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This is a short survey of the Boson Random Point Processes method and its application to the
mean-field interacting boson gas trapped by a weak harmonic potential.
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1. INTRODUCTION: RANDOM POINT PROCESSES

We start by recall of some notations and definitions that we need to formulate
our results. For details the reader may consult, for example, the book [1].

(a) Let E be a locally compact metric space serving as a state space of
points, 5 the Borel o-algebra, B, C B (relatively) compact Borel sets. Let v be
a (diffusive) locally finite reference measure on (E,B). The standard example:
v is the Lebesgue measure and E = R,

(b) The space of the locally finite configurations of points in E is

Q(E):={{C E:card(§NA) < oo forall A € B,}.

Then Q(A) :={£ € Q: £ C A} and the function: Ny : £ — card(§ N A).

(c) Each & € @ can be identified with integer-valued nonnegative Radon
measure: A¢ := Y, 0; on B, i.e., A¢(D) := Np is the number of points that fall

reé

into the set D for the locally finite point configuration £ € Q(D).

(¢) Definition: A random point process (RPP) in a locally compact space E
is a random probability Radon measure p on the configuration space Q(FE), with
expectation that for any measurable function is defined by

E,(F) = / W(dE)F ().
Q(E)
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e For a simple random point process the measure p assigns a.-s.: p(z) < 1,
for any single point € Q(FE).

e By K (z,y) we denote a kernel of nonnegative, self-adjoint, locally Tr-class
operator K > 0 on L?(A).

(d) Example: (The Poisson RPP 7, with intensity n > 0)

(1) For any set D C FE with finite Lebesgue measure v(D), one puts

(77 Z/(D))n ean(D).
n!

B{Np = n} = / 70 ()00 0 (6) =
Q(E)

(2) For mutually disjoint subsets {D, C A}, the Poisson RPP m, is
supposed to be uncorrelated:

Eﬂn (5"L17ND1 IR 5"Lk7NDk,(f)) = Eﬂn (5n1,ND1(f)) s Eﬂ'n (5nk7NDk, (E)) =

(n v(D1))™ o—m(D1) (n v(Dyg))"* o—m(Dx)
nq! ng!

(e) Definition: For any family of mutually disjoint subsets {D,, C A},>1 the
correlation functions (joint intensities) of the RPP p are defined by the densities
{pn : A™ — RL },>1 with respect to the measure v:

E, H Lienp, =1 | = / v(dey) - v(dey)pr(T1, ...y Tp).

NS Dix...xDy

(f) Definition: An RPP is called determinantal/permanental with (a locally
Tr-class) kernel K, if it is simple and its correlation functions are

pn(-rla e 7xn) = det”K(-rivxj)Hlél}jéna
pn(-rl, v ,an) = per‘|K(xiv'rj)‘|1<i7j<"'
For any n > 1 and z1,...,2, € A, dety 4 = ) an—c(o) II aica
cEG, 1<i<n

a = +1 < per/ det and ¢(o) is the number of cycles in the permutation o.

2. FERMION/BOSON RANDOM POINT PROCESSES

2.1. Quantum Statistical Mechanics: Fermions. Let §; := L?(Ay), where
Ap = [-L/2,L/2]% and Ap, , be Laplacian with periodic boundary conditions
on OAp, ie.,

spec (—Ap ) = {e(k) = 2m/L)*||k|)? : k € Z4}.
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Then the Gibbs semigroup kernel for the inverse temperature § has the form

(Gpp)(z,y) == (721 (z,y) =
= Z e k)¢kL )¢k,L(y) = Z (Gg)(x,y + kL),

kez? kezd
where the «heat» semigroup kernel is
2
. — r—y
(G ) = Jim (G 1)) = (4m0) P exp — (L2220,
Remark: It is known that any n-particle free-fermion wave function is the

Slater determinant:

Wik (9617 cee 7xn) = det ||¢k“L(x])H1<17]<"

al-

The corresponding n-point free-fermion joint probability distribution density:
Pon(T1, . ) = Wy g (21,...,20)|% or

1
P, L(T1,. .., %) = —p det Pri, (@) 1< j<ndet |k, L () ]l1<i,j<n-

Since det A det B = det A B, one gets
1
Prp(T1,. ., x0) = — det 1K, (zi, 5) 1< <

where K, 1(z,y) = Y. &, 1(2)¢r,, r(y) is the kernel of orthogonal projection
1<i<n

on the EHV{¢k17L, ey d)kn,,L}-
Since the k-point marginal correlation functions are

X n!
p’l(’L,)L(x17 e 7xn) = m /pn7L(x17 e 7Jjn)d$k+1, e ’dxn =
= det || K, (i, ;) |1<6,5 <k

the determinantal RPP uf’ , generated by the joint probability distribution density
Dn,1 is correctly defined for n free fermions in the cube Aj.

Canonical Ensemble: Probability density distribution of n free-fermion po-
sitions in the cube Ay,

pn,L(JCl, ce X ) = ZA F(ﬂ,n)x

X Z \Ilkl,,,,,kn(xh...,mn) <®Gﬁ,L\IIk1,...,k"> ($1,...,$n).
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Proposition [2]: Let (z1,...,2,) — & := 0z, € Q(ArL). Then
1<j<n

Dn.L(T1,...,2n; ) induces a determinantal RPP ugme with matrix
Kgn (@i, 25) == (Gg,L) (@, 75),

i.e., a probability measure d“g,n, (&) on the configuration space Q(Arp).
Laplace Transformation: Let (¢, f) := > f(xz;), where nonnegative

1<jsn

fe Co(AL). Then for é,g’L = \/G,67L e~ f \/G,&L,

E57n7L(e—<f,f>) = / duf;n 1(€) e (&) —

Q(AL)
=/ML~MMmmewmﬂhm{—-z:ﬂ%%=
X 1<j<n
= /d:ﬁ ... dzy, det ||(éﬁL)(x2,xj)H/ / dzy...dxydet |(Ga,r)(xi, z;)]-
AT AT
Example: For the Poisson RPP, one obtains
/ dr, (€) e (&) — / dmy, (&) exp { Zf ]
Q) Q) ves
— ZE,”( 11 Emdrj_1> exp {— Zf(xj)] =
= 1<j<n Tj
_Zn'/ (dz1)...v(dx,)n" exp[ fo]}:
n=0 An 1<j<n

= exp {—A/dmu —ef(I))}

Thermodynamic Limit [2]: For n/ Lt — p a weak limit of the RPP: w —
hm ,uﬂ nL = /~L;3 ,» exists and

/ duﬁp = Det [I — V1 —ef2,Gs(I + 2.Gp) " 'V1— e—f],

Q(R?

ddq Zx e_ﬂl‘QHZ B
p:/(27r)d 5 ool = (Gs( +2:G5)7)(z, ).
Rd
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For a Tr-class integral operator J on L?(A,v), the Fredholm determinant/per-
manent is defined by the Vere-Jones formula [1]:

Det([[ — O[J]il/o‘) = Z l/®s(d.’E1 .. dxn) detaHJ(xi,xj)HKi,jgn,
s:OAS

where det,—41 = per/ det.

2.2. Quantum Statistical Mechanics: Bosons

Grand-Canonical Ensemble: Probability density distribution of n free-boson
positions in the cube Ay is defined by

pn,L(xlv e 7xnvﬂ) = ZX}B(ﬂ?’I’L)X

X Y kg (@ w) (® Gﬂ,L‘I’kl,...,kn) (@1,. .., 2n),

(kl,...,k")E(Z”)

1
\\ T1y..oyTn) = —F————P€r||Qk,;,L.(Z;)||1<i,j<n-
koo (21 ) n!Hln(kz)!p | drs, () [l1<i,5<

The boson RPP dﬂg,n, (&) on the configuration space QQ(Ar) is implied by p,, 1.
In the (grand-)canonical thermodynamic limit for particle densities p < p.(3) (or
solutions z. (8, p) < 1), where

dlg 2, e Bl

p= / 2m)d 1— 2, 0Bl

Rd

= (2:Gp(I = 2.Gp)™")(w,2) < pe(B),

one obtains [3]

/ duf (&) e &I = Det | T+V/1 — e F2,Gp(I—2.Gp) ' V/1— e/

Q(R?)

-1

Proposition [4]: For densities p > p.(3) we have 2z, = 1 and

exp [—(p — Pc(ﬁ))(\/m7 [H‘Kf]*lm)]
Det [I+Ky] )

dpf (&)™) =
QRY)
where Ky := /1 —e TGg(I—Gg)~'v/1 —e7 is from the Tr-class. Therefore,

the free boson RPP for p > p.(3) is a convolution of the boson RPP at z, = 1 and
a boson process (see numerator) proportional to the condensate density: p—p.(5).
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2.3. Grand-Canonical (3, ) Free Bose Gas. (a) Consider independent
random variables k — N € NU {0}, £ € A*L, in the probability space Q :=
X ke, Qg

(b) For bosons the one-mode random occupation numbers are Ni > 0, but
for fermions they are N, = 0, 1.

(c) Probabilities (N.B. for bosons: p < 0, since ¢, = ||k||? > 0) are

e—B(ek—p) Nk
Ek(ﬁv :u’) ’

(d) Expectations are: g, (Ny) = {ef==1) — 111 for k € A*; and
2= e PH,
(e) Expectation value of the fotal density of bosons in R? is

Pr[37/L(Nk) = ke AN p.

. o [ _dNu(E)
Jim pa, (B, p) = nggom > Epu(Ni) Z/m~
ke~ )

3. BOSONS IN A WEAK HARMONIC TRAP

3.1. Weak Harmonic Trap [5]. One-particle Hamiltonian of the harmonic

oscillator .,
1 0?2 2?1
he=5> -5+ =
2 < ( 8x? + K2 /{)

is a self-adjoint operator in the Hilbert space $ := L%(R%), with

d
Spec (hy) = {en(s) :=|sl1/k |5 = (s1,--+ ,sa) EN"}, [s|1:=) s,
j=1

In this setup the «thermodynamic limit» is an «opening» of the trap, i.e., kK — oo,
called the Weak Harmonic Trap (WHT) limit.
Perfect Bose-gas expectation value of the fofal number of particles is

_ 18IZg.(B,p) 1
Na(Bp) = 5 = ; T T

Since N, (83, i) diverges for k — oo as k%, the scaled particle density is defined by

1

1
pH(ﬂ?/’[’) = F Z eﬂ(em(s)*ﬂ) — 1a
seNd
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p(B, ) = lim pe(f, p) = / m Z

[0,00) s=1

eﬁus

Notice that the Integrated Density of States (Ny(E)) and the critical density
pc(B) are related by the limit of the measure:

Ndn = Z o(E ‘ ‘1/’{
seNd

Then we obtain in the kK — oo limit

Ed-1 E(d—2)/2
dE #

I'(d) (27m)4/2T(d/2)

dNy(E) = dE = dNy(E),

pe(B) = C(d)/B* # C(d/2)/(2nB)Y? =: pe(B).

3.2. Mean-Field Interaction and Main Results. A model of the mean-field
interacting bosons trapped by the harmonic potential is defined by the grand-
canonical partition function

o0

EA,H(@M) — Zeﬁ(/m—AnZ/Zn )Trﬁé‘ymm [®nGH(IB)L

n=0

where G, () = e P"~ is the Gibbs semigroup for the oscillator process. Here
B>0,A>0and € R

Theorem [5]: Normal phase. Let p < py o(3) := Ape(5). Then the boson
RPP i, ., converges weakly in the WHT limit K — oo to the RPP ug ., with
the Laplace transformation:

Y om— —1
]E,B,’r‘* I:e_<f7£>] = Det, |:1 + 1— e_fr*Gﬂ(l _ T*Gg)_l 1— e_f:| ’
where 7, = r.(8, 11, \) € (0,1) is a unique solution of the equation

d.
Bu = lnr—&—)\ﬁ/i_lfg]; D ro= P <,

Theorem [5]: Condensed phase. For i > uy .(8)(:= Ap.(03)) the Laplace
transformation of the boson RPP measure has the following limit:

lim ! InEg,[e <f’§>]:—L’\’C(ﬁ)(\/l—e*f,(l—i-K'f)f1 1—e 1),

K—00 [ﬁ:d/2 7rd/2A
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where the operator
Ky = (G}/Qu —Gg)M2/1— e—f)* (G}f(l —Gp)M2V1 - e—f)

is a positive trace-class operator on $) = L?(R?) for d > 2.

Remark: Condensed phase. Similar to the homogeneous free Bose gas the
resulting RPP is a convolution of two Bose RPP [5].

Local Particle Density.

Corollary: Normal phase. Let f € Co(R?) and f > 0. For p < py.o(3)

Es,. [(£.6)] = Tr [fr.G(A)(1 - .G(8)"] = pr. / df(z),
Rd

where the local density p,, in the neighbourhood of the bottom of the WHT
potential is given by

n

pr. =GO =GB oa) = 3

Corollary: Condensed phase. For > i .(3) one obtains

_— Er g [(f:€)] S p— pix,c(B) /dxf(x).

K—00 ﬁ;d/Q = 7rd/2)\
Rd

3.4. Global Particle Density. The results of the Theorem and Corollary in
the noncondensed regime has the following interpretation: in the WHT limit the
position distribution of the MF interacting bosons in the neighbourhood of the
origin of coordinates (i.e., at the bottom of the WHT potential) is close to that for
the free BG corresponding to a substitution of the unconventional parameter .,
by the conventional z,. The information about the particle position distribution in
domains distant from the bottom of the WHT is missing in the limit pg ., since
the test function f has a finite support.

In order to take this «tail»-particles into account, we have to use for our
model the standard definition of the grand-canonical global number of particles:

(tot) 1 0InEZ,(8, 1) _
pm,/\ (ﬁv“) T Kd/B a,u -
1

K/d E‘H,)\(ﬂ? ,u)

=3 neflum 2Oy (@R GL(B)).

n=0
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Since k¢

p,(:'f\t)(ﬁ, 1) represents an effective total space-averaged density of the nonho-
mogeneous boson gas.

Theorem [5]: Global density = experiment. In the WHT limit

is interpreted as the effective volume of the model, the function

P\ (B ) = Tim p"S (B, ) = lim KT [ Gl = 1. Gr) 7
exists and satisfies the following properties:
(@) for p1 < px.o(B) one has

o [ dNa(E .
p(; t)(ﬁ7 1) = / % and Bu = logr, + Agp(t t) (8, 11):
0 *

(i) for p1 > pux,e(B): (P (B) = limy, . (p) P57 (B, 1) = ¢(d)/57)

A (@) = B B IAD) o )
3.5. Conclusion: Bosons in a Weak Harmonic Trap. Different behaviour
of the space distributions of bosons described in the Theorems above has the
following explanation:
In the normal case the bosons are distributed almost uniformly in the region
of radius x according to the shape of the oscillator process kernel.
On the other hand, in the condensed phase case the condensed part of particles
k(Y (B, ) — p/\t?t) (B)) = k% u — prc(B))/A is localized in the region of
radius O(x'/?) according to profile of the square of the ground-state wave function

1

Q(z) = We—\lm\ﬁ/?n = Byo. (7).

Whereas the particles outside of the condensate are spread out essentially over
the region of radius .

4. LDP FOR NONINTERACTING BRPP

In this section we consider the limiting theorems: Law of Large Numbers
(LLN), Central Limit Theorem (CLT) and Large Deviation Principle (LDP), for
the free Bose gas [6].
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4.1. Noninteracting BRPP with BEC. Proposition [4]: For continuous
f > 0 with a compact support we define two BRPP by generating functionals:

/ dpie ) () e = det[1 + Kf(2)] !, z=e <1,
Q(R?)

/ duK,p<£>e<f>€>=exp{ (\/7 e I )]

QRY)
where K;(z) := V1 — e T2G3(1+2G5) V1 — e~/ and Gy := e’>. Then the

BRPP for the ideal gas is pg o, = ,uﬁ?eztil, but in the regime of BEC (p > p.)

it is convolution of the two Random Point Processes:

u pope = u&?e;) 1¥K p=p—p. = (non-condensate)*(condensate).

Theorem (LLN) [6]: For continuous function f > 0 with a compact support,
the limit

lim —(F(/1), ¢ —p/dxf

K—00 ,‘{d

holds in L*(Q(RY), uf. ).
Theorem (CLT) [6]: Let p > p.. Then for kK — oo the family of random

variables
(f(-/r), &) —pﬂded f(z) dx

X, =
V2(p = pe) | (=BA) 2 f | s wldt2/2

converges in distribution to the standard Gaussian random variable:

. itX, . —t2
lim d,u[%f»pc(f)e X = o7t/2,

K—00

Q(R?)

Large Deviation Principle in the BEC Regime.
Theorem (LDP) [6]: For p > p, there exists a convex rate function I(s) :=
sup,ep (st — P(t)), such that

1
lim sup e 210gqu< < (-/k), & € )g—infl(s), for closed F' C R,

K—00 sEF
and
hﬁrrigf e logqu( —(f(-/r), &) € ) > —Siggf(s), for open G C R.
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P(t) := lim — log / At ,(©) /IO = PIE (1) 4 Prcpy. (1) =
Q(RY)

e [ @) dat (o= p)P (. (=PA =) ), t < IVFBA) TV

", t> IVF(-BA) T

4.3. Conclusion: BEC versus the Normal Phase. Let D, := (f(-/x),&)/x?
be a random empirical density of particles localized in the region of the length
scale .

For the BEC case p > p.:

(i) The random variable D, converges for k — oo to its expectation value
m:=p [ f(z)dz in mean.

Rd

(ii) The law of the random variable x(?~2)/2(D, — m) converges to the
normal distribution as Kk — oo.

(iii) The law of the random variable D, manifests a Large Deviation Property
with the parameter x%2.

For the normal phase p < p.:

(i) also holds;

(ii) holds but for k%/?(D,. —m), instead of x(¢=2/2(D,, —m);

(iil) holds with the order s, instead of k% 2.
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