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J. Yngvason

Faculty of Physics, University of Vienna, Vienna

Erwin Schréodinger Institute for Mathematical Physics, Vienna

Ever since the pioneering work of N.N.Bogoliubov in 1947, the interacting Bose gas has been a
source of inspiration and a challenge to theoretical physicists striving to understand the subtleties of the
quantum many-body problem. The lecture contains a survey of some mathematically rigorous results
on this subject that have been obtained in the past decade. These results concern in particular the
ground-state energy of a dilute Bose gas, the GrossÄPitaevskii equation for a gas in a magneto-optical
trap, BoseÄEinstein condensation and super�uidity, quantum phase transitions in optical lattices, and
a trapped Bose gas in rapid rotation.

PACS: 67.85.Hj; 67.85.Jk

INTRODUCTION

The experimental realization of BoseÄEinstein condensation (BEC) in dilute,
trapped alkali gases in 1995 [1, 2] has created lasting interest in the strange
quantum properties exhibited by such systems. On the theoretical side the subject
goes back to Einstein's paper on BEC in ideal gases from 1924 [3], but the theory
of interacting Bose gases began with N.N. Bogoliubov's fundamental work of
1947 [4]. This was followed by a period of considerable activity in this ˇeld in
the late 1950s and early 60s, e.g., [5]. But mathematically rigorous results were
few and hard to get. In fact, after more than 60 years of theoretical investigation
on interacting Bose gases, Mathematical Physics still faces the challenge to derive
some of the fundamental properties of the low energy states of the many-body
Hamiltonian by rigorous mathematial analysis. Substantial progress, however,
has been made in the past 10 years on the following topics:

• The energy of a dilute Bose gas;
• Trapped Gases and the GrossÄPitaevskii equation;
• BEC and super�uidity in dilute, trapped gases;
• BEC and spontaneous symmetry breaking;
• Dimensional reduction in tightly conˇning traps;
• BEC and quantum phase transitions in optical lattices;
• Rotating gases and quantized vortices.
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It is here only possible to discuss brie�y a few of these topics. A general
reference on the ˇrst six items from the Mathematical Physics point of view is [6],
while the monograph [7] is devoted to rotating gases. See also [8Ä11] for some
recent results on rotating gases and further references.

1. THE MATHEMATICAL SETTING

The basic quantum mechanical Hamiltonian for N particles in R3 that interact
via a pair potential v and are trapped in an external potential V is

H =
N∑

j=1

(
−∇2

j + V (xj)
)

+
∑

1�i<j�N

v(xi − xj). (1)

Here xi ∈ R3, i = 1, . . . , N are the positions of the particles and units are chosen
so that � = 2m = 1. We shall always assume that v = v(|x|) is nonnegative
and of ˇnite range (or, more generally, decreases faster than |x|−3 at inˇnity).
Moreover, the conˇning potential V is assumed to be continuous with V (x) → ∞
for |x| → ∞. When studying super�uidity and rotating systems the Laplacian
−∇2

j is replaced by a magnetic Laplacian (i∇j + A(xj))2, where A is a vector
potential.

We focus on spinless bosons where the Hamiltonian operates on symmetric
wave functions in L2(R3N , dx1 · · · dxN ). For ultracold gases the normalized
ground-state wave function Ψ0(x1, . . . ,xN ) of H and the corresponding reduced
one-particle density matrix

ρ
(1)
0 (x,x′) = N

∫
R3(N−1)

Ψ0(x,x2, . . . ,xN )Ψ∗
0(x

′,x2, . . . ,xN ) dx2 · · · dxN (2)

are of particular interest. BoseÄEinstein condensation in the ground state means,

by deˇnition, that the operator deˇned by the integral kernel ρ
(1)
0 (x,x′) has an

eigenvalue of the order N for all large N . It is important to remark that the
deˇnition of BEC is only precise if the N dependence of the parameters involved
has been speciˇed. Important cases are:

• Thermodynamic limit: The particles are conˇned in a box Λ with volume
|Λ| → ∞ as N → ∞ with constant density ρ = N/|Λ|.

• GrossÄPitaevskii limit: N → ∞, Na/L = const, with a the scattering
length of v (see below) and L the length scale associated with −∇2 +V . Special
case: box Λ and L = |Λ|1/3. Note: Na/L = aρ/(L−2).

• ®ThomasÄFermi¯ limit: N → ∞, Na/L → ∞, but Na3/L3 → 0.
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2. THE GROUND-STATE ENERGY

Consider a spherically symmetric pair interaction potential v of short range.
The scattering length of v, denoted by a, is deˇned by considering the zero energy
scattering equation

−∇2ψ +
1
2
vψ = 0.

For r = |x| larger than the range of v, the solution has the form ψ(r) =
(const)(1 − (a/r)). In particular, if the constant is chosen to be 1, partial
integration, and v � 0, gives

8πa =
∫ {

2|∇ψ|2 + |ψ|2v
}

�
∫

v. (3)

If v � 0 the scattering length determines completely the ground-state energy
EQM(2, L) of a pair of bosons in a large box Λ of side length L � a, namely
EQM(2, Λ) ≈ 8πa/L3. Consider now for v � 0 the Hamiltonian of N bosons in
a box Λ of side length L with appropriate boundary conditions:

H = −
N∑

j=1

∇2
j +

∑
1�i<j�N

v(xi − xj). (4)

Denoting its ground-state energy by EQM(N, L), the energy per particle in the
thermodynamic limit with ρ = N/L3 ˇxed is e0(ρ) = limN→∞ EQM(N, L)/N .
In dilute gases the low density asymptotics of e0(ρ) is of importance, where low
density means that ρa3 � 1; i.e., the scattering length a is much smaller than the
mean particle distance, ρ−1/3. The basic formula for the ground-state energy of
a dilute Bose gas is [12]

Theorem 1 (Ground-state energy) . For a3ρ � 1

e0(ρ) = 4π aρ (1 + o(1)). (5)

Heuristically, the formula (5) can be motivated by arguing that in dilute gases
all particle pairs should be treated as approximately independent which leads to
EQM(N, L) ≈ (1/2)N/(N − 1)EQM(2, L) ≈ (1/2)N28πa/L3 = N 4πaρ. This
heuristic argument is, however, very far from a rigorous proof because the ground
state is in general highly correlated. In fact, the analogous heuristic reasoning
in two dimensions gives the wrong answer [13, 14]. The formula (5) has an
interesting history and it took almost 70 years to establish it rigorously. It ˇrst
appeared in [15] (for a gas of hard balls) and Bogoliubov's fundamental paper [4]
contains a version of it with 8πa replaced by the right-hand side of (3), i.e., the
ˇrst-order perturbative approximation. A rigorous upper bound was given by
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Dyson in 1957 [16], but an asymptotically correct lower bound was not obtained
until 40 years later [12]. Recently, there has been renewed interest in higher order
corrections to (5) that were computed with various approximation techniques in
the 50s and 60s [5], and some rigorous estimates going beyond (5) have been
obtained in [17] and [18].

The basic reason why it is so difˇcult to bound the energy from below is that
the energy is very small if the density is low. Also, one should bear in mind that
there are really two physically different regimes to consider:

1. ®Hard potential¯, i.e., v large (in particular hard core). The energy is
here mostly kinetic (due to the bending of the wave function when two particles
come close to each other) and ground state is highly correlated. In this regime
perturbation theory does not apply.

2. ®Soft potential¯, i.e., v small. The energy is here mostly potential
because the wave function is approximately constant. Lowest-order perturbation
theory (with the uncorrelated, unperturbed state Ψ0 = L−3N/2) gives e0(ρ) ≈
(1/2)ρ

∫
v(x) d3x. This cannot be the right answer (it is independent of � and

m!), but it is at least the ˇrst Born approximation to 4πaρ. (Note that a depends
on � and m.) It is a priori not at all obvious that the same formula, Eq. (5),
applies both to ®hard¯ and to ®soft¯ potentials.

In [16] Dyson succeeded in transforming Regime 1 into Regime 2 (for hard
spheres) by sacriˇcing the kinetic energy. In this way he obtained a lower bound
∼ ρa, but the factor in front was only about 1/14 of the optimal one. His idea of
replacing a hard potential by a soft one was, however, taken up in [12] and led, in
combination with other ingredients, eventually to an asymptotically correct lower
bound. Dyson's idea has, in fact, been a key element in many of the subsequent
developments, in particular the proof of BEC and super�uidity in the GP limit
in [19] and [20] respectively, and the dimensional reduction of a gas in a tightly
conˇning trap [21,22].

3. GROSSÄPITAEVSKII THEORY

Consider now the N -body Hamiltonian (20) with an external potential V ,
representing a conˇning trap. This potential comes with a natural length scale

L = e
−1/2
V , where eV is the spectral gap of −∇2 + V . It is natural to study

the ground-state properties of H , and in particular BEC, in the GrossÄPitaevskii
(GP) limit where N → ∞ with a ˇxed value of the GP interaction parameter

g ≡ 4πNa

L
≈ e0(ρ)

eV
(6)

with ρ = N/L3. Note that a3ρ ∼ g/N2 = O(1/N2) if g is ˇxed, so the GP limit
is a special case of a dilute limit, with the interaction energy of the same order
as the spectral gap of the Hamiltonian without interaction.
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The GP limit can be achieved either by keeping a ˇxed and scaling the
external potential V so that L ∼ N , or by keeping V ˇxed and taking a ∼ N−1.
The latter can formally be regarded as a scaling of the interaction potential, i.e.,
writing v(r) = N2v1(Nr) with v1 ˇxed. Note that this is the opposite of the usual
mean ˇeld limit where the potential is scaled with N as v(r) = N−3v1(r/N).
In fact, the technique for deriving the GP equation below from the many-body
Hamiltonian is quite different from mean ˇeld techniques.

In the GP limit the ground state can be described by minimizing a functional
of functions on R3, the GP energy functional

EGP[ϕ] =
∫
R3

(
|∇ϕ|2 + V |ϕ|2 + g|ϕ|4

)
(7)

with the subsidiary condition
∫
|ϕ|2 = 1. A motivation for the term g|ϕ|4

comes from (5): With ρ(x) = N |ϕ(x)|2 the local density, we have Ng
∫
|ϕ|4 =

4πa
∫

ρ(x)2, and 4πaρ(x)2 is the interaction energy per unit volume.
The minimizer, denoted ϕGP, of the GP functional is the unique, nonnegative

solution of the (time-independent) GrossÄPitaevskii equation

(−∇2 + V + 2g|ϕ|2)ϕ = μ ϕ (8)

with a Lagrange multiplier (chemical potential) μ. The energy corresponding to
ϕGP is

EGP
g = EGP[ϕGP] = inf

{
EGP[ϕ] :

∫
|ϕ|2 = 1

}
. (9)

Basic results in GP theory are the following theorems [19,24]:

Theorem 2 (GP energy asymptotics) . If N → ∞ with g ˇxed (i.e., a ∼ N−1L),
then

EQM(N, a)
NEGP

g

→ 1. (10)

Theorem 3 (BEC in the GP limit) . If N → ∞ with g ˇxed, then

1
N

ρ
(1)
0 (x,x′) → ϕGP(x)ϕGP(x′), (11)

where the convergence is in trace norm.

In other words: There is complete BEC in the GP limit and ϕGP is the wave
function of the condensate. As a corollary one sees that in the GP limit the nor-
malized particle density of the many-body ground state converges to N |ϕGP(x)|2
and the momentum density to N |ϕ̃GP(p)|2, where ϕ̃GP denotes the Fourier trans-
form of ϕGP.



THE INTERACTING BOSE GAS: A CONTINUING CHALLENGE 1643

We present here a very brief sketch of the proof of BEC in the GP limit [19]
for the special case when the trap is a box Λ of side length L: With Ψ0 the many-
body ground-state wave function, we employ the notation X = (x2, . . . ,xN ),
ψX(x) = Ψ0(x,X). Moreover, we denote by N0 the average occupancy of
the constant single particle ground state of the Laplacian in Λ. In terms of the
one-particle density matrix (2) the depletion of the condensate can be written as

1−N0

N
= 1−(NL3)−1

∫ ∫
ρ(1)(x,x′) dx dx′ =

∫
dX‖ψX−〈ψX〉‖2

L2(Λ), (12)

where 〈f〉 = L−3
∫
Λ

f . The proof that the depletion tends to zero in the GP

limit has two main ingredients. One is a generalization of the simple Poincar�e
inequality [25]

‖f − 〈f〉‖2
L2(Λ) � CL2‖∇f‖2

L2(Λ), (13)

namely the following inequality if Ω ⊂ Λ:

‖f − 〈f〉‖2
L2(Λ) � C1L

2‖∇f‖2
L2(Ω) + C2|Ωc|2/3‖∇f‖2

L2(Λ). (14)

Equation (14) is easily obtained from the Poincar	eÄSobolev inequality ([25],
Thm. 8.12)

‖f − 〈f〉‖2
L2(Λ) � C‖∇f‖2

L6/5(Λ), (15)

in combination with Héolder's inequality.
The other ingredient in the proof of BEC is localization of the kinetic energy:

While ∫
dX‖∇ψX‖2 ∼ ρa(1 + o(1)), (16)

it can be shown that there is an Ω ⊂ Λ such that |Ωc|/L3 = o(1) and

(ρa)−1

∫
dX‖∇ψX‖2

L2(Ω) = o(1). (17)

This is a highly nontrivial result but it can be extracted from the proof of the
ground-state energy in [12]. Given Eqs. (12), (14) and (17), the proof of BEC
follows:

1 − N0

N
� L2ρa × o(1) =

Na

L
× o(1) → 0, (18)

if N → ∞ with g = Na/L ˇxed. It should be noted that the depletion (18)
may tend to zero even if the GP parameter tends to ∞ as N → ∞, but only
if the increase of the latter is compensated by the factor o(1) that tends to zero
with ρa3. The estimates on this factor in [12] are rather crude and one is still
far from proving BEC in the full ®ThomasÄFermi¯ limit mentioned in Sec. 1, let
alone in the thermodynamic limit where complete BEC is not expected. Proving
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BEC in the thermodynamic limit is, in fact, still one of the outstanding challenges
in the theory of interacting Bose gases. Its difˇculty can partly be understood
from the fact that BEC is always accompanied by the breaking of a continuous
gauge symmetry [23] and phase transitions are notoriously difˇcult to derive in
the presence of continuous symmetries.

4. ROTATING GASES AND VORTICES

Consider now a gas in a container that rotates with angular velocity Ω. The
Hamiltonian in the rotating frame is

H =
N∑

j=1

(
−∇2

j + V (xj) − Lj ·Ω
)

+
∑

1�i<j�N

v(|xi − xj |), (19)

where Lj = −ixj ∧ ∇j is the angular momentum operator of particle j. The
Hamiltonian can alternatively be written in the form

H =
N∑

j=1

(
(i∇j + A(xj))2 + V (xj) −

1
4
Ω2r2

j

)
+

∑
1�i<j�N

v(|xi − xj |), (20)

with A(x) = 1
2Ω∧ x and r = distance from the rotation axis. The corresponding

GrossÄPitaevskii energy functional in the rotating case is

EGP[ϕ] =
∫
R3

{
|(i∇ + A)ϕ|2 +

(
V − 1

4
Ω2r

)
|ϕ|2 + g|ϕ|4

}
. (21)

The GP energy EGP
g,Ω, i.e., the inˇmum of (21) for normalized wave functions,

now depends on the rotation velocity Ω besides the GP parameter g. A new
phenomenon compared to the nonrotating case is that the minimizer may have
a nontrivial phase and it need not be unique. The basic results on the relation
between the Hamiltonian (19) and GP theory were obtained in [26] and [27]:

Theorem 4 (Energy asymptotics in GP limit, Ω ˇxed) . If N → ∞ with g and
Ω ˇxed, then

EQM(N, a, Ω)
NEGP

g,Ω

→ 1. (22)

Theorem 5 (BEC in GP limit, Ω ˇxed) . If N → ∞ with g and Ω ˇxed, then
the convex hull of the projectors onto GP minimizers coincides with the possible
N → ∞ limits of one-particle density matrices of N -particle ground states.
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The technique of the proof of these theorems is by necessity rather different
from the one originally used in the nonrotating case [24], the reason being that
the many-body wave functions are no longer real valued (in general), and the
phase factor prevents localization of the particles. The leading order asymptotics
in the ®ThomasÄFermi¯ limit, where g → ∞ (and possibly also Ω → ∞), was
studied in [28].

The GP minimizers are solutions of the GP equation for rotating gases
{
−(∇ + iA)2 +

(
V − 1

4
Ω2r

)
+ 2g|ϕ|2

}
ϕ = μϕ. (23)

An important new feature compared to the nonrotating case is the possible oc-
currence of vortices, i.e., singularities of the phase of ϕ with integer winding
numbers. The vortices may be associated with spontaneous breaking of rotational
symmetry of the trap. The GP equation and its vortex solutions is a subject of
its own that can be studied independently of the many-body problem. The most
detailed results are for the 2D equation and g → ∞ [7]. We refer to [10,29,30]
for some recent results where g and Ω both tend to ∞ in anharmonic traps,
i.e., for V increasing more rapidly than quadratically with the distance from the
rotation axis.

A very interesting situation occurs for a quadratic trap potential, V (x) =
(1/2)Ω2

osc|x|2, when Ω approaches the critical frequency

Ωc =
√

2Ωosc, (24)

at which V (x) − (1/4)Ω2r2 is no longer bounded below. It is convenient to
choose units so that Ωc = 1. As Ω → 1, the system becomes effectively two-
dimensional with an effective radius R tending to inˇnity. In fact, equating the
potential energy ∼ (1−Ω)2R2 and the interaction energy per particle ∼ NaR−2

gives the estimate

R2 ∼
(

Na

1 − Ω

)1/2

. (25)

Interpreting Ω as a vortex density (that is, strictly speaking, only justiˇed when
there is a large number of vortices), one may deˇne a ˇlling factor as

ν =
# particles

# vortices
∼ N

ΩR2
∼

(
N(1 − Ω)

a

)1/2

. (26)

The expectations are [8, 9]:
• If ν → ∞, there is a GP description with a GP equation restricted to wave

functions in the lowest Landau Level (LLL) of the magnetic Laplacian.
• If ν stays small, the many-body ground state is highly correlated and there

is no GP description. Instead, the wave functions should be bosonic analogues of
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the fermionic wave functions that occur in the theory of the Fractional Quantum
Hall Effect in the LLL.

In particular, at ˇlling factor 1/2 the wave function should be well approximated
by a Laughlin type function

Ψ ∼
N∏

i<j

(zi − zj)2
N∏

i=1

exp(−|zi|2/4), (27)

where zj = xj + iyj ∈ C denote the particle positions in R
2 � C.

For ˇlling factors between 1/2 and ∞, rich physics is expected. A model
for studying these phenomena is a many-body Hamiltonian restricted to the LLL:

HLLL = (1 − Ω)
N∑

i=1

zi
∂

∂zi
+ 4πa

∑
i<j

δij , (28)

operating on the Bargmann space of analytic functions that are square integrable
w.r.t. the measure exp(−

∑
i

|zi|2)d2z1 · · · d2zN , and where δij denotes the pro-

jection of δ(zi − zj) on this space. This model has recently been rigorously
derived from the full 3D many-body Hamiltonian [31], and its limit for ν → ∞,
corresponding to a/(N(1 − Ω)) → 0, has been analyzed in [32], leading to a
GP equation for wave functions in the LLL. The properties of the solutions of
this GP equation have been studied in many papers, including [33], where further
references can be found.

CONCLUSIONS

In this contribution some results on a few of the topics mentioned in the
Introduction have been reviewed. While these results are only a tiny fraction
of the extensive theoretical work on cold quantum gases that has been carried
out since 1995, they demonstrate the possibility to extract physically relevant
properties of the many-body Hamiltonian (20) by rigorous mathematical analysis.
Such an endeavor is very much in the spirit of N.N. Bogoliubov's pioneering
work [4], but it should be noted that a rigorous justiˇcation of the pairing theory
that lies behind his approximation has so far only been obtained in the special
case of the charged Bose gas at high density [34,35]. A better understanding of
this aspect for dilute gases with short-range interactions might be an essential step
towards a solution of the outstanding open problem in the theory of cold gases:
to prove BEC in the thermodynamic limit for a continuous model with realistic
interactions.
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