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TOWARDS LAGRANGIAN FORMULATIONS OF
MIXED-SYMMETRY HIGHER-SPIN FIELDS ON
AdS-SPACE WITHIN BFV-BRST FORMALISM

A. A. Reshetnyak

Institute of Strength Physics and Materials Science, Tomsk, Russia

The spectrum of superstring theory on the AdS5 × S5 RamondÄRamond background in ten-
sionless limit contains integer and half-integer higher-spin ˇelds subject at most to two-rows Young
tableaux Y (s1, s2). We review the details of a gauge-invariant Lagrangian description of such mas-
sive and massless higher-spin ˇelds in anti-de-Sitter spaces with arbitrary dimensions. The procedure
is based on the construction of Verma modules, its oscillator realizations and of a BFV-BRST operator
for nonlinear algebras encoding unitary irreducible representations of AdS group.

PACS: 11.10.-z

1. INTRODUCTION

Launch of LHC on the rated capacity assumes not only the answer to the
question of existence of Higgs boson, the proof of supersymmetry display and
a new insight on the origin of Dark Matter, but permits one to reconsider the
problems of a unique description of variety of elementary particles and all known
interactions. In this relation, the development of higher-spin (HS) ˇeld theory
in view of its close relation to superstring theory on constant curvature spaces,
which operates with an inˇnite set of massive and massless bosonic and fermionic
HS ˇelds subject to multirow Young tableaux (YT) Y (s1, . . . , sk), k � 1 (see
for a review [1]), seems to be actual one. The paper considers the last results
of constructing Lagrangian formulations (LFs) for free integer and half-integer
HS ˇelds on AdSd space with Y (s1, s2) in Fronsdal metric-like formalism within
BFV-BRST approach [2] as a starting point for an interacting HS ˇeld theory in
the framework of conventional Quantum Field Theory, and in part based on the
results presented in [3Ä6].

This method of Lorentz-covariant constructing LF for HS ˇelds, developed
originally in a way that applies to Hamiltonian quantization of gauge theories with
a given LF, consists in a solution of the problem inverse to that of the method [2]
(as in the case of string ˇeld theory [7]) in the sense of constructing a classical
gauge LF with respect to a nilpotent BFVÄBRST operator Q.
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In detail, the solution of inverse problem includes 4 steps:
• the realization of initial irrep conditions of AdS group, that extract the

ˇelds with a deˇnite mass m and generalized spin s = (s1, . . . , sk) [8] as operator
mixed-class constraints oI in a special Fock space H;

• the additive conversion (following to [9]) of algebra oI into one of OI :
OI = oI + o′I , [oI , o

′
J} = 0, determined on wider Fock space, H⊗H′ with only

ˇrst-class constraints Oα ⊂ OI ;
• the construction of the Hermitian nilpotent BFV-BRST operator Q′ for

nonlinear superalgebra of converted operators OI which contains the BFV-BRST
operator Q for only subsystem of Oα;

• the ˇnding of Lagrangian L for given HS ˇeld through corresponding
scalar product 〈 |〉 like L ∼ 〈χ|Q|χ〉, to be invariant with respect to gauge
transformations δ|χ〉 = Q|Λ〉 with |χ〉 containing initial HS ˇeld.

As compared to application of above algorithm for bosonic [10] and fermi-
onic [4,11] HS ˇelds on R1,d−1 with standard resolution of the 2nd and 3rd steps
due to the same Lie (super)algebra structure for oI , o

′
I , OI : [oI , oJ} = fK

IJoK ,
their resolution already for totally-symmetric HS ˇelds on AdSd space [3, 12]
is not so easy. It is revealed on stages of Verma module (VM) construc-
tion for o′I and its nonpolynomial(!) oscillator realization in H′ because of
AdS radius r−1/2 (r = R/d(d − 1) for scalar curvature R) [3, 12]. In turn,
a construction of BFV-BRST operator Q′ does not have the Lie-algebra form,
Q′ = CIOI + (1/2)CICJfK

JIPK for (super)algebra of OI in transiting to AdS
space.

The main goals of the paper are to apply the above strategy to construct LFs
for bosonic and fermionic HS ˇelds on AdSd spaces subject to Y (s1, s2).

2. BOSONIC FIELDS IN AdS SPACES

A massive integer spin s = (s1, s2) (s1 � s2) representation of the AdS
group in an AdSd space is realized in a space of mixed-symmetry tensors,

Φ(μ)s1 ,(ν)s2
≡Φμ1...μs1 ,ν1...νs2

(x)←→
μ1 μ2 · · · · · · · μs1

ν1 ν2 · · · · · νs2

,

(1)
subject to the KleinÄGordon (2) divergentless, traceless and mixed-symmetry
equations (3) (for β = (2; 3) ⇐⇒ (s1 > s2; s1 = s2)):[

∇2 + r[(s1 − β − 1 + d)(s1 − β) − s1 − s2] + m2
]
Φ(μ)s1 ,(ν)s2

= 0, (2)(
∇μ1 ,∇ν1 , gμ1μ2 , gν1ν2 , gμ1ν1

)
Φ(μ)s1 ,(ν)s2

= Φ{(μ)s1 ,ν1}ν2...νs2
= 0. (3)
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To obtain HS symmetry algebra (of oI ) for a description of all integer HS ˇelds,
we introduce a Fock space H, generated by 2 pairs of creation ai

μ(x) and annihi-
lation aj+

μ (x) operators, i, j = 1, 2, μ, ν = 0, 1, . . . , d − 1: [ai
μ, aj+

ν ] = −gμνδij ,
and a set of constraints for an arbitrary string-like vector |Φ〉 ∈ H,

|Φ〉 =
∞∑

s1=0

s1∑
s2=0

Φ(μ)s1 ,(ν)s2
(x)a+μ1

1 · · ·a+μs1
1 a+ν1

2 · · ·a+νs2
2 |0〉, (4)

l̃0|Φ〉 = (l0 + m̃2
b + r((g1

0 − 2β − 2)g1
0 − g2

0))|Φ〉 = 0, l0 =
[
D2 − r

d(d − 6)
4

]
,

(5)

(li, lij , t)|Φ〉 =
(
−iai

μDμ,
1
2
ai

μajμ, a1+
μ a2μ

)
|Φ〉 = 0, i � j, (6)

with number particles operators, gi
0 = −(1/2){ai+

μ , aμi}, central charge m̃2
b =

m2 + rβ(β + 1), operator Dμ = ∂μ −ωab
μ (x)

(∑
i

a+
iaaib

)
, a

(+)μ
i (x) = eμ

a(x)a(+)a
i

with vielbein eμ
a , spin connection ωab

μ , tangent indices a, b. Operator Dμ is
equivalent in its action in H to the covariant derivative ∇μ (with d'Alambertian
D2 = (Da + ωb

ba)Da). The set of 7 primary constraints (5), (6) with {oα} ={
l̃0, l

i, lij, t
}

are equivalent to Eqs. (2), (3) for all spins.
For Hermiticity of BFV-BRST operator (reality Lagrangian L), the algebra

with oα must be enlarged by adding the operators
(
l+i , l+ij , t

+
)
, resulting the HS

symmetry algebra in AdSd space with Y (s1, s2), denoted as A(Y (2), AdSd)).
The Lie subalgebra of operators lij , t, g

i
0, l

+
ij , t

+ is isomorphic to sp(4), whereas
the nontrivial quadratic commutators in A(Y (2), AdSd)) are due to operators
with Dμ: li, l̃0, l

+
i . For the aim of LF construction it is enough to have

a simpler, (the so-called modiˇed) algebra Amod(Y (2), AdSd)), with operator
l0 (5) instead of l̃0, so that AdS-mass term, m̃2

b + r
(
(g1

0 − 2β − 2)g1
0 − g2

0

)
,

will be restored later within conversion and proper construction of LF. Algebra
Amod(Y (2), AdSd)) contains one ˇrst-class constraint l0, four differential li, l

+
i ,

eight algebraic t, t+, lij , l
+
ij second-class constraints θa, operators gi

0, composing

an invertible matrix: ‖[θa, θb}‖ = ‖Δab(gi
0)‖ + (oI), and satisˇes the nonlinear

relations (additional to ones for sp(4)) given by the Table with the quantities
Kbk

1 , W ki
b , Xki

b to be quadratic in oI (see [5] for details).

The nonlinear part of algebra Amod(Y (2), AdSd)

[ ↓,→} t t+ l0 li li+ lij lij+ gi
0

l0 0 0 0 −rKbi+
1 rKbi

1 0 0 0

lk −l2δk1 −l1δk2 rKbk+
1 W ki

b Xki
b 0 −(1/2)l{i+δj}k liδik

lk+ l1+δk2 l2+δk1 −rKbk
1 −Xik

b −W ki+
b (1/2)l{iδj}k 0 −li+δik
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3. VERMA MODULE, FOCK SPACE REALIZATION

To ˇnd additional parts o′I within additive conversion for nonlinear algebra
A(Y (2), AdSd) of oI into algebra Ac(Y (2), AdSd) of converted constraints OI ,
acting in H ⊗ H′, we, ˇrst, determine the multiplication law for the algebra
A′(Y (2), AdSd), which for compactly written one for oI reads (see [5, 12])

[ o′I , o
′
J} = fK

IJo′K − fKM
IJ o′Mo′K if [oI , oJ} = fK

IJoK + fKM
IJ oKoM . (7)

Second, following generalization of PoincareÄBirkhoffÄWitt theorem, we con-
struct VM, based on Cartan-like decomposition enlarged from one for sp(4)

A′(Y (2), AdSd) = {l′+ij , t′+, l′+i } ⊕ {g′i0 , l′0} ⊕ {l′ij, t′, l′i} ≡ E− ⊕ H ⊕ E+. (8)

Note, that in contrast to the case of Lie (super)algebra and totally-symmetric
HS ˇelds on AdS space [3, 4, 12], the negative root vectors l′+1 , t′+, l′+2 are not
commuted, making the arbitrary vector |N〉V = |n11, n12, n22, n1, n, n2〉V

|N〉V ≡
(
l′+11

)n11(
l′+12

)n12(
l′+22

)n22

(
l′+1
m1

)n1 (
t′+

)n
(

l′+2
m2

)n2

|0〉V , E+|0〉V = 0

(9)
from VM, (for the highest weight vector |0〉V , nij , ni, n ∈ N0, and arbitrary
constants mi with dimension of mass) by not proper one for t′+, l′+2 ! That
nontrivial entanglement is resolved within iterative procedure, so that the VM
for algebra A′(Y (2), AdSd) is constructed (see [6]) as well as its realization as
formal power series (due to r) in degrees of creation and annihilation operators
(B, B+), B = (bi, bij , b) in H′ whose number coincides to ones of θa.

4. BRST OPERATOR FOR NONLINEAR ALGEBRA

The system of OI forming nonlinear algebra Ac(Y (2), AdSd) with multipli-
cation law following from Eqs. (7) (see the Table): [OI , OJ} = FK

IJ (o′, O)OK

for Weyl ordering of quadratic combinations of OI in right-hand side of
[OI , OJ ] [3, 5], now has no the form of closed algebra, because of presence of
nontrivial Jacobi identities for 6 triples (L1, L2, L0), (L+

1 , L+
2 , L0), (Li, L

+
j , L0).

Indeed, there exists a set of third-order structural functions in terminology of [2]
resolving those identities (see [5]).
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Therefore, BFV-BRST operator Q′ has the terms in the 3rd degree in CI [5],

Q′ = Q′
1+Q′

2+

[
r2η0ηiηjε

ij

{
1
2

∑
k

(
Gk

0 [PP+
22−P+P+

11+iP+
12

∑
l

(−1)lP l
G]−

− i(L+
11P+ − L+

22P)Pk
G + 4LkkP+

k2P
+
1k

)
− L+

12P1
GP2

G + 2L12P+
22P+

11

}
+

+ r2η0η
+
i ηj

{[∑
k

(−1)k i

2
Gk

0

∑
l

P l
G + 2(L+

22P22 − L11P+
11)

]
Pδ1jδ2i+

+ ε{1jδ2}i

(
ı
∑

k

[
1
2
TP+ − 2L12P+

12(−1)k

]
Pk

G + 2(L12P − TP12)P+
22+

+2(T +P12 −L12P+)P+
11

)
−T

[
P1

GP2
Gδ2iδ1j +2P11P+

22δ
1iδ2j

]
−2

∑
k

(−1)k×

×
[
(Gk

0P11 + ıL11Pk
G)δ1iδ2j − (Gk

0P22 + ıL22Pk
G)δ2iδ1j

]
P+

12

}
+ h.c.

]
, (10)

with the standard form for linear Q′
1 and quadratic Q′

2 terms in ghosts CI∗. The
Hermiticity of Q′ is deˇned by the rule: Q′+K = KQ′, for operator K =
1̂ ⊗ K ′ ⊗ 1̂gh, with nondegenerate K ′ providing the Hermiticity of o′I in H′.

5. UNCONSTRAINED LAGRANGIAN FORMULATION

BFV-BRST operator Q for 1st-class constraints Oα = {L0, L
i, Lij , T } is

extracted from Q′ (10) by collecting the terms with ghosts ηi
G (see [5] for details)

Q′ = Q + ηi
G(σi + hi) + BiP i

G, σi + hi = Gi
0 + ghosts. (11)

The same is applied to a physical vector |χ〉 ∈ Htot = H ⊗ H′ ⊗ Hgh, |χ〉 =
|Φ〉+|ΦA〉, |ΦA〉|H = 0, with |Φ〉 given in (4). From commutativity, [Q, σk} = 0,
and choice of a representation for Hilbert space (as in SFT [7])) it follows the
spectral problem from the equation Q′|χ〉 = 0 [5],

Q|χ〉 = 0, (σi + hi)|χ〉 = 0, gh (|χ〉) = 0, (12)

thus determining the spectrum of spin values hi(si) = −
(
si +

d − 5
2

−2δi2
)

and

proper eigenvectors |χ〉(s1,s2). After substitution: hi → hi(si), operator Q(s1,s2)

∗Here (CI ,PI ) =
(
η0,P0 ; ηi

G,Pi
G ; η+

i ,Pi ; ηi,P+
i ; η+

ij ,Pij ; ηij ,P+
ij ; η,P+ ; η+,P

)
.
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is nilpotent on each subspace H
(s1,s2)
tot whose vectors satisfy Eq. (12). Hence,

the equations of motion (one to one correspond to Eqs. (2), (3)), a sequence of
reducible gauge transformations and Lagrangian action have the form

Q(s1,s2)|χ0〉(s1,s2) = 0, δ|χl〉(s1,s2) = Q(s1,s2)|χ1+1〉(s1,s2), l = 0, . . . , 6, (13)

S(s1,s2) =
∫

dη0 (s1,s2)〈χ0|K(s1,s2)Q(s1,s2)|χ0〉(s1,s2), for|χ0〉 ≡ |χ〉. (14)

The corresponding LF for bosonic ˇeld with spin s subject to Y (s1, s2) is a
reducible gauge theory of maximally L = 6th stage of reducibility∗.

SUMMARY

We have brie�y considered the method of constructing the LF for free mas-
sive mixed-symmetry HS ˇelds on AdSd space in the framework of BFV-BRST
approach. To do so, we have constructed new auxiliary representation for nonlin-
ear algebra which serves for conversion procedure of initial HS symmetry algebra.
Then, we have sketched details of systematic way to ˇnd BFV-BRST operator
for nonlinear operator algebra and presented a proper construction of gauge LF
basically for bosonic HS ˇelds. Equations (13), (14) present the basic results of
the paper being the ˇrst step to interacting theory.
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