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This contribution deals with the predictive power of the SkyrmeÄHartreeÄFock model. First, we
discuss the phenomenological adjustment of the Skyrme energy-functional and the choice of proper
ˇt data. Then, we check the reliability in extrapolations to other observables and nuclei, using two
strategies: ˇrst, comparison with data for observables not included in the ˇt, and second, an estimate
of the extrapolation error by virtue of the least-squares ˇtting techniques. Test cases will be energies
of extremely neutron rich Sn isotopes as well as energies, giant resonances, and ˇssion properties of
superheavy elements.

PACS: 21.60.-n

INTRODUCTION

Experiments on exotic nuclei far off the valley of stability are making steady
progress and provide an enormous amount of new experimental data on basic
nuclear properties. This calls for further development of nuclear structure theory.
We will here report brie�y recent achievements in the SkyrmeÄHartreeÄFock
(SHF) method, for recent developments see, e.g., [1Ä3] and for extensive re-
views [4,5]. The SHF approach provides a reasonably motivated framework for a
universal, effective energy functional but leaves a couple of free parameters which
are to be adjusted phenomenologically. The two key problems are then: ˇrst, to
sort out a proper choice of the data set used for the adjustment, and second, to
estimate the reliability of the functional when extrapolating to new observables
outside the ˇtting set. These will be addressed in the following. Section 1 gives
a brief overview of SHF and ˇtting strategies. Section 2 discusses a few typical
examples for extrapolations and scrutinizes their reliability.

1. BRIEF REVIEW OF SKYRME-HARTREEÄFOCK METHOD

The starting point is the SkyrmeÄHartreeÄFock (SHF) energy functional
which is summarized very compactly in Fig. 1. The interaction energy is modeled
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in terms of the Skyrme energy density ESkyrme and the pairing energy density
Epair which are simple functions of local densities and currents (we have dropped
in Fig. 1 the time-odd terms for simplicity, full details are found in [4, 5]). The
building principle for ESkyrme is obvious: pairwise couplings between the density
ρ and all other densities or the gradient of density, augmented by one term carry-
ing more involved density dependence (∝ B3, B

′
3), and repeated in similar form

in the isovector channel. One can argue that this form is the natural outcome of
any ®low q expansion¯ of a microscopic effective two-body interaction [5]. The
free parameters of the ansatz are summarized at the bottom of Fig. 1. They are
grouped with respect to their importance. This grouping will become clear in the
next paragraph.

Fig. 1. Commented summary of the Skyrme energy functional, time-even couplings only

There is a great variety of strategies for the adjustment of the Skyrme para-
meters, for a summary see [4]. The conceptually most straightforward is a least
squares ˇt to given set of experimental data [6]. The success relies on a proper
selection of the ˇt data. Basic ground-state properties as binding energy, radii
and surface thickness are, of course, ˇrst choice for observables. When the ˇt
nuclei are concerned, one should carefully ˇnd out the best ®mean ˇeld nuclei¯,
i.e., those which are least in�uenced by ground-state correlations. A systematic
investigation of correlations from low-energy quadrupole modes [17] led to the
pool of ˇt nuclei as shown in Fig. 2. These are obviously chains of (spherical)
semimagic nuclei. Part of them are already somewhat more affected by corre-
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Fig. 2. Selection of ˇt nuclei and their adopted errors. Light grey dots indicate nuclei with
somewhat larger correlation effects and less weight in the ˇt [3]

lations (light grey dots). These are included into the data pool, however with
reduced weight. The quality measure is then composed as

χ2(p) =
∑

A∈{fit-data}

(
A(SHF)(p) − A(exp)

)2

ΔA2
, p = (B0, B

′
0, B1, . . .) , (1)

where A runs over all ˇt data, p stands for the set of free parameters, and ΔA is
the adopted error on each data point. The adopted error produces a dimensionless
contribution and regulates the relative weight of each entry. Their choice is also
shown in Fig. 2 and the weight of the light grey nuclei is reduced by enhancing
ΔA by a factor of two. The ˇgure demonstrates immediately the problem with
such a phenomenological adjustment. The chart of isotopes extends over a very
broad pool of sizes which allows one to determine rather well the isoscalar terms
in model 1. But the extension in isovector direction (orthogonal to system size) is
extremely small which, in turn, means that isovector properties are only weakly
determined, leaving space for further constraints (see the discussion of nuclear
matter properties and the force SV-bas below). This explains the hierarchy of
importance of parameters as quoted in Fig. 1.

As the input observables A(SHF), χ2 is a function of the model parameters
p and the aim is to ˇnd the absolute minimum. We perform minimization as
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outlined in [8]. A detailed explanation of the ˇt data and subsequent ˇts is found
in [3] and the name ®SV-min¯ was given to the parameterization emerging from
straightforward minimization to the data from ˇnite nuclei.

The properties of a nuclear force are conveniently characterized by the nuclear
matter properties (NMP) at equilibrium: binding energy E/A, density ρequil,
incompressibility K , effective mass m∗/m, symmetry energy asym, and sum rule
enhancement κ (= isovector effective mass). There is a known close relationship
between these NMP and giant resonance properties. It is highly desirable to
control the NMP together with ˇnite nuclei data. To this end, we add optionally
to ˇt data a commonly accepted set of NMP: K = 234 MeV, m∗/m = 0.95,
asym = 30 MeV, and κ = 0.4. A minimization with these NMP constraints yields
a slightly different parameterization ®SV-bas¯. The reproduction of ˇnite nuclei
data does not suffer much from the constraints, which indicates that these data
leave some freedom for further aspects. It is to be mentioned that the predictions
of SV-min for NMP deviate somewhat from the commonly believed values for
asym and κ. Correlatively, the predictions for the giant dipole resonance (GDR)
in 208Pb do not match the data while SV-bas produces a correct GDR peak and,
of course, better NMP. The difference between SV-min and SV-bas in connection
with extrapolation errors helps to disentangle bulk properties from shell effects
as we will see in the discussion of Fig. 3.

2. PREDICTIVE VALUE IN EXTRAPOLATIONS

The rules of χ2 ˇtting also allow one to estimate the statistical errors for
extrapolations to other observables B, not included in the ˇt data. It becomes

ΔB =

√∑
i,j

∂B

∂pi
(C−1)ij

∂B

∂pj
, Ckl =

∂2χ

∂pk∂pl
. (2)

That is the allowed variation of the observable B within the ellipsoid of χ2 −
χ2

min � 1, i.e., for all χ2 which stay at most one unit above the minimum.
Figure 3 shows these extrapolation errors for binding energies and two-neutron
separation energies along the chain of very neutron rich Sn isotopes, deep into
the regime of the astrophysical r-process. The panel a for binding energies shows
a systematic growth of the uncertainty when moving away from the ˇt regime.
Freezing of NMP in SV-bas reduces the uncertainty by a factor of two, which
shows that the uncertainty in an unrestricted ˇt as SV-min consists half out of
uncertain bulk properties (=NMP) and half out of shell structure. The panel b
for two-neutron separation energies behaves similarly, but the errors are much
smaller than for the energies as such. Differences of energies probe the response
properties and these are obviously much more robust. Note also the peak at



1592 ERLER J. ET AL.

Fig. 3. The estimated uncertainty in the extrapolation of binding energies (a) and two-
neutron separation energies (b) deep into the regime of neutron-rich Sn isotopes

neutron number N = 92. There is a small subshell closure which is particularly
sensitive to shell structure. Accordingly the shell contribution has a peak while
bulk properties (difference of the two curves) develop smoothly.

Statistical errors are easily evaluated within the method itself, as seen above.
Much harder to control are the systematic errors which sneak in by possibly
incomplete aspects of the given model, here the SHF functional (Fig. 1). A way
to ˇnd them is to check the predictions of the model for other observables which
were not included in the ˇt but for which experimental data are available. This
is exempliˇed in Fig. 4 for the extrapolation to superheavy elements (SHE) for

Fig. 4. Deviation between theory (parameterization SV-min) and experiment for the binding
energies (a) and differences thereof (b) in the regime of (super-)heavy nuclei. The nuclei in
the panel a are distinguished as: ˇlled squares = ˇt nuclei, ˇlled circles = well-deformed
nuclei, open circles = vibrational soft nuclei. The panel b shows three sorts of energies
differences: two-proton separation energy S2p (ˇlled circle), two-neutron separation energy
S2n (ˇlled triangle), and Qα value (open circle). Intended error limits are indicated by
ˇne dotted lines, ±1 MeV for binding energies and ±0.3 MeV for their differences
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the observables binding energies (panel a) and differences thereof (panel b). The
ˇgure shows that interpolation (results for nuclei A < 210) works well with errors
remaining acceptably small and distributed on both sides of the zero line. But the
extrapolation to binding energies of SHE (panel a) shows a signiˇcant trend to
increasing underbinding. The same trend (often worse) is found for other Skyrme
forces. On the other hand, all three types of energy differences (panel b) behave
fairly well in the extrapolation. These observables are described reliably well,
much better than the total binding energy. The reason for the dramatic mismatch
of the total energy is still unknown and calls for further analysis.

The SHF approach does also allow one to compute excitation spectra by
means of time-dependent SHF and its linearized version, often called random-
phase approximation (RPA). A separable expansion thereof, called separable RPA
(SRPA), provides a particularly efˇcient computational scheme [9] which allows

Fig. 5. Peak energies of the Giant Dipole
Resonance (GDR) in two isotopic chains
of superheavy elements. The trend de-
duced from the GDR in stable nuclei is
indicated by a dotted line [11]

systematic surveys even in deformed and
heavy nuclei [10]. The dominant excita-
tion modes are the isovector giant dipole
resonances (GDR) which display a pro-
nounced resonance peak [11]. The peak
position is strongly related to the symme-
try energy asym and sum rule enhancement
κ [3]. There are many Skyrme parame-
terizations which provide an excellent de-
scription of GDR in heavy nuclei and these
are precisely those which have reasonable
values for asym and κ. It is interesting
to check how these forces perform in the
extrapolation to SHE. Figure 5 shows the
trend of the GDR peak in the regime of
SHE for the parameterization SLy6 [12]
which was proven to perform reasonably
well for stable heavy nuclei [9]. The SRPA results are compared with the empir-
ical trend EBF = (31.2A−1/3 + 20.6A−1/6) MeV which is a mix of surface and
volume resonance modes [11]. This trend is basically continued and the SRPA
results remain in the average comfortably close to the empirical prognosis. But
the SRPA results show a strong isotopic effect, a positive curvature above the
smooth, linear trend. Such an effect has not been seen for nuclei with lower Z.
It is a new feature appearing in SHE. An explanation for this has yet to be
worked out.

The mean-ˇeld description of nuclear ˇssion is an extremely demanding
task because all aspects of the effective nuclear interaction are probed, global
parameters of the nuclear liquid drop as well as details of the shell structure.
There are thus only few SHF studies of ˇssion, see, e.g., [13Ä15]. We have re-
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cently developed a fully self-consistent description of ˇssion lifetimes [16] on the
grounds of SHF. We summarize brie�y the computational scheme [16]: The ˇs-
sion path is generated by quadrupole-constrained SHF whose energy expectation
values yield a ®raw¯ collective energy surface displaying a more or less large
ˇssion barrier. The collective mass and moments of inertia are computed by
self-consistent cranking along the states of the path. Approximate projection
onto zero angular momentum is performed and quantum corrections for the spu-
rious vibrational zero-point energy are applied using the collective masses and
widths. The collective ground-state energy is computed fully quantum mechan-
ically [17]. The tunneling rate and the repetition rates are computed by the
standard semiclassical formula (known as WKB) using the quantum-corrected
potential energy and collective mass; the ˇssion lifetime is ˇnally composed of
these two rates. All calculations are in axial symmetry. Figure 6 summarizes
results on ˇssion barriers and lifetimes for a few typical SHE and for a large
variety of Skyrme parameterizations (SkM∗ [18], SkP [19], SkI3 [20], SLy6 [12]
and SV-min [3]). The SHE represent two groups, one at the lower side and
the other one with much heavier nuclei at the limits of present-day data. The
span of predictions from the various Skyrme forces is huge in all cases in spite
of the fact that all these parameterizations provide a high-level description of
nuclear ground properties along the valley of stability. The variation of predic-
tions is not necessarily a problem. On the contrary, one may use the ˇssion
properties as additional selection criterion for pinning down more precisely the
most realistic parameterization. The problem appears when looking at the trend
from the lighter side (Rf, Sg, Hs) to the heavier elements (Z = 112, 114). All
parameterizations produce a wrong trend of the predictions from the lower to
the upper region. One may argue that triaxiality, ignored here, could resolve
the trend because triaxial deformation may lower some barriers selectively. But
that is very unlikely in view of the experience that the triaxial barrier-lowering

Fig. 6. Fission barriers (a) and lifetimes (b) for two chains of superheavy elements.
Compared are results from a variety of Skyrme parameterizations with experimental
data [21Ä24]
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amounts typically to 0.5Ä2 MeV. This does not sufˇce to explain the mismatch
in the trend as observed here. Again, the reasons for this failure have yet to be
evaluated.

CONCLUSION

We have given a very brief overview over the present status of the SkyrmeÄ
HartreeÄFock (SHF) approach. We have discussed brie�y the basic SHF energy
functional and the phenomenological adjustment of its free parameters. One
needs to sort out a set of observables for which a mean-ˇeld description is
justiˇed and which can be computed very efˇciently. This limits the selection
to spherical semimagic nuclei, ideally long isotopic and isotonic chains. The
nature of the valley of stability allows one to determine isoscalar properties very
well, while some uncertainties remain concerning isovector properties. This has
immediate consequences for extrapolations from which we had discussed a few
typical examples.

The least-squares techniques used for the adjustment imply a safe estimate
for the statistical error in extrapolations. We have exempliˇed this for a chain
of very neutron-rich Sn isotopes. The inherent uncertainty in isovector properties
shows up as strong increase of uncertainty in total binding energies when depart-
ing from the known nuclei. On the other hand, differences of binding energies
(two-neutron separation energy) remain much more reliable. An idea about the
systematic error of the model is obtained by checking extrapolations for which ex-
perimental data are still available. This was done for various observables (energy,
giant resonances, ˇssion) in superheavy elements (SHE). Again it was conˇrmed
that binding energies can be critical, while differences thereof are safe. Fission
properties show a high sensitivity to the underlying Skyrme parameterization, but
all existing parameterizations still fail to reproduce the trends of ˇssion barriers
and lifetimes from moderate SHE to the upper end of nuclei. Giant resonances
in SHE are following basically known trends, but show a pronounced isotopic
curvature not seen in less heavy nuclei.

The authors acknowledge support from the DFG (project RE-322/12-1), from
the BMBF (contracts 06 DD 9052D and 06 ER 9063), and from the HeisenbergÄ
Landau program (GermanyÄBLTP JINR).
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