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THE QUEST FOR SOLVING QCD: SIMULATIONS AT
LIGHT QUARK MASSES

K. Jansen

NIC, DESY, Zeuthen, Germany

We present lattice QCD simulation results from the European Twisted Mass Collaboration
(ETMC). In particular, we show the strange baryon spectrum, list a number of precisely determined
low energy constants of chiral perturbation theory and provide a ˇrst account of simulations including
the strange and charm degrees of freedom.
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INTRODUCTION

We strongly believe nowadays that the quarks are the constituents of all
hadrons with the gluons being the interaction particles that Å via the strong
interaction Å ®glue¯ the quarks together to form the bound hadron states which
are the ones observed in experiments. The mechanism of forming the bound
states is theoretically described by quantum chromodynamics. The postulation of
QCD is that at very short distances the quarks behave as almost free particles that
interact only very weakly, a phenomenon we call asymptotic freedom. At large
distances, at the order of 1 fm, the quarks interact extremely strong and in fact so
strong that they will never be seen as ˇnal, observable states but rather form the
observed hadron bound spectrum. The latter phenomenon is called conˇnement
of quarks.

Since the interaction between quarks becomes so strong at large distances,
analytical methods such as perturbation theory fail to analyze QCD. A method
to nevertheless tackle the problem is to formulate QCD on a four-dimensional,
Euclidean space-time grid. This setup ˇrst of all allows for a rigorous deˇnition of
QCD and leads to fundamental theoretical and conceptual investigations. On the
other hand, the lattice approach enables theorists to perform large-scale numerical
simulations. In this contribution, we will describe one approach to ®lattice QCD¯,
the twisted mass formulation.

In the past, lattice physicists had to work with a number of limitations when
performing numerical simulations. These simulations are extremely expensive,
reaching the need for Peta�op computing and even beyond, a regime of computing
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power we just reach today. Therefore, for a long time the quarks were treated as
inˇnitely heavy, indeed a crude approximation given that the up and down quarks
have masses of only O (MeV). In a next step, only the lightest quark doublet, the
up and down quarks, were taken into consideration, although their mass values
as used in the simulation had been unphysically large.

Fig. 1. a) The values of the lattice spacing a and pseudoscalar masses mPS as employed
presently in typical QCD simulations by various collaborations as (incompletely) listed
in the legend. The diamond indicates the physical point where in the continuum the
pseudoscalar meson assumes its experimentally measured value. The black cross represents
a state of the art simulation by the JLQCD collaboration in 2001. b) The continuum strange
baryon spectrum from the ETM collaboration
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Nowadays, besides the up and down quarks, also the strange quark is included
in the simulations. In addition, these simulations are performed in almost physical
conditions, having the quark masses close to their physical values, large lattices
with about 3 fm linear extent and small values of the lattice spacing such that a
controlled continuum limit can be performed. The situation of the change of the
simulation landscape is illustrated in Fig. 1, a. In the ˇgure, the diamond indicates
the physical point. The black cross represents a state of the art simulation in the
year 2001. As can be seen in the graph, most of the simulations now go well
beyond what could be reached in 2001, demonstrating clearly the progress in
performing realistic simulations.

The drastic change in the situation is due to three main developments: i) al-
gorithmic breakthroughs; ii) machine development; the computing power of the
present BG/P systems is even outperforming Moore's law; iii) conceptual devel-
opments, such as the use of improved actions which reduce lattice artefacts and
the development of nonperturbative renormalization.

As a physical example of results we can achieve presently, we show in
Fig. 1, b the continuum extrapolated strange baryon spectrum as obtained [1] by
the European Twisted Mass Collaboration (ETMC) of which the author is a
member. ETMC comprises 16 institutions in Europe, i.e., Cyprus (Univ. of
Cyprus), France (Univ. of Paris Sud and LPSC Grenoble), Germany (Humboldt
Univ. zu Berlin, Univ. of Méunster, DESY in Hamburg and Zeuthen), Great
Britain (Univ. of Glasgow and Univ. of Liverpool), Italy (Univ. of Rome I,
II and III, ECT* Trento), Netherlands (Univ. of Groningen), Poland, (Univ. of
Poznan), Spain (Univ. of Valencia), and Switzerland (Univ. of Bern).

The baryon spectrum calculation has been considered a benchmark study
for lattice QCD for a long time. It is therefore very reassuring that ˇnally this
important result can be obtained precisely from ab-initio and nonperturbative
lattice simulations.

1. TWISTED MASS FERMIONS

Twisted mass fermions [3, 4] belong to the class of Wilson fermions [2]. In
this approach the lattice artefacts in physical observables appear only quadratic
in the lattice spacing. This is in contrast to a standard Wilson action, where
these lattice spacing effects are linear. The main advantage of the twisted mass
formulation of lattice QCD is then that these kinds of fermions provide an im-
proved, i.e., O(a2), continuum limit scaling of physical observables. The twisted
mass formulation of Lattice QCD [3,4] is being studied extensively with Nf = 2
dynamical �avours, i.e., including only the lightest up and down quark doublet,
by the European Twisted Mass collaboration, see [8] and references therein.
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The fermionic action for two �avours of twisted, mass degenerate quarks in
the so-called twisted basis [3, 9] reads

Stm = a4
∑

x

{
χ̄(x)[D[U ] + m0 + iμqγ5τ

3]χ(x)
}

, (1)

where m0 is the untwisted bare quark mass; μq is the bare twisted quark mass,
τ3 is the third Pauli matrix acting in �avour space and

D[U ] =
1
2

[
γμ

(
∇μ + ∇∗

μ

)
− a∇∗

μ∇μ

]

is the massless WilsonÄDirac operator. ∇μ and ∇∗
μ are the forward and backward

gauge covariant difference operators, respectively. Twisted mass fermions are said
to be at maximal twist if the bare untwisted quark mass m0 is tuned to its critical
value mcrit, the situation we shall be interested in. For convenience we deˇne
the hopping parameter κ = 1/(8 + 2am0).

Maximally twisted mass fermions provide important advantages: the spec-
trum of Q†Q with Q = γ5(D[U ] + m0 + iμqγ5) is bounded from below, which
was the original reason to consider twisted mass fermions [3]. At maximal
twist, the twisted quark mass μq is related directly to the physical quark mass
and renormalizes multiplicatively only. Many mixings under renormalization are
expected to be simpliˇed [4, 9]. And, physical observables are automatically
O(a)-improved. Another feature of maximally twisted mass fermions is that the
pseudoscalar decay constant fPS does not need any renormalization which allows
for a very precise determination of this quantity.

The main drawback of maximally twisted mass fermions is that both parity
and �avour symmetry are broken explicitly at nonzero values of the lattice spacing.
However, it turns out that this is presumably only relevant for the mass of the
neutral pseudoscalar meson (and kinematically related quantities) [10].

2. RESULTS FOR TWO FLAVOURS OF MASS-DEGENERATE QUARKS

Since in the maximal twist situation the theory is O(a)-improved, leading
lattice artefacts are expected to be of order a2. This can be checked by extrapo-
lating a physical quantity in units of the force parameter [11] rχ

0 extrapolated to
the chiral limit at ˇxed physical situation to the continuum limit. We show two
such examples in Fig. 2. In the panel a we show rχ

0 fPS as a function of (a/rχ
0 )2

at ˇxed value of rχ
0 mPS. In order to match the values of rχ

0 mPS at each value
of rχ

0 /a and to ˇx the volume to rχ
0 L = 5 we had to perform short inter- or

extrapolations. The straight lines are linear ˇts in (a/rχ
0 )2 to the corresponding

data, with the data at the largest value of the lattice spacing not being included
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Fig. 2. Scaling in ˇnite, ˇxed volume for rχ
0 fPS at ˇxed values of rχ

0 mPS (a) and for
(rχ

0 mPS)
2 at ˇxed values of rχ

0 μR (b). In (b) we cannot include data at β = 4.2 due to
the missing value of the renormalization factor ZP

in the ˇt. It is clearly visible that the lattice artefacts appear to scale linearly in
a2 and that their overall size is small.

In the panel b of Fig. 2 we show the scaling of rχ
0 mPS as a function of

(a/rχ
0 )2 at ˇxed values of the renormalized quark mass rχ

0 μR, again at ˇxed,
ˇnite volume. We conclude that also the charged pseudoscalar mass has only
small lattice artefacts.

The dependence of mPS and fPS on the renormalized quark mass and volu-
me can be described by chiral perturbation theory (χPT) [13, 14]. The residual
lattice artefacts of order a2 can also be included in the analysis. The corre-
sponding formulae can be found in [8, 15]. We ˇt these formulae to our data
in order to extract the parameters of the Nf = 2 chiral Lagrangian, i.e., the low
energy constants and some derived quantities. Moreover, we can use these ˇts
to calibrate our lattices by determining the value of the renormalized quark mass
rχ
0 μR where the ratio mPS/fPS assumes its physical value (i.e., mπ/fπ) and set

fPS = fπ = 130.7 MeV there, as done in [5]. Hence, fπ is used in this paper to
set the scale.

The results of these ˇts can be found in the table. We give statistical
and systematic errors separately, the systematic one being asymmetric. The
results are obtained by performing O(80) ˇts, which differ in ˇt-range, ˇnite
size correction formulae and in the order of χPT. The ˇnal result is obtained
as the median of the corresponding weighted distribution over all ˇts. The
statistical error is determined using the bootstrap method with 1000 samples.
The systematic uncertainty is estimated from the 68% conˇdence interval of the
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Summary of ˇt results, determined from the weighted distribution of a number of O(80)
different ˇts. The ˇrst error is of statistical origin, while the second, the asymmetric
one, accounts for the systematic uncertainties. Σ and mu,d are renormalized in the
MS scheme at the renormalization scale μ = 2 GeV, as the values of ZP are in the MS
scheme at scale 2 GeV. The scale is set by fπ = 130.7 MeV

Quantity Median Statistical Systematic

mup,down, MeV 3.54 (19) (+16 − 17)
�̄3 3.50 (9) (+9 − 30)
�̄4 4.66 (4) (+4 − 33)
f0, MeV 121.5 (0.1) (+1.1 − 0.1)
r0, fm 0.420 (9) (+10 − 11)
|Σ|1/3, MeV 270 (5) (+3 − 4)
fπ/f0 1.0755 (6) (+8 − 94)

weighted distribution. For details, see [8]. The ˇt results for the determination
of physical quantities and the low energy constants listed in the table belong to
the most precise determination of their kind worldwide.

3. RESULTS ADDING DYNAMICAL STRANGE AND CHARM QUARKS

The very nice results for mass-degenerate quarks discussed in the last section
motivate to go one step beyond this setup. The ETM collaboration has by now
included the strange and the charm degrees of freedom in their simulations and
they are the ˇrst collaboration to perform such studies.

The fermionic action for the light doublet is given by the same form as given
in Eq. (1). In the heavy sector, the action becomes

Sh = a4
∑

x

{χ̄h(x) [DW [U ] + m0,h + iμσγ5τ1 + μδτ3] χh(x)} . (2)

The heavy doublet mass parameters μσ and μδ should be adjusted in order to
reproduce the values of the renormalized strange (s) and charm (c) quark masses.
The latter are related to μσ and μδ via [18]

(ms,c)R =
1

ZP

(
μσ ∓ ZP

ZS
μδ

)
, (3)

where the minus sign corresponds to the strange and the plus sign to the charm
quark. In practice we ˇx the values μσ and μδ by requiring the resulting K- and
D-meson masses to match experimental results.

Tuning to maximal twist requires to set m0,l and m0,h to a sufˇciently accu-
rate value of the critical mass mcrit = mcrit(β) [18]. Here we set m0,l = m0,h ≡
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1/(2κ)− 4. As has been shown in [18,19], this is consistent with O(a) improve-
ment deˇned by the maximal twist condition amPCAC,l = 0. We demand that the
ratio |ZAamPCAC/aμq| � 0.1 and also that its error Δ(ZAamPCAC/aμq) � 0.1.
These criteria and their justiˇcation for tuning to maximal twist have been dis-
cussed in [7]. Note that we tune to mcrit(β) at each value of μq separately.

A most interesting result in this Nf = 2+1+1 setup is the calculation of the
K- and D-meson sector. Leaving out technical details of this complicated and
demanding calculation, we show in the panel a of Fig. 3 the tuning of the strange
quark mass by showing the difference, scaled with the chirally extrapolated value
of r0/a between twice the K-meson mass squared and the pion mass squared.
For our coarse value of the lattice spacing at β = 1.90 (black points) the data
appear to overshoot the physical point (the black cross on the left), while at our
ˇner value of the lattice spacing at β = 1.95 (grey points) the K-meson mass
extrapolates better. To improve the tuning of the strange quark mass, we are
currently applying a reweighting procedure as described in [20] in the parameters
aμδ and κ.

Fig. 3. r2
0(2m2

K−m2
π) and r0mD as functions of (r0mπ)2, showing the status of the tuning

of the strange and charm quark mass, respectively. The experimental value from PDG is
added as the black cross (r0 = 0.44(4) fm was used). Grey points label the β = 1.95
runs, black points label the β = 1.90 runs, where the single open point corresponds to
β = 1.90 with a different heavy sector splitting aμδ . Circles denote runs with L/a = 24,
triangles indicate a volume with L/a = 32

In the panel b of Fig. 3 the mass of the D meson as a function of the pion mass
squared is shown for various simulation points as well as the experimental value
from the Particle Data Group (PDG) [16]. The plot demonstrates that we have
tuned the charm (sea) quark mass in our simulations to a physically realistic value.
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In the light meson sector we can perform a similar analysis as discussed
above for the case of two mass-degenerate �avours of quarks. Assuming that
ZP is effectively a function of β in the range of parameters we are considering,
we can ˇt the ratio of those ZP values and lattice spacings and extract lattice
spacings from the combined ˇt. In every ˇt we use as inputs the physical fπ

and mπ, and extract f0, l̄3 and l̄4. As a result from an NLO SU(2) χPT ˇt, we
ˇnd f0 = 121(4) MeV, l̄3 = 3.5(2) and l̄4 = 4.7(2). Comparing these results
with those of the table, we ˇnd a very good agreement between our Nf = 2 and
Nf = 2+1+1 simulations. This fact and the comparison of fPS and mPS directly
as done in [17] makes us conˇdent that also for the situation of Nf = 2 + 1 + 1
�avours of quarks the lattice spacing scaling violations will be small. We remark
that by using fπ = 130.7 MeV as our physical input parameter, we ˇnd from
the ˇt a value of the lattice spacing of a ≈ 0.086 at β = 1.9 and a ≈ 0.078
at β = 1.95.

CONCLUSION

In this contribution we have discussed a particular formulation of lattice
QCD, maximally twisted mass fermions. We have shown that with this O(a)-
improved action precise results in the light meson and the strange baryon sector
can be obtained. In the course of this investigation, it has been demonstrated
that twisted mass fermions at maximal twisted indeed scale with a2 towards the
continuum limit and that even these remaining a2 corrections are very small,
giving rise to a well controlled continuum limit extrapolation of lattice results.
Fitting the data for fπ and mπ, it became possible to extract a number of physical
quantities and low energy constants of chiral perturbation theory very precisely,
see the table.

Encouraged by these results, we have described ˇrst simulations for the
situation when a dynamical strange and charm quark are included. We have
demonstrated that it is possible to tune to physical K- and D-meson masses. In
addition, the good agreement of the Nf = 2 and Nf = 2 + 1 + 1 simulations,
visible when comparing the values for the low energy constants f0, l̄3 and l̄4
with those of the table indicates that also for the latter case lattice artefacts, at
least in the light quark sector, are small. This offers the promising possibility to
obtain precise physical results also with dynamical up, down, strange and charm
simulations for the ˇrst time.
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