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1. INTRODUCTION

The classical relativistic electrodynamics of a freely moving charged point
particle in the Minkowski space-time M

4 := E
3 ×R is, as well known, based [5,

9, 11, 31] on the Lagrangian formalism assigning to it the following Lagrangian
function:

L := −m0(1 − u2)1/2, (1.1)

where m0 ∈ R is the so-called particle rest mass and u ∈ E
3 is its spatial velocity

in the Euclidean space E
3, expressed here and throughout further in the light
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speed units (that is the light speed c units). The least action Fermat principle in
the form

δS = 0, S := −
t2∫

t1

m0(1 − u2)1/2dt (1.2)

for any ˇxed temporal interval [t1, t2] ⊂ R gives rise to the well-known relativistic
relationships for the mass of the particle

m = m0(1 − u2)−1/2, (1.3)

the momentum of the particle

p := mu = m0u(1 − u2)−1/2 (1.4)

and the energy of the particle

E0 = m = m0(1 − u2)−1/2. (1.5)

The origin of Lagrangian (1.1), owing to the reasonings from [11, 31], can be
extracted from the action expression

S := −
t2∫

t1

m0(1 − u2)1/2dt = −
τ2∫

τ1

m0 dτ, (1.6)

on the suitable temporal interval [τ1,τ2] ⊂ R, where, by deˇnition,

dτ := dt(1 − u2)1/2 (1.7)

and τ ∈ R is the so-called proper temporal parameter assigned to a freely moving
particle with respect to the ®rest¯ reference system Kr. The action (1.6) looks
from the dynamical point of view sightly controversial, since it is physically
deˇned with respect to the ®rest¯ reference system Kr, giving rise to the constant
action S = −m0(τ2 − τ1), as limits of integrations τ1 < τ2 ∈ R were taken to
be ˇxed from the very beginning. Moreover, considering this particle as charged
with a charge q ∈ R and moving in the Minkowski space-time M

4 under action of
an electromagnetic ˇeld (ϕ, A) ∈ R×E

3, the corresponding classical (relativistic)
action functional is chosen (see [5, 9, 11,31]) as follows:

S :=

τ2∫
τ1

[−m0dτ + q〈A, ṙ〉dτ − qϕ(1 − u2)−1/2dτ ], (1.8)

with respect to the so-called ®rest¯ reference system, parameterized by the Euclid-
ean space-time variables (r, τ) ∈ E

4, where as before, 〈·, ·〉 is the standard scalar



1704 BOGOLUBOV N.N. (JR.), PRYKARPATSKY A.K.

product in the related Euclidean subspace E
3 and there is denoted ṙ := dr/dτ

in contrast to the deˇnition u := dr/dt. The action (1.8) can be rewritten, with
respect to the moving with velocity vector u ∈ E

3 reference system, as

S =

t2∫
t1

Ldt, L := −m0(1 − u2)1/2 + q〈A, u〉 − qϕ, (1.9)

on the suitable temporal interval [t1, t2] ⊂ R, giving rise to the following [5, 9,

11,31] dynamical expressions:

P = p + qA, p = mu, (1.10)

for the particle momentum and

E0 = [m2
0 + (P − qA)2]1/2 + qϕ (1.11)

for the particle energy, where, by deˇnition, P ∈ E
3 means the common momen-

tum of the particle and the ambient electromagnetic ˇeld at a space-time point
(r, t) ∈ M

4.
The obtained expression (1.11) for the particle energy E0 also looks slightly

controversial, since the potential energy qϕ, entering additively, has no impact
onto the particle mass m = m0(1 − u2)−1/2. As it was already mentioned [14]
by L. Brillouin, the fact that the potential energy has no impact on the particle
mass says us that ®. . . any possibility of existing the particle mass related with an
external potential energy, is completely excluded¯. This and some other special
relativity theory and electrodynamics problems, as is well known, stimulated many
other prominent physicists of the past [4,14,19,31,33] and the present [18,20Ä24,
27Ä30,32,34Ä37,40,41] to make signiˇcant efforts aiming to develop alternative
relativity theories based on completely different space-time and matter structure
principles.

There is also another controversial inference from the action expression (1.9).
As one can easily show [5, 9, 11, 31], the corresponding dynamical equation for
the Lorentz force is given as follows:

dp

dt
= F := qE + qu × B, (1.12)

where the operation ®×¯ denotes, as before, the standard vector product and we
put, by deˇnition,

E := −∂A

∂t
−∇ϕ (1.13)
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for the related electric ˇeld and

B := ∇× A (1.14)

for the related magnetic ˇeld, acting on the charged point particle q; the operation
®∇¯ here is, as before, the standard gradient. The obtained expression (1.12)
means, in particular, that the Lorentz force F depends linearly on the particle
velocity vector u ∈ E

3, giving rise to its strong dependence on the reference
system with respect to which the charged particle q moves. Namely, the attempts
to reconcile this and some related controversies [4, 14, 18, 26] forced A. Einstein
to devise his special relativity theory and proceed further to creating his general
relativity theory trying to explain the gravity by means of a geometrization of
space-time and matter in the Universe. Here we must mention that the classical
Lagrangian function L in (1.9) is written by means of the mixed combinations of
terms expressed by means of both the Euclidean ®rest¯ reference system variables
(r, τ) ∈ E

4 and the arbitrarily chosen reference system variables (r, t) ∈ M
4.

These problems were recently analyzed from a completely another ®no-
geometry¯ point of view in [6, 7, 18], where new dynamical equations were
derived, being free of controversy mentioned above. Moreover, the devised
approach allowed one to avoid the introduction of the well-known Lorentz trans-
formations of the space-time reference systems with respect to which the action
functional (1.9) is invariant. From this point of view there are very interesting
reasonings of work [22], in which there are reanalyzed Galilean invariant La-
grangians, possessing the intrinsic PoincareÄLorentz group symmetry. Below we
will reanalyzed the results obtained in [6, 7] from the classical Lagrangian and
Hamiltonian formalisms, what will shed a new light on the related physical back-
grounds of the vacuum ˇeld theory approach to common studying electromagnetic
and gravitational effects.

2. THE VACUUM FIELD THEORY ELECTRODYNAMICS EQUATIONS:
LAGRANGIAN ANALYSIS

2.1. A Freely Moving Point Particle Å an Alternative Electrodynamical
Model. Within the vacuum ˇeld theory approach to common describing the
electromagnetism and gravity, devised in [6, 7], the main vacuum potential ˇeld
function W̄ : M

4→ R, related to a charged point particle q, satisˇes in the case
of the rested external charged point objects the following [6] dynamical equation:

d

dt
(−W̄u) = −∇W̄ , (2.1)

where, as above, u := dr/dt is the particle velocity with respect to some reference
system.
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To analyze the dynamical equation (2.1) from the Lagrangian point of view,
we will write the corresponding action functional as

S := −
t2∫
t1

W̄dt = −
τ2∫
τ1

W̄ (1 + ṙ2)1/2 dτ, (2.2)

expressed with respect to the ®rest¯ reference system Kr . Having ˇxed proper
temporal parameters τ1 < τ2 ∈ R, from the least action condition δS = 0 one
easily ˇnds that

p :=
∂L
∂ṙ

= −W̄ ṙ(1 + ṙ2)−1/2 = −W̄u,

ṗ :=
dp

dτ
=

∂L
∂r

= −∇W̄ (1 + ṙ2)1/2,

(2.3)

where, owing to (2.2), the corresponding Lagrangian function

L := −W̄ (1 + ṙ2)1/2. (2.4)

Recalling now the deˇnition of the particle mass

m := −W̄ (2.5)

and the relationships

dτ = dt(1 − u2)1/2, ṙ dτ = u dt, (2.6)

from (2.3) we easily obtain exactly the dynamical equation (2.1). Moreover, one
easily obtains that the dynamical mass, deˇned by means of expression (2.5), is
given as

m = m0(1 − u2)−1/2,

coinciding with result (1.3) of the preceding section. Thereby, based on the
above-obtained results, one can formulate the following proposition.

Proposition 2.1. The alternative freely moving point particle electrodynamical
model (2.1) allows the least action formulation (2.2) with respect to the ®rest¯
reference system variables, where the Lagrangian function is given by expres-
sion (2.4). Its electrodynamics is completely equivalent to that of a classical
relativistic freely moving point particle, described in Sec. 2.
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2.2. A Moving Charged Point Particle Å an Alternative Electrodynamical
Model. Proceed now to the case when our charged point particle q moves in
the space-time with velocity vector u ∈ E

3 and interacts with another external
charged point particle, moving with velocity vector uf ∈ E

3 subject to some
common reference system K. As was shown in [6,7], the corresponding dynami-
cal equation on the vacuum potential ˇeld function W̄ : M

4→ R is given as

d

dt
[−W̄ (u − uf)] = −∇W̄ . (2.7)

As the external charged particle moves in the space-time, it generates the related
magnetic ˇeld B := ∇ × A, whose magnetic vector potential A : M

4→ E
3 is

deˇned, owing to the results of [6, 7, 18], as

qA := W̄uf . (2.8)

Since, owing to (2.3), the particle momentum p = −W̄u, Eq. (2.7) can be equi-
valently rewritten as

d

dt
(p + qA) = −∇W̄ . (2.9)

To represent the dynamical equation (2.9) within the classical Lagrangian formal-
ism, we start from the following action functional naturally generalizing func-
tional (2.2):

S := −
τ2∫
τ1

W̄ (1 + |ṙ − ξ̇|2)1/2 dτ, (2.10)

where we denoted by ξ̇ = ufdt/dτ , dτ = dt(1 − |u − uf |2)1/2, which take
into account the relative velocity of our charged point particle q with respect
to the reference system K′, moving with velocity vector uf ∈ E

3 subject to the
reference system K. In this case, evidently, our charged point particle q moves
with velocity vector u − uf ∈ E

3 subject to the reference system K′, and the
external charged particle is, respectively, in rest.

Compute now the least action variational condition δS = 0, taking into
account that, owing to (2.10), the corresponding Lagrangian function is given as

L := −W̄ (1 + |ṙ − ξ̇|2)1/2. (2.11)

Thereby, the common particles momentum

P :=
∂L
∂ṙ

= −W̄ (ṙ − ξ̇)(1 + |ṙ − ξ̇|2)−1/2 =

= −W̄ ṙ(1 + |ṙ − ξ̇|2)−1/2 + W̄ ξ̇(1 + |ṙ − ξ̇|2)−1/2 =
= mu + qA := p + qA (2.12)
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and the dynamical equation is given as

d

dτ
(p + qA) = −∇W̄ (1 + |ṙ − ξ̇|2)1/2. (2.13)

Taking into account that dτ = dt(1− |u − uf |2)1/2 and (1 + |ṙ − ξ̇|2)1/2 = (1−
|u−uf |2)−1/2, we obtain ˇnally from (2.13) exactly the dynamical equation (2.9).
Thus, we can formulate our result as the next proposition.

Proposition 2.2 . The alternative classical relativistic electrodynamical model (2.7)
allows the least action formulation (2.10) with respect to the ®rest¯ reference sys-
tem variables, where the Lagrangian function is given by expression (2.11).

2.3. A Moving Charged Point Particle Å a Dual to the Classical Alternative
Electrodynamical Model. It is easy to observe that the action functional (2.10)
is written taking into account the classical Galilean transformations of reference
systems. If we now consider the action functional (2.2) for a charged point
particle, moving with respect to the reference system Kr, and take into account
its interaction with an external magnetic ˇeld, generated by the vector potential
A : M

4 → E
3, it can be naturally generalized as

S :=

t2∫
t1

(−W̄dt + q〈A, dr〉) =

τ2∫
τ1

[−W̄ (1 + ṙ2)1/2 + q〈A, ṙ〉]dτ, (2.14)

where we accepted that dτ = dt(1 − u2)1/2.
Thus, the corresponding common particle-ˇeld momentum looks as follows:

P :=
∂L
∂ṙ

= −W̄ ṙ(1 + ṙ2)−1/2 + qA = mu + qA := p + qA, (2.15)

satisfying the equation

Ṗ :=
dP

dτ
=

∂L
∂r

= −∇W̄ (1 + ṙ2)1/2 + q∇〈A, ṙ〉 =

= −∇W̄ (1 − u2)−1/2 + q∇〈A, u〉(1 − u2)−1/2, (2.16)

where
L := −W̄ (1 + ṙ2)1/2 + q〈A, ṙ〉 (2.17)

is the corresponding Lagrangian function. Taking now into account that dτ =
dt(1 − u2)1/2, one easily ˇnds from (2.16) that

dP

dt
= −∇W̄ + q∇〈A, u〉. (2.18)
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Upon substituting (2.15) into (2.18) and making use of the well-known [11]
identity

∇〈a, b〉 = 〈a,∇〉b + 〈b,∇〉a + b × (∇× a) + a × (∇× b), (2.19)

where a, b ∈ E
3 are arbitrary vector functions, we obtain ˇnally the classical

expression for the Lorentz force F , acting on the moving charged point particle q:

dp

dt
:= F = qE + qu × B, (2.20)

where, by deˇnition,

E := −∇W̄ q−1 − ∂A

∂t
(2.21)

is the corresponding electric ˇeld and

B := ∇× A (2.22)

is the corresponding magnetic ˇeld.
The result obtained we formulate as the next proposition.

Proposition 2.3. The classical relativistic Lorentz force (2.20) allows the least
action formulation (2.14) with respect to the ®rest¯ reference system variables,
where Lagrangian function is given by expression (2.17). Its electrodynamics,
described by the Lorentz force (2.20) is completely equivalent to the classical
relativistic moving point particle electrodynamics, described by means of the
Lorentz force (1.12) in Sec. 2.

Concerning the previously obtained dynamical equation (2.13), we can easily
observe that it can be equivalently rewritten as follows:

dp

dt
=

(
−∇W̄ − qdA

dt
+ q∇〈A, u〉

)
− q∇〈A, u〉. (2.23)

The latter, owing to (2.18) and (2.20), takes ˇnally the following Lorentz type
force in the form:

dp

dt
= qE + qu × B − q∇〈A, u〉, (2.24)

before found in [6,7, 18].
Expressions (2.20) and (2.24) are equal to each other up to the gradient term

Fc := −q∇〈A, u〉, which allows one to reconcile the Lorentz forces acting on a
charged moving particle q with respect to different reference systems. This fact
is important for our vacuum ˇeld theory approach since it needs to use no special
geometry and makes it possible to analyze both electromagnetic and gravitational
ˇelds simultaneously, based on a new deˇnition of the dynamical mass by means
of expression (2.5).
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3. THE VACUUM FIELD THEORY ELECTRODYNAMICS EQUATIONS:
HAMILTONIAN ANALYSIS

It is well known [1,2,8,9,17] that any Lagrangian theory allows the equiva-
lent canonical Hamiltonian representation via the classical Legendrian transforma-
tion. As we have already formulated above our vacuum ˇeld theory of a moving
charged particle q in the Lagrangian form, we proceed now to its Hamiltonian
analysis making use of the action functionals (2.2), (2.11) and (2.14).

Take, ˇrst, the Lagrangian function (2.4) and the momentum expression (2.3)
for deˇning the corresponding Hamiltonian function

H := 〈p, ṙ〉 − L = −〈p, p〉W̄−1

(
1 − p2

W̄ 2

)−1/2

+ W̄

(
1 − p2

W̄ 2

)−1/2

=

= −p2W̄−1

(
1 − p2

W̄ 2

)−1/2

+ W̄ 2W̄−1

(
1 − p2

W̄ 2

)−1/2

=

= −(W̄ 2 − p2)(W̄ 2 − p2)−1/2 = −(W̄ 2 − p2)1/2. (3.1)

As a result, we easily obtain [1, 2, 8, 9] that the Hamiltonian function (3.1) is a
conservation law of the dynamical ˇeld equation (2.1), that is for all τ, t ∈ R

dH

dt
= 0 =

dH

dτ
, (3.2)

which naturally allows one to interpret it as the energy expression. Thus, we can
write that the particle energy

E = (W̄ 2 − p2)1/2. (3.3)

The suitable Hamiltonian equations, equivalent to the vacuum ˇeld equation (2.1),
look as follows:

ṙ :=
dr

dτ
=

∂H

∂p
= p(W̄ 2 − p2)−1/2,

ṗ :=
dp

dτ
= −∂H

∂r
= W̄∇W̄ (W̄ 2 − p2)−1/2.

(3.4)

Thereby, based on the above-obtained results, one can formulate the following
proposition.

Proposition 3.1. The alternative freely moving point particle electrodynamical
model (2.1) allows the canonical Hamiltonian formulation (3.4) with respect to
the ®rest¯ reference system variables, where the Hamiltonian function is given
by expression (3.1). Its electrodynamics is completely equivalent to the classical
relativistic freely moving point particle electrodynamics, described in Sec. 2.
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Based now on the Lagrangian expression (2.11) one can construct, the same
way as above, the Hamiltonian function for the dynamical ˇeld equation (2.9),
describing the motion of charged particle q in external electromagnetic ˇeld in
the canonical Hamiltonian form:

ṙ :=
dr

dτ
=

∂H

∂P
, Ṗ :=

dP

dτ
= −∂H

∂r
, (3.5)

where

H := 〈P, ṙ〉 − L =

=

〈
P, ξ̇ − PW̄−1

(
1 − P 2

W̄ 2

)−1/2
〉

+ W̄ [W̄ 2(W̄ 2 − P 2)−1]1/2 =

= 〈P, ξ̇〉 + P 2(W̄ 2 − P 2)−1/2 − W̄ 2(W̄ 2 − P 2)−1/2 =

= −(W̄ 2 − P 2)(W̄ 2 − P 2)−1/2 + 〈P, ξ̇〉 =

= −(W̄ 2 − P 2)1/2 − q〈A, P 〉(W̄ 2 − P 2)−1/2. (3.6)

Here we took into account that, owing to deˇnitions (2.8) and (2.12),

qA := W̄uf = W̄
dξ

dt
= W̄

dξ

dτ

dτ

dt
= W̄ ξ̇(1 − |u − v|2)1/2 =

= W̄ ξ̇(1 + |ṙ − ξ̇|2)−1/2 = −W̄ ξ̇(W̄ 2 − P 2)1/2W̄−1 =

= −ξ̇(W̄ 2 − P 2)1/2, (3.7)

or
ξ̇ = −qA(W̄ 2 − P 2)−1/2, (3.8)

where A : M
4→ R

3 is the related magnetic vector potential, generated by the
moving external charged particle.

Thereby, we can state that the Hamiltonian function (3.6) satisˇes the energy
conservation conditions

dH

dt
= 0 =

dH

dτ
, (3.9)

for all τ, t ∈ R, that is the suitable energy expression

E = (W̄ 2 − P 2)1/2 + q〈A, P 〉(W̄ 2 − P 2)−1/2 (3.10)

holds. The result (3.10) essentially differs from that obtained in [11], which
makes use of the well-known Einsteinian Lagrangian for a moving charged point
particle q in external electromagnetic ˇeld. Thereby, our result can be formulated
as follows.
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Proposition 3.2. The alternative classical relativistic electrodynamical model (2.7)
allows the Hamiltonian formulation (3.5) with respect to the ®rest¯ reference sys-
tem variables, where the Hamiltonian function is given by expression (3.6).

To make this difference more clear, we will analyze below the Lorentz
force (2.20) from the Hamiltonian point of view based on the Lagrangian func-
tion (2.17). Thus, we obtain that the corresponding Hamiltonian function

H := 〈P, ṙ〉 − L =

= 〈P, ṙ〉 + W̄ (1 + ṙ2)1/2 − q〈A, ṙ〉 = 〈P − qA, ṙ〉 + W̄ (1 + ṙ2)1/2 =

= −〈p, p〉W̄−1

(
1 − p2

W̄ 2

)−1/2

+ W̄

(
1 − p2

W̄ 2

)−1/2

=

= −(W̄ 2 − p2)(W̄ 2 − p2)−1/2 = −(W̄ 2 − p2)1/2. (3.11)

Since p = P − qA, expression (3.11) takes the ˇnal ®no interaction¯ [11, 31,
38,39] form

H = −[W̄ 2 − (P − qA)2]1/2, (3.12)

being conservative with respect to the evolution equations (2.15) and (2.16),
that is

dH

dt
= 0 =

dH

dτ
(3.13)

for all τ, t ∈ R. The latter are simultaneously equivalent to the following Hamil-
tonian system:

ṙ =
∂H

∂P
= (P − qA)[W̄ 2 − (P − qA)2]−1/2,

Ṗ = −∂H

∂r
= (W̄∇W̄ −∇〈qA, (P − qA)〉)[W̄ 2 − (P − qA)2]−1/2,

(3.14)

that can be easily checked by direct calculations. Really, the ˇrst equation

ṙ = (P − qA)[W̄ 2 − (P − qA)2]−1/2 = p(W̄ 2 − p2)−1/2 =

= mu(W̄ 2 − p2)−1/2 = −W̄u(W̄ 2 − p2)−1/2 = u(1 − u2)−1/2, (3.15)

holds, owing to the condition dτ = dt(1 − u2)1/2 and deˇnitions p := mu,
m = −W̄ , postulated from the very beginning. Similarly, we obtain that

Ṗ = −∇W̄ (1 − p2/W̄ 2)−1/2 + ∇〈qA, u〉(1 − p2/W̄ 2)−1/2 =

= −∇W̄ (1 − u2)−1/2 + ∇〈qA, u〉(1 − u2)−1/2, (3.16)

exactly coinciding with Eq. (2.18) subject to the evolution parameter t ∈ R. Our
result we now formulate as the next proposition.
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Proposition 3.3. The dual to the classical relativistic electrodynamical mo-
del (2.20) allows the Hamiltonian formulation (3.14) with respect to the ®rest¯
reference system variables, where the Hamiltonian function is given by expres-
sion (3.12).

4. CONCLUSION

Thereby, we can claim that all of dynamical ˇeld equations discussed above
are canonical Hamiltonian systems with respect to the corresponding proper ®rest¯
reference systems, parameterized by suitable time parameters τ ∈ R. Owing to
the passing to the basic reference system K with the time parameter t ∈ R, the
related Hamiltonian structure is naturally lost, giving rise to a new interpretation
of the real particle motion as such having the absolute sense only with respect to
the proper ®rest¯ reference system and being completely relative with respect to
all other reference systems. Concerning the Hamiltonian expressions (3.1), (3.6)
and (3.12) obtained above, one observes that all of them depend strongly on the
vacuum potential ˇeld function W̄ : M

4→ R, thereby dissolving the mass problem
of the classical energy expression, before pointed out [14] by L. Brillouin. It is
necessary here to mention that subject to the canonical Dirac-type quantization
procedure it can be applied only to the corresponding dynamical ˇeld systems
considered with respect to their proper ®rest¯ reference systems.

Remark 4.1. Some comments can be also made concerning the classical relativity
principle. Namely, we have obtained our results completely without using the
Lorentz transformations of reference systems but only the natural notion of the
®rest¯ reference system and its suitable parametrization with respect to any other
moving reference systems. It looks reasonable since, in reality, the true state
changes of a moving charged particle q are exactly realized only with respect to
its proper ®rest¯ reference system. Thereby, the only question, still here left open,
is that about the physical justiˇcation of the corresponding relationship between
time parameters of moving and ®rest¯ reference systems.

This relationship, being accepted throughout this work, looks as

dτ = dt(1 − u2)1/2, (4.1)

where u := dr/dt ∈ E
3 is the velocity vector with which the ®rest¯ reference

system Kr moves with respect to other arbitrarily chosen reference system K.
The expression (4.1) means, in particular, that there holds the equality

dt2 − dr2 = dτ2, (4.2)
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which exactly coincides with the classical inˇnitesimal Lorentz invariant. Its
appearance is, evidently, not casual here, since all our dynamical vacuum ˇeld
equations were successively derived [6, 7] from the governing equations on the
vacuum potential ˇeld function W : M

4 → R in the form

∂2W

∂t2
−∇2W = ρ,

∂W

∂t
+ ∇(vW ) = 0,

∂ρ

∂t
+ ∇(vρ) = 0, (4.3)

being a priori Lorentz invariant, where we denoted by ρ ∈ R the charge density
and by v := dr/dt the suitable local velocity of the vacuum ˇeld potential
changes. Thereby, the dynamical inˇnitesimal Lorentz invariant (4.2) re�ects this
intrinsic structure of equations (4.3). Being rewritten in the following nonstandard
Euclidean form:

dt2 = dτ2 + dr2, (4.4)

it gives rise to a completely other time relationship between reference systems K
and Kr :

dt = dτ(1 + ṙ2)1/2, (4.5)

where, as earlier, we denoted by ṙ := dr/dτ the related particle velocity with
respect to the ®rest¯ reference system. Thus, we observe that all our Lagrangian
analysis completed in Sec. 2 is based on the corresponding functional expressions
written in these ®Euclidean¯ space-time coordinates and with respect to which the
least action principle was applied. So, we see that there exist two alternatives Å
the ˇrst is to apply the least action principle to the corresponding Lagrangian
functions expressed in the Minkowski-type space-time variables with respect to
an arbitrarily chosen reference system K, and the second is to apply the least action
principle to the corresponding Lagrangian functions expressed in the space-time
Euclidean-type variables with respect to the ®rest¯ reference system Kr.

As a slightly amusing but exciting inference, following from our analysis
in this work, is the fact that all of classical special relativity results, related to
electrodynamics of charged point particles, can be obtained one-to-one making use
of our new deˇnitions of the dynamical particle mass and the least action principle
with respect to the associated Euclidean-type space-time variables parameterizing
the ®rest¯ reference system.

An additional remark is here needed concerning the quantization procedure
of proposed electrodynamics models. If the dynamical vacuum ˇeld equations
are expressed in the canonical Hamiltonian form, only technical problems left to
quantize them and obtain the corresponding Schréodinger-type evolution equations
in suitable Hilbert spaces of quantum states. There exists still another important
inference from the approach devised in this work, consisting in complete lost
of the essence of the well-known Einsteinian equivalence principle [4, 5, 11, 26,
31], becoming super�uous for our vacuum ˇeld theory of electromagnetism and
gravity.
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Based on the canonical Hamiltonian formalism devised in this work, concern-
ing the alternative charged point particle electrodynamics models, we succeeded
in treating their Dirac-type quantization. The obtained results were compared with
classical ones, but the physically motivated choice of a true model is left for the
future studies. Another important aspect of the developed vacuum ˇeld theory no-
geometry approach to combining the electrodynamics with the gravity consists in
singling out the decisive role of the related ®rest¯ reference system Kr. Namely,
with respect to the ®rest¯ reference system evolution parameter τ ∈ R all of our
electrodynamics models allow both the Lagrangian and Hamiltonian formulations
suitable for the canonical quantization. The physical nature of this fact remains,
by now, not enough understood. There is, by now [11,26,29Ä31], no physically
reasonable explanation of this decisive role of the ®rest¯ reference system, except
for the very interesting reasonings by R. Feynman who argued in [5] that the re-
lativistic expression for the classical Lorentz force (1.12) has physical sense only
with respect to the ®rest¯ reference system variables (r, τ) ∈ E

4. In the sequel of
our work we plan to analyze the quantization scheme in more detail and make a
step toward the vacuum quantum ˇeld theory of inˇnite many-particle systems.
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