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Perturbative relations between pole and running heavy-quark masses, deˇned in the Minkowski
regions, are considered. Special attention is paid to the appearance of the kinematic π2 effects, which
exist in the coefˇcients of these series. The estimates of order O(α4

s) QCD corrections are presented.
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INTRODUCTION

Among important parameters of QCD are the masses of c, b and t quarks,
which are more heavy than NL = 3, 4, 5 number of lighter ones. They can be
deˇned either as the poles of the corresponding renormalized heavy-quark propa-
gators at q2 = M2

(NL+1) in the Minkowski space-like region or as the running

masses m(NL+1)(μ2) in the MS-scheme. Their scale-dependence is described by
the solution of the following equation:

m(NL+1)(s)
m(NL+1)(μ2)

= exp

⎡
⎢⎣

as(s)∫
as(μ2)

γm(NL+1)(x)

β(x)
dx

⎤
⎥⎦ , (1)

where as(s) = αs(s)/π and αs(s) is the QCD coupling constant of the MS-
scheme, ˇxed in the Minkowski reference point s > m2

(NL+1), and the renormal-

ization group functions γm(NL+1)(x) and β(x) are deˇned as

γm(NL+1)(as) =
d ln m(NL+1)(μ2)

d ln μ2
= −

∑
i�0

γi(NL)ai+1
s , (2)

β(as) =
das(μ2)
d ln μ2

= −
∑
i�0

βi(NL)ai+2
s . (3)
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The coefˇcients βi(NL) and γi(NL) (apart from the coefˇcient γ0) depend
on NL + 1 number of active �avours. Note, that for the MS-scheme run-
ning heavy-quark masses m(NL+1)(μ2) the Minkowskian normalization point
μ2 = m2

(NL+1) is frequently used (see, e.g., [1]). In this case, the deˇnition of

m(NL+1)(m2
(NL+1)) may be geometrically illustrated by ˇnding the intersection

of the curve, which represents the inverse logarithmic scale-dependence of the
squared running mass, with the bisectrix of the angle, formed by positive axes
0 � m2

(NL+1) � ∞ and 0 � μ2 � ∞∗. The relations between pole and running
heavy-quark masses we will be interested read

M(NL+1) = m(NL+1)(m2
(NL+1))

4∑
n=0

tMn (NL)an
s (m2

(NL+1)). (4)

Note, that in the process of comparison of theoretical predictions for the e+e−-
annihilation Euclidean time-like characteristic, namely Adler D-function, with
its experimental-motivated behaviour [2], pole heavy-quark masses were deˇned
in the MOM-scheme, while running heavy-quark masses were deˇned at the
Euclidean scale μ2 = Q2. The similar mixed MOMÄMS-scheme prescriptions are
also widely used to analyze heavy-quark mass dependent effects in characteristics
of deep inelastic scattering (see, e.g., [3, 4]). However, the processes, which
may be observed at LHC, are described by theoretical predictions in the time-
like region of energies. In view of this, it is important to study relations between
different most commonly used deˇnitions of heavy-quark masses and to derive the
relations between pole and running heavy-quark masses, tied to the Euclidean and
Minkowski regions of momentum transferred. This problem was analyzed in [5]
with the help of the special Kéall	enÄLehmann type representation. Here we will
consider this approach in more detail, presenting additional arguments in favour
of theoretical background of the investigations, performed in the work mentioned
above. We will also update estimates of the order O(α4

s) terms in the relation
of Eq. (4), which were obtained in [5] using the extended to the mass-dependent
case effective-charges inspired massless approach, elaborated in [6].

1. COMMENTS ON APPLICATION OF THE DISPERSION RELATIONS

Let us discuss the subject of applicability of the Kéall	enÄLehmann type spec-
tral representations within the context of perturbative QCD. The well-deˇned
dispersion relation for the e+e−-annihilation Adler function is well known

DV (Q2) = −Q2 dΠV (Q2)
dQ2

= Q2

∞∫
0

R(s)
(s + Q2)2

ds, (5)

∗We are grateful to G. B. Pivovarov for the discussion of this topic.
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where ΠV (Q2) is the photon vacuum polarization function and R(s) ∼ Im ΠV .
The two-point function of the scalar quark currents m(NL+1)ψqψq has the imagi-
nary part, which deˇnes the scalar Higgs boson decay width into quarkÄantiquark
pairs. In this case, it is possible to write down the following representation [7]:

DS(Q2) = −Q2 d

dQ2

[
Π(Q2)

Q2

]
= Q2

∞∫
0

RS(s)
(s + Q2)2

ds, (6)

which faces no problems in the region where the asymptotic freedom property of
QCD holds. The same equation was used in [5] to extend the massless procedure
of the estimates of higher-order perturbative corrections to the Euclidean quan-
tities [6] to the case of Eq. (6), which contains the dependence on the square of
running mass m(NL+1)(Q2) deˇned in the Euclidean region. However, as was
shown in [8], the dispersive relation of Eq. (6) is valid within perturbative sector
only and can not be proved on the level of rigour, considered in [9]. Indeed, it
was shown in [8] that in the low-energy region Eq. (6) is ill-deˇned and contains
ˇctitious Λ2

QCD/Q2-term. It re�ects the failure to remove the inˇnities from
ΠS(0). The well-deˇned dispersive relation, which does not contain this term,
can be written down through the second derivative of the scalar correlator [10].
It leads to the following Euclidean function:

DS(Q2) = 2Q2

∞∫
0

sRS(s)
(s + Q2)3

ds. (7)

Note, however, that its perturbative expansion differs from the one, which corre-
sponds to the Euclidean part of perturbative series for Γ(H0 → qq), generated by
the ill-deˇned in nonperturbative sector expression of Eq. (6). Moreover, the ap-
plication of the ®approximate¯ dispersion relation from Eq. (6) ˇxes the kinematic
π2 contributions to the coefˇcients of the perturbative series for Γ(H0 → qq) both
in the expanded [5] and summed up [8,11] forms. Note, that the idea of the sum-
mation of π2 terms at lowest order of QCD was proposed and used over thirty-ˇve
years ago in the works of [7, 12,13].

2. DISPERSION RELATIONS FOR THE POLE
AND RUNNING HEAVY-QUARK MASSES

Consider now the following ®approximate¯ dispersion model of [5] for the
pole heavy-quark masses

M(NL+1) =
1

2πi

−m(NL+1)(m
2
(NL+1))+iε∫

−m(NL+1)(m
2
(NL+1))−iε

ds′
∞∫
0

T (s)
(s + s′)2

ds (8)
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with the spectral density deˇned as T (s) = m(NL+1)(s)
4∑

n=0
tMn an

s (s). It can be

obtained from the dispersion-type expression for the Euclidean series

F (Q2) = m(NL+1)(Q2)
4∑

n=0

fE
n (NL)an

s (Q2) = Q2

∞∫
0

T (s)
(s + Q2)2

ds, (9)

where m(NL+1)(Q2) and as(Q2) are the heavy-quark masses and the QCD cou-
pling constant which are ®running¯ in the Euclidean region. The application of
Eq. (8) allows one to ˇx the relations between coefˇcients fE

n (NL) and tMn (NL)
of the perturbative series in the time-like and space-like regions as fE

0 = tM0 ,
fE
1 = tM1 , fE

2 (NL) = tM2 (NL) + e2(NL), fE
3 (NL) = tM3 (NL) + e3(NL),

fE
4 (NL) = tM4 (NL) + e4(NL). The kinematic π2 terms enter the derived in [5]

explicit expressions for the ei(NL) contributions, namely

e2(NL) =
π2

6
tM0 γ0(β0 + γ0) = 5.89435− 0.274156NL, (10)

e3(NL) =
π2

3

{
tM1 (β0 + γ0)

(
β0 +

γ0

2

)
+ tM0

[
β1γ0

2
+ γ1(β0 + γ0)

]}
= (11)

= 105.622− 10.0448NL + 0.198001N2
L, (12)

e4(NL) = π2

{
tM2

(
β0 +

γ0

2

)
+ tM1

[
β1

2
(
5
3
β0 + γ0) +

γ1

3
(2β0 + γ0)

]
+

+ tM0

[
β2γ0

6
+

γ1

3

(
β1 +

γ1

2

)
+ γ2

(
β0

2
+

γ0

3

)]}
+

+
7π4

60
tM0 γ0(β0 + γ0)

(
β0 +

γ0

2

) (
β0 +

γ0

3

)
=

= 2272.02− 403.951NL + 20.6768N2
L − 0.315898N3

L. (13)

Their NL dependence results from NL dependence of the coefˇcients βi(NL)
with i � 0 in Eq. (3), γi(NL) with i � 1 in Eq. (2) and tM2 in Eq. (4), which has
the following numerical form [14]:

tM2 = 13.44396− 1.041367NL (14)

and comes from the analytical expression of [15], conˇrmed by the independent
calculations of [16]. Notice, that the results of [15, 16] contain the explicit
dependence on ζ2 = π2/6 terms. The discussions presented above clarify that the
part of these π2 terms, explicitly visible in the formulae of [15,16], appear from
the analytical continuation effect of Eq. (10). This our claim can be generalized
to the level of tM3 corrections, evaluated analytically in [14] and semi-analytically
in [17]. In this case, kinematic π2 contributions are determined by Eq. (11). The
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coefˇcients of the relation between heavy-quark Euclidean masses, deˇned in the
MOM on-shell, and MS-scheme masses, contain only remaining transcendental
terms, typical of the on-shell scheme calculations.

3. ESTIMATES OF α4
s CORRECTIONS

We consider now two perturbative series, namely the one of Eq. (4) and the
related to it relation

M(NL+1) = m(NL+1)(M2
(NL+1))

4∑
n=0

vM
n (NL)an

s (M2
(NL+1)). (15)

Keeping in mind that for 0 � n � 3 the values of the explicit dependence
on NL of the coefˇcients tMn (NL) and vM

n (NL) are already known [1, 14], we
will study the problem of estimates of the α3

s and α4
s coefˇcients, using the

effective-charges (ECH) inspired approach, developed and used in [5, 6]∗. It
is known that the applications of this approach in the Euclidean region at the
level of α3

s and α4
s corrections give correct in signs and in order of magnitude

estimates of the perturbative contributions to the number of physical quantities
(see, e.g., [5, 6, 22,23]). As to the application of this procedure to the Minkows-
kian quantities, two ways are possible. The ˇrst prescribes to apply the procedure
of estimates in the Euclidean region and add explicitly calculable kinematic π2

terms afterwards. Within the second way one may use the procedure of estimates
in the Minkowski region directly. It should be noted, that both ways are leading
to reasonable predictions of signs and numerical values of perturbative series for
physical quantities. Moreover, in the case of direct application of this approach
in the Minkowski region, the order α4

s estimates are sometimes even closer to the
results of the explicit calculations (see, e.g., [22]). However, in the latter case
the estimates do not reproduce the known values of the analytical continuation
effects, similar to the ones of Eq. (11) and Eq. (13). Note, that their precise
knowledge is important for applying different approaches of resummations of
these contributions (see, e.g., [8, 11, 24Ä27]). Following the two ways mentioned
above we ˇrst estimate the values of tM3 (NL) coefˇcients and compare them with
the results for texact

3 (NL) obtained in [14, 17]. Satisˇed by this comparison we
are going one step further and estimate tM4 (NL) coefˇcients, taking into account
the numerical expressions for texact

3 (NL). The concrete numbers are presented in
the Table. One can see, that the estimates obtained give correct in signs and in
order of magnitude estimates for the values of tM3 (NL) terms. Thus, one may

∗The method of ECH was proposed and developed in [18, 19] and independently in [20] (see
also [21]).



PECULIAR FEATURES OF THE RELATIONS 1765

The estimates for tM
3 (NL), tM

4 (NL)

NL texact
3 tECH

3 tECHdirect
3 tECH

4 tECHdirect
4

5 73.6366 58.0645 48.4906 719.339 710.016
4 94.4175 100.74 78.243 986.097 1045.5
3 116.504 147.303 111.315 1281.05 1438.75

hope that the estimates for tM4 (NL) are not far from reality. We present now
concrete numbers for the coefˇcients of the series of Eq. (4), where for the α4

s

coefˇcients we use the estimates tECH
4 (NL) from the Table:

Mc ≈ mc(m2
c)

[
1+

4
3
as(m2

c)+10.3a2
s(m

2
c)+116.5a3

s(m
2
c)+1281a4

s(m
2
c)

]
, (16)

Mb ≈ mb(m2
b)

[
1 +

4
3
as(m2

b) + 9.28a2
s(m

2
b) + 94.4a3

s(m
2
b) + 986a4

s(m
2
b)

]
, (17)

Mt ≈ mt(m2
t )

[
1 +

4
3
as(m2

t ) + 8.24a2
s(m

2
t ) + 73.6a3

s(m
2
t ) + 719a4

s(m
2
t )

]
. (18)

The similar relations for Eq. (15) with on-shell normalizations of running para-
meters read

Mc ≈ mc(M2
c )

[
1+

4
3
as(M2

c )+13a2
s(M

2
c )+156a3

s(M
2
c )+1853a4

s(M
2
c )

]
, (19)

Mb ≈ mb(M2
b )

[
1+

4
3
as(M2

b )+12a2
s(M

2
b )+131a3

s(M
2
b )+1460a4

s(M
2
b )

]
, (20)

Mt ≈ mt(M2
t )

[
1+

4
3
as(M2

t )+11a2
s(M

2
t )+107a3

s(M
2
t )+1101a4

s(M
2
t )

]
. (21)

The results presented in Eq. (20) give the following ratios of the squares of
running and pole b-quark masses:

m2
b(M

2
b )

M2
b

= 1 − 8
3
as(M2

b ) − 18.5559a2
s(M

2
b ) − 175.797a3

s(M
2
b ) − 1684a4

s(M
2
b ),

(22)
where the last term is ˇxed by the result of application of the ECH-motivated
approach with adding kinematic π2 contributions at the ˇnal step. In the case when
the Euclidean and kinematic π2 corrections are summed up at the intermediate
steps, the last coefˇcient in Eq. (22) should be changed from Ä1684 to Ä1835.
Note, that in the process of analyzing the uncertainties of QCD predictions for
Γ(H0 → bb), performed in the work of [28], we used slightly lower estimate,
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namely Ä1892. The difference is explained in part by smaller number of signiˇcant
digits taken into account in the values of coefˇcients, which enter in the procedure
of corresponding estimates. However, this difference between the values of
estimated order O(α4

s) contributions is not so numerically important. Other
possible physical applications, like the comparison with the renormalon-based
analysis of asymptotic behaviour of perturbative series in Eqs. (19)Ä(21) (for the
related theoretical discussions one can see [29Ä31]) are beyond the scope of this
study.
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