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FIELDS WITH CONTINUOUSLY DISTRIBUTED MASS
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We describe local ˇeld theories with continuously distributed mass. Such models can be realized
as models in d > 4 space-time with Poincare invariance only in four-dimensional space-time. We
also discuss some possible phenomenological consequences. Namely, we show that the Higgs boson
phenomenology in the SM extension with continuously distributed Higgs boson mass can differ in a
drastic way from the standard Higgs boson phenomenology.
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INTRODUCTION

In this report based on [1Ä3] ∗, we discuss local ˇeld theories with contin-
uously distributed mass. We show that such models could be renormalizable.
Moreover, such models can be realized as models in d > 4 space-time with
Poincare invariance only in four-dimensional space-time. We also discuss some
possible phenomenological consequences. Namely, we show that the Higgs boson
phenomenology in the SM extension with continuously distributed Higgs boson
mass can differ in a drastic way from the standard Higgs boson phenomenology,
We also point out that the notion of an unparticle, introduced by Georgi [7], can
be interpreted as a particular case of a ˇeld with continuously distributed mass.

1. SOME EXAMPLES

Let us start with N scalar ˇelds φk(x) with masses mk (k = 1, 2, . . . , N).

For the ˇeld φ(x, mk, ck, N) =
N∑

k=1

ckφk(x) free propagator has the form

D(p2, mk, ck, N) =
N∑

k=1

|ck|2
(p2 − m2 + iε)

=

∞∫
0

ρ(t, ck, mk, N)
p2 − t + iε

dt, (1)

∗See also [4Ä6].
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where the spectral density is ρ(t, ck, mk, N) =
N∑

k=1

|ck|2δ(t − m2
k). In the limit

N → ∞ρ(t, ck, mk, N) → ρ(t) and the propagator D(p2, mk, ck, N) → D(p2) =
∞∫
0

ρ(t)
p

2

− t + iεdt. For instance, for m2
k = m2

0 + k/NΔ2 and |ck|2 = 1/N we

ˇnd that the limiting spectral density is ρ(t) = 1/Δ2θ(t − m2)θ(m2 + Δ2 − t).
For the limiting spectral density ρ(t) ∼ tδ−1 we ˇnd that D(p2) ∼ (p2)δ−1, that
corresponds to the case of unparticle propagator. In other words, for the limiting
spectral density ρ(t) ∼ tδ−1 the ˇeld φ(x, ρ(t)) can be interpreted as unparticle ∗.
One can introduce the self-interaction Lagrangian in standard way as

Lint(φ(x, ρ(t)) = −λ(φ(x, ρ(t)))4 . (2)

For ˇnite
∞∫
0

ρ(t) dt the asymptotics of propagator D(p2) ∼ 1/p2 and the model (2)

is renormalizable. It should be noted that for Georgi noninteracting scalar unpar-
ticle the effective Lagrangian has the form

Lunp =
1
2
∂μφ

(
− ∂μ∂μ

M2

)−δ

∂μφ. (3)

The ˇelds with continuously distributed mass arise naturally in d-dimensional
ˇeld theories. Consider ˇve-dimensional scalar ˇeld with the Lagrangian

L5 =
1
2
(∂μφ∂μφ − φf(−∂2

4)φ), (4)

where μ = 0, 1, 2, 3. The Lagrangian (4) is invariant only under the four-
dimensional Poincare group and for arbitrary f(−∂2

4) it is not invariant under
ˇve-dimensional Poincare group∗∗. For the Lagrangian L5 free propagator has
the form

D0 =
1

pμpμ − f(p2
4)

. (5)

For the ˇeld φ(x, x4 = 0) propagator is proportional to
1
2π

∫ ∞

−∞

dp4

pμpμ − f(p2
4) + iε

,

that corresponds to the case of the ˇeld with continuously distributed mass. Usu-
ally in the literature only models in d > 4 space-time with d-dimensional Poincare
group invariant Lagrangians are considered. However it should be stressed
that from the experimental point of view we have to postulate the invariance

∗The interpretation of the unparticle as a tower of massive particles was also proposed in [8].
∗∗The Lagrangian (4) is invariant under ˇve-dimensional Poincare group for f(−∂2

4 ) = −∂2
4 .
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of the Lagrangian only under the four-dimensional Poincare group. For the inter-
action

LI = −λφ4 (6)

and for some functions f(p2
4) the model is renormalizable∗. Remember that

standard φ4model is nonrenormalizable in d > 4 space-time.
It is possible to construct models where some ˇelds exist in four-dimensional

space-time (four-dimensional brane) and other ˇelds live in (d > 4) space-time.
One of the simplest examples is the model [1] where scalar ˇeld φ(x, x4) prop-
agates in ˇve-dimensional space-time and interacts with the four-dimensional
fermion ˇeld ψ(x). The action of the model has the form

St = S1 + S2 + Si, (7)

where

S1 =
∫

1
2
[∂μφ(x, x4)∂μφ(x, x4) − φ(x, x4)f(−∂2

4)φ(x, x4)]d5x, (8)

S2 =
∫

ψ̄(x)[iγμ∂μ]ψ(x)d4x, (9)

Si =
∫

[hφ(x, x4 = 0) ¯ψ(x)ψ(x) − λφ4(x, x4 = 0)]d4x, (10)

where x = (x0, x1, x2, x3), ∂4 = ∂/∂x4, d5x = d4xdx4, d4x = dx0 dx1 dx2 dx3.
It should be stressed that the model (7)Ä(10) is a local one in four-dimensional
space-time. The Feynman rules for the model (7)Ä(10) coincide with the Feynman
rules for the four-dimensional Yukawa model, the single difference is that instead
of the free propagator (p2 − m2 + iε)−1 for the standard four-dimensional scalar
ˇeld we have to use the effective propagator

Deff(p2) = (2π)−1

∫
[p2 − f(p2

4) + iε]−1dp4 (11)

for the four-dimensional ˇeld φ(x, x4 = 0).
There are many generalizations to the case of vector ˇelds. For instance,

consider the Stueckelberg Lagrangian

L0 =
N∑

k=1

[
− 1

4e2
k

Fμν,kFμν,k +
m2

k

2e2
k

(Aμ,k − ∂νφk)2
]
, (12)

where Fμν,k = ∂μAν,k − ∂νAμ,k. The Lagrangian (12) is invariant under gauge
transformations

Aμ,k → Aμ,k + ∂μαk, (13)

∗For instance, for f(p2
4) = m2 for |p4| � p0 and f(p2

4) = ∞ for |p4| > p0.
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φk → φk + αk. (14)

For the ˇeld Bμ =
N∑

k=1

Aμ,k free propagator in transverse gauge is

Dμν(p) =
(

gμν − pμpν

p2

)( N∑
k=1

(
e2

k

p2 − m2
k

))
. (15)

In the limit N → ∞

Dμν(p) →
(

gμν − pμpν

p2

)
D(p2), (16)

where

D(p2) =

∞∫
0

ρ(t)
p2 − t + iε

dt (17)

and ρ(t) � 0. One can introduce the interaction of the ˇeld Bμ with fermion
ˇeld ψ in standard way, namely

Lint = ψ̄γμψBμ. (18)

The simplest generalization of the SM model consists in the the replacement of
the U(1) gauge ˇeld propagator(

gμν − pμpν

p2

)
1
p2

→
(

gμν − pμpν

p2

)
D(p2). (19)

This generalization preserves the renormalizability for ˇnite
∞∫
0

ρ(t)dt because the

ultraviolet asymptotics of D(p2) coincides with free propagator. For ρ(t) ∼ tδ−1

we reproduce the case of vector unparticle.

2. POSSIBLE PHENOMENOLOGICAL CONSEQUENCES

Consider the SM in unitary gauge, and instead of free propagator (p2−m2
H)−1

let us use the propagator D(p2) =
∞∫
0

ρ(t)(p2 − t)−1 dt. For ˇnite
∞∫
0

ρ(t) dt the

model is renormalizable. For BreitÄWigner spectral density∗

ρBW(t) =
(

1
π

)
ΓmH [(t − m2

H)2 + Γ2m2
H ]−1 (20)

∗For the spectral density (20)
∫

ρBW(t) dt = 1, lim
Γ→0

ρBW(t) = δ(t − m2
H).



1792 KRASNIKOV N.V.

one can interpret Γ as an internal decay width of the Higgs boson [1]. For
Γ � Γt, where Γt is the standard Higgs boson decay width, the Higgs boson will
decay mainly into invisible modes that makes the Higgs boson discovery at the
LHC extremely difˇcult.

Similar gauge invariant generalization of the SM is the following. Let us
add to the SM ˇelds SUc(3)⊗SUL(2)⊗U(1) singlet scalar ˇeld φ(x, ρ(t)) with
continuously distributed mass. The interaction of the ˇeld φ(x, ρ(t)) with the
Higgs doublet ˇeld H(x) has the form

Lint(φint(x, ρ(t)), H(x)) = −λ2(φint(x, ρ(t))H+(x)H(x). (21)

After electroweak symmetry breaking, the singlet ˇeld φint(x, ρ(t)) will mix with
the standard Higgs boson. As a result of the mixing, the Higgs boson will have
invisible decay modes as in previous example.

Another example is the Z ′ vector boson model with continuously distributed
mass. One of the possible effects due to nonzero internal decay width of the Z ′

boson is the existence of rather broad resonance structure in DrellÄYan reaction
pp → Z ′ + . . . → l+l− + . . .

CONCLUSION

In this report we described quantum ˇeld theories with continuously dis-
tributed masses. It is possible to interpret such models as quantum ˇeld theory
models in d > 4 space-time. The most interesting example is the Higgs boson
with continuously distributed mass. The Higgs boson phenomenology for such
model for Γ � Γt is different from the standard Higgs boson phenomenology,
namely, Higgs boson decays mainly into invisible modes that makes the LHC
Higgs boson discovery very untrivial.

This work was supported by the grants RFBR N07-02-00256, RFBR 08-02-
91007-CERN.
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