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PAIR CORRELATIONS AND THE TIME-DEPENDENT
HARTREEÄFOCKÄBOGOLIUBOV METHOD

IN THE THEORY OF NUCLEAR STRUCTURE
V. V. Voronov, R. V. Jolos, N. N. Arsenyev, A. P. Severyukhin

Joint Institute for Nuclear Research, Dubna

It is shown that an idea of the super�uidity of nuclear matter and the uÄv transformation of
Bogoliubov, time-dependent HartreeÄFockÄBogoliubov method have made a strong impact on the
development of the modern nuclear theory. Some applications of the Bogoliubov methods to describe
properties of the low-lying collective nuclear states and the giant resonances are demonstrated.

PACS: 21.60.Jz; 23.20.-g; 27.60.+j

INTRODUCTION

Several ideas related to the name of N.N. Bogoliubov have made a strong
impact on the development of nuclear theory. They are:

• the idea of super�uidity of nuclear matter;
• uÄv transformation;
• time-dependent HartreeÄFockÄBogoliubov method;
• idea of broken symmetries of the self-consistent mean ˇeld;
• conception of quasi-averages.
In 1958 N.N. Bogoliubov [1] was the ˇrst to indicate a possibility of super-

�uidity of nuclear matter. Then A.Bohr, B.Mottelson and D. Pines [2] formulated
a problem of existence of the super�uid state of atomic nuclei. The theory of pair
correlations of super�uid type in atomic nuclei has been developed independently
by S. T. Belyaev and V.G. Soloviev.

From that time the theory of pair correlations not only explains many nuclear
properties which have not been understood before. That was a beginning of the
modern stage in the development of the nuclear theory Å microscopic approach to
the nuclear structure. Due to simplicity of the uÄv Bogoliubov transformation, this
theoretical technique was used practically by all theoreticians and experimental
groups for interpretation of the experimental data.

The interest in pair correlations of nucleons in atomic nuclei was recreated
in connection with studies of the properties of nuclei far from the stability valley.
With the new radioactive beam facilities, nuclides far from the beta stability are
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now produced in an amount sufˇciently large for detailed experimental studies. It
became possible for the ˇrst time to investigate nuclear properties at large charge
asymmetry and weak binding. There have been observed halo nuclei. Their study
has shown that the properties of halo nuclei are quite different from the properties
of stable nuclei. The existence of halo nuclei points to the necessity to revise a
traditional approach to nuclear structure.

1. PAIRING IN NUCLEI NEAR DRIP-LINE

The decrease of separation energy enhances considerably the coupling be-
tween bound and continuum conˇgurations. As a result, nuclei change from the
well-bound to the open quantum systems. These changes are more dramatic for
the valence particles and just between them act residual pairing forces.

In the well-bound nuclei, pairing only slightly in�uences the global properties.
In the case of the weakly bound nuclei, binding properties are determined in a
signiˇcant way by the interaction among a few valence nucleons. The main
reason for this changing is the strong enhancement of the isospin effects.

In stable nuclei, pairing contributes only to description of the spectroscopic
details: excitation energies of the low-lying states, spectroscopic factors for the
one-nucleon transfer reactions, electromagnetic moments. The situation is differ-
ent for nuclei near drip-line. In this case the existence of a nucleus as a bound
system depends crucially on pairing. For instance, in the case of 6He and 11Li,
removing one neutron leads to particle unstable nuclei. Thus, when one neutron
is added to these nuclei the additional pairing gives enough energy to lower the
total energy below the threshold for particle emission. Mainly it is the pairing
interaction between the last two neutrons. However, the interaction of the last
two neutrons with the core continues to be important.

2. PAIRING IN THE CONTINUUM

Pairing is the most important component of the residual forces acting among
valence nucleons. It is indicated by the free nucleonÄnucleon interaction that
the strong correlations in the singlet evenÄeven channel support the formation of
S = 0, T = 1 pairs. In the case of the drip-line nuclei it is necessary to take
into account pairing in the continuum. In this case it is more suitable to base a
consideration on the equations including Bogoliubov's anomalous averages given
in the coordinate space (Gorkov's equations):

(h − l+)Φ+ − ΔΦ− = 0,

(h − l−)Φ− − Δ+Φ+ = 0,
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where l = λ ± E; λ is the chemical potential; E is the quasiparticle energy,
Φ+(−) is a particle (hole) wave function. It is an important property of this
system of equations that hole-like component decreases exponentially at large
distances providing that system is particle stable (λ < 0).

3. DENSITY DEPENDENCE OF THE PAIRING INTERACTION

The physical criterium to deˇne the interaction in the far exterior is that it
produces a large scattering length. However, the interaction determined in this
way is too strong in the nuclear interior. The problem is solved by an introduction
of the phenomenological density dependence of the pairing interaction:

Veff(r1, r2) = δ(r1 − r2)

[
V0 + Vρ

(
ρ((r1 + r2)/2)

ρ0

)P
]

,

where ρ is the nuclear density, ρ0 = 0.16 fm−3;

V0

(mω0

2π�

)3/2

≈ −14 MeV, �ω0 = 16 MeV,

Vρ ≈ −930 MeV · fm3, P ≈ 1.2.

The density dependence of the pairing was conˇrmed by the experimental
data. A signiˇcant increase of the pairing up to two times was found in nuclei
when they approach a proton drip-line having the ˇxed number of neutrons.

Averaged over a large number of nuclei near the valley of β stability, the
energy gap �̄ is approximated by the expression

�̄ =
12√
A

MeV.

However, this expression does not describe pairing in unstable nuclei.
The attempts to use a more detailed dependence of �̄ on neutron excess

I = (N − Z)/A in addition to the mass number dependence

�̄ =
C

(
1 − dI2

)
A1/3

with C = 7.2 MeV, d = 6.11 were not successful. This parametrization un-
derestimates essentially an increase of the proton energy gap for nuclei close to
proton-drip line.

The empirical increase of the proton pairing near the proton-drip line can
be described by introduction of the density dependence of the pairing forces,
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resulting in an essential difference between the values of the pairing amplitudes
inside the nucleus and in an external region [3]. The pairing interaction deˇned
as the second derivative of the Lagrangian with respect to the anomalous density
depends linearly on the density

F (R̄) = C0

(
a + b

ρ(R̄)
ρ0

)
, C0 = 300 MeV · fm3, a = −1.26, b = 1.42,

�̄p,i, which is a diagonal matrix element of the pairing function in the single
particle state i, is obtained by averaging over the volume of the nucleus

�̄p,i =
∫

d3RΔp(R̄)
∣∣Ψi(R̄)

∣∣2 .

In heavy nuclei single particle levers close to Fermi surface have predominantly
large quantum numbers, and, therefore, they are located near the nuclear surface.
Hence, the value of �̄p is most sensitive to �̄p,i(R̄) in the periphery region
of a nucleus. When one approaches the proton-drip line, a distance at which a
contribution of the single particle states close to Fermi surface has a maximum
increases stronger than the radius of the total nuclear density, which is determined
mostly by a contribution of deeper states. Because of the density dependence of
the pairing interaction, the role of the attractive term is increased and that of
the repulsive term is weakened. This leads to the increase of the proton pairing
energy �̄p.

Modern nuclear structure theory is rapidly expanding from the description of
phenomena in stable nuclei towards regions of exotic short-lived nuclei far from
stability. It goes not only for light but also for heavy nuclei.

The HartreeÄFockÄBogoliubov method is a reliable tool for a microscopic
self-consistent description of nuclei which can be based now on the modern
Energy Density Functionals.

The properties of nuclei on the way from stable to drip line can change
strongly with variation of the particle number. This requires a restoration, at least
partial, of the symmetries broken by the mean ˇeld. In the case of pairing it
means that the particle number conservation violated in the standard BCS wave
function should be restored using the projection technique

| Ψ〉 ≡ PN | Φ〉 =
1
2π

2π∫
0

dΦ eiΦ(N̂−N) | Φ〉,

EN (ρ, k) =
〈Φ | HPN | Φ〉
〈Φ | PN | Φ〉 =

∫
dΦ〈Φ | H eiΦ(N̂−N) | Φ〉∫
dΦ〈Φ | eiΦ(N̂−N) | Φ〉

,

where ρ is the particle-hole density and k is the pairing density.
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4. TIME-DEPENDENT HFB METHOD IN NUCLEAR THEORY

At present it is difˇcult to imagine theoretical nuclear physics without such
a notion as the self-consistent mean ˇeld. Numerous experimental data point out
that the nucleons in the nucleus behave in a certain approximation as indepen-
dent particles moving in a common potential well. However, this potential well
�uctuates in time.

Owing to this fact it was reasonable to construct the nuclear theory, at least
the theory of the low-lying excited states of nuclei basing on the concept of the
self-consistent ˇeld plus pairing.

The main equations of the method were published by Bogoliubov in 1959.
The total Hamiltonian of the system taken in a general form is

H =
∑
f,f ′

T (f, f ′)a+
f af ′ − 1

4

∑
f1,f2,f ′

1,f ′
2

G(f1f2; f ′
1f

′
2)a

+
f1

a+
f2

af ′
2
af ′

1
.

The basic equations have been derived for the following quantities:

F (f1, f2) ≡ 〈a+
f1

af2〉

and

Φ(f1, f2) ≡ 〈af1af2〉,

where the averaging is performed over the ground state of the system.
One can derive from the equations of motion the following exact equations:

i
∂

∂t
F (f1, f2) = 〈[a+

f1
af2 , H ]〉 ≡ B(f1, f2),

i
∂

∂t
Φ(f1, f2) = 〈[af1af2 , H ]〉 ≡ U(f1, f2).

In the self-consistent ˇeld method, B(f1, f2) and U(f1, f2) can be expressed
in terms of F (f1, f2) and Φ(f1, f2).

To investigate the spectrum of the elementary excitations due to small devi-
ations from the ground state, we should consider small additions to the stationary
solutions F0 and Φ0:

F (f, f ′) = F0(f, f ′) + δF (f, f ′),
Φ(f, f ′) = Φ0(f, f ′) + δΦ(f, f ′),

i
∂

∂t
δF (f, f ′) = δB(f, f ′), i

∂

∂t
δΦ(f, f ′) = δU(f, f ′).
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Finally, the basic equations have been derived for the amplitudes R(∓)(f1, f2)
which are linearly related to δF and δΦ. They are

ωR(∓)(f1, f2) = (E(f1) + E(f2)) R(±)(f1, f2)−

−
∑
f ′
1,f ′

2

Gξ(f1f2; f ′
2f

′
1)v

(±)
f1f2

v
(±)
f ′
1f ′

2
R(±)(f ′

1, f
′
2)−

− 2
∑
f ′
1,f ′

2

Gω(f1f2; f ′
2f

′
1)u

(±)
f1f2

u
(±)
f ′
1f ′

2
R(±)(f ′

1, f
′
2),

where u
(±)
ff ′ and v

(±)
ff ′ are related to the uÄv Bogoliubov transformation. In this

general form the equations are used up to now.
In studying the properties of the low-lying states of nuclei, we should have

in mind that the residual interaction is used for different moments of the colliding
particles.

Some collective effects associated with quadrupole, octupole and other cor-
relations in the particle-hole channel are deˇned by the interaction with small-
momentum transfer Gω(f1f2; f ′

21f ′
12).

The other effects associated with the superconducting type pairing correlations
are deˇned by the interaction with small total momentum of the colliding particles
Gξ(f1f2; f ′

1f
′
2).

From the general equation the equations for the special type of the nuclear
excitations have been derived by Soloviev and coworkers [4]:

• multipole isoscalar and isovector excitations;
• spin-multipole excitations;
• pairing-vibrational excitations;
• charge-exchange-type collective excitations.
It was also shown [5] that basic equations of the theory of the ˇnite Fermi

systems by Migdal [6] can be derived from Bogoliubov's equations.
The equations of the Migdal approach are written for the effective ˇelds

V (±)(f1f2) and d(±)(f1f2) generated in the atomic nucleus by some external

ˇeld V
(±)
0 (f1f2):

V (±)(f1f2) = V
(±)
0 (f1f2) + 2

∑
f ′
1,f ′

2

Gω(f1f2; f ′
2f

′
1)

u
(±)
f ′
1f ′

2

(E(f ′
1) + E(f ′

2))
2 − ω2

×

×
{

(E(f ′
1) + E(f ′

2))
[
u

(±)
f ′
1f ′

2
V (±)(f ′

1f
′
2) + v

(±)
f ′
1f ′

2
d(±)(f ′

1f
′
2)

]
+

+ ω
[
u

(∓)
f ′
1f ′

2
V (∓)(f ′

1f
′
2) + v

(∓)
f ′
1f ′

2
d(∓)(f ′

1f
′
2)

]}
,
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d(±)(f1f2) =
∑
f ′
1,f ′

2

Gξ(f1f2; f ′
2f

′
1)

v
(±)
f ′
1f ′

2

(E(f ′
1) + E(f ′

2))
2 − ω2

×

×
{

(E(f ′
1) + E(f ′

2))
[
u

(±)
f ′
1f ′

2
V (±)(f ′

1f
′
2) + v

(±)
f ′
1f ′

2
d(±)(f ′

1f
′
2)

]
+

+ ω
[
u

(∓)
f ′
1f ′

2
V (∓)(f ′

1f
′
2) + v

(∓)
f ′
1f ′

2
d(∓)(f ′

1f
′
2)

]}
.

The linearized time-dependent HFB method was at ˇrst applied to calculate
the properties of the low-lying excitations using the phenomenological and rather
simple separable residual nucleonÄnucleon interactions. This is the basic ingredi-
ent of the quasiparticle-phonon model by Soloviev et al. The practical advantage
of this approach is that it allows one to calculate nuclear excitations in a very large
conˇgurational space. On this basis, very detailed predictions have been done for
nuclei away from the closed shells. However, in this approach, descriptions of
the ground and excited states are completely decoupled.

There exists another approach based on the Skyrme-type or Gogny interac-
tions, which describes, throughout the periodic tables, the ground states in the
framework of the HFB approximation and the excited states in RPA. However, a
numerical application of this approach to description of nuclei removed from the
closed shells meets serious difˇculties.

This was a motivation to propose the ˇnite rank approximation for the pÄh
interaction resulting from Skyrme-type forces. This program was realized and
applied to calculate the properties of nuclei with open shells.

The various properties of vibrational nuclear states were successfully de-
scribed in RPA which takes partly into account ground-state correlations.

The analysis of the properties of the vibrational states revealed that, by treat-
ing ground-state correlations more consistently than in the RPA, one can improve,
for example, a description of transitional change densities of the vibrational states
within the internal region of spherical nuclei.

For the 2+
1 states in Zn isotopes the results of the calculations [7] of the

transitional charge density have been improved owing to a more correct treatment
of the Pauli exclusion principle. This leads to an approximately 20% suppression
of the amplitude of the intrinsic peak of the transition charge density compared
to that in the RPA and in a better agreement with the experimental data.

The linearized time-dependent HartreeÄFockÄBogoliubov method leads at the
ˇrst step to the harmonic approximation. Close to the ground state fermion
particle-hole excitations behave as bosons. The terms which, in the equation of
motion, are related to the nonbosonic contributions of the commutation relations
of pairs of fermions have random phase leading to cancelations which reduce the
contributions of the corresponding terms justifying the harmonic approximation.
However, although collective vibrations display small overlaps with each of the
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particle-hole components of the wave function describing the mode, a certain
amount of overcounting is unavoidable.

The discovery of the double giant dipole resonance (DGDR) in nuclei and
the observation of small deviations from the harmonic picture concerning the
excitation energy and the spreading width, combined with the large (up to a factor
2Ä3 enhancement) deviations of the associated Coulomb excitation cross sections
measured in relativistic heavy ion collisions, call for a better understanding of the
role played by the anharmonic effects in the spectrum of the DGDR.

To study the anharmonic properties of two-phonon excited states with a total
spin J and its projection M , one can describe them by the wave function [8]

| Ψν
JM 〉 =

⎧⎨
⎩

∑
i2,i′2

Dν2
i2i′2

Q+
1−i2

Q+
1−i′2√

1 + δi2,i′2

+

+
∑

α3β3γ3

T ν2
α3β3γ3

Q+
α3

Q+
β3

Q+
γ3√

1 + δα3,β3 + δα3,γ3 + δβ3,γ3 + 2δα3,β3,γ3

⎫⎬
⎭ |〉ph,

where Q+ is the phonon creation operator and |〉ph is the phonon vacuum. With
greek letters we denote the set of quantum numbers {λ, i}, where i is the RPA
root number, while λ is the multipolarity of the mode. The ansatz is made that
any combination αn, βn, γn appears in the sums only once.

We do not include a one-phonon term because the anharmonicity effects due
to the coupling of 1p1h- to 2p2h-conˇgurations are very small in the case of the
double GDR [8].

Based on the linearized time-dependent HartreeÄFockÄBogoliubov description
of the ground-state wave function, we have performed several investigations of the
properties of the excited states, taking into account the effects outside the RPA.

Another example is a description of the lowest-lying 1−1 states in spherical
and transitional nuclei. The experimental data demonstrate that the lowest-lying
1−1 states in the nondeformed nuclei have mainly the structure of ®two-phonon¯
states arising as a result of coupling of the quadrupole and octupole modes. For
this reason we suggest the following expression for the wave vector of the 1−1
state:

| 1−1 , M〉 ∼ (Q̂2Q̂3)1M | 0+
1 〉,

where | 0+
1 〉 is the RPA ground-state which includes some ground-state correla-

tions and Qλμ are the electric multipole moments.
With this expression for the 1−1 state wave vector, it is possible to explain

several relations between the experimental data, using exact commutation relations
of Qλμ.

We have also calculated the neutron number dependence of the E1;
1−1 → 0+

1 reduced transition probabilities for Xe isotopes [9] and have predicted
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the appearance of the minimum in the neutron dependence of B(E1; 1−1 → 0+
1 ) at

A = 128. This minimum is a result of the cancellation of the proton and neutron
contribution to the E1 transition matrix elements.

The other possibility to use the ground-state wave function determined by
the static HFB method was realized in our investigations of the E0 transitional
density for nuclei between spherical and deformed shape [10]:

| Ψi〉 =
∫

dβgi(β) | β; HFB〉,

where gi(β), being an eigenfunction of the collective Hamiltonian, describes a
distribution of | Ψi〉 over deformation β and | β; HFB〉 is the HFB ground-state
wave function corresponding to deformation β.

Using these wave functions, we have calculated the E0: 0+
g.s → 0+

β tran-

sitional densities for 150Nd which will be measured in the nearest future in
TU-Darmstadt.

At the present time the interests in nuclear structure investigations are shifted
to the drip-line nuclei. Their properties differ from those nuclei belonging to
stability valley. For instance, in the case of light nuclei even the magic numbers
are changed with neutron excess. This explains why, ˇrst of all, the efforts in
development of the theory have been concentrated on the nuclear mean ˇeld.

5. RELATIVISTIC MEAN FIELD APPROACH

The new approaches which are actively developed now are the Relativistic
Mean Field theory and the Energy Density Functional [11,12].

In the standard representation of the hadrodynamics the nucleus is described
as a system of Dirac nucleons coupled to the mesons and the electromagnetic
ˇeld. This coupling is described by the effective Lagrangian. The minimal set of
the mesons which are necessary for a quantitative description of bulk and single-
particle nuclear properties includes isoscalar scalar σ meson, isoscalar vector ω
meson, and the isovector vector ρ meson.

The Lagrangian density is

L = LN + Lm + Lint.

In this expression LN is the free nucleon Lagrangian

LN = Ψ̄ (iγμ∂μ − m)Ψ,

where m is the bare nucleon mass,

Lm =
1
2
∂μσ∂μσ − U(σ) − 1

4
ΩμνΩμν +

1
2
m2

ωωμωμ−

− 1
4
RμνRμν +

1
2
m2

ρρμρμ − 1
4
FμνFμν ,
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where

Ωμν = ∂μων − ∂νωμ, Rμν = ∂μρν − ∂νρμ,

Fμν = ∂μAν − ∂νAμ, U(σ) =
1
2
mσσ2 +

1
3
g2σ

3 +
1
4
g3σ

4.

Here arrows mean isovectors. The minimal set of interactions is contained
in Lint:

Lint = −Ψ̄ΓσσΨ − Ψ̄Γμ
ωωμΨ − Ψ̄Γμ

ρρμΨ − Ψ̄Γμ
e AμΨ,

Γσ = gσ, Γμ
ω = gωγμ, Γμ

ρ = gρτγμ, Γμ
e = e

1 − τ3

2
γμ.

However, the density dependence of the vertex functions gσ , gω and gp is
also taken into account. The additional nonlinear terms in the potential U are
needed because with only quadratic in the meson ˇeld term it is impossible to get
a quantitative description of complex nuclear systems.

The model Lagrangian density leads to the following equation of motion for
the nucleons:

[γμ (i∂μ + Vμ) + m + S]Ψ = 0.

If we neglect retardation effects for meson ˇelds, we come to the following
time-dependent mean-ˇeld potentials:

S(r, t) = gσσ(r, t),

Vμ(r, t) = gωωμ(r, t) + gρτρμ(r, t) + eAμ(r, t)
(1 − τ3)

2
.

The meson ˇelds are calculated at each step in time solving the stationary
KleinÄGordon equation

−ΔΦm + U ′(Φm) = ±〈Ψ̄ΓmΨ〉,

where ®+¯ is for vector ˇelds, ®−¯ is for scalar ˇelds Φm ≡ {σ, ωμ, ρμ, Aμ};
U ′ is the functional derivative of the corresponding potential. The stationary ap-
proximation for the meson ˇelds is justiˇed by the large meson masses compared
to the energies relevant for nuclear structure.

In the model formulated above the σ meson approximates large attractive
scalar ˇelds. The ω meson approximates the short-range repulsion between nu-
cleons, and the ρ meson carries the isospin.

In the early applications to nuclear matter, the same effective Lagrangian
was used both in the ph channel and in the pp channel. It was found, however,
that the standard RMF effective interactions produce pairing correlations that are
much too strong. However, in the effective theory there is no physical reason to
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use the same interactions for both the pp and ph channels. It was found that the
phenomenological potential provides a very reasonable description of pairing in
nuclear matter [13].

The gap vanishes at very small and at very large densities. The maximum is
located at kF = 0.8 fm−1. This value of kF corresponds to relatively low density
which in ˇnite nuclei is found only in the surface region.

What is the reason to apply the Relativistic theory to description of the nuclear
structure phenomena at relatively low excitation energies? There is no need in the
relativistic kinematics because

√
p2

F + m2
N = mN

√
1 + 0.075, where 0.075 is a

small term. Nonrelativistic theory of nuclear structure works well. There are sev-
eral technical problems to apply a relativistic theory. However, in the relativistic
approach appear large scalar and vector ˇelds: S ≈ −400 MeV, V ≈ 350 MeV.
This explains large spin-orbit splitting in nuclei. The saturation mechanism in
nuclei was clariˇed within the relativistic approach too. In the framework of
the relativistic approach it became clear why approximate pseudospin symmetry
is observed in nuclei. Some possibilities for experimental investigations of the
manifestations of the pseudospin symmetry in spectra of nuclei with Z � 100
have been indicated in [14].

SUMMARY

The ideas related to the name of N.N. Bogoliubov have made a strong impact
on the development of the nuclear structure theory. They have formulated a
theoretical basis for the microscopic approach to nuclear structure. For more
than 40 years these methods have been used intensively in the nuclear structure
theory. In the last years the interests in the nuclear structure investigations have
been shifted to the drip-line nuclei. Their description requires a development
of the former concepts and methods. However, the ideas of the mean ˇeld, its
�uctuations, pair correlations continue to play the central role.
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