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The present paper is a critical review checking expressions for Rnp(π) in different amplitude
representations, listing numerical values of elastic np quantities and results of existing quasi-elastic
experiments. Conclusions and statements of some authors and the validity of the relevant theory are
discussed.
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PACS: 25.40.Kv

1. INTRODUCTION

In 1950Ä1951 Chew [1, 2] and Pomeranchuk [3] proposed to measure the
charge-exchange reaction nd → (nn) + p under deˇned kinematical conditions,
in order to determine the spin-dependent part of the np → np elastic differential
cross section in the backward direction. To produce the polarized beams at
®high¯ energies (a few hundreds of MeV) in the early 1950s was not easy,
and no polarized targets existed. Consequently, a suggestion to use for such a
purpose unpolarized neutrons scattered on unpolarized deuteron and proton targets
was attractive for physicists. The theory of this proposal was then developed by
Watson [4], Schmushkevich [5], Migdal [6], Lapidus [7], Dean [8,9], etc. Later,
the theory was extended for the polarized particles by Arvieux, Boudard, Bugg,
Wilkin, et al. (see, e.g., [10]).

The protons and neutrons bound in deuterons are in the 3S1 and 3D1 states,
and their spins are parallel. In the nd backward charge-exchange process, the
two slow remaining identical particles need to be in spin-singlet states 1S0, 1D2,
due to the Pauli principle.

In the ˇrst part of the experiment, the quasi-elastic nd → (nn)+p differential
crosss section is to be determined. The outgoing proton momentum coincides
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with the incident neutron one. It needs to be larger than the intrinsic momenta
of nucleons in the deuteron. The impulse approximation (IA) has been assumed;
i.e., in the ˇnal state of the two remaining identical nucleons their interaction can
be neglected [11]. This nd → (nn) + p reaction is taken here as an example,
since pd → (pp) + n or dp → (pp) + n reactions are equally conceivable.

In the second part is determined the elastic np → np differential cross section
in the backward direction, i.e., at the incident neutron scattering angle θCM = π.
The ratio of the two differential cross sections is then calculated.

The np → np differential cross section (dσ/dΩ)np can be split into the
®spin-independent¯ (SI) and ®spin-dependent¯ (SD) parts:

(
dσ

dΩ

)
np

=
(

dσ

dΩ

)SI

np

+
(

dσ

dΩ

)SD

np

. (1.1)

Following the mathematical formalism developed in [7Ä9], the differential cross
section for nd → (nn) + p reaction in the framework of the impulse approxima-
tion (IA) can be written as

(
dσ

dΩ

)
nd

= [1 − F ]
(

dσ

dΩ

)SI

np

+
[
1 − 1

3
F

](
dσ

dΩ

)SD

np

. (1.2)

Here F is the deuteron form factor, which is equal to the one in the backward
direction [6]. The ˇrst term in the right-hand side of (1.2) vanishes, and for the
differential cross section at θCM = π the theory gives

(
dσ

dΩ

)
nd

=
2
3

(
dσ

dΩ

)SD

np

. (1.3)

Only if IA holds, Eqs. (1.2) and (1.3) are valid.
We denote by RQE(θCM) the ratio of the quasi-elastic nd to the free np

elastic scattering differential cross sections. From (1.3) it follows that

RQE(π) =
(dσ/dΩ)nd

(dσ/dΩ)np
=

2
3

(dσ/dΩ)SD
np

(dσ/dΩ)np
= Rnp(π). (1.4)

The observable RQE(π) in the left-hand side is measured using the quasi-elastic
result, whereas Rnp(π) is calculated from the known np amplitudes.

The ratio of the spin-independent to the spin-dependent part of (dσ/dΩ)np

at the same angle is

RID
np(π) =

(dσ/dΩ)SI
np

(dσ/dΩ)SD
np

=
2

3Rnp(π)
− 1. (1.5)
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Some authors use the ratio of the spin-independent part (SI) to the entire np
elastic differential cross section. This ratio is

RSI
np(π) =

(dσ/dΩ)SI
np

(dσ/dΩ)np
=

2
3
− Rnp(π). (1.6)

Another interesting quantity may also be the ratio of the spin-singlet part
(SS) of the np differential cross section to (dσ/dΩ)np at the angle π:

RSS
np(π) =

(dσ/dΩ)SS
np

(dσ/dΩ)np
. (1.7)

In Eqs. (1.5)Ä(1.7), the quantities for the np elastic scattering are given which
can be taken from the phase shift analysis (PSA), if this analysis at a given
energy exists. In Eqs. (1.5) and (1.6) the corresponding quantities, obtained
using the quasi-elastic reaction, are to be labeled by QE. The desired equalities
RQE(π) = Rnp(π), RID

QE(π) = RID
np(π) and RSI

QE(π) = RSI
np(π) are to be checked.

A compatibility of the measured nd and np observables represents a check
of the validity of the theory and its basic assumption (IA). If the theory and IA
hold, the quasi-elastic quantity contributes to the phenomenological description
of the elastic np system in the same manner as any other scattering observable.
This concerns observables expressed by bilinear functions of amplitudes. Optical
theorems provide more information. A knowledge of, e.g., RQE(π), even ap-
proximative, could then help in an unambiguous direct reconstruction of the np
elastic scattering amplitudes (DRSA) analysis. The QE measured data and the
np calculations using PSA could now be compared in the energy interval from
10 MeV to 1.3 GeV.

RQE(π) could be measured with proton, neutron and deuteron beams and
with proton or deuteron targets, using either of the three reactions:

nd → (nn) + p, (1.8a)

pd → (pp) + n, (1.8b)

dp → (pp) + n. (1.8c)

Each reaction requires a speciˇc experimental approach, and the measure-
ments provide different systematic errors. In the charge-exchange scattering of
the reactions (1.8a) and (1.8b), the remaining two nucleons (in brackets) are slow,
within the Fermi-motion distribution. For the reaction (1.8c) the two outgoing
protons in the laboratory system are relatively rapid and can be measured.

The reaction (1.8a) is investigated with a neutron beam, which is usually
quasi-monochromatic. Outgoing fast protons are detected with ∼ 100% efˇciency.
Their characteristics are well determined by a magnetic analysis, as well as by
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TOF. At intermediate energies the charge-exchange proton distribution is well
separate from the pion production region. A simple replacement of a deuteron
target by a proton target allows one to measure both (dσ/dΩ)nd and (dσ/dΩ)np

using the same beam line and set-up. For the ratio of these two differential
cross sections, the normalization procedure is simpliˇed to the knowledge of the
deuterium and hydrogen contents in the targets. It is not surprising that the
reaction (1.8a) was most frequently measured.

The reaction (1.8b) is measured with incident protons and with deuteron
targets. The TOF measurement of the fast outgoing neutrons is crucial. The
neutron detector efˇciencies are small, and the absolute differential cross section
is not easy to determine. The np elastic differential cross section measurement
represents either a separate experiment or the necessary (dσ/dΩ)np(π) value is
to be obtained from another source.

The reaction (1.8c) is studied using accelerated incident deuterons and proton
targets. The two remaining outgoing protons could be magnetically analyzed.
This is often sufˇcient, even if the fast outgoing neutron is ignored. For measure-
ments with an internal beam and a jet target (or a cell target), only this reaction
could be performed. The (dσ/dΩ)np(π) value again needs to be taken from
another experiment. The reaction (1.8c) was used in the Dubna bubble chamber
measurements only.

Inelastic contributions to the elastic and to any of the three quasi-elastic reac-
tions differ considerably. The reactions (1.8a)Ä(1.8c) contain electromagnetic con-
tributions, whereas the elastic np reaction is Coulomb-independent. Phillips [11]
has shown that, although the different ˇnal-state interactions (FSI) between two
low-energy neutrons in (1.8a) or two low-energy protons in (1.8b) give different
shapes to the energy spectra of the fast nucleon in the two cases, the effect on
the backward charge-exchange cross section is negligible. It is assumed that the
same holds for the reaction (1.8c) [10].

In the past, the determination of RQE(π) was mainly considered as a con-
tribution to our knowledge of the np system. When the polarized proton tar-
gets and the polarized neutron beams were available, many physicists prefer-
red the measurements of the accessible spin-dependent np elastic scattering
observables.

Nevertheless, the RQE(π) observable becomes interesting again, mainly for
investigations of the Nd system and for its comparison with the np system.
At JINR's VBLHE (Dubna) a high-quality quasi-monoenergetic polarized neutron
beam was extracted in 1994 at the Synchrophasotron for the ΔσL(np) measure-
ments [12Ä14]. This accelerator was stopped in 2005 and the polarized deuterons
from the Nuclotron are still not available. On the other hand, intense unpolar-
ized beams with very long spills were extracted. The DELTAÄSIGMA set-up was
completed by a spectometer, and the RQE(π) energy dependence was successfully
extended up to 2.0 GeV [15].
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New papers appeared in the ˇeld of the theory and phenomenology.
Ladygina and Shebeko [16] studied the reaction (1.8c) for a description of pd
break-up process. In their paper the in	uence of FSI on the differential cross
section is also treated. The calculations in the framework of IA and the contribu-
tion of FSI for the DELTAÄSIGMA experiment have recently been published by
Ladygina [17]. Experiments at the Nuclotron are also prepared at the STRELA
array, but measurements have not started yet.

Quasi-elastic experiments, complementary to those treated here (i.e., in the
other hemisphere), were carried out at Saturne 2 using intense extracted polarized
proton and deuteron beams. The powerful magnetic spectrometer SPES4 was
used at high energies [18Ä20] and the spectrometer SPES1 at lower energies [21].
The theory is treated in [10,22,23].

Complementary experiments were carried out at COSY (Jéulich), where the
ANKE spectrometer has been installed. Using the internal proton beam and
the deuterium cluster-jet target, the ANKE collaboration measured the differ-
ential cross section for the reaction (1.8b) with the forward emission of fast
proton pairs [24]. The results were obtained at the proton energies Tp =
0.6, 0.8, 0.95, 1.35 and 1.9 GeV. The situation is very similar to that of back-
ward elastic protonÄdeuteron scattering [27, 28]. In [16] the ANKE kinemat-
ics was treated.

In the work of Chiladze et al. [25] the ANKE collaboration is looking at a
very soft process, where the neutron is just ®tickled¯ a bit and comes out as a
proton. The results obtained at the beam energy of vector and tensor polarized
deuterons are equal to 1.17 GeV. The predictions at higher energies from [26]
are also presented.

For the reaction (1.8b), using the internal polarized proton beam, the ANKE
collaboration determined the analyzing power at Tp = 0.5 and 0.8 MeV. The CM
angular region of emitted neutrons covers the interval from 167 to 180◦ [29]. The
results demonstrate the 1S0 wave dominance in the fast forward diproton forma-
tion. New experiments at COSY are to be expected.

In the present review, the expression of Rnp(π) as a function of amplitudes is
given in ˇve amplitude representations, frequently used in this ˇeld. In part of the
relevant papers it is not deˇned, if the elastic scattering amplitudes concern the
charge-exchange reaction np → pn at θCM = 0 or the direct reaction np → np at
θCM = π. In Sec. 2 the observable Rnp(π) is expressed as a function of ®invariant
amplitudes¯ [30,31]. This amplitude representation and formalism, as well as the
four-index notation of experiments, have been used in all papers related to the
DELTAÄSIGMA JINR VBLHE experimental program. The same representation
has been used in the NN program at Saturne 2, in the PSI experiments, in
Gatchina, as well as in the papers of many other laboratories.

The expressions in helicity amplitudes [33], used in [34, 35], are compared
with the invariant amplitude representation in Sec. 3. The GoldbergerÄWatson
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amplitude representation [36], used, e.g., in [7,34,37], is treated in Sec. 4 and the
singlet-triplet representation [38, 39], referred to in [40, 41], is shown in Sec. 5.
The Wolfenstein amplitudes [42Ä45] are discussed in Sec. 6. The PSA predictions
for Rnp(π) and for the other related observables are given in Sec. 7. Available
experimental results for RQE(π) are listed in Sec. 8. They are discussed and
compared with the calculated Rnp(π) energy dependence. The conclusions are
drawn in Sec. 9.

2. INVARIANT AMPLITUDE REPRESENTATION

2.1. Direct Invariant Amplitudes. The nucleonÄnucleon formalism, includ-
ing the four-index notation and deˇnition of all ®pure¯ experiments, is described
in [30]. The parity conservation, time reversal invariance as well as isospin
invariance are assumed. The nucleonÄnucleon elastic scattering matrix can be
written in the form

M(kf ,ki) =
1
2
[(a + b) + (a − b)(σ1,n)(σ2,n) + (c + d)(σ1,m)(σ2,m)+

+ (c − d)(σ1, �)(σ2, �) + e(σ1 + σ2,n)], (2.1)

where a, b, c, d and e are complex invariant amplitudes, which are functions of
energy and scattering angle. The terms σ1 and σ2 are the Pauli 2 × 2 matrices
for the beam and target particles, ki and kf are the unit vectors in the direction
of the incident and ˇnal particles, respectively, and

n =
kikf

|kikf |
, � =

kf + ki

|kf + ki|
, m =

kf − ki

|kf − ki|
. (2.2)

In [30] it is deˇned that the vector kf is in the direction of the scattered particle,
which is the same as the incident one. The scattering angle θCM is then the angle
between ki and kf . The ®forward¯ or ®backward¯ directions or the scattering
angles θCM = 0, π concern the ˇnal states of the beam particle.

The term (a+ b) in Eq. (2.1) is spin-independent (SI, sometimes called ®spin
non-	ip term¯), all the other terms are spin-dependent (SD, also called ®spin-
	ip¯). It should be noted that the spin-independent term is not the spin-singlet
term, which is equal to (b − c).

The scattering matrix simpliˇes at θCM = 0 and π, where the vector n is not
deˇned, since kf = ki in the forward direction and kf = −ki in the backward
direction. The amplitudes in (2.2) then satisfy

a(0) − b(0) = c(0) + d(0), e(0) = 0, (2.3 )

a(π) − b(π) = c(π) − d(π), e(π) = 0. (2.3b)
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The scattering matrices for pp, nn, np, and pn interactions are given in terms
of isosinglet (M0) and isotriplet (M1) matrices, both of the form of Eq. (2.1).
Putting

M(kf ,ki) =
M0

4
[1 − (τ 1, τ 2)] +

M1

4
[3 + (τ 1, τ 2)], (2.4)

where τ 1 and τ 2 are the nucleon isospin matrices, we have

M(pp → pp) = M(nn → nn) = M1, (2.5 )

M(np → np) = M(pn → pn) =
1
2
(M1 + M0), (2.5b)

M(np → pn) = M(pn → np) =
1
2
(M1 − M0). (2.5c)

Equations (2.5) hold also for individual scattering amplitudes, independently of
their representation. One can write

Ampl (np) =
1
2

(
Ampl (I = 1) ± Ampl (I = 0)

)
. (2.5d)

The sign in Eq. (2.5d) depends on a choice of Eq. (2.5b) or Eq. (2.5c). The
matrix M(np → np) in Eq. (2.5b) describes the ®direct elastic scattering¯ with
the ®direct scattering amplitudes¯.

The matrices M1 and M0 in Eqs. (2.5a)Ä(2.5c) are deˇned with the base
vectors (2.2), where the vector kf concerns the scattered particle, which is the
same as the incident one. The matrix M(np → np) in Eq. (2.5b) describes the
®direct elastic scattering¯ with the ®direct scattering amplitudes¯. The matrix
M(np → pn) in Eq. (2.5c) is called ®charge-exchange (CEX) elastic scattering
matrix¯, which has the same form as Eq. (2.1), but with the different base vectors
and with the different CEX amplitudes. In the CEX system the vector kCEX

f

concerns the recoil particle, which is the target particle. With respect to the direct
elastic scattering, the angle of the target particle changes from θCM to π − θCM.
The base vectors in Eq. (2.2c) change as follows:

nCEX
i = − n, �CEX = − m, mCEX = − �. (2.6)

Since in the right-hand sides of all Eqs. (2.5) are the direct scattering amplitudes
for I = 1 and I = 0, one can relate the CEX amplitudes in the left-hand side
of Eqs. (2.5c) and (2.5d) to the direct ones. This procedure will be treated in
Subsec. 2.2. In the present subsection the ®forward¯ or ®backward¯ scattering
angles and directions concern the ˇnal state of the beam particle.

Symmetry conditions, shown in Table 1, connect the elastic scattering ampli-
tudes a to e in Eq. (2.1) at θCM and at π − θCM for the given pure isospin states
I = 0 and I = 1 [30,32].
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Table 1. Symmetry properties of the NN scattering amplitudes

I = 0 amplitudes I = 1 amplitudes

a0(θ) = +a0(π − θ) a1(θ) = −a1(π − θ)
b0(θ) = +c0(π − θ) b1(θ) = −c1(π − θ)
c0(θ) = +b0(π − θ) c1(θ) = −b1(π − θ)
d0(θ) = −d0(π − θ) d1(θ) = +d1(π − θ)
e0(θ) = −e0(π − θ) e1(θ) = +e1(π − θ)

The np elastic scattering differential cross section is given [30]:

dσ

dΩ
=

1
2
(
|a|2 + |b|2 + |c|2 + |d|2 + |e|2

)
. (2.7)

In the brackets one can also write

|a|2 + |b|2 =
1
2
(|a + b|2 + |a− b|2), |c|2 + |d|2 =

1
2
(|c + d|2 + |c− d|2). (2.8)

Using Eqs. (2.8) and (2.3a), in the forward direction (θCM = 0), one obtains

(
dσ

dΩ

)
(0) =

1
4
(
|a(0) + b(0)|2 + 2|a(0) − b(0)|2 + |c(0) − d(0)|2

)
. (2.9a)

In the backward direction (θCM = π), using (2.3b) instead of (2.3a), one has

(
dσ

dΩ

)
(π) =

1
4
(
|a(π) + b(π)|2 + 2|a(π) − b(π)|2 + |c(π) + d(π)|2

)
. (2.9b)

The expressions for the SI elastic differential cross sections at any angle have
the same form: ( dσ

dΩ

)SI

np→np
=

1
4

(
|a + b|2

)
. (2.10)

Subtracting (dσ/dΩ)SI from Eq. (2.7), one obtains spin-dependent (dσ/dΩ)SD.
Its form is also independent of angle. Using Eq. (2.9a) or (2.9b), one has
(dσ/dΩ)SD in the forward or in the backward directions, respectively.

For the ratio (1.6) in the backward direction holds

RSI
np→np(π) =

2
3

1
4
|a + b|2

1
2
(|a|2 + |b|2 + |c|2 + |d|2)

. (2.11)
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Taking into account Eq. (2.3b), for Eq. (1.4) one obtains

Rnp→np(π) =
2
3

1
4
|a − b|2 +

1
2
(|c|2 + |d|2)

1
2
(|a|2 + |b|2 + |c|2 + |d|2)

. (2.12)

For the ratio (1.5) holds

RID
np→np(π) =

1
4
|a + b|2

1
4
|a − b|2 +

1
2
(|c|2 + |d|2)

. (2.13)

All amplitudes in Eqs. (2.10) to (2.13) are to be considered at θCM = π.
The spin-singlet differential cross section in Eq. (1.7) is

( dσ

dΩ

)SS

np→np
(π) =

1
4
|b − c|2. (2.14)

The cross sections are often expressed as dσ/dt or dσ/du, where the Man-
delstam variables t and u are given:

t = −2P 2
CM(1 − cos θCM), (2.15a)

u = −2P 2
CM(1 + cos θCM) + (M2

1 − M2
2 )2/E2

CM. (2.15b)

Here PCM is the incident particle momentum in the CM system; M1, M2 are
the beam and target particle masses, and ECM =

√
M2

1 + M2
2 + 2T1M2 =

√
s is

the total CM energy. T1 is the incident particle kinetic energy and s is the third
Mandelstam variable. Throughout this review M1 = M2 is considered. Since

dσ

dΩ
=

dσ

dt

P 2
CM

π
=

dσ

du

P 2
CM

π
(2.16)

is valid at any angle, the ratios (1.4) to (1.7) remain unaffected.
The general expression of the total cross section for a polarized nucleon beam,

transmitted through a polarized proton target (PPT), with arbitrary directions of
the beam and target polarizations, PB and PT , respectively, was ˇrst deduced
in [46,47]. Taking into account fundamental conservation laws, at θCM = 0 it is
written in the form

σtot(0) = σ0tot(0) + σ1tot(0)(PB ,PT ) + σ2tot(0)(PB,k)(PT ,k), (2.17)
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where k = ki = kf is deˇned in Eq. (2.2). The term σ0tot(0) is the spin-
independent total cross section (i.e., for unpolarized beam and target particles);
σ1tot, σ2tot are the spin-dependent contributions. They are related to the measur-
able observables ΔσT (0) and ΔσL(0):

−ΔσT (0) = 2σ1tot(0), (2.18a)

−ΔσL(0) = 2(σ1tot(0) + σ2tot(0)), (2.18b)

called ®total cross section differences¯. The negative signs for ΔσT (0) and
ΔσL(0)) in Eqs. (2.18a), (2.18b) correspond to the usual, although unjustiˇed,
convention in the literature. The total cross section differences are measured
with either parallel or antiparallel beam and target polarization directions. The
polarization vectors are transversally oriented with respect to k for ΔσT (0) mea-
surements and longitudinally oriented for ΔσL(0) experiments.

The NN formalism linearly relates σ0tot(0), ΔσT (0) and ΔσL(0) to the
imaginary parts of the three independent forward scattering amplitudes a(0)+b(0),
c(0) and d(0) [30]:

σ0tot(0) =
2π

K
Im [a(0) + b(0)], (2.19a)

−ΔσT (0) =
4π

K
Im [c(0) + d(0)], (2.19b)

−ΔσL(0) =
4π

K
Im [c(0) − d(0)], (2.19c)

where K = PCM is the wave number (see Eq. (2.15)). Since at θCM = 0 Eq. (2.3a)
holds, all imaginary parts of amplitudes are known.

The real part of the SI term can be determined by the measurement of
the elastic differential cross section at small angles. The extrapolation towards
θCM = 0 gives an estimation of the ratio [32]:

ρ(np → np) =
Re (a(0) + b(0))
Im (a(0) + b(0))

. (2.20)

For np scattering the results are not very accurate. Another theoretical approach is
to calculate the real parts of all independent amplitudes from their imaginary parts,
through a dispersion relation analysis [48]. The ρ(np) values were calculated by
Kroll [49] up to 10 GeV (see graphs for ρ(pp), ρ(np) and ρ(I = 0) in [32]).
They agree with the PSA results below 1.3 GeV. Similar calculations of the real
parts of the spin-dependent amplitudes, also presented in [49], gave values which
differ considerably from the more accurate PSA results. This is due to the fact
that the ˇrst Δσnp

T,L data were not known until 1985.
With the exceptions of the three optical theorems, any other elastic scattering

observable is determined as a bilinear combination of the real and/or imaginary
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parts, where each term contains one complex and one complex-conjugate CM
amplitudes.

Throughout this paper a four-subscript notation for all experimental quantities
is used [30]. The subscripts of an observable Xsrbt refer to the polarization states
of the scattered, recoil, beam, and target particles, respectively. For the so-called
®pure experiments¯ in the CM system, the polarizations of the incident and target
particles are oriented along the basis vectors in Eq. (2.2). In the laboratory system
the incident and target particle polarizations (last two subscripts) are oriented
along the basis unit vectors

k = ki,n, s = [nk]. (2.21a)

The scattered particles (ˇrst subscript) and the recoil particles (second subscript)
are analyzed in the directions

k′,n, s′ = [nk′], (2.21b)

k′′,n, s′′ = [nk′′]. (2.21c)

Here the unit vectors k′ and k′′ are oriented along the directions of the scattered
and the recoil particle momenta, respectively. The vector n in the CM and in the
lab. systems is the same.

If the beam and/or target particles are unpolarized, or the polarization of
a ˇnal particle is not analyzed, the corresponding label is set equal to zero.
In this notation the differential cross section in Eq. (2.7) can be written as
(dσ/dΩ) = I0000.

In principle, 44 = 256 pure experiments can be deˇned as components of
various tensors. If parity conservation, the generalized Pauli principle and time
reversal invariance are assumed, the number of independent experiments is greatly
reduced. Only 25 linearly independent quantities survive at any energy and angle.
They determine 10 real and imaginary parts of scattering amplitudes. For DRSA,
at any angle 0 < θCM < π one common phase remains unknown and the ampli-
tudes are relative; i.e., they are determined with respect to one arbitrarily chosen
real or imaginary part. Since the relations between amplitudes and observables
are bilinear, each of the nine real numbers may have one ambiguity in sign. On
the other hand, 18 (at most) arbitrary linearly independent observables always
provide an unambiguous DRSA solution. It is also obvious that any amplitude
combination can be expressed by � 18 linearly independent pure observables.

At θCM = 0 and π, DRSA provides absolute amplitudes, since their imaginary
parts are unambiguously determined from Eqs. (2.19). In the following it is
assumed that the (I = 1) part of amplitudes is known and that the np amplitudes,
splitted into the (I = 1) and (I = 0) parts (Eq. (2.5d)), can be transformed from
θCM = 0 towards θCM = π and vice versa, using Table 1. In the backward
direction the np differential cross section (Eq. (2.7) or (2.9b)) is well known. The
spin correlation parameters A00nn(np) and A00kk(np) are both measured in the
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single scattering experiment with the polarized neutron beam and the polarized
proton target. Moreover, they can be measured simultaneously with the np total
cross section differences −ΔσT and −ΔσL, respectively. The spin correlations
are expressed as functions of amplitudes

(
dσ

dΩ

)
A00nn =

1
2

(
|a|2 − |b|2 − |c|2 + |d|2 + |e|2

)
, (2.22a)

(
dσ

dΩ

)
A00kk = −Rea�d cos θCM + Im d�e sin θCM + Re b�c. (2.22b)

Equations (2.22a) and (2.22b) hold at any angle. Using Eq. (2.3b) and a simple
relation of the type

|a + d|2 = |a|2 + |d|2 + 2Re a�d, (2.23)

at θCM = π we get |e|2 = Im d�e = sin π = 0, cosπ = −1 and

dσ

dΩ
(1 + A00kk) = (b + c)2, (2.24)

dσ

dΩ
(1 − A00kk − 2A00nn) = (b − c)2, (2.25)

dσ

dΩ
(1 − A00kk + 2A00nn) = (2d − b − c)2 = (−2a + b + c)2. (2.26)

This DRSA procedure was proposed in [50].
Three real parts may be determined with an independent sign ambiguity.

Therefore, DRSA in the forward and backward direction at one energy gives
eight possible solutions at most.

Any other independent non-zero observable, determined either in the forward
or in the backward direction, or an additional constraint, decreases the global
ambiguity by a factor of two [50]. To use the ratio ρ(np) (Eq. (2.20)) and
numerical values from [49] may help.

Some physicists believed that the observable RQE, discussed above, could
be used as an additional constraint at energies out of the np PSA interval. The
comparison of the QE and np quantities will be shown in Sec. 8.

The expressions for several observables will be useful in the following, where
the formulae calculated in [30] are used. For the polarizations of the outgoing
particles and for the beam or target analyzing powers at any angle the following
relation holds:(

dσ

dΩ

)
Pn000 =

(
dσ

dΩ

)
P0n00 =

(
dσ

dΩ

)
A00n0 =

(
dσ

dΩ

)
A000n =Rea�e. (2.27)

The observables from Eqs. (2.27) vanish at θCM = 0 and π. All the other
observables listed below survive in the backward (and in the forward) direction.
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The spin corelation coefˇcient A00ss is expressed as
(

dσ

dΩ

)
A00ss = +Rea�d cos θ − Im d�e sin θ + Re b�c. (2.28)

It is easy to show that in the forward and backward directions A00ss = A00nn.
For this purpose, e.g., Eq. (2.22a) is to be written with the help of (2.23) as

(
dσ

dΩ

)
A00nn =

1
2

(
|a + d|2 − Re a�d − |b + c|2 + Re b�c

)
, (2.29)

and then, in the brackets to add and subtract |a±d|2−|c+d|2. The sign depends
on either Eq. (2.3a) or (2.3b), respectively.

The rescattering observables, measured with considerably smaller statistics,
are the depolarization parameters. With labels as given in Eqs. (2.21), in the
backward direction hold the relations(

dσ

dΩ

)
Dn0n0 =

(
dσ

dΩ

)
D0n0n =

1
2

(
|a|2 + |b|2 − |c|2 − |d|2

)
, (2.30a)

(
dσ

dΩ

)
Dk′0s0 =

(
dσ

dΩ

)
D0s′′0s = +Rea�b − Re c�d, (2.30b)

(
dσ

dΩ

)
Ds′0k0 =

(
dσ

dΩ

)
D0k′′0k = +Rea�b + Re c�d. (2.30c)

Using a procedure similar to that in Eq. (2.29), one obtains Dk′0s0 = D0s′′0s =
D0n0n.

Two depolarization parameters, labeled by spin components from Eqs. (2.2),
give, e.g., in the backward direction

D�0�0 = D0�0� = Dk′0s0 = D0s′′0s = Dn0n0 = D0n0n, (2.31a)

Dm0m0 = D0m0m = Ds′0k0 = D0k′′0k. (2.31b)

Finally, the expression for the polarization transfer parameter at θCM =
0 and π is given:

(
dσ

dΩ

)
K0nn0 =

(
dσ

dΩ

)
Kn00n =

1
2
(
|a|2 − |b|2 + |c|2 − |d|2

)
. (2.32)

The quantities Rnp→np, RSI
np→np, RSD

np→np or RSS
np→np, discussed above,

cannot be labeled, since they are not pure experimental quantities. However, they
can be expressed as combinations of the pure observables.

The quantity (dσ/dΩ) RSS
np→np, deˇned by Eq. (2.14), is 1/4 of the com-

bination of three pure experimental quantities, as shown in Eq. (2.25). This
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observable is linearly dependent on experiments planned to be measured within
the DELTAÄSIGMA program at the VBLHE Nuclotron.

The quantities Rnp→np, RSI
np→np and RSD

np→np are mutually linearly depen-
dent. It is sufˇcient to express only one of them, e.g., RSI

np→np, or the spin-
independent backward differential cross section from Eq. (2.10). The sum of
Eqs. (2.30a) and (2.7) gives(

dσ

dΩ

)
(1 + D0n0n) =

(
|a|2 + |b|2

)
= |a + b|2 − 2Rea�b, (2.33)

in agreement with the rule (2.23).
The sum of Eqs. (2.30b) and (2.30c) gives 2Rea�b, which can be added to

Eq. (2.33). From Eq. (2.10) one obtains

4
(

dσ

dΩ

)SI

np→np

=
(

dσ

dΩ

)
np

(1 + 2 D0n0n + D0k′′0k), or (2.34a)

=
(

dσ

dΩ

)
np

(1 + D0n0n + Dm0m0 + D�0�0), or (2.34b)

=
(

dσ

dΩ

)
np

(1 + D0n0n + D0m0m + D0�0�). (2.34c)

This observable, expressed by the combination of pure experimental quantities
(two of them in (2.34b), (2.34c) are equal), gives independent information with
respect to that contained in (2.24), (2.25) and (2.26.). If the theory of Chew and
Pomeranchuk is valid, the measurement of one quasi-elastic reaction in Eqs. (1.8)
would not only help to solve the sign ambiguity, but could fully contribute to
DRSA. As will be seen below, this is not the case.

2.2. Charge-Exchange Invariant Amplitudes. In principle, no experiment
can distinguish the elastic np → np scattering from the elastic charge-exchange
(CEX) np → pn scattering at any angle. Kinematic characteristics of both
ˇnal particles were measured wherever possible. Close to θCM = 0 or π the
experiments are inclusive; i.e., for incident neutrons, either only the same scattered
neutrons or only the outgoing protons are measured, respectively.

The convention to call the elastic np scattering the elastic charge-exchange
at θCM > 90◦, namely at very large angles, is to my mind not only unjustiˇed,
but unfortunate. For the NN interaction such terminology has been introduced
probably by analogy with the π-nucleon scattering. This convention is irrelevant
for the results of measurements, from the experimental point of view. The
convention is also useless for the phenomenology of the NN elastic scattering. Of
course, when using the CEX system, the signs, the subscripts and even the names
of some pure observables change. The complete table of of the NN observables
expressed in terms of the CEX scattering amplitudes in any representation does
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not exist, since it would be useless. In the tables, compilations and databases
generally used, the observables are written at the CM scattering angle, deˇned by
the incident and the same ˇnal particle, scattered in the interval 0 � θCM � π
(see, e.g., [30,51,53]). One could hardly imagine using this convention in PSA,
or in any potential model, containing experimental data in the entire NN angular
interval.

Some theoricians use the convention, e.g., to distinguish between different
virtual meson exchanges, or for NN interaction models, valid in an restrained
angular region. The advantages, if any, are negligible.

It is obvious that the value of any possible NN observable, pure or not, is
independent of the choice of amplitude representation, i.e., also on the choice of
direct or CEX systems. All the different representations are related linearly.

If two complete amplitude representations gave different results for an arbi-
trary observable, e.g., for (dσ/dΩ)SI or for (dσ/dΩ)SD, one could declare the
entire NN phenomenology to be wrong. Most physicists would agree that such
eventuality is improbable.

Since in part of the relevant experimental papers it is not deˇned, if the elastic
scattering amplitudes concern the CEX reaction np → pn at αCM = 0 or the direct
reaction np → np at θCM = π, below are shown the transformation relations
between the CEX and direct systems in the invariant amplitude representation.
Using Eq. (2.5c) (or Eq. (2.5d) with the sign ®+¯) and the symmetry relations
from Table 1, the CEX amplitudes in Eq. (2.5c) at αCM = π − θCM are given:

anp→pn(αCM) = −a1(π − θCM) − a0(π − θCM) = −anp→np(π − θCM), (2.35a)

bnp→pn(αCM) = −c1(π − θCM) − c0(π − θCM) = −cnp→np(π − θCM), (2.35b)

cnp→pn(αCM) = −b1(π − θCM) − b0(π − θCM) = −bnp→np(π − θCM), (2.35c)

dnp→pn(αCM) = +d1(π − θCM) + d0(π − θCM) = +dnp→np(π − θCM), (2.35d)

enp→pn(αCM) = +e1(π − θCM) + e0(π − θCM) = +enp→np(π − θCM). (2.35e)

Equations (2.3a) and (2.3b) for the CEX amplitudes at the angles αCM =
0 and π will be

aCEX(0) + bCEX(0) = −cCEX(0) + dCEX(0), eCEX(0) = 0, (2.36a)

aCEX(π) + bCEX(π) = −cCEX(π) − dCEX(π), eCEX(π) = 0. (2.36b)

Since the entire differential cross section for the direct amplitudes (Eq. (2.7))
is a half-sum of the amplitudes squared, the expression for the CEX amplitudes
is given by the same formula. Moreover, the following holds:

tCEX = −2P 2
CM(1 − cos αCM) + (M2

1 − M2
2 )2/E2

CM, (2.37a)

uCEX = −2P 2
CM(1 + cos αCM). (2.37b)
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All variables are the same as in Eqs. (2.15). Putting again M1 = M2, one obtains

tCEX(αCM) = u (θCM), uCEX(αCM) = t(θCM) (2.38)

and (
dσCEX

dtCEX

)
=

(
dσCEX

duCEX

)
=

(
dσ

dt

)
=

(
dσ

du

)
. (2.39)

The spin-independent SI differential cross section at any angle in the CEX
invariant amplitude representation is now given:

(
dσ

dΩ

)SI

np→pn

=
1
4

∣∣aCEX + cCEX
∣∣2 . (2.40)

One obtains the CEX spin-dependent (dσ/dΩ)SD
np→pn part by a subtraction of

Eq. (2.40) from (2.7) at the same CEX angle. Its form is also the same at all
angles.

For the ratio (1.6) at αCM = 0 holds

RSI
np→pn(α = 0) =

2
3

1
4

∣∣aCEX + cCEX
∣∣2

1
2

(∣∣aCEX
∣∣2 +

∣∣bCEX
∣∣2 +

∣∣cCEX
∣∣2 +

∣∣dCEX
∣∣2) . (2.41)

For Eq. (1.4) in the CEX system one obtains

Rnp→pn(α = 0) =
2
3

1
4

∣∣aCEX − cCEX
∣∣2 +

1
2

(∣∣bCEX
∣∣2 +

∣∣dCEX
∣∣2)

1
2

(∣∣aCEX
∣∣2 +

∣∣bCEX
∣∣2 +

∣∣cCEX
∣∣2 +

∣∣dCEX
∣∣2) . (2.42)

For the ratio (1.5), Eq. (2.13) is transformed into the CEX system as

RID
np→pn(α = 0) =

1
4

∣∣aCEX + cCEX
∣∣2

1
4

∣∣aCEX − cCEX
∣∣2 +

1
2

(∣∣bCEX
∣∣2 +

∣∣dCEX
∣∣2) . (2.43)

With the help of Eq. (2.14) the CEX spin-singlet differential cross section in
Eq. (1.7) is expressed as

(
dσ

dΩ

)SS

np→pn

=
1
4

∣∣bCEX − cCEX
∣∣2 , (2.44)

at any angle αCM.
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The CEX amplitudes in Eqs. (2.40) to (2.44) are to be considered at αCM = 0,
i.e., at θCM = π. The transformation of the CEX amplitudes into the direct
amplitudes and vice versa gives

Rnp→pn(αCM = 0) = Rnp→np(θCM = π), (2.45a)

RSI
np→pn(αCM = 0) = RSI

np→np(θCM = π), (2.45b)

RID
np→pn(αCM = 0) = RID

np→np(θCM = π), (2.45c)

RSS
np→pn(αCM = 0) = RSS

np→np(θCM = π). (2.45d)

The optical theorems in the CEX system are valid at αCM = π, i.e., at
θCM = 0 only. Equations (2.19) can be transformed as

σCEX
0tot =

2π

K
Im

[
−aCEX(αCM = π) − cCEX(αCM = π)

]
, (2.46a)

−ΔσCEX
T =

4π

K
Im

[
−bCEX(αCM = π) + dCEX(αCM = π)

]
, (2.46b)

−ΔσCEX
L =

4π

K
Im

[
−bCEX(αCM = π) − dCEX(αCM = π)

]
. (2.46c)

The ratio of the real to imaginary part for CEX amplitudes is given:

ρCEX
np→pn =

Re
(
−aCEX(αCM = π) − cCEX(αCM = π)

)
Im (−aCEX(αCM = π) − cCEX(αCM = π))

. (2.47)

The relations (2.45) and (2.46) are written for illustrations only, since nobody
will use them.

In the ®CEX language¯ one uses the CEX amplitudes and the CEX CM base
vectors from Eq. (2.6). The differential cross sections (dσ/dΩ) for CEX and
direct amplitudes are given by the same formula, but at the conjugate angles.
From the transformation relation (2.36) it can be seen that the polarizations and
analyzing powers observables in Eq. (2.27) change signs:

ACEX
00,−n,0(π − θCM) = −A00n0(θCM). (2.48a)

The spin correlation coefˇcient in Eq. (2.22a) is

ACEX
00,−n,−n(π − θCM) = A00nn(θCM). (2.48b)

For the spin correlation coefˇcient in Eq. (2.22b) one obtains

ACEX
00kk(π − θCM) = A00kk(θCM), (2.48c)

since cos (π − θCM) = − cos θCM and sin (π − θCM) = + sin θCM.
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Concerning Eqs. (2.30a) and (2.32), the corresponding CEX observables with
respect to the direct ones even need to interchange their names:

DCEX
n0n0(π − θCM) = K0nn0(θCM), (2.48d)

KCEX
0nn0(π − θCM) = Dn0n0(θCM). (2.48e)

The demonstration of the behaviour of other CEX observables witht respect to the
direct observables may be interesting, but it is beyond the scope of the present
review.

If the transformation relations between direct and CEX amplitudes are known
for one amplitude representation, they can be easily written in any other repre-
sentation. Only the transformation relations between the two amplitude represen-
tations, direct or CEX, are needed. Since any two amplitude representations are
related linearly, the transformation of each pure observable or each combination
of pure observables is always unambiguous.

3. HELICITY AMPLITUDE REPRESENTATION

The helicity amplitudes from [33] are denoted 〈λ3 λ4 |M | λ1 λ2〉, where M
is the scattering matrix and λ1, λ2, λ3, λ4 are helicities for the beam, target,
scattered and recoil particles in this order. The helicity λ for a nucleon is 1/2
if the spin projection is parallel to the momentum, and −1/2 if it is antiparallel.
The relations between the invariant amplitudes a, b, c, d, e and the ˇve helicity
amplitudes Φ1, Φ2, Φ3, Φ4, Φ5 are given in [30]:

Φ1 =
1
2
(+a cos θCM + b − c + d + ie sin θCM), (3.1a)

Φ2 =
1
2
(+a cos θCM − b + c + d + ie sin θCM), (3.1b)

Φ3 =
1
2
(+a cos θCM + b + c − d + ie sin θCM), (3.1c)

Φ4 =
1
2
(−a cos θCM + b + c + d − ie sin θ)CM, (3.1d)

Φ5 =
1
2
(−a sin θCM + ie sin θCM). (3.1e)

Formulae (3.1) can be inverted as

a =
1
2
[(+Φ1 + Φ2 + Φ3 − Φ4) cos θCM − 4Φ5 sin θCM], (3.2a)

b =
1
2
(+Φ1 − Φ2 + Φ3 + Φ4), (3.2b)
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c =
1
2
(−Φ1 + Φ2 + Φ3 + Φ4), (3.2c)

d =
1
2
(+Φ1 + Φ2 − Φ3 + Φ4), (3.2d)

e =
1
2
[(−Φ1 − Φ2 − Φ3 + Φ4) sin θCM − 4Φ5 cos θCM]. (3.2e)

At θCM = 0 holds
Φ4(0) = Φ5(0) = 0, (3.3a)

and at θCM = π one has
Φ3(π) = Φ5(π) = 0. (3.3b)

This coincides with Eqs. (2.3a) and (2.3b).
The differential cross section in the helicity amplitude representation is given

as
dσ

dΩ
=

1
2

(
|Φ1|2 + |Φ2|2 + |Φ3|2 + |Φ4|2 + 4|Φ5|2

)
. (3.4)

The expression for RID
np(π) is given as [35]

RID
np(π) =

|Φ4 − Φ2|2
2|Φ1|2 + |Φ4 + Φ2|2

. (3.5)

Equation (1.5) provides

Rnp(π) =
2|Φ1|2 + |Φ4 + Φ2|2

2|Φ1|2 + |Φ4 + Φ2|2 + |Φ4 − Φ2|2
. (3.6)

Using Eq. (2.8) the denominator of (3.6) can be written as

2|Φ1|2 + |Φ4 + Φ2|2 + |Φ4 − Φ2|2 = 2(|Φ1|2 + |Φ2|2 + |Φ4|2). (3.7)

Substituting (3.1) and (3.3b) into (3.5) and (3.6), one expresses different
terms as functions of the invariant amplitudes:

|Φ4 − Φ2|2 = |a + b|2, (3.8a)

|Φ4 + Φ2|2 = |c + d|2, (3.8b)

2|Φ1|2 = |a − b|2 + |c − d|2, (3.8c)

and for Rnp(π) and RID
np(π) one obtains the same expressions as Eqs. (2.9) and

(2.10). The corresponding formulae in [35] are correct, whereas in [34] a misun-
derstanding occurs.

The spin-singlet amplitude is

b − c = Φ1 − Φ2, (3.9)

and the spin-singlet differential cross section is easily found from Eq. (2.14).
Since nobody uses the ®CEX helicity amplitudes¯ they will be omitted here.
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4. GOLDBERGERÄWATSON AMPLITUDE REPRESENTATION

The GoldbergerÄWatson (GW) amplitudes [36] are labeled by index G in
order to avoid a misunderstanding. The orthonormal vector basis (also in [34,37])
is identical with that given by Eqs. (2.2), and the operators σ1,2 are the same as
in (2.1). The NN elastic scattering matrix is written as

MG = aG + bG(σ1,n)(σ2,n) + cG[(σ1,n) + (σ2,n)]+
+ eG(σ1,m)(σ2,m) + fG(σ1, �)(σ2, �). (4.1)

The comparison of Eq. (4.1) with Eq. (2.1) gives

aG =
1
2
(a+b), bG =

1
2
(a−b), cG =

1
2
e, eG =

1
2
(c+d), fG =

1
2
(c−d).

(4.2)
The differential cross section is given as

dσ

dΩ
= |aG|2 + |bG|2 + 2|cG|2 + |eG|2 + |fG|2. (4.3)

Substituting Eqs. (4.2) into (4.3), one obtains Eq. (2.7).
The relations between GoldbergerÄWatson and helicity amplitudes are written

for both θCM = 0, π. Using Eqs. (2.3a), (2.3b) and/or (3.3a), (3.3b), and indicating
only the signs of the nucleon helicities, in the forward direction one has

aG(0) =
1
2

(Φ1 + Φ3) =
1
2
(〈++, ++〉+ 〈+−, +−〉), (4.4a)

bG(0) = eG(π) =
1
2

Φ2 =
1
2
(〈++,−−〉), (4.4b)

cG(0) = 0, (4.4c)

fG(0) =
1
2

(Φ3 − Φ1) =
1
2
(〈+−, +−〉+ 〈++, ++〉), (4.4d)

which is given in [34].
For the backward np scattering the relations are

aG(π) =
1
2
(Φ4 − Φ2) =

1
2
(〈+−,−+〉 − 〈++,−−〉), (4.5a)

bG(π) = fG(π) =
1
2
Φ1 =

1
2
(〈++, ++〉), (4.5b)

cG(π) = 0, (4.5c)

eG(π) =
1
2

(Φ2 + Φ4) =
1
2
(〈++,−−〉 + 〈+−,−+〉). (4.5d)
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The expressions 2|bG| + |fG|2 for the SD part and |a|2 + 2|bG| + |fG|2 for
the entire differential cross section in [34,37,52] are again valid for the np → np
forward scattering. In the backward direction the amplitude fG needs to be
replaced by the amplitude eG.

If one introduces the mentioned corrections, for the discussed representation
in the backward direction one has

Rnp(π) =
2
3

2|bG|2 + |eG|2
|aG|2 + 2|bG|2 + |eG|2

. (4.6)

Putting Eqs. (4.2) into (4.6), one obtains Eq. (2.8).
The expressions for the SI and SD parts of the elastic scattering differential

cross section in [34, 37] are written for the forward scattering of the incident
particles. The same is repeated in [52] and in some recent unpublished reports
from Jéulich. The authors never used the available np → np elastic scattering
amplitudes for their calculations.

The spin-singlet amplitude in the forward and the backward direction is

b − c = aG − bG − eG − fG. (4.7)

One can apply either Eq. (4.4b) or Eq. (4.5b), depending on θCM = 0, π, respec-
tively.

The optical theorems for this amplitude representation give

σ0tot(0) =
2π

K
Im aG(0), (4.8a)

−ΔσT (0) =
4π

K
Im eG(0), (4.8b)

−ΔσL(0) =
4π

K
Im fG(0). (4.8c)

The ratio of the real to imaginary part is given by the SI term as

ρ(np) =
Re aG(0)
Im aG(0)

. (4.9)

All quantities in (4.8) and (4.9) are given at θCM = 0.
The transformation formulae between the elastic scattering and the CEX

GoldbergerÄWatson amplitudes are sometimes used. Then it is useful to express
the CEX amplitudes given at αCM = 0 by the direct amplitudes at θCM = π. The
transformation relations are

aCEX
G (0) = −1

2
(
aG(π) + 2bG(π) + eG(π)

)
, (4.10a)

bCEX
G (0) = −1

2
(
aG(π) + eG(π)

)
, (4.10b)

eCEX
G (0) = −1

2
(
aG(π) − 2bG(π) + eG(π)

)
. (4.10c)
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The inverted relations are symmetric:

aG(π) = −1
2
(
aCEX

G (0) + 2bCEX
G (0) + eCEX

G (0)
)
, (4.11a)

bG(π) = −1
2
(
aCEX

G (0) + eCEX
G (0)

)
, (4.11b)

eG(π) = −1
2
(
aCEX

G (0) − 2bCEX
G (0) + eCEX

G (0)
)
. (4.11c)

For the transformation formulae between the CEX amplitudes in the GoldbergerÄ
Watson representation and the direct invariant amplitude representation, the for-
mulae (4.2) are to be substituted into Eqs. (4.10):

aCEX
G (αCM = 0) = −1

2
(
a(θCM = π) + c(θCM = π)

)
, (4.12a)

bCEX
G (αCM = 0) = −1

2
(
a(θCM = π) − c(θCM = π)

)
, (4.12b)

eCEX
G (αCM = 0) = −1

2
(
b(θCM = π) + d(θCM = π)

)
. (4.12c)

Comparing, e.g., Eqs. (2.41) and (4.12a), one concludes that the spin-independent
parts of the differential cross sections are identical.

5. SINGLET-TRIPLET AMPLITUDE REPRESENTATION

This representation has been developed and exhaustively described by
Stapp [38]. It was successfully used in PSA of Stapp, Ypsilantis and Metropo-
lis [39]. The vector basis is the same as given by Eqs. (2.2). The scattering matrix
elements Mif are CM amplitudes with i, f = 1, 0,−1 indicating initial and ˇnal
spin projections in the spin-triplet system and i = f = S indicating the spin-
singlet amplitude. The angle θ is given in the CM system. The transformation
relations are

MSS = b − c, M00 = a + d cos θ, M11 =
1
2
(a + b + c − d cos θ),

M10 = − 1√
2
(d sin θ + ie), M01 = − 1√

2
(d sin θ − ie),

(5.1)

M1−1 =
1
2
(−a + b + c + d cos θ) = M11 − M00 −

√
2 (M10 + M01) cotan θ,

M−1−1 = M11, M−11 = M1−1, M0−1 = M01, M−10 = −M10,
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which implies

a =
1
2
(M11 + M00 − M1−1),

b =
1
2
(M11 + MSS + M1−1),

c =
1
2
(M11 − MSS + M1−1), (5.2)

d =
1

2 cos θ
(−M11 + M00 + M1−1) = − 1√

2 sin θ
(−M10 + M01),

e =
1√
2
(M10 − M01).

The differential cross section in this representation [38,39] is

dσ

dΩ
=

1
4
|MSS|2 +

1
4
|M00|2 +

1
2
|M11|2 +

1
2
|M10|2 +

1
2
|M01|2 +

1
2
|M1−1|2. (5.3)

Its spin-singlet and spin-triplet parts are separated at any angle.
In the forward as well as in the backward directions only three amplitudes

survive, and

M10 = M01 = M1−1 = 0

in agreement with Eqs. (2.3a) and (2.3b). Then Eq. (5.3) contains the ˇrst three
quadratical terms in the right-hand side only and Eq. (1.7) becomes very simple.
From the three mutually related ratios (1.4) to (1.6) the simplest expression is
that for RSI

np(π), where

(
dσ

dΩ

)SI

np

=
1
4

(
M11 +

1
2
M00 +

1
2
MSS

)2

. (5.4)

In [41] the corresponding formulae are correct. In [40] there is a mistake in the
expression of (dσ/dΩ)np at θCM = 0, π.

6. WOLFENSTEIN AMPLITUDE REPRESENTATION

The Wolfenstein amplitudes B, C, N , G, H [42Ä45] were often used by
the JINR theoricians. The orthonormal vector basis is identical with that given
by Eqs. (2.2) and the operators σ1,2 are the same as in (2.1). The NN elastic
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scattering matrix is written as

Mkf ,ki = BŜ +
(

C(σ1 + σ2,n) + N(σ1,n)(σ2,n)+

+
1
2
G [(σ1,m)(σ2,m) + (σ1, �)(σ2, �)]+

+
1
2
H [(σ1,m)(σ2,m) − (σ1, �)(σ2, �)]

)
T̂ , (6.1)

where Ŝ and T̂ are the spin-singlet and spin-triplet projection operators, respec-
tively:

Ŝ =
1
4
(
1 − (σ1, σ2)

)
, T̂ =

1
4
(
3 + (σ1, σ2)

)
. (6.2)

The Wolfenstein amplitudes are related to the invariant amplitudes as

B = (b − c), C = e/2, N = a, G = a + b + c, H = d, (6.3a)

which implies

a = N, b =
B − G + N

2
, c =

G − B − N

2
, d = H, e = 2C. (6.3b)

The Wolfenstein CEX amplitudes can be written by substituting Eqs. (2.35)
into (6.3a).

7. ENERGY DEPENDENCE OF np OBSERVABLES

The energy dependence of (dσ/dΩ)np, (dσ/dΩ)SD
np , (dσ/dΩ)SI

np, (dσ/dΩ)SS
np

and the ratios (1.4) to (1.7) for the np → np elastic reaction can be calculated
using scattering amplitudes determined by PSA. In what follows, used are the
Energy Dependent (ED) George Washington University and Virginia Polytechnic
Institute (GW/VPI) PSA of Arndt, Strakovsky and Workman [53], solution SP04,
the ˇxed energy solutions (FE) GW/VPI PSA, SES solution SP05 and FE Saclay-
Geneva (SG) PSA [54], solutions 2007.

The energy interval, where GW/VPI PSA could be carried out, reaches
1.3 GeV (2.03 GeV/c) for np scattering, but the spin-dependent data above
1.1 GeV are rare. The PSA for pp scattering can be used up to 3.0 GeV,
but there is a lack of data above 2.7 GeV. ED GW/VPI PSA cannot calculate
the errors of any observable due to its energy dependence. The amplitudes in FE
GW/VPI PSA are also determined without errors.
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The SG PSA could be carried out up to 1.1 GeV (1.81 GeV/c) for np
scattering and up to 2.7 GeV for pp scattering. Errors are calculated as square
roots of the error matrix diagonal elements. The comparison of results shows a
good agreement between the PSA results for all observables.

PSA uses all measured observables, either spin-independent or spin-depen-
dent. PSA provides most complete information, which is practically model-inde-
pendent, and no better tool for the prediction of any observable behaviour is
available.

Several authors declared that ®The existing data on np reaction are still very
scanty and concern mainly the differential cross section distributions¯. Such a
statement was true in 1975 (see [34]), when only np analyzing power data were
measured at high energy (LBL, ANL, and CERN). No np two-spin experiments
above 635 MeV existed. The neutronÄproton PSA was possible below the Dubna
synchrocyclotron energy only.

It is surprising that this statement is repeated, e.g., in [37] published in 2002.
In very recent reports of the ANKE collaboration, the same declarations appear,
whereas many sources provide information how the np database has changed. For
example, the SAID database [53] or the Durham University (UK) data collections
are accessible for everybody. Let me now summarize the present status of the np
database at intermediate energies.

About 2000 spin-dependent np elastic scattering data points, concerning 11
to 13 independent observables, were determined at Saturne 2, mainly between
0.8 and 1.1 GeV in large angular intervals. These data were collected in [55]
and later completed [56]. A comparable amount of np data in the region from
0.5 to 0.8 GeV was measured at LAMPF, and in the energy interval from 0.2
to 0.56 GeV at PSI. The amount of the np data below 0.5 GeV from TRIUMF
cannot be neglected. The Saturne 2 and the PSI data were sufˇcient not only
for the PSA procedure, but allowed one to perform the DRSA analysis at several
energies and angles. It appears that the spin-dependent data are more or less
sufˇcient, whereas above 0.8 GeV here is a lack of np differential cross section
data, mainly at medium angles. This fact is in contradiction with the statement
in [37]. Let me note that the lack of (dσ/dΩ)np can be overcome better by ED
PSA than by PSA at ˇxed energies, since the energy dependence of the data plays
an important role.

Table 2 shows the relevant np observables in a large energy interval,
calculated from ED GW/VPI PSA at θCM = π. In Fig. 1 are plotted the
(dσ/dΩ)np(π) and (dσ/dΩ)SD

np cross sections, in Fig. 2 are shown (dσ/dΩ)SI
np and

(dσ/dΩ)SS
np together with the results from both FE PSA. In Figs. 3Ä5 are shown

the Rnp(π), RID
np(π) and RSS

np(π) observables, respectively, calculated from the
three mentioned PSA. The comparison with measured quasi-elastic points listed in
Tables 3Ä5 and also shown in Figs. 3 and 4 will be discussed in Sec. 8.
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Table 2. Values of (dσ/dΩ)np, (dσ/dΩ)SD
np , (dσ/dΩ)SS

np, Rnp, RID
np and RSS

np at θCM = π
calculated from the energy-dependent PSA of Arndt et al.

Tkin,
GeV

(
dσ

dΩ

)
np

,

(
dσ

dΩ

)SD

np

,

(
dσ

dΩ

)SS

np

,
Rnp RID

np RSS
np

mb/sr mb/sr mb/sr

0.010 78.750 11.875 19.514 0.101 5.632 0.165
0.020 42.910 6.152 11.681 0.096 5.975 0.272
0.030 29.830 4.489 9.461 0.100 5.645 0.317
0.050 20.090 3.348 8.173 0.111 5.001 0.407
0.070 16.690 3.004 7.947 0.120 4.556 0.476
0.100 14.650 2.930 8.182 0.133 4.000 0.558
0.120 13.950 2.907 8.365 0.139 3.798 0.600
0.150 13.250 3.008 8.620 0.151 3.405 0.651
0.200 12.440 3.240 8.902 0.174 2.839 0.716
0.250 11.860 3.507 9.054 0.197 2.382 0.763
0.300 11.430 3.839 9.170 0.224 1.977 0.802
0.350 11.170 4.222 9.356 0.252 1.646 0.838
0.380 11.070 4.481 9.470 0.270 1.471 0.856
0.400 11.010 4.658 9.541 0.282 1.358 0.867
0.450 10.860 5.106 9.678 0.313 1.127 0.891
0.500 10.610 5.485 9.642 0.345 0.935 0.909
0.550 10.090 5.569 9.266 0.368 0.812 0.918
0.600 9.448 5.629 8.638 0.397 0.678 0.914
0.650 9.082 5.542 8.147 0.406 0.644 0.897
0.700 8.996 5.384 7.871 0.399 0.671 0.875
0.750 8.998 5.185 7.698 0.384 0.735 0.856
0.800 8.991 4.955 7.551 0.367 0.817 0.840
0.850 8.960 4.717 7.410 0.351 0.900 0.827
0.900 8.909 4.486 7.267 0.336 0.986 0.816
0.950 8.849 4.271 7.134 0.322 1.072 0.806
1.000 8.786 4.074 7.010 0.309 1.157 0.798
1.050 8.726 3.900 6.905 0.298 1.237 0.791
1.100 8.673 3.753 6.820 0.289 1.311 0.786
1.150 8.633 3.630 6.753 0.280 1.371 0.782
1.200 8.610 3.544 6.653 0.274 1.434 0.774
1.250 8.610 3.402 6.696 0.263 1.527 0.778
1.300 8.636 3.431 6.701 0.265 1.517 0.776

Looking at the values in Table 2 and at the curves in Figs. 1 and 2, one
observes that within the investigated energy interval the spin-independent part
(dσ/dΩ)SI

np decreases rapidly with increasing energy, reaches a minimum around
650 MeV and then slowly increases. This part is predicted to be dominant below
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Fig. 1. The np elastic differential
cross sections and its SD parts at
θCM = π. The curves are calcula-
ted from ED GW/VPI PSA [53] (sol.
SP04). Curve 1 Å (dσ/dΩ)np,
curve 2 Å (dσ/dΩ)SD

np , diamonds Å
(dσ/dΩ)np(el) from GW/VPI PSA [53]
SES (sol. SP05), open triangles Å
(dσ/dΩ)SD

np from the same PSA, empty
stars Å (dσ/dΩ)np(el) from Saclay-
Geneva (SG) PSA [54] (solutions 2007),
black stars Å (dσ/dΩ)SD

np from SG PSA

Fig. 2. The SI and SS np differen-
tial cross sections at θCM = π. The
curves are calculated from ED GW/VPI
PSA [53] (sol. SP04). Curve 1 Å
(dσ/dΩ)SI

np, curve 2 Å (dσ/dΩ)SS
np.

Other symbols are the same as in Fig. 1

450 MeV, as expected. It also seems to be dominant above 900 MeV. The spin-
dependent part (dσ/dΩ)SD

np reaches a weak maximum around 600 MeV and slowly
decreases towards the high energy. The spin-singlet cross section (dσ/dΩ)SS

np is
an essential part of the entire np elastic cross section above 200 MeV.

8. MEASURED QUASI-ELASTIC OBSERVABLES

The quasi-elastic experiments started at UCRL, Berkeley (University of Cal-
ifornia Radiation Laboratory, later LRL, now LBL), in Harvard University, Cam-
bridge Massachusetts, and at the Institute of Nuclear Problems in Dubna (former
INP Dubna, now JINR).

The ˇrst measurement of the differential cross section of the nd reaction
was carried out at UCRL by Powell in 1951 [57]. The data at 90 MeV were
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reported in [2], being given on the graph only. The estimated result is RQE(π) =
0.397 ± 0.044. One year later a new result was published by Cladis, Hadley and
Hess [58]. The experiment has been performed at the synchrocyclotron of UCRL
using 270 MeV neutron beam. The authors obtained RQE(π) = 0.710 ± 0.021
(the weighted average error in [58] is given as ±0.201 by misprint and is repeated
in [52]). The experiments [57,58] used the reaction (1.8a). In 1953 Hofmann and
Strauch [59] published results on the interaction of 95 MeV protons with several
nuclei (reaction (1.8b)). Measurements were carried out at the Harvard University
accelerator. An estimation from the plotted data gives RQE(π) = 0.48 ± 0.03.

At the Dubna synchrocyclotron the ˇrst measurements were carried out by
Dzhelepov, Kazarinov, Golovin, Flyagin and Satarov [60, 61] in 1952Ä1954

Table 3. The RQE(π) and RID
QE(π) data measured using the reaction (1.8a). The

uncertainties are total errors

Tkin, MeV RQE(π) RID
QE(π) Laboratory Year Ref.

13.9 0.185 +2.604 Moscow 1965 [64]
90.0 0.397 ± 0.044 +0.679 ± 0.186 UCRL 1951 [57]

152.0 0.650 ± 0.100 +0.026 ± 0.158 Harvard U. 1966 [65]
200.0 0.553 ± 0.030 +0.206 ± 0.065 JINR DLNP 1962 [63]
270.0 0.710 ± 0.021 −0.061 ± 0.028 UCRL 1952 [58]
299.7 0.652 ± 0.033 +0.023 ± 0.051 PSI 1988 [52]
319.8 0.643 ± 0.032 +0.037 ± 0.052 PSI 1988 [52]
339.7 0.637 ± 0.032 +0.047 ± 0.053 PSI 1988 [52]
359.6 0.626 ± 0.031 +0.065 ± 0.053 PSI 1988 [52]
379.6 0.641 ± 0.032 +0.040 ± 0.053 PSI 1988 [52]
380.0 0.200 ± 0.035 +2.333 ± 0.583 INP Dubna 1955 [60]
399.7 0.610 ± 0.031 +0.093 ± 0.055 PSI 1988 [52]
419.8 0.623 ± 0.031 +0.070 ± 0.033 PSI 1988 [52]
440.0 0.630 ± 0.032 +0.058 ± 0.053 PSI 1988 [52]
460.1 0.611 ± 0.031 +0.091 ± 0.055 PSI 1988 [52]
480.4 0.608 ± 0.030 +0.097 ± 0.054 PSI 1988 [52]
500.9 0.592 ± 0.030 +0.126 ± 0.057 PSI 1988 [52]
521.1 0.604 ± 0.030 +0.104 ± 0.055 PSI 1988 [52]
539.4 0.617 ± 0.031 +0.081 ± 0.054 PSI 1988 [52]
550.0 0.564 ± 0.039 +0.182 ± 0.084 JINR VBLHE 2007
557.4 0.632 ± 0.032 +0.055 ± 0.053 PSI 1988 [52]
710.0 0.483 ± 0.080 +0.380 ± 0.229 LRL 1960 [62]
794.0 0.560 ± 0.040 +0.191 ± 0.085 LAMPF 1978 [41]
800.0 0.546 ± 0.035 +0.212 ± 0.078 JINR VBLHE 2006 [15]
1000 0.567 ± 0.024 +0.175 ± 0.050 JINR VBLHE 2006 [15]
1200 0.551 ± 0.022 +0.210 ± 0.048 JINR VBLHE 2006 [15]
1400 0.562 ± 0.036 +0.187 ± 0.075 JINR VBLHE 2006 [15]
1800 0.515 ± 0.032 +0.296 ± 0.081 JINR VBLHE 2006 [15]
2000 0.506 ± 0.030 +0.317 ± 0.077 JINR VBLHE 2006 [15]
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with the neutron beam of 380 MeV. The value of RQE(π) = 0.200 ± 0.035
was obtained. The authors mentioned [57, 58], two of the three previous pa-
pers, and considered that the Dubna experimental point and the UCRL data are
compatible.

In 1960 Larsen [62] at LRL, Berkeley, measured the same quantity at rela-
tively high energy of 710 MeV and obtained RQE(π) = 0.483 ± 0.080. In his
publication no previous result was mentioned.

Dzhelepov, in his contribution to the 1962 CERN conference [63], presented
angular dependence of RQE(θ) at 200 MeV. He declared that the authors of this
experiment are Yu.Kazarinov, V.Kiselev and Yu. Simonov, but no reference was
given. Reading the value from the graph, one obtains RQE(π) = 0.553 ± 0.030.

The accessible existing data, measured using the reactions (1.8a), (1.8b) and
(1.8c), are given in Tables 3, 4 and 5, respectively. In the tables are listed the
kinetic energy, RQE(π) and RID

QE(π) experimental values and errors, laboratory,
year of publication and reference. Several papers give the numerical values of
RID

QE(π). Other articles show the (dσ/dΩ)QE angular distribution or give the

charge-exchange value only. In such cases, the ˇnal ratios RQE(π) and RID
QE(π)

listed here were obtained using (dσ/dΩ)np(π) from ED GW/VPI PSA (solution
SP04), shown in Table 2.

Table 4. The RQE(π) and RID
QE(π) data measured using the reaction (1.8b). The

uncertainties are total errors

Tkin, MeV RQE(π) RID
QE(π) Laboratory Year Ref.

13.5 0.180 +2.704 Livermore 1959 [66]
30.1 0.141 ± 0.035 +3.728 ± 1.174 Rutherford 1967 [67]
50.0 0.240 ± 0.060 +1.778 ± 0.694 Rutherford 1967 [67]
95.0 0.480 ± 0.030 +0.389 ± 0.087 Harvard U. 1953 [59]
95.7 0.587 ± 0.029 +0.137 ± 0.056 Harwell 1967 [40]

135.0 0.652 ± 0.154 +0.023 ± 0.241 Harwell 1965 [68]
143.9 0.601 ± 0.057 +0.109 ± 0.105 Harwell 1967 [40]
647.0 0.600 ± 0.080 +0.111 ± 0.148 LAMPF 1976 [69]
800.0 0.660 ± 0.080 +0.010 ± 0.122 LAMPF 1976 [69]

Table 5. The RQE(π) and RID
QE(π) data measured using the reaction (1.8c). The

uncertainties are total errors

Tkin, MeV RQE(π) RID
QE(π) Laboratory Year Ref.

977.0 0.140 ± 0.090 +3.762 ± 1.095 JINR VBLHE 1975 [34]
0.430 ± 0.220 +0.550 ± 1.008

977.0 0.650 ± 0.120 +0.026 ± 0.190 JINR VBLHE 2002 [37]
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Fig. 3. The energy dependence of the observable Rnp(π) and experimental points of
RQE(π). The solid curve was calculated from ED GW/VPI PSA [53] (solution SP04).
Diamonds Å Rnp from GW/VPI PSA [53] SES (sol. SP05), empty stars Å Rnp from SG
PSA [54] (sol. 2007). Empty squares are the world data obtained using the reaction (1.8a),
black squares are the recent Dubna points measured by the same reaction, open circles were
obtained using the reaction (1.8b). Remaining points were measured using the reaction
(1.8c) and the bubble chamber. Big empty crosses are the results from [34] and the arrow
shows the point which is to be removed. The point from [37], corrected in 2006, is shown
as the empty triangle

Fig. 4. The energy dependence of the
observable RID

np(π) and the experimental
points of RID

QE(π). The symbols are the
same as in Fig. 3

Fig. 5. The energy dependence of the ob-
servable RSS

np(π). The solid curve is cal-
culated from ED GW/VPI PSA [53] (so-
lution SP04). Diamonds Å from GW/VPI
PSA [53] SES (sol. SP05), empty stars Å
from SG PSA [54] (sol. 2007)
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RQE(π) data from Tables 3Ä5 are plotted in Fig. 3 and RID
QE(π) values are

shown in Fig. 4. In both ˇgures, Figs. 3 and 4, the 22 data points from [41,52,57,
58,60Ä65] are shown as empty squares. The recent Dubna points [15] are plotted
as full squares. The point of the same authors, measured at 0.55 GeV in March
2007, is still unpublished. The nine points from [40, 59, 66Ä69] (Table 4) are
plotted as open circles. Two points from [34] (only one of them is independent)
are plotted as big crosses, the point from [37], corrected by V.V.Glagolev (see
below), is shown as an empty triangle (see Table 5).

The 33 independent data points published before 2003 cover the energy
interval below 1 GeV. The statement in [37] that ®such experimental data do not
exist yet¯ could be hardly understood.

The experimental points measured at the JINR VBLHE Nuclotron are still
preliminary [15]. They were obtained using the DELTAÄSIGMA experimental
equipment. Only these points show the RQE(π) (and RID

QE(π)) energy depen-
dence above 1 GeV, which could not be predicted from the previous data. It
is worthwhile completing experiments with measurements in small energy steps,
in order to recognize possible anomalies or structures. It is also desirable to
extend the investigated interval up to the highest neutron energy at the Nuclotron
(around 3.7 GeV). At present such a measurement is possible at this accelerator
only.

The energy dependences of RQE(π) and RID
QE(π) data from [41, 52, 58, 62,

63,65,69] were shown in 1988 in [52]. The ˇrst comparison of the QE data and
the PSA np predictions was shown in 1991 in [35], but without any conclusion.
The energy interval was taken from 100 to 600 MeV, and the data from [52]
were plotted together with the two ED PSA predictions from [70, 71]. Both
ˇts in the restrained interval agree well with the ˇt from [53], solution SP04,
shown in Fig. 4.

The quasi-elastic data plotted in Figs. 3 and 4 show smooth energy depen-
dence for any reaction (1.8) used. The np PSA predictions and the quasi-elastic
data differ considerably. Some papers referred to in Tables 3Ä5 need comments
and the two existing anomalies are discussed below.

At small energies the data of Wong et al. [66] measured at LRL, Livermore,
could not be read from the original paper. Fortunately, these data were shown
in [64], together with the results obtained at the Kurchatov Atomic Energy Insti-
tute, Moscow. Experimental errors are not given. In other experiments at low
energies (see, e.g., [72]), authors obtained enough of data, but published other
interesting results only (e.g., NN scattering lengths).

The experiment described in [68] was performed in Harwell (UK) using a
high-pressure Wilson cloud chamber, triggered by counters. The results from 1048
photographs of pd collisions were included in the ˇnal data analysis. In this paper
the authors from the University College (London) in 1965 for the ˇrst time stated,
®It is clear that the present results are consistently higher than theory¯.
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The authors of [58] give the value RQE(π) > 2/3. The difference is of
about two statistical errors. Consequently, the RID

QE(π) value is slightly negative.
Considering this point as a statistical 	uctuation, one could state that all other
values are smaller than 2/3.

Compared with other data, the RQE(π) value from [60, 61] is considerably
smaller. To understand this fact is not easy and the authors gave no comment. The
reaction (1.8a) was investigated using the neutron beam and a scintillation counter
array. Angles of outgoing protons could be well determined. At 380 MeV, not
far from the pion-production threshold, the inelastic background is small and a
magnetic analysis of outgoing protons can be omitted. The authors measured the
angular distribution for this reaction as well as for the elastic np scattering. They
observed an increase of (dσ/dΩ)np in the backward hemisphere with increasing
slope towards the backward proton direction.

The angular dependence of the nd differential cross section in a large angular
region was found to be parallel to that for the np angular dependence. Obvi-
ously (dσ/dΩ)nd < (dσ/dΩ)np due to the shadow effect of the nucleons in the
deuteron. At an angle θCM < π, the values of (dσ/dΩ)nd reached a maximum
and then decreased towards the backward direction of outgoing protons. The
spectator particles were neglected. The ratio RQE(θlab) at different outgoing pro-
ton angles was plotted. It reaches a sharp minimum in the backward direction,
increases considerably with the increasing outgoing proton angle and becomes
constant over a measured angular interval. The value of the constant is related to
the Glauber corrections.

It should be noted that the sharp minimum in the backward direction was
not observed in other experiments. Several authors measured (dσ/dΩ)nd(θ)
accurately. At the 14 energies from 300 to 557 MeV measured in [52] the
minimum is very weak, if any. At 152 MeV in [65] the angular dependence
similar to that in [60,61] can be seen, but the backward minimum is considerably
weaker. A weak minimum also exists in the data at 977 MeV [34]. In [41] at
794 MeV no minimum was observed.

The experimental point from [60, 61] was included in the compilations [73,
74]. This controversial point is mentioned in [41, 65] without any comment.
The point is discussed in [69] where is written, ®This low value may indicate
an anomaly behaviour in the spin-	ip probability at this energy¯. The authors
of [69] cannot know the accurate data from [52], which cover this energy region.

Only in [34, 37] the authors investigated reaction (1.8c), using the deuteron
beam and the liquid hydrogen bubble chamber. The methods used in [34] and [37]
to determine the desirable ratio were different.

In [34] the authors measured the dσ/dt distribution for dp charge-exchange
events. They considered the interaction as a charge-exchange reaction when the
neutron momentum was higher than that of each of the protons in the deuteron
rest system. The authors stated that this deˇnition provides good separation of the
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charge exchange and the charge retention channel events for the values of the four-
momentum transfer from the proton to the neutron of less than ∼ 0.6 (GeV/c)2.

The Glauber model predictions (neglecting the spin) were calculated with
the formula given by Glauber and Franco [75]. The necessary t-dependence of
the elastic scattering charge-exchange amplitude was approximated by a sum of
two exponential functions, and the free parameters were obtained from the ˇt to
np elastic scattering differential cross sections. Two sets of np data were used:
data given by Shepard et al. [76] and by Bizard et al. (ˇnal data in [77] on the
graph, tables in [74]). The in	uence of the deuteron effects was then obtained
from the comparison of dp and np results. The authors of [34] stressed that their
normalization is absolute.

The differential cross section for the reaction (1.8c) was computed using the
form factor obtained by Alberi et al. [78] on the basis of the BresselÄKerman
deuteron wave function.

In [34] two values of the observable RSI
QE(π) (see Eq. (1.6)) were obtained,

depending on the (dσ/dΩ)np data used for the exponential ˇt. The corresponding

Fig. 6. The CM angular dependence of
(dσ/dΩ)np at 1.028 GeV. Black dots are
from [76], open circles from [77] and the
solid line is from [53] (solution SP05)

RQE(π) and RID
QE(π) values are given

in Table 5, where the upper result was
calculated using the np data from [76]
and the lower result using [77]. One
observes that the upper value in Ta-
ble 5 and the points denoted by arrows
in Figs. 3 and 4 considerably differ with
respect to other existing data. This dif-
ference could be easily explained.

In [76] are listed apparently very at-
tractive (dσ/dΩ)np results. They were
measured at 16 energies and in large
angular intervals at PPA (Pennsylvania
Proton Accelerator), but strongly dis-
agree with all other existing np data.
Not only the absolute values, but also
the shapes of angular distributions are
different and the data cannot be renor-
malized. This occurs at all measured
energies, starting at 182 MeV.

Physicists working in the ˇeld have
long been well aware that these data are
to be omitted. The [76] data were re-
moved from all PSA databases (e.g., from SG PSA in 1978). For a demonstration,
the data from [76] at 1.028 GeV are plotted together with the data from [77] at
1.029 GeV in Fig. 6. The ˇt of ED GW/VPI PSA (solution SP05) is also shown.
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Only the second result from [34] in Table 5 is to be taken into account. It is
compatible with other data. The authors of [34] in 1975 could hardly recognize
a quality of the data from [76].

The paper [37] investigated the reaction (1.8c) at the same energy as in [34],
but with increased statistics. To determine the angular dependence of the quasi-
elastic dp differential cross section in the charge-exchange region, the kinematic
variable in [37] was the opening angle ω of the cone around the incident deuteron
direction. The angles of both outgoing ˇnal protons are to be inside this cone.
The measured differential cross section (dσ/dt)dp as a function of ω is plotted in
the original paper. It was shown that the cross section increases with increasing
ω and becomes rapidly constant.

The angle of any of the two protons was estimated using the experimental
and theoretical maxima of the Fermi momentum distribution of the nucleons in
the deuteron (50 MeV/c) and the longitudinal momentum of incident deuteron
per nucleon (1.67 GeV/c). The authors considered that this requirement is a
sufˇcient condition for the charge-exchange scattering, since the opening angle
of the cone ω = 3◦ covers practically the entire ®spectator peak¯. Based on
this estimation, Glagolev et al. observe that at this opening angle the measured
(dσ/dΩ)dp represents 94% of (2/3) (dσ/dΩ)np(π).

Here is an additional difˇculty related to the measurement of the reac-
tion (1.8c). The number of events decreases with decreasing ω and the measured
differential cross section ratios need corrections. The authors of [37] in private
communications advertized that these corrections were not introduced in their
results and even were not known. From this it followed that one cannot calculate
the ratio RID

QE(π) at different values of ω from the graph given in [37].
The value of (dσ/dΩ)np(π) = 5.81 mb/sr was taken again from [76]. With

respect to [34], it is hardly believable that in 2002 the result from [76] and
no other one was used. The authors surprisingly gave the result RQE(π) =
0.630 ± 0.101 (RID

QE(π) = 0.058 ± 0.170), which is in full agreement with other
existing measurements. Based on this fact, the authors declared that at 1.67 GeV/c
®the np → pn amplitude turned out to be entirely spin-dependent¯.

This statement, often repeated throughout [37] (abstract, text, conclusion), is
obviously wrong and misleading. As was explained above, the spin-dependent
and spin-independent parts of the np → np differential cross section at θCM = π
are related to the observables Rnp(π) or RID

np(π) given in Table 2. On the other
hand, the authors show that the theory and the experiment disagree independently
of their opinion.

In January 2006 Glagolev et al. recalculated their result published in [37].
They introduced corrections for the differential dp cross sections at small angles
ω, taking into account cuts of events as a function of ω. The authors used the
normalization related to the np differential cross section from [77]. This new
result is listed in Table 5.
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In [37] some other statements cannot be taken into account seriously. As
example, the statement that ®all dedicated charge-exchange experiments on a
deuteron so far have been carried out with proton beams¯ is in contradic-
tion with Table 3. Another statement concerning the Brookhaven np data of
Friedes et al. [79] is to be considered as a mistake.

Let me note that a considerable amount of (dσ/dΩ)np data in the charge-
exchange angular region exists, up to the highest energies (see, e.g., [80] at
270 GeV/c). Unfortunately, many original papers contain graphs only, but a
majority of the numerical tables was obtained from authors and the data were
listed. For examples, see [73, 74, 81] or the PSA database of Arndt et al. [53].
The energy dependence of (dσ/dt)np in the backward direction was ˇtted in [82].

9. CONCLUSIONS

The present paper recalls the expressions for the np elastic backward scatter-
ing differential cross section (dσ/dΩ)np, its spin-independent and spin-dependent
parts as functions of scattering amplitudes. Five amplitude representations are
compared and the corresponding formulae are checked. Some expressions for the
charge-exchange amplitudes are also shown.

The predictions of the spin-independent and spin-dependent parts of the np
cross sections were calculated using the three PSA. Energy dependences of mea-
sured quasi-elastic and calculated elastic results are presented in tables and shown
in ˇgures. They differ considerably over the PSA energy interval and lead to the
conclusion that the quasi-elastic observables under discussion cannot contribute to
our knowledge of the np elastic scattering amplitudes in the backward direction.
An explanation of the observed difference is highly desirable and needs a serious
theoretical approach.

It can be seen that the measurement of the reaction (1.8a) has several con-
siderable advantages over the reaction (1.8b) and even crucial advantages over
the measurement of the reaction (1.8c). The number of measured data points for
each of these reactions conˇrms this statement.

The measurements of RQE(π) at the Nuclotron in the region of Tkin(n) from
1 to 2 GeV can be considered as an important achievement in this ˇeld. From the
preliminary Dubna data it is possible to estimate, for the ˇrst time, the behaviour
of this observable over the high energy region.
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Note added in proof. The present article contains the determination of
the spin dependent and independent parts of the np differential cross sections for
incident neutrons scattered in the backward direction only. A complete description
of these reactions was published in: Lehar F., Wilkin C. // Eur. Phys. J. A. 2008.
V. 37. P. 143, and following details will be published in ®Part. Nucl., Lett.¯,
2010. V. 7, No. 4.
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