclei 226Th (a) and 168Yb (b). The latter are
calculated with the parameters a = 0.0194, b = −0.0009, α3 = 0.0522, and β3 = 0.0094
for the 226Th and a = 0.0235, b = −0.0056, α3 = 0.6512, and β3 = 0.0295 for the
168Yb

illustrated in Fig. 1. All experimental data are taken from [1,68]. The agreement
between the theoretical values obtained with only four model parameters and the
experimental data is rather good.

Applying the yrast conditions relating N and L, the energies (89) for the two
considered bands can be rewritten as

E(L) = βL(L + 1) + (γ + 8bT )L + ξT (T + 1) + γT. (90)

The new free parameters β, γ, and ξ are related to the previous ones as follows:

β = 4b + β3, γ = 2a− 4b, ξ = 2a + 4b + 2α3. (91)

The values of the parameters (91) determine the behavior of the energies of the
two bands and their position with respect to each other. In some cases, the two
bands are almost parallel. The shift between them depends on the parameter ξ.
When they are very close, they interact through the L-dependent interaction with
a strength γ + 8bT.

As a result of our theoretical assumptions, we obtained a simple formula for
the energy levels. From (90) we can see that the energies of the eigenstates of the
ˇrst positive and negative bands consist of rotational L(L + 1) and vibrational L
modes. The rotational interaction is with equal strength β in both of the bands.

Some ˇne structure effects, as back-banding and staggering behavior are
observed in the collective rotational spectra of deformed evenÄeven nuclei in this
mass region. OddÄeven staggering patterns between ground and octupole bands
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Fig. 2. Comparison between calculated (Theory) and experimental (Exp.) staggering func-
tions Stag (L) (92) for the energies of the ground and octupole bands with ΔL = 1 for
the nuclei 226Th (a) and 168Yb (b)

have been investigated recently [76]. In order to test further our model we applied
on the energies the staggering function deˇned as

Stag (L) = 6ΔE(L)−4ΔE(L−1)−4ΔE(L+1)+ΔE(L+2)+ΔE(L−2), (92)

where ΔE(L) = E(L) − E(L − 1). This function is a ˇnite difference of the
fourth order in respect to ΔE(L) or of the ˇfth order in respect to energy E(L).
The calculated and experimental staggering patterns are illustrated in Fig. 2. One
can see a good agreement with experiment, as well as the reproduction of the
®beat¯ patterns of the staggering behavior. They occur in the region where the
interaction between the two considered bands is most strong or they cross (see
Fig. 1). The correct reproduction of the experimental staggering patterns is due
to the interaction term depending on L in (90) between the positive and negative
parity bands, which is a result of the introduced notion of yrast energies in the
framework of the symplectic extension of the IVBM.

4.4. Application to Other Excited Bands. In order to demonstrate further
applicability of this dynamical symmetry, here in what follows we use the theory
to describe some additional positive and negative parity bands. The next most
important bands for determining the collective properties of heavy nuclei are
the positive parity β (Kπ = 0+) [77] and γ (Kπ = 2+) collective bands and
low-lying negative parity bands with Kπ = 1−, 3− (see, for example, [78]).

These excited bands have to be mapped on the basis states as well. In
general, the appropriate [25] subset of SU(3) states are the so-called ®stretched¯
states. Their domination is determined by the important role of the quadrupoleÄ
quadrupole interactions in the collective excitations. Thus, the most important
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SU(3) states will be those with maximal weight, i.e., those which have maximal
eigenvalues of the second order SU(3) Casimir operator. For the considered
chain we have two types of stretched states.

The ˇrst one, deˇned by the SU(3) irreps (λ, μ) = (λ0, μ0 + i) is a gen-
eralization of the eigenstates attributed to the ground and octupole bands, which
were selected above by means of the algebraic notion of yrast bands. Obviously
in this case λ0 = 2T is ˇxed, which ˇxes the parity of the bands. We require
that λ0 � μ0 and this relates it to the value of K , that labels the bands. For the
K = 0 bands we have i = 0, 2, 4 . . . and N changing in steps of 4 and for the
K �= 0 Å the values of i = 0, 1, 2 . . . and ΔN = 2. Hence, it is obvious that
the changing value of μ = μ0 + i is associated with the corresponding value of
the angular momentum L = μ of the states belonging to the considered band.
As a result, the yrast condition that relates the number of bosons N = λ + 2μ
with the angular momenta is N = λ0 + 2μ0 + 2i = 2T + 2L. As a result of
this generalization we get the same expression for the energies as in (90). The
constant α3 in the Hamiltonian enters here through the parameter ξ as an additive
constant energy for each band.

For the second type of stretched states (λ, μ) = (λ0 + 2i, μ0), obviously
T = (λ0 + 2i)/2 is changing and in order to preserve the parity of the bands
we need to have i = 0, 2, 4 . . . and so ΔN = 4. So, for λ0/2 being even, we
obtain the positive parity states and for the odd values of λ0/2 Å the negative
ones. Now μ0 � λ0 is ˇxed and related to the value of K , that labels the bands.
In this case the yrast condition is a result of the deˇnition λ = 2L = 2T and is
given by the relations N = 2L + 2μ0 = 2L + 2N0 − 4λ0. Hence, the values of
the energies given by the equation

E(L) = βL(L + 1) + (γ + 8bμ0)L + 4ξμ0(μ0 + 1) + γμ0, (93)

are very similar to the ones (90) in the previous case, but T is changed to μ0 and
now α3 enters in the inertial parameter β = 4b + β3 + α3, while γ is the same as
in (91).

For the excited β bands, we can use the above sequences of SU(3) irreps
(λ, μ) ≡ (2T, L) or (2L, μ0) with ˇxed λ or ˇxed μ and L changing. These bands
are raised in energy in respect to the ground state band (GSB) by the number of
bosons N0 = λ0 + 2μ0 that go into building the band-head conˇguration.

If we consider T0 as ˇxed in both cases, the stretched SU(3) irreps belong
to a column in Table 1, and if they change, one moves along a diagonal. In the
second case T0 plays a more important role because the value of T is changing
with the development of the bands and we have more choices in changing,
respectively, the values of T0 = ±T , ±(T−1), . . . , 0, and hence we can make
use of the additional parameter α1 in (89) when ˇtting the values of the energies.
For the excited β and γ bands, we use the sequences of stretched SU(3) irreps
determined by the ®diagonals¯ (λ0 + 2i, μ0) with μ0 = 0 or 2.
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Table 2. Values of the parameters of the model Hamiltonian (88) obtained in the ˇtting
to the experimental spectra of the considered nuclei

Nucleus Bands s T0 N0 χ2 Parameters

172Yb Ground 8 0 0 0.00049
a = 0.01063
b = 0.00145

β1(Kπ = 0+) 7 0 48 0.00213 α3 = −0.00485
R4/2 = 3.33 γ1(Kπ = 2+) 4 0 48 0.00062

γ2(Kπ = 2+) 5 1 52 0.02155 β3 = 0.00517
Kπ = 3+ 12 2 44 0.00188 α1 = −0.16628

162Dy Ground 9 0 0 0.00150
a = 0.01574
b = 0.00131

β1(Kπ = 0+) 8 2 10 0.00084 α1 = 0.30902
R4/2 = 3.31 γ1(Kπ = 2+) 14 0 24 0.00212 α′

3 = −0.00328
Kπ = 1− 5 0 62 0.00160 α3 = −0.00476
Kπ = 2− 13 0 40 0.00562 β3 = 0.00473

152Sm Ground 9 0 0 0.00225
a = 0.03083
b = 0.00118

β(Kπ = 0+) 8 0 16 0.00250 α3 = −0.00311
R4/2 =3.025 γ(Kπ = 2+) 8 0 24 0.0064 α1 = −0.00184

Kπ = 5− 6 L + 8 34 0.00432 β3 = 0.00442

It is well known that β bands have rather irregular behavior even in neigh-
boring nuclei of the region under consideration [77]. The reason for this was
established and correctly reproduced by applying a protonÄneutron version of the
algebraic shell model with pseudo-SU(3) symmetry [79]. The microscopic inter-
pretation of the relative position of collective bands, as well as that of the levels
within these bands, follows from an evaluation of the primary SU(3) content of
the collective states [80], and the established connection between the microscopic
quantum numbers (λ, μ) and the collective shape variables (β,γ) [81]. In our
phenomenological approach, because of the symplectic extension of the number
preserving model [15], we have a great 
exibility in identifying bands in any of
the ways described above. As a result of the N ←→ L connections we always
get a mixing of the rotational and vibrational collective modes, represented by
the L(L + 1) and L terms, respectively.

We illustrate these advantages for the nuclei 172Yb, 162Dy, and 152Sm. The
values of the Hamiltonian (88) parameters a, b, β3, α3, and α1, obtained in a
ˇtting procedure for all the states of the considered bands (second column) are
given in Table 2. In the third column, s gives the number of experimentally
observed states in each band and next to it the values of T0, are also given. For
the values of N0, given in the ˇfth column, we get the ones, that give the best
χ2 values for the corresponding band. In the present application all the bands
except the ground band are considered as developing in the SU(3) multiplets
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Fig. 3. Comparison of the U(6)-limit theoretical and experimental energies of the states
from several collective positive and negative parity bands of the rotational 172Yb (a) and
162Dy (b) nuclei

Fig. 4. The same as in Fig. 3 for the
152Sm

of the second type with changing λ and
ˇxed μ. The comparison of the theoretical re-
sults with the experimental data is illustrated
in Figs. 3 and 4. It is clear from them that
we can get rather good results in reproducing
the different positions of the β and γ bands
in respect to each other, the γ bands are
above the β ones in the 152Sm and 172Yb
nuclei and almost parallel. In the spectrum
of 162Dy they exchange positions and cross
at relatively low spin L ≈ 12. This requires
the introduction of an additional parameter α′

3

(given in Table 2) for the description of the
γ band. The position and the development of
the negative parity bands are also reproduced
quite well. In general, the band crossings that
are obtained in the description of the collec-
tive bands in the framework of the model,
rather well reproduce the experimental situa-

tion (see Figs. 3 and 4) and can be used further for studying ˇner effects in the
structure of nuclear spectra.
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We have considered, except for spectra of the two well-deformed nuclei
172Yb and 162Dy, given in Fig. 3 with R4/2 = 3.3, the 152Sm, which is an
example [82] of a nucleus at the critical point symmetry X(5) [4] and whose
collective bands are rather well described as well (see Fig. 4). The energies of
the gsb are reproduced very well by means of the same correspondence of the
basis states (0, μ) to the yrast states of the ground band and the yrast condition
N = 2μ = 2L, which gives a mixing of the rotational and vibrational modes
(see (90)), which depends on the parameters a, b, and β3, given in Table 5. The
next important feature of the nuclei at the X(5) critical point symmetry is deˇned
by the position of the β band [82], which in our model is very well adjusted
due to the possibility of choosing the value of the number of bosons N0, that
build the band-head conˇguration. Then the development of the energies in the
band along the (2T, 0) Å SU(3) multiplets (T -even) involves the unˇxed yet
parameter α3 (93) and adjusts them additionally. In this way we prove that the
symplectic extension of the rotational U(6) limit of the IVBM is appropriate for
the description of nuclei with more complex features than the rotational ones.
Nevertheless, a more detailed and systematic investigation of the values of N0

and the Hamiltonian parameters for sequences of nuclei in the regions, where
some type of phase/shape transitions is expected, is necessary and comes into our
future intents.

A good illustration of the model's qualities is presented by its recent use, in
a slightly modiˇed form [83], for the description of the new experimental data on
high spin states in the 160Dy [84], that has very similar properties to the example
given here with 162Dy (see the right side of Fig. 3). In [83], three positive bands:
the ground band, Kπ = 0+ Å S band, Kπ = 2+ Å γ band, as well as two
negative Kπ = 1− and Kπ = 2− bands are described rather accurately up to
very high spins, by means of corresponding different choices of SU(3) multiplets
with ˇxed λ or μ for each band. In addition possible band crossing, between
collective bands with different SU(3) irreps associated, was considered, which
considerably improved the reproduction of the collective behavior in particular
of the higher lying states. The investigation of the oddÄeven staggering between
states from different bands is also used to obtain the correct ordering of the high
spin states in the bands. The success of this application was based on the concept
of the correct energy distribution of the states with ˇxed angular momentum, and,
in particular, the 0+ band-head conˇgurations.

We have applied the Interacting Vector Boson Model for the description
of the ground and octupole bands in some evenÄeven rare-earth and actinide
nuclei up to very high spins. In spite of the simplicity of the model, without
introducing additional degrees of freedom we are able to describe both positive
and negative parity bands. This is due to the speciˇc deˇnition of the states
parity depending on the quantum number T . The successful reproduction of the
experimental energies and of their oddÄeven staggering was achieved as a result of
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their consideration as yrast energies in respect to the number of phonon excitation
N that build the collective states. The introduction of this notion was possible,
as we extended the IVBM to its symplectic dynamical symmetry Sp (12, R),
which allows the change of the number of bosons that are the building blocks
of the model Hamiltonian. Nevertheless, the Hamiltonian remains with only few
phenomenological parameters and is still exactly solvable. In the considered
unitary limit of the model in addition to the rotational degree of freedom in the
ground and excited bands a purely vibrational mode is appearing, which introduces
also some interaction between them. This is the reason for the reproduction also of
the ˇne effect of the structure of these bands. The obtained physically meaningful
results are also simple and easy for use and they permit the application of the
model to larger class of nuclei than the purely rotational ones.

The symplectic extension of the IVBM permits a richer classiˇcation of the
states than its unitary version and gives the possibility for a further consideration
of other collective bands.

5. TRANSITION PROBABILITIES IN THE U(6) LIMIT
OF THE SYMPLECTIC INTERACTING VECTOR BOSON MODEL

Up till now we have used the U(6) dynamical symmetry deˇned by the
reduction chain (82) to obtain exact solutions for the eigenvalues and eigenfunc-
tions of the model Hamiltonian, which is constructed from the invariant operators
of the subgroups in the chain. But it is well known that the comparison of the
experimental data with the calculated transition probabilities is one of the best
tests of the validity of the employed algebraic model. With the aim of such appli-
cations of the symplectic extension of the considered dynamical symmetry of the
IVBM, we develop in this section a practical mathematical approach for explicit
evaluation of the matrix elements of the transitional operators in this limit [85].

In the algebraic approach, the evaluation of the matrix elements of transition
operators between the eigenstates, makes use of the fact that both Å the basis
states and the operators, can be deˇned as tensors in respect to the considered
dynamical symmetry. Then the calculation of matrix elements is simpliˇed by the
application of a respective generalization of the WignerÄEckart theorem, which
requires the calculation of the isoscalar factors and reduced matrix elements. The
transition probabilities between the collective states attributed to the basis states of
the Hamiltonian are by deˇnition the SO(3) reduced matrix elements of transition
operators T E2 between the |i〉-initial and |f〉-ˇnal collective states

B(E2; Li → Lf) =
1

2Li + 1
|〈f ‖ T E2 ‖ i〉|2. (94)

As a ˇrst step we test the theory on the transitions between the states be-
longing to the ground bands in the evenÄeven nuclei from the rare earths and the
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actinides [85], where the energies and the staggering between the states are rather
well reproduced in our model approach [38]. This proves the correct mapping of
the basis states to the experimentally observed ones and their band systematics,
which is very important for the theoretical reproduction of the behavior of the
physical observables in the framework of the considered model.

5.1. Tensorial Properties of the Generators of the Sp (12, R) Group and
the Basis States of IVBM. As already introduced, the basic building blocks of the
IVBM [14] are the creation and annihilation operators of the vector bosons u†

m(α)
and um(α) (m = 0,±1; α = ±1/2), which can be considered as components
of a 6-dimensional vector, which transform according to the fundamental U(6)
irreducible representations [1, 0, 0, 0, 0, 0]6 ≡ [1]6 and [0, 0, 0, 0, 0,−1]6 ≡ [1]∗6,
respectively. These irreducible representations become reducible along the chain
of subgroups (82) deˇning the dynamical symmetry [15]. This means that along
with the quantum number characterizing the representations of U(6), the operators
are also characterized by the quantum numbers of the subgroups of chain (82).

The only possible representation of the direct product of U(3) ⊗ U(2) be-
longing to the representation [1]6 of U(6) is [1]3 · [1]2, i.e., [1]6 = [1]3 · [1]2.
According to the reduction rules for the decomposition U(3) ⊃ O(3) the repre-
sentation [1]3 of U(3) contains the representation (1)3 of the group O(3) giving
the angular momentum of the bosons l = 1 with a projection m = 0,±1. The
representation [1]2 of U(2) deˇnes the ®T spin¯ of the bosons T = 1/2, whose
projection is given by the corresponding representation of U(1), i.e., α = ±1/2.
In this way, the creation and annihilation operators u†

m(α) and um(α) are deˇned
as irreducible tensors along the chain (82) and the used phase convention and
commutation relations are the following [86]:

(
u

[1]6
[1]3[1]2mα

)†
= u

[1]∗6 mα

[1]∗3 [1]∗2
= (−1)m+ 1

2−αu
[1]∗6
[1]∗3 [1]∗2−m−α,

(95)[
u

[1]∗6 mα

[1]∗3 [1]∗2
, u

[1]6
[1]3[1]2nβ

]
= δm,nδα,β .

We do not consider here the microscopic structure of the so-introduced vector
bosons. In the IVBM they serve as a convenient mathematical tool and in the
present work only their tensor properties are important, as they generate the
transition operators and the basis states.

Initially, the generators of the symplectic group Sp (12, R) (8a), (8b) were
written as double tensors [39] with respect to the O(3) ⊃ O(2) and U(2) ⊃ U(1)
reductions. Further they can be deˇned as irreducible tensor operators according
to the whole chain (82) of subgroups and expressed in terms of (8a) and (8b) in
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the folowing way:

A
[χ]6 LM

[λ]3[2T ]2 TT0
= C

[1]6 [1]∗6 [χ]6
[1]3[1]2[1]∗3 [1]∗2 [λ]3[2T ]2

C
[1]3[1]

∗
3 [λ]3

(1)3(1)3(L)3
ALM

TT0
, (96)

F
[χ]6 LM

[λ]3[2T ]2 TT0
= C

[1]6 [1]6 [χ]6
[1]3[1]2[1]3[1]2 [λ]3[2T ]2

C
[1]3[1]3[λ]3
(1)3(1)3(L)3

FLM
TT0

, (97)

G
[χ]6 LM

[λ]3[2T ]2 TT0
= C

[1]∗6 [1]∗6 [χ]6
[1]∗3 [1]∗2 [1]∗3 [1]∗2 [λ]3[2T ]2

C
[1]∗3 [1]∗3 [λ]3
(1)3(1)3(L)3

GLM
TT0

, (98)

where, according to the lemma of Racah [87], the ClebschÄGordan coefˇcients
along the chain are factorized by means of the isoscalar factors (IF), deˇned for
each step of decomposition (82). It should be pointed out [86] that the U(6)- and
U(3)-IFs, entering in (96), (97), and (98), are equal to ±1.

The tensors (96), transform according to the direct product [χ]6 of the corre-
sponding conjugated U(6) representations [1]6 and [1]∗6 [86], namely

[1]6 × [1]∗6 = [1,−1]6 + [0]6, (99)

where [1,−1]6 = [2, 1, 1, 1, 1, 0]6 and [0]6 = [1, 1, 1, 1, 1, 1]6 is the scalar U(6)
representation. Further we multiply the two conjugated fundamental representa-
tions of U(3) ⊗ U(2)

[1]3[1]2 × [1]∗3[1]∗2 = ([1]3 × [1]∗3)([1]2 × [1]∗2) =
= ([210]3 ⊕ [1, 1, 1]3) × ([2, 0]2 ⊕ [1, 1]2) =

= [210]3[2]2 ⊕ [210]3[0]2 ⊕ [0]3[2]2 ⊕ [0]3[0]2. (100)

Obviously, the ˇrst three U(3)⊗U(2) irreducible representations in the resulting
decomposition (100) belong to the [1,−1]6 of U(6); and the last one, to [0]6.
In terms of Elliott's notations [9] (λ, μ), where λ = n1 − n2, μ = n2 − n3,
we have [210]3 = (1, 1) and [0]3 = (0, 0). The corresponding values of L
from the SU(3) ⊃ O(3) reduction rules are L = 1, 2 in the (1, 1) irrep and
L = 0 in the (0, 0). The values of T are 1 and 0 for the U(2) irreps [2]2 and
[0]2, respectively. Hence, the U(2) irreps in the direct product distinguish the
equivalent U(3) irreps that appear in this reduction and there is not degeneracy.

The tensors A
[1−1]6 LM

[210]3[0]2 00 with T = 0 correspond to the SU(3) generators, to the
total number of bosons N with L = 0 (17), to the angular momentum operator
LM with L = 1 (18) and to the truncated (®Elliott¯) quadrupole momentum [9]
Q̃M with L = 2 (21).

The tensors A
[1−1]6 00
[0]3[2]2 1t correspond to the SU(2) generators, which are the

components of the ®T -spin¯ operator T 1
m (20). And ˇnally the tensors

A
[1−1]6 LM

[210]3[2]2 1t with L = 1, 2 and M = −L,−L+1, . . . , L extend the U(3)⊗U(2)
algebra to the U(6) one. By analogy, the tensors (97) and (98) transform accord-
ing to [86]

[1]6 × [1]6 = [2]6 + [1, 1]6 (101)
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and
[1]∗6 × [1]∗6 = [−2]6 + [−1,−1]6,

respectively. But, since the basis states of the IVBM are fully symmetric,
we consider only the fully symmetric U(6) representations [2]6 and their con-

jugated [−2]6, since for the operators (97) and (98) we have (F [χ]6
[λ]3[2T ]2

LM
TT0

)†

= (−1)λ+μ+L−M+T−T0 G
[χ]∗6

[λ]∗3 [2T ]∗2

L−M
T−T0

, where [λ]3 = (λ, μ). Hence, we present

the next decompositions only for the F tensors (101). According to the decom-
position rules for the fully symmetric U(6) irreps [86] we have

[2]6 = [2]3[2]2 + [1, 1]3[0]2 = (2, 0)[2]2 + (0, 1)[0]2, (102)

which further contain in (2, 0) L = 0, 2 with T = 1 and in (0, 1) L = 1 with

T = 0. Hence, in addition to the SU(3) raising generators F
[2]6
(2,0)[2]2

we have

the operator F
[2]6
(0,1)[0]2

, which is a new one compared to the generators of the

Sp (6, R) model of Rosensteel and Rowe [28].

The above operators and their conjugated ones G
[χ]∗6

[λ]∗3 [2T ]∗2

LM
TT0

change the

number of bosons by two and realize the symplectic extension of the U(6)
algebra. In this way we have listed all the irreducible tensor operators in respect
to the reduction chain (82), that correspond to the inˇnitesimal operators of the
Sp (12, R) algebra.

In order to clarify the role of the tensor operators introduced in this section
as transition operators and to simplify the calculation of their matrix elements, the
basis for the Hilbert space must be symmetry adapted to the algebraic structure
along the considered subgroup chain (82). It is evident that the basis states
of the IVBM in the H+ (N -even) subspace of the boson representations of
Sp (12, R) can be obtained by a consecutive application of the raising operators

F
[2]6

[λ]3[2T ]2
LM
TT0

on the boson vacuum | 0〉 (ground state), annihilated by the tensor

operators G
[χ]6

[λ]3[2T ]2
LM
TT0

| 0 〉 = 0 and A
[χ]6

[λ]3[2T ]2
LM
TT0

| 0 〉 = 0.
Thus, in general a basis for the considered dynamical symmetry of the IVBM

can be constructed by applying the multiple symmetric coupling of the raising

tensors F
[2]6

[λi]3[2Ti]2

LiMi

TiT0i
with itself

[F × · · · × F ] [χ]6
[λ]3[2T ]2

LM
TT0

.

Note that only fully symmetric tensor products [χ]6 ≡ [N ]6 are nonzero, since
the raising operator commutes with itself. The possible U(3) couplings are
enumerated by the set

[λ]3 = {[n1, n2, 0] ≡ (λ = n1 − n2, μ = n2); n1 � n2 � 0}.
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The number of copies of the operator F in the symmetric product tensor [N ]6 is
N/2, where N = λ + 2μ [38].

Now it is clear which of the tensor operators act as transition operators be-
tween the basis states ordered in the classiˇcation scheme presented in Table 1.

The operators F
[2]6

[λ]3[2T ]2
LM
TT0

with T0 = 0 give the transitions between two neigh-

boring cells (↓) from one column, while the ones with T0 = ±1 change the

column as well (↙). The tensors A
[1−1]6

[2,1]3[0]2
, which correspond to the SU(3)

generators, do not change the SU(3) representations (λ, μ), but can change the

angular momentum L inside it (=⇒). The SU(2) generating tensors A
[1−1]6
[0]3[2]2

change the projection T0(→) of the ®T spin¯ T and in this way distinguish the
equivalent SU(3) irreps belonging to the different columns of the same row of
Table 1. Inside a given cell, the transition between the different SU(3) irreps (⇓)
is realized by the operators A

[1−1]6
[2,1]3[2]2

, that represent the U(6) generators. The

action of the tensor operators on the SU(3) vectors inside a given cell or be-
tween the cells of Table 1 is also schematically presented in it with corresponding
arrows, given above in parentheses.

5.2. B(E2) Transition Probabilities for the Ground Band. In the symplectic
extension of the IVBM the complete spectrum of the system is obtained in all
the even subspaces with ˇxed N -even of the UIR [N ]6 of U(6), belonging to a
given even UIR of Sp (12, R).

Here we give as an example the evaluation of the E2 transition probabilities
of the ground state band (GSB) [38], whose states were identiˇed with the SU(3)
multiplets (0, μ) or what is the same (N = 2μ, T = 0). In terms of the yrast
energy with respect to N for the ground band their minimum values are obtained
at N = 2L. Using the tensorial properties of the Sp (12, R) generators it is easy
to deˇne the E2 transition operator between the states of the considered band:

T E2 = e
[
A

[1−1]6
[210]3[0]2

20
00 + θ([F × F ] [4]6

(0,2)[0]2
20
00 + [G × G] [−4]6

(2,0)[0]2
20
00)
]
, (103)

where the ˇrst tensor operator is a part of the SU(3) generators, and actually
changes only the angular momentum with ΔL = 2. The tensor product

[F × F ] [4]6 20
(0,2)[0]2 00 =

∑
C

[2]6 [2]6 [4]6
(2,0)[2]2 (2,0)[2]2 (0,2)[0]2

C
(2,0) (2,0) (0,2)
(2)3 (2)3 (2)3

×

× C20
20 20C

10
11 1−1 F

[2]6 20
(2,0)[2]2 11 F

[2]6 20
(2,0)[2]2 1−1 (104)

of the raising Sp (12, R) generators changes the number of bosons by ΔN = 4
and ΔL = 2.

Thus, for calculating their matrix elements, we have the advantage of using
the WignerÄEckart theorem in two steps. For the SU(3) → SO(3) and SU(2) →
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U(1) reduction we need the standard SU(2) ClebschÄGordan coefˇcient (CGC)

〈[N ′] (λ′, μ′); K ′L′M ′; T ′T ′
0|T

[χ]6
[σ]3[2t]2

lm
tt0 |[N ] (λ, μ); KLM ; TT0 〉 =

= 〈[N ′](λ′, μ′); K ′L′||T [χ]6
[σ]3[2t]2

lm
tt0 ||[N ](λ, μ); KL〉CL′M ′

LMlmC
T ′T ′

0
TT0tt0

. (105)

For the calculation of the double-barred reduced matrix elements in (105) we
use the next step:

〈[N ′] (λ′, μ′); K ′L′||T [χ]6
[σ]3[2t]2

lm
tt0 ||[N ] (λ, μ); KL〉 =

= 〈[N ′]|||T [χ]6
[σ]3[2t]2

|||[N ]〉C [N ]6 [χ]6 [N ′]6
(λ,μ)[2T ]2 [σ]3[2t]2 (λ′,μ′)[2T ′]2

C
(λ,μ)
KL

[λ]3
k(l)3

(λ′,μ′)
K′L′ ,

(106)

where C
[N ]6 [χ]6 [N ′]6
(λ,μ)[2T ]2 [σ]3[2t]2 (λ′,μ′)[2T ′]2

and C
(λ,μ) [λ]3 (λ′,μ′)
KL k(l)3 K′L′ are U(6) and

SU(3) IFs. Obviously, the practical value of the application of the general-
ized WignerÄEckart theorem for the calculation of the matrix elements of the
Sp (12, R) generators and the construction of the symplectic basis depends on
the knowledge of the isoscalar factors for the reductions U(6) ⊃ U(3) ⊗ U(2)
and U(3) ⊃ O(3), respectively. For the evaluation of the matrix elements (105)
of the Sp (12, R) operators in respect to the chain (82) the reduced triple-barred
U(6) matrix elements are also required (106).

However, the SU(3) generators are scalars with respect to the isospin group
U(2), so they act only on the SU(3) part of the wave function and the WignerÄ
Eckart theorem is applied in respect to the SU(3) subgroup [88]

〈[N ], (λ′, μ′); K ′L′M ′; T ′T ′
0| A

[1,−1]6 lm
(1,1)[0]2 00 |[N ], (λ, μ); KLM ; TT0〉 =

= δTT ′δT0T ′
0
δλλ′δμμ′

∑
ρ=1,2

C
(λ,μ) (1,1) ρ(λ′,μ′)
K(L) k(l) K′(L′) CL′M ′

LM lm×

× 〈[N ], (λ′, μ′)||| A
[1,−1]6
(1,1)[0]2

|||[N ], (λ, μ)〉.

The sum over ρ runs over terms containing products of IFs of SU(3) and U(6),
respectively. The reduced triple-barred matrix elements are well known and are
given for ρ = 1 by [28]

〈[N ], (λ, μ)|||A[1−1]6
(1,1)3 [0]2

|||[N ], (λ, μ)〉1 =

{
gλμ, μ = 0,

−gλμ, μ �= 0,
(107)

where

gλμ = 2
(

λ2 + μ2 + λμ + 3λ + 3μ

3

)1/2

(108)
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and the phase convention is chosen to agree with that of Draayer and Akiya-

ma [89]. For ρ = 2 we have 〈[N ], (λ, μ)|||A [1−1]6
[210]3[0]2

|||[N ], (λ, μ)〉2 = 0. Thus,

for the matrix elements of A
[1−1]6 20

[210]3[0]2 00 between the states attributed to the GSB
we obtain

〈[N ], (0, μ); 0L − 20; 00|A [1−1]6 20
(1,1) [0]2 00|[N ], (0, μ); 0L0; 00〉 =

= C
(0,μ) (1,1) (0,μ)
L−2 2 L CL,0

L−2,0 2,0〈[N ], (0, μ)|||A [1−1]6
(1,1) [0]2

|||[N ], (0, μ)〉 =

= 2
[
(μ − L + 2)(μ + L + 1)(L − 1)L

2(2L − 1)(2L + 1)

]1/2

CL,0
L−2,0 2,0. (109)

The value of the reduced SU(3) ClebschÄGordan coefˇcient (IF) is taken
from [90]. Actually, we are interested in the SO(3) reduced matrix elements
which enter in (94). Thus taking into account the yrast conditions μ = L we
obtain

〈[N ], (0, μ); 0L − 2; 00||A [1−1]6
(1,1) [0]2

||[N ], (0, μ); 0L; 00〉 = 2
[
(L − 1)L
(2L − 1)

]1/2

.

(110)
For the calculation of the matrix element

〈[N + 4], (0, μ + 2); 0L + 20; 00|[F × F ] [4]6 20
(0,2)[0]2 00 |[N ], (0, μ); 0L0; 00〉 =

= C
[N ]6 [4]6 [N+4]6
(0,μ)[0]2 (0,2)[0]2 (0,μ+2)[0]2

C
(0,μ) (0,2) (0,μ+2)

L 2 L+2 CL+2,0
L,0 2,0×

× 〈[N + 4], (0, μ + 2)|||[F × F ] [4]6
(0,2)[0]2

|||[N ], (0, μ)〉 (111)

we use the standard recoupling technique for two coupled U(6) tensors [91]:

〈[N ′]||| [T [α]6 × T [β]6]σ[γ]6 |||[N ]〉 =

=
∑

c,ρ1,ρ2

U([N ]6; [β]6; [N ′]6; [α]6|[Nc]6ρ2ρ1; [γ]6 σ)×

× 〈[N ′]||| T [α]6 |||[Nc]〉〈[Nc]|||T [β]6 |||[N ]〉, (112)

where U(. . .) are the U(6) Racah coefˇcients in a unitary form [92]. For the
reduced triple-bared matrix element in our case, which is multiplicity-free and
hence there is no sum, we have

〈[N + 4]|||[F × F ] [4]6
(0,2)[0]2

|||[N ]〉 =

= U([N ]6; [2]6; [N + 4]6; [2]6|[N + 2]6; [4]6)×
× 〈[N + 4]||| F (2,0) |||[N + 2]〉〈[N + 2]||| F (2,0) |||[N ]〉,
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where the corresponding Racah coefˇcient for maximal coupling representations is
equal to unity ([91]; see also formula A9 of [92]). Applying again formula (112)
with respect to coupled tensor F [2]6 and using the fact that in the case of vector
bosons which span the fundamental irrep [1] of u(n) algebra the u(n)-reduced
matrix element of raising generators has the well-known form [93]

〈[N + 1]||| u†
m(α) |||[N ]〉 =

√
N + 1, (113)

we obtain

〈[N + 2]|||F [2]6 |||[N ]〉 =
= U([N ]6; [1]6; [N + 2]6; [1]6|[N + 1]6; [2]6)×

× 〈[N + 2]||| p† [1]6 |||[N + 1]〉〈[N + 1]||| p† [1]6 |||[N ]〉 =

=
√

(N + 1)(N + 2)

and in analogy

〈[N + 4]|||F [2]6 |||[N + 2]〉 =
√

(N + 3)(N + 4).

Introducing in (111) the above results and the value of the coefˇcient

C
(0,μ) (2,0) (0,μ+2)

L 2 L+2 from [90] (the corresponding fully stretched [91] U(6) IF
for maximal coupling representations is equal to 1), we ˇnally derive for the
SO(3) reduced matrix element

〈[N + 4],(0, μ + 2); 0L + 2; 00||[F × F ] [4]6 20
(0,2)[0]2 00||[N ], (0, μ); 0L; 00〉 =

=
[
(μ + L + 3)(μ + L + 5)(L + 1)(L + 2)

(μ + 1)(μ + 2)(2L + 3)(2L + 5)

]1/2

×

×
√

(N + 1)(N + 2)(N + 3)(N + 4), (114)

=
√

(2L + 1)(2L + 2)(2L + 3)(2L + 4),

where N = 2μ + λ and for the last row the yrast condition μ = L is taken into

account. For the calculation of the matrix element of [G × G] [−4]6
(2,0)[0]2

20
00 we use

the conjugation property

〈[N − 4], (0, μ− 2); 0L − 20; 00|[G× G] [−4]6
(2,0)[0]2

20
00|[N ], (0, μ); 0L0; 00〉 =

= (〈[N ], (0, μ); 0L0; 00|[F × F ] [4]6
(0,2)[0]2

20
00|[N − 4], (0, μ− 2); 0L − 20; 00〉)∗ =

= C
[N−4]6 [4]6 [N ]6
(0,μ−2)[0]2 (0,2)[0]2 (0,μ)[0]2

C
(0,μ−2) (0,2) (0,μ)

L−2 2 L CL,0
L−2,0 20×

×
√

(N − 3)(N − 2)(N − 1)N =

= CL,0
L−2,0 20

√
(2L − 3)(2L − 2)(2L − 1)2L. (115)
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Fig. 5. The behavior of the number con-
serving and symplectic terms of the ma-
trix elements of the transition operator
T E2 (103)

With the help of the above analytic expres-
sions ((110), (114), and (115)) for the ma-
trix elements of the tensor operators form-
ing the E2 transition operator we can cal-
culate the transition probabilities (94) be-
tween the states in the ground band as at-
tributed to the SU(3) symmetry-adapted
basis states of the model (85). It is ob-
vious that the second term in T E2 (103)
comes from the symplectic extension of
the model. The behavior of each term of
the transition operator is plotted as a func-
tion of the angular momentum L in Fig. 5
where for comparison typical experimen-
tal data for the GSB are also shown. It can
be seen that because of the yrast conditions

(μ = L), the well-known parabolic behavior corresponding to Elliott's quadrupole
operator is modiˇed and looks like a rigid rotor curve. In this case, the rigid rotor
predictions are asymptotically determined by the ordinary SO(3) ClebschÄGordan
coefˇcient. Such type of curve is obtained in the limit of large-dimensional ir-
reducible representations 2λ + μ → ∞ when su(3) algebra contracts to the rigid
rotor algebra rot(3) = [R5]so(3) [94]. It is obvious that the experimental points
are well reproduced by the modiˇed SU(3) term up to L ≈ 20, while for the
description of the states with L > 20 the symplectic term is appropriate.

The various values of the parameters θ and e can reproduce the two main
types of B(E2) behavior Å the enhancement or the reduction of the B(E2)
values. The strongly enhanced values, which are an indication for increased
collectivity in the high angular momentum domain, are easily obtained for positive
values of the parameter θ. For negative values of the parameter θ we obtain
behavior similar to that of the standard SU(3) one and it can be used to reproduce
the well-known cutoff effect. Such saturation effect is also a characteristic feature
of the IBM based calculations in its SU(3) limit. Although the coefˇcient in front
of symplectic term is about four orders of magnitude smaller than the SU(3)
contribution to the transition operator, its role in reproducing the correct behavior
(with or without cutoff) of the transition probabilities between the states of the
GSB band is very important.

5.3. Application to Real Nuclei. In order to prove the correct predictions
following from our theoretical results we apply the theory to real nuclei for which
there is available experimental data for the transition probabilities [95,96] between
the states of the ground bands up to very high angular momenta. The application
actually consists of ˇtting the two parameters of the transition operator T E2 (103)
to the experiment for each of the considered bands.
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Fig. 6. Comparison of theoretical and experimental values for the energies (a) and B(E2)
transition probabilities for the 236U (b)

Fig. 7. Comparison of theoretical and experimental values for the energies (a) and B(E2)
transition probabilities of the 232Th (b)

As examples we present the intraband B(E2) transitions in the GSB for the
nuclei 232Th and 236U, for which the experimental data exist up to L = 28 [96].
The energies of the GSB plot a and B(E2) values for transitions between their
states plot b are compared with the theoretical results of the IVBM in Figs. 6
and 7. The results for the B(E2) values of the SU(3) limit of the IBM and
the rigid rotor are also shown. One can see that the IBM works well for the
transitions between the ˇrst excited states (L = 2−10). The rigid rotor describes
well the experimental states in the middle spin region (L = 4−16), while for the
high spins the B(E2) values must be enhanced due to the observed collectivity
excess. Thus, at high spins in the yrast band the calculations of the IBM and the
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rigid rotor model cannot reproduce the ˇne structure of the B(E2) data. As was
mentioned in the preceding section, such an enhancement can be obtained for
slightly positive values of the parameter θ in the transition operator T E2. From
the presented examples we see how sensitive is the theory to the term coming
from the symplectic extension and in particular from the sign of the parameter θ
entering in the transition operator (103).

In the present new application of the unitary limit of the symplectic extension
of the IVBM, the model was tested on the more complicated and complex problem
of reproducing the B(E2) transition probabilities between the states of the ground
band up to very high spins. In developing the theory, the advantages of the
algebraic approach were used ˇrst for the proper assignment of the basis states to
the experimentally observed states of the collective bands. Here the construction
of the E2 transition operator as linear combination of tensor operators representing
the generators of the subgroups of the respective chain is a basic result that
allows the application of a speciˇc version of the WignerÄEckart theorem and
consecutively leads to analytic results for their matrix elements in U(6) symmetry-
adapted basis, that give the transition probabilities.

Analyzing the terms taking part in the construction of the E2 transition
operator, the important role of the symplectic extension of the model is revealed.
The experimental data for the presented examples is reproduced rather well,
although the results are very sensitive to the values of the parameters, hence
more experiment on transition probabilities is needed.

The presented approach is rather general and universal and can be used for the
calculation of transitions in other collective bands, in particular in the similarly
constructed negative parity bands and the excited β bands, which are of great
interest lately in the nuclear structure.

6. REDUCTION THROUGH THE NONCOMPACT Sp (2, R)

6.1. Algebraic Construction Containing the Six-Dimensional Davidson Po-
tential. The need for a description of nuclei in which rotational-vibrational
interactions are taken into account has led to a search for algebraically solvable
potentials and a meaningful set of basis states that make the transitional nature of
these systems more transparent. An algebraically solvable theory that can describe
systems with rotational-vibrational interactions and which has known algebraic so-
lutions when applied to diatomic molecules, is the one containing the Davidson
potential [97]. In an algebraic approach for either the nuclear many-body problem
or the BohrÄMottelson collective model, the addition of the Davidson potential
to the Hamiltonian requires the consideration of a dynamical subgroup chain that
starts with the direct product Sp (2, R)⊗SO(n) ⊂ Sp (2n, R), with n = 3 and 5,
respectively [98].
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Indeed if the local isomorphism of the sp (2, R) ≈ su(1, 1) algebras is taken
into account, its relation to the spectrum generating algebra of the many body
nuclear system with the Davidson interaction becomes explicit. This provides the
motivation for considering this reduction in seeking a description of a more com-
plex modes that includes rotational-vibrational interactions. Within the framework
of the phenomenological interacting vector boson model [14], the more general
case of a six-dimensional Davidson potential naturally appears [43]. The new
reduction chain of its dynamical symmetry group Sp (12, R) [26,99,100]:

Sp (12, R) ⊃ Sp (2, R) ⊗ SO(6) (116)

extends the applicability of the theory to include mixed-modes collective inter-
actions.

As can be deduced from the considerations given in [98], this construction
obviously survives the addition of Davidson potential. The inˇnitesimal genera-
tors of the Sp (2, R) algebra

F =
∑

k,m,α

C00
1k1mu+

k (α)u+
m(α) = 2S+,

G =
∑

k,m,α

C00
1k1muk(α)um(α) = 2S−, (117)

A =
∑

k,m,α

C00
1k1mu+

k (α)um(α) =
1√
3
N = 2S0 − 1

are obtained from the Sp (12, R) generators (6a), (6b), and (6c) by means
of contraction with respect to both the spatial m = 0,±1 and the ®T -spin¯
α = p = 1/2, α = n = −1/2 indices. It is straightforward to show that the
operators Sτ , τ = 0,± commute in a standard way for the SU(1, 1) algebra
generators [101]

[S0, S±] = S±, [S+, S−] = −2S0,

so the sp (2, R) and the su(1, 1) algebras are locally isomorphic with a Casimir
operator written as C2(SU(1, 1)) = S0(S0 − 1) − S+S−.

By construction, the operators (117) are scalars with respect to six-dimen-
sional rotations and they commute with the components of the six-dimensional
momentum operators (2.1) [14],

ΛL
M (α, β) = AL

M (α, β) − (−1)LAL
M (β, α), (118)

which obey the property

ΛL
M (α, β) = (−1)LΛL

M (β, α)



948 GEORGIEVA A. I. ET AL.

and generate the SO(6) ⊃ U(6) algebra. In this way, the direct product of the
two groups (116) is realized. The second-order invariant for the SO(6) group is
deˇned (see (26)) as

Λ2 =
∑

L,α,β

(−1)MΛL
M (α, β)ΛL

−M (β, α), (119)

and in this case is related to the second-order invariant of the Sp (2, R), as in
the direct product (116) the two groups are complementary [99], which means
that the irreps of the group SO(6) determine those of Sp (2, R) ≈ SU(1, 1) and
vice versa.

In order to deˇne the basis of the system with (116) as a dynamical sym-
metry that allows one to include the six-dimensional Davidson potential, we
consider the reduction of the SO(6) algebra to the SO(3) algebra of the angular
momentum through the following chain (see the left-hand side of the diagram
(16)) [14], [102]:

SO(6) ⊃ SU(3) ⊗ O(2) ⊃ SO(3)
ω (λ̄, μ̄) ν L

, (120)

which could be deˇned as the γ-unstable limit of the IVBM. The single inˇni-
tesimal operator of O(2) is proportional to the scalar operator Λ0(α, β) from the
SO(6) generators (118),

Mαβ = −
√

3Λ0(α, β) = −
√

3[A0(p, n) − A0(n, p)]. (121)

The generators of SU(3) [14] are given by (27) and for this realization of the
algebra the quadrupole moment X2

M is the protonÄneutron quadrupole interaction,
which makes the difference with the subgroup SU(3) ⊂ U(6) considered in the
previous limit. The second-order Casimir invariants of the two groups in the
direct product in (120) are given by (28) and (26).

In the introduced above SO(6) ⊂ U(6) (16) reduction, the obtained symmet-
ric representations [N ]6 of U(6) decompose into fully symmetric (ω, 0, 0)6 ≡ (ω)6
irreps of SO(6) according to the rule

[N ]6 =
⊕

ω=N,N−2,...,0(1)

(ω, 0, 0)6 =
〈N/2〉⊕
i=0

(N − 2i)6, (122)

where 〈N/2〉 = N/2 if N is even and (N − 1)/2 if N is odd. Further-
more, the following relation between the quadratic Casimir operators G3 =∑
M

(−1)M (XMX−M + YMY−M ) (28) of SU(3), π2 of O(2) and π6 (119) of

SO(6) holds [103]:

π6 = 2G3 −
1
3
π6, (123)
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which means that the reduction from SO(6) to the rotational group SO(3) is
carried out through the complementary groups O(2) and SU(3) [99]. As a
consequence, the [f1, f2, 0]3 labels of the SU(3) irreps are determined by (ω)6
of SO(6) and by the integer label (ν)2 of the associated irrep of O(2), i.e.,

(ω)6 =
⊕

[f1, f2, 0]3 ⊗ (ν)2. (124)

Using the relation (123) of the Casimir operators, for their respective eigenvalues
in terms of Elliott's notation [104] (λ̄, μ̄) one obtains

(ω)6 =
⊕

ν=±ω,±ω−2,...,0(±1)

(
λ̄ =

ω + ν

2
, μ̄ =

ω − ν

2

)
⊗ (ν)2. (125)

Finally, the convenience of this reduction can be further enhanced through the
use of the standard rules for the reduction of the SU(3) ⊃ SO(3) chain. Hence,
the basis, labelled by the quantum numbers classiˇed by the group-subgroup
chain (120), can be written as

|Nω; (λ̄, μ̄)ν; K, L〉, (126)

where the reduction rules for obtaining speciˇc values for each state were given
above. By means of these labels, the basis states can be classiˇed in each of the
two irreducible even H+ with N = 0, 2, 4, . . . , and odd H− with N = 1, 3, 5, . . .
representations of Sp (12, R). We illustrate this in Table 3 for the even H+

irreducible representation, where N with the set of ω contained in it (122) label
the rows and the values of the quantum number ν label the columns. The SU(3)
quantum numbers (λ̄, μ̄) deˇne the cells of Table 3 as they are obtained with the
help of ω and ν (125).

At this point some of the similarities between the reductions through the
U(6) (82) and O(6) (120) become apparent. The values of the quantum number
ω are clearly related with the values of the ®T -spin¯ T = ω/2, so we can introduce
a parity operator deˇned as (−1)ω/2 like in the U(6)-limit (82). Respectively,
the values of ν have similar relation to the values of T0 = ν/2. The important
difference in this case is that there is no degeneracy in the values of the SU(3)
irreps (λ̄, μ̄), that belong to a given row deˇned by ω, but in the columns (ˇxed
value of ν) the SU(3) irreps repeat each other except the ones corresponding to
the maximal value of ω = N (the ˇrst row for each N ) added for each ν = λ̄− μ̄.
Also in this case λ̄ and μ̄ are both always even or odd.

The Hamiltonian with the considered dynamical symmetry (130) is expressed
in terms of the ˇrst and second order Casimir operators of the different subgroups
in its corresponding chain (120):

H = aN + bN2 + β6Λ2 + β2M
2 + β3L

2, (127)
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Table 3. Classiˇcation scheme of the basis states in the even H+ space of Sp (12, R)
according to the decompositions given by (116) and (120)

N ω ν/ 6 4 2 0 −2 −4 −6

0 0 (0, 0)

2
2
0

(2, 0)
(1, 1)
(0, 0)

(0, 2)

4
4
2
0

(4, 0) (3, 1)
(2, 0)

(2, 2)
(1, 1)
(0, 0)

(1, 3)
(0, 2)

(0, 4)

6

6
4
2
0

(6, 0) (5, 1)
(4, 0)

(4, 2)
(3, 1)
(2, 0)

(3, 3)
(2, 2)
(1, 1)
(0, 0)

(2, 4)
(1, 3)
(0, 2)

(1, 5)
(0, 4)

(0, 6)

...
...

...
...

...
...

...
...

and it is obviously diagonal in the basis (126) labelled by the quantum numbers of
their representations. The second order invariant of SU(3) is dropped in (127),
because of its linear dependence on the Casimir operators of the SO(6) and
O(2) (123). Then the eigenvalues of the Hamiltonian (127) that yield the spectrum
of a system interacting with six-dimensional Davidson potential are:

E(N, ω, ν, L) = aN + bN2 + β6ω(ω + 4) + β2ν
2 + β3L(L + 1). (128)

This expression is very similar to the one obtained in the U(6) (82) case (89),
with a difference coming only from the SO(6) second order invariant Λ2, with
the parameter β6. Other differences in the applications to real nuclei follow from
the possible choices in mapping the experimentally observed collective states to
the basis of this dynamical symmetry.

6.2. Application to Real Nuclei. In the applications of this new dynamical
symmetry of the IVBM to real nuclear systems that we present here, we exploit
again the ®algebraic¯ deˇnition of yrast states as introduced earlier and in [38].
By means of the later, the states of the ground band, which are the yrast states of
the nucleus, correspond to the basis states with N = ω = ∓ν = 2L = 0, 4, 8, . . .
(ΔN = 4). At −ν = 2L we obtain the left-to-right diagonal (0, 2L) of Table 3
with λ = 0 and changing μ = L = 0, 2, 4, . . . At ν = 2L the respective diagonal
of Table 3 is (2L, 0). Hence, T = ω/2 is always even and we consider the states
belonging to the K = 0 band. Then the ground state band's energies are obtained
by the expression

Eg(L) = αL + βL(L + 1), (129)

where α = 2a+8β6 +β3 and β = 4b+4β6 +4β2 +β3. From (129) it is obvious
that in the GSB we will have a certain degree of mixing of the vibrational and
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Table 4. Values of the parameters of the model Hamiltonian (127) obtained in the ˇtting
to the experimental spectra of the considered nuclei

Nucleus N0 Bands χ2 Parameters ν

162Dy 0 GSB 0.0018
a = 0.01909
b = 0.00019

2L

R4 = 3.31 34 γ 0.0004 β6 = 0.00007 2L − 4
46 β 0.0055 β2 = 0.00202 2L
54 Kπ = 1− 0.0013 β3 = 0.00074 2L − 2

42 Kπ = 2− 0.0436 β
′
2 = 0.00021 2L + 2

154Gd 0 GSB 0.0101
a = 0.04731
b = 0.00041

2L

R4 = 3.02 18 γ 0.0049 β6 = 0.00043 2L − 4
12 β 0.0331 β2 = 0.00041 2L + 12
30 Kπ = 7− 0.0175 β3 = 0.00171 2L − 12

32 Kπ = 8− 0.0320 β
′
2 = −0.00031 2L − 14

26 Kπ = 4+ 0.0043 2L − 8
18 Kπ = 2− 0.0028 2L + 6

156Er 0 GSB 0.0099
a = 0.10625
b = 0.00018

2L

R4 = 2.31 8 γ 0.0060 β6 = 0.00031 2L − 4
6 β 0.0204 β2 = 0.00018 2L
16 Kπ = 6− 0.0180 β3 = 0.00101 2L − 12

β
′
2 = −0.000006

rotational modes depending on the values of the parameters α and β. The latter
depends on all the Hamiltonian (127) parameters, except a. There is no an
additive constant to the energies, like in the U(6) case. The difference is that
we cannot describe octupole bands (Kπ = 0−) here, because λ and μ are both
always even or odd. In this case it is obvious that we can relate the quantum
number of the ®T -spin¯ T to the quantum number of the O(6) irreps ω/2, which
can be even or odd. Hence, we can describe both positive and negative parity
bands.

The states of the excited bands are mapped on the theoretical ones, generally
in two ways described in terms of stretched states (λ̄, μ̄) = (λ̄0 + k, μ̄0), where
μ̄0 is ˇxed, or (λ̄0, μ̄0 +k), where λ̄0 is ˇxed, which in turn can belong to certain
®column¯ (ν ˇxed) or ®diagonal¯ (ν changing) of the basis states presented in
Table 3.

Along the left or right ®diagonals¯ of Table 3 we have a sitiuation similar
to the case described for the ground state band, where λ̄ is changing and μ̄ is
ˇxed or vice versa. In this case we have different sequences of (λ̄, μ̄) multiplets,
deˇning the bands along the diagonals with ±ν = λ̄ − μ̄ = ±(2L − k).
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Fig. 8. Comparison of the theoretical
and experimental energies for ground
and excited bands for 162Dy

As discussed above, the correct place-
ment of the bands in the spectrum strongly
depends on their band-head conˇgurations
and, in particular, on the number of bosons
N0, from which they are built [43]. So we
deˇne the number of bosons for each state
in the band with a given L in the following
way: N = N0 + ν + 2L and the respective
ω = ν + 2L.

The variety of possible choices for the
correspondence of the excited bands to se-
quences of states in the symplectic space
and the mixing of the rotational and vibra-
tional degrees of freedom (129), like in the
U(6) limit, allows us to reproduce correctly
the behavior of the excited bands with re-
spect to one another, which can change a
lot even in neighboring nuclei [80].

The ˇve free parameters of the Hamil-
tonian (127) are determined by ˇtting the
theoretical predictions for the energies of
the ground and few excited bands to the
experimental data [1], using a χ2 proce-
dure. The bands are developed according

to the rules described above for their corresponding Kπ values. We choose for
the value of N0 corresponding to the band-head states the one that gives the low-
est χ2, after obtaining the parameters mainly from the ground state band. That
is why, we usually choose in the applications nuclei with long spin sequences in
their ground bands.

In [43] and [105], we presented examples of a rather precise description of
only positive parity collective bands (ground, β and γ) in well-deformed nuclei,
corresponding to the SU(3) limit of the IBM, γ-soft ones, belonging to the
SO(6) limit of the IBM and of the 152Sm nucleus with (R4/2 = 3.1), which is
transitional between the γ-soft (R4/2 = 2.5) and rotational nuclei with (R4/2 =
3.33) and is a typical example for being at the critical point of phase/shape
transition [82] with X(5) symmetry [4].

Here we illustrate the possible description of negative parity bands with
Kπ �= 0 = 1−, 2−, 3−. . . in addition to the basic ground, β and γ bands, like
in the U(6)-reduction chain and use this application to compare the results of
both limits. Hence, in the presented below applications we ˇt the Hamiltonian
parameters for this limit again for the rotational 162Dy nucleus, we describe
another X(5) symmetry nucleus 154Gd [106] and make an attempt to deal with
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Fig. 9. The same as in Fig. 8 for 154Gd (a) and 156Er (b)

a spectrum that shows a behavior close to the other critical point with E(5)
symmetry [107].

The parameters that were obtained, the number s of experimental states, χ2,
N0, and ν are all given in Table 4 for the three different nuclei, where the 156Er
is also considered.

As shown in Figs. 8 and 9, the experimental data is reproduced remarkably
well, especially for the β and γ bands, as well as for the newly described negative
parity bands. In this case most of the parameters of the Hamiltonian are obtained
through a ˇt to the energies of the states from the ground state band. The energies
of the other excited bands are reproduced mainly by the correct choice of the
quantum number N0 and, in general, the correct identiˇcation of the experimental
states with the basis states. This reveals again the importance of N0, which vary
quite a lot, but much less than the parameters of the Hamiltonian.

Comparing the parameters of the Hamiltonians obtained for the 162Dy in
the U(6) and this limit it is clear that they are rather close to each other which
conˇrms the observed correspondence between the terms of the two Hamiltonians
(88) and (127).
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From the presented results, it could be seen that any of the above two limits of
the symplectic extension of the IVBM is equally appropriate for the description of
a rather broad range of nuclei, and most importantly, nuclei that display different
degree of mixing of the rotational and vibrational degrees of freedom.

7. THE REDUCTION THROUGH THE NONCOMPACT Sp (4, R)

7.1. The Algebraic Realization. Finally we will introduce the group Å
theoretical background [43] of the application of the symplectic IVBM, for the
description of the energy distributions of collective excited states with ˇxed angu-
lar momenta. This new reduction further elucidates the importance of considering
the structure of the band-head's conˇgurations in respect to the number of bosons
N that build them, established through the applications of the ˇrst two chains.
It also plays the role of a connecting branch in the general reduction scheme
of Sp (12, R), clarifying the relations between the subgroups of the above two
chains.

In terms of the introduced boson representations of Sp (12, R), the third chain
of subgroups starts with the reduction [26,43,99]:

Sp (12, R) ⊃ Sp (4, R) ⊗ SO(3). (130)

The inˇnitesimal operators of the Sp (4, R) algebra are the L = 0 part

F 0(α, β) =
∑
k,m

C00
1k1mu+

k (α)u+
m(β),

G0(α, β) =
∑
k,m

C00
1k1muk(α)um(β), (131)

A0(α, β) =
∑
k,m

C00
1k1mu+

k (α)um(β)

of the Sp (12, R) generators FL
M (α, β), GL

M (α, β) (6a), (6b) and AL
M (α, β) (6c)

α, β = 1/2(p), or = −1/2(n). Hence by construction, all these operators are
scalars in respect to the three-dimensional rotations. Obviously the genera-
tors (131) commute with the components of the angular momentum L1

M (18), that
generate the SO(3) algebra, i.e., we have a direct product of the two groups (130).
As a result the Sp (4, R) irreps can be labelled by the quantum numbers of their
corresponding SO(3) ones, namely the angular momentum L.

The maximal compact subalgebra u(2) of sp (4, R) is generated by the
Weyl generators A0(α, β) of (131), and is the same one that corresponds to
the ®T -spin¯ algebra of U(2) (20) in the direct product with the SU(3) in (82).
The operator N generates u(1) and plays the role of the ˇrst-order invariant of
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u(2) ⊃ suT (2)⊗uN (1). Hence, the following correspondence between the chains
of subalgebras of sp (12, R) Å through u(6) and through sp (4, R), exists [26]:

sp (12, R) ⊃ sp (4, R) ⊗ so(3)
∪ ∪ ∩
u(6) ⊃ u(2) ⊗ su(3)

(132)

Each of the sp (4, R) irreps that are contained in the sp (12, R) boson rep-
resentations is of inˇnite dimension and consists of countless number of u(2)
irreps. A basis for the sp (4, R) representations is generated by a consecutive ap-
plication of the symmetrically coupled products of the operators F 0(α, β) (131)
to the lowest weight state (lws) with angular momentum L that labels the consid-
ered Sp (4, R) irrep [26]. Each starting u(2) conˇguration is characterized by a
totally symmetric representation [L]2 formed by L = Nmin vector bosons. The
procedure to obtain the rest of the su(2) irreps that are contained in a given L
irrep of sp (4, R) is given in detail in [43].

We ˇrst decompose all the even numbers n = 0, 2, 4, 6, . . ., where n/2 gives
the degree of the F 0(α, β) that are applied to the lws, into a direct sum of u(2)
irreps [n1, n2] with both n1,n2 even and n = n1 + n2. After symmetrization of
the irreps [n1, n2] → [n1 − n2, 0] ≡ [n1 − n2]2 we get the decomposition:

[n]2 → [n]2 ⊕ [n − 4]2 ⊕ . . . ⊕ [2]2 or [0]2. (133)

Next, all the outer products of the representations [L]2 with the reduced
[n]2 (133) are calculated and restricted to the two-dimensional Young diagrams of
integers. We obtain as a result the su(2) representations [k]2, which correspond
to N = Nmin + n, n = 0, 2, 4, 6, . . . and T = k/2 = N/2, (N/2) − 1, . . . , 0
(for even L). This technique is illustrated for the cases L = 0 and L = 2
with Tables 5 and 6. The columns are deˇned by the quantum number T and
the rows by the eigenvalues of N = Nmin + n for n = 0, 2, 4, 6, . . . Table 5
for the L = 0 states actually coincides with the decomposition of the even
numbers n (133) as in it the outer product is with the [0]2 irrep. By means
of the correspondence (132) between the two considered chains of subgroups of
Sp (12, R) and the relations (84) between the U(2) and SU(3) quantum numbers,
we were able also to present the respective (λ = k, μ = (N − k)/2) irreps in
the cells of Tables 5, 6. For a given value of N these could be compared to the
classiˇcation scheme of the SU(3) irreps contained in the even U(6) irreps of
Sp (12, R) given in Table 1. Note that the missing su(2) irreps on the above tables
do not contain in their corresponding (λ, μ) representations the states with the
considered value of L according to the SU(3) ⊃ SO(3) reduction rules (86) [15].
In the obtained decomposition of the sp (4, R) representations L into [k]2 Å su(2)
ones, except for the L = 0 case in Table 5, there is a multiplicity, denoted as
ρ× in the appearance of some of the irreps, that shows how many times the



956 GEORGIEVA A. I. ET AL.

Table 5. L = 0

. . . T = 4 T = 3 T = 2 T = 1 T = 0 T/N
[0]2(0, 0) N = 0

[2]2(2, 0) N = 2
[4]2(4, 0) [0]2(0, 2) N = 4

[6]2(6, 0) [2]2(2, 2) N = 6
[8]2(8, 0) [4]2(4, 2) [0]2(0, 4) N = 8
...

...
...

...
...

...

Table 6. L = 2

. . . T = 4 T = 3 T = 2 T = 1 T = 0 T/N
[2]2(2, 0) N = 2

[4]2(4, 0) [2]2(2, 1) [0]2(0, 2) N = 4
[6]2(6, 0) [4]2(4, 1) 2×[2]2(2, 2) N = 6

[8](8, 0) [6]2(6, 1) 2×[4]2(4, 2) 2×[2]2(2, 3) [0]2(0, 4) N = 8
...

...
...

...
...

...
...

respective irrep [k]2 appears for the speciˇed value of N. This multiplicity is
exactly equal to the multiplicity of the appearance of the considered value of L
in the reduction (86) of the corresponding su(3) irrep (λ, μ) to the so(3) values
of L [26] (see N = 6 and N = 8 rows of Table 6).

7.2. Energy Distribution of States with Fixed L. As established above,
because of the correspondence (132) and the relation between the SU(3) and
SU(2) second order Casimir operators [38], the Hamiltonian (88) and the bases
in this case are equivalent to the ones in the U(6) limit of the model (82). As a
result, the eigenvalues of the Hamiltonian (88) for the states with a ˇxed L are
the energies, given by (89). Obviously in (89) the dependence of the energies of
the collective states on the number of phonons (vector bosons) N is parabolic.
The rest of the quantum numbers T , T0 deˇning the states with ˇxed L in this
case are expressed in terms of N by means of the reduction procedure described
above. The parity of the states is deˇned [38] in the same way, as π = (−1)T .
Although we use the same labels for the basis states, it must be kept in mind,
that the states that we consider in this limit are ordered in different from the
U(6) case, sequences of SU(3) irreps, re
ecting their positions among the other
states with the same angular momenta. This not only requires their interpretation
in terms of N, but also gives a different physical meaning of the parameters of
the Hamiltonian, hence they are ˇtted again in this limit, but in respect to the
variable N .
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Fig. 10. Comparison of the theoretical and experimental energy distributions of states with
ˇxed L in the spectra of 146Sm (a) and 178Hf (b)

Here, we ˇrst evaluate the parameter of inertia β3 in front of the term
L(L + 1) in (89) by ˇtting the energies of the ground states band (GSB) with
Jπ = 0+

1 , 2+
1 , 4+

1 , 6+
1 , . . . to their experimental values in each nuclei. Further, the

values of NLi corresponding to the experimentally observed Eexp
Li

and the values
of the parameters in (89) are evaluated in a multistep χ-square ˇtting procedure
making use only of the three sets of states with Jπ

i = 0+
i , 2+

i , 4+
i . We choose

nuclei with enough of these states to have good statistics in the ˇt. Most of these
states are band heads (all the 0+, some of the 2+ and 4+) of collective bands
and as a result the situation of the whole band depends on them. The set of
NLi with minimal value of χ2 determines the distribution (the parameters of the
Hamiltonian) of the L+

i states energies with respect to the number of bosons NLi

that build them. For the set of 0+ states (L = 0) we chose both T = T0 = 0, so
the parameters a and b in (89) are evaluated and ˇxed. Further, for the 2+ we
use even T > 0, T0 = 0 and so we get the α3 parameter, and ˇnally for the 4+

we determine T > 0 and also a possible value of T0 > 0 in order to obtain α1.
Sets of states with other values of L = 1, 3, 5, 6 . . . and/or with negative parity
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Fig. 11. The same as in Fig. 6 for 162Dy

(T -odd) can be included in the consideration only by determining in a convenient
way the values of T , T0 and ˇnding the sequences of NLi corresponding to the
observed experimental energies. The ˇrst two parameters a and b (b < 0) of
the Hamiltonian actually determine the form of the parabolas, and they are the
same for each set of states with ˇxed L. The rest of them with the values of
the quantum numbers T , T0, and L, only shift the curves in respect to each
other. The predicting power of the model in this limit is related to the possibility
to describe any other set of states, once all the parameters of the Hamiltonian
are evaluated from the distributions of 0+, 2+, and 4+ states, without involving
additional parameters.

The results of the treatment described above for the collective spectra of three
evenÄeven nuclei from the rare-earth region are illustrated in Figs. 10 and 11.
The theoretical distribution of the energies with respect to the attributed values
of NLi and the good agreement with the experimental ones can be clearly seen.
Additionally, Nini Å the initial value of N by means of which the lowest state
with the considered Jπ is constructed, the used values of T , T0, the values
obtained for the Hamiltonian parameters β3, a, b, α3, and α1 with their respective
χ2 are presented in Table 7. The numbers s in the ˇrst column give the number
of the experimentally observed states with the respective Jπ.
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Table 7. Values of the parameters of the model Hamiltonian (88) of the considered
nuclei obtained in the ˇtting of energies of the set of states with given Jπ to their
experimental values

Nucleus s Jπ nini = Nini/4 T T0 χ2 Parameters

146Sm 11 0+ 0 0 0 0.0004
a = 0.03243
b = −0.00006

13 2+ 4 4 0 0.0008 α3 = −0.00161
16 4+ 6 8 8 0.0008 α1 = −0.00553
4 3− 8 5 5 0.0004 β3 = 0.04134
3 4− 10 3 3 0.0013
4 5− 127 7 7 0.0017

178Hf 4 0+ 88 0 0 2 · 10−6 a = 0.02376
b = −0.00040

12 2+ 90 4 0 0.0006 α3 = 0.03543
7 4+ 92 8 8 0.0025 α1 = −0.02110
7 6+ 93 10 10 0.0022 β3 = 0.02879

162Dy 4 0+ 127 0 0 10−6 a = 0.02376
b = −0.00005

11 2+ 134 4 0 0.0006 α3 = 0.03543
7 4+ 139 8 8 0.0025 α1 = −0.02110
7 6+ 144 10 10 0.0023 β3 = 0.01288
5 1− 115 3 3 0.0004
3 2− 120 3 1 0.0009
7 3− 121 5 5 0.0009
6 4− 125 5 3 0.0017
7 5− 126 7 7 0.0010

The examples chosen for the present application are nuclei for which there is
experimental data for the energies of more than 5 states with each of the angular
momenta L = 0, 2, 4 in the low-lying spectra. One of these nuclei, 146Sm,
has a typical vibrational spectra and the other one, 178Hf, has typical rotational
character. This is conˇrmed by the obtained values for the inertia parameter, β3,
given in Table 7. It is well known that the main distinction of these two types of
spectra is the position of the ˇrst excited 2+

1 state of the ground state band, which
for vibrational nuclei is rather high (over 1 MeV), but for the well-deformed ones
lies low around 0.07 MeV.

For the nucleus with vibrational spectra 146Sm we apply the procedure de-
scribed above with values of T that differ quite signiˇcantly (ΔT = 4) for the
sets with L = 0, 2, 4. This corresponds to rather large changes in the values of
the initial Nmin = 2T which allows one, according to the reduction rules for the
basis, to place them on the left-hand side of the symmetric parabolas. As a result
(see Fig. 10), the values of NLi increase with increasing energy of these states.
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For the spectra of 146Sm, in addition to the L = 0+, 2+, 4+ we have included the
states with L = 3−, 4−, 5−.

With the procedure employed, the ordering of the states into different bands
can be recognized. The GSB is formed from the lowest states with L =
0+, 2+, 4+, which are almost equidistant for the case of vibrational nuclei with
very close values of n for the states belonging to a given band. The almost
degenerate 0+, 2+, 4+ triplets of states, characteristic for the harmonic quadru-
pole vibrations, can also be observed on the theoretical energy curves, and are
characterized with almost equal difference between their corresponding values of
N . In order to avoid nearly degeneracies of the energies in respect to NLi , we
use the symmetric feature of the second order curves and place some of the states
on the right side of the parabolas.

The low-lying states of the ground band, L = 0+
1 , 2+

1 , 4+
1 , of the typical

rotational nuclei [1] 162Dy require small changes in the number of quanta NL1

that build the corresponding initial states in each sequence. Making use of the
latter and the symmetric feature of the second order curves the states with a given
L in the rotational spectra are placed on the right-hand side of the theoretical
curves. This corresponds to the second solution N ′′

01
= −a/b of equation (89) for

the ground state with T = T0 = 0, deˇning the maximum N01 that builds it. This
can be used as a restriction on the values of NLi . On a parabola, speciˇed for a
ˇxed L, the number of bosons that build the states will decrease with increasing
energies. Hence, if the number of quanta that is required to build a collective
state is taken as a measure of collectivity, the states from a rotational spectra are
much more collective than vibrational ones, which is the expected result. In this
example, one can also observe the structure of collective bands that are formed
by sets of states from the different curves and in particular the ground band, the
ˇrst two excited β and γ bands (see Figs. 10 and 11).

This result conˇrms the empirical investigation [108] of the energy distribu-
tion of the states with ˇxed angular momentum. It is rather well described [83]
by the simple phenomenological formula EL(n) = An − Bn2, where A > 0 and
B > 0 are ˇtting parameters and n is an integer number corresponding to each
one of the states with given L. A relation N = 4n between the total number of
vector bosons N and the introduced in [109] number of ideal monopole bosons n
is valid in this application. In [83] the importance of the value of n in particular
for the description of the distribution of the 0+ is revealed by its introduction as
an additional variable in the inertia parameter β3 of the model Hamiltonian (88)
for the considered bands.

8. GENERALIZED REDUCTION SCHEME FOR THE IVBM

The use of symplectic geometry in the investigation of the nuclear collective
motion, relates the later to its microscopic structure. A further elaboration in
the problem can be achieved if we consider the nuclear many-body system as
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consisting of two interacting proton and neutron subsystems. This motivation
is behind the algebraic construction of the phenomenological IVBM [14], where
Sp (12, R) Å the group of linear canonical transformation in a 12-dimensional
phase space [99] appears as the group of dynamical symmetry of the model.
The three considered above dynamical symmetries can be uniˇed in the reduction
scheme (134).

In mathematical terms the established relations are based on the appearance of
the physically important U(2) [38] group of the ®T spin¯ as the maximal compact
subgroup of Sp (4, R) [43], as well as its noncompact counterpart SU(1, 1) [42].
By means of this vertical structure, the dynamical symmetries describing the
ground and excited bands are connected with the dynamical symmetry describing
the sets of states with ˇxed angular momentum, most of which are band-head
conˇgurations. This reveals the important role of their structure, in particular
the number of bosons from which the band heads are build for the development
of the excited bands, a feature that is due to the consideration of the symplectic
extension of the model. Another very important model characteristic leading to
the correct description of the experimental energies is the interaction between
the proton and neutron subsystems, yielded in the symplectic extension of the
model, but still retaining the exact analytic solutions in each of the considered
applications.

This generalized reduction scheme relates the presented applications of the
three dynamical symmetries in their physical interpretations and the conclusions
following from each one of them. It was established that the two reduction
schemes, that describe the developments of collective bands in various types of
nuclear spectra, the one through U(6) and the one through SO(6), although using
different realizations of the basis states and the Hamiltonians, because of their
connection through the content of the Sp (4, R), yield very similar applications
for the description of the ground bands and the excited positive and negative
parity bands. A common feature of these applications is the possibility to mix
with varying strength the two main collective modes Å vibrational and rotational,
which results in the accurate description even of nuclei at the critical points of
phase/shape transitions in the framework of these exactly solvable cases. The
success of this approach is due not only to the easy evaluation of the relatively
small number of model parameters by means of ˇtting to the experiment, moreover
only of the ˇrst lowest bands like the ground band and the immediately following
one or two excited bands. The important predicting power of the model is related
to the symplectic extension, which allows one (only by correctly ˇnding the
number of bosons that build the band-head conˇgurations of the other observed
excited bands) to evaluate the energies of all states that belong to them. In this
respect the energy distributions of the states with ˇxed angular momenta and in
particular of the low-lying ones with L = 0+

i , 2+
i , 4+

i , most of which are band-
head conˇgurations, obtained in the connecting Sp (4, R), give the tool to obtain
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their corresponding NLi values, on which the excited bands can be build [83]

U(6) ⊃ U(2) ⊗ SU(3)
[N ] T (λ, μ)
∩ ∩ ∪ K
Sp (12, R) ⊃ Sp (4, R) ⊗ SO(3)
∪ ∪ ∩
SO(6) ⊗ Sp (2, R)
∪ ω (SU(1, 1))
SU(3) ⊗ O(2)(
λ, μ
)

ν

(134)

In order to obtain even greater predicting power of the symplectic extension
of the IVBM, we need a further systematic investigation of the behavior of the
model parameters as functions of the speciˇc nuclear characteristics [110], as
well as of the energy distributions of the band-head states in sequences of nuclei,
which is our future aim.
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