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ON SOME CLASSES OF EXACT SOLUTIONS OF
SCALAR BORNÄINFELD EQUATION

L. T. Ste�pie�n∗

Pedagogical University, Cracow, Poland

Some classes of exact solutions of scalar BornÄInfeld equation have been found. Certain selected
properties of these solutions have been presented.
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INTRODUCTION

BornÄInfeld theory is some generalization of Maxwell theory of electromag-
netism. It was created by Max Born and Leopold Infeld, as a continuation of
Mie theory of electromagnetism, [3]. Mie wanted to construct such a theory, in
which all properties of electron were caused by electromagnetic ˇeld. However,
this theory was not gauge-invariant. Born and Infeld suggested full relativis-
tic and gauge-invariant theory, which Lagrangian density is given by the square
root of the determinant of the sum of the metric tensor and the tensor of the
electromagnetic ˇeld [2, 3].

In this paper we will investigate scalar BornÄInfeld equation [1]:

(1 − u2
,t + u2

,x + u2
,y + u2

,z)(u,xx + u,yy + u,zz − u,tt)−
− u2
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,tu,tt − 2u,xu,yu,xy − 2u,xu,zu,xz−

− 2u,yu,zu,yz + 2u,tu,xu,tx + 2u,tu,yu,ty + 2u,tu,zu,tz = 0. (1)

Physical context: scalar BornÄInfeld equation (1) is connected to NambuÄ
Goto equation from string theory [5, 7]. BornÄInfeld model has been used also
by Heisenberg in his model of pion ˇreball production [7].

∗E-mail: sfstepie@cyf-kr.edu.pl, stepien50@poczta.onet.pl



1832 STE�PIE	N L. T.

1. EXACT SOLUTIONS OF I KIND

In [11], by applying decomposition method, the so-called solutions of I kind
have been found:

u(x, y, z, t) = β1 + f(aμxμ + β2, bνxν + β3, cρx
ρ + β4), (2)

where aμ, bν , cρ ∈ R Å their values are given below, aμxμ = −a0x
0+akxk, k =

1, 2, 3, x0 = t, x1 = x, x2 = y, x3 = z, μ, ν, ρ = 0, 1, 2, 3, βi (i = 1, 2, 3, 4) are
arbitrary real constants and f is an arbitrary, real function of class C2. Boundary
conditions follow from physical application. As we see, the solution (2) is a
nonlinear composition of travelling waves.

After inserting (2) into (1), we obtain the so-called determining system of
equations, from which we determine the values of the coefˇcients aμ, bν , cρ. The
above ansatz describes the so-called solutions of I kind. Some special case of this
solution has been found for static, isotropic Heisenberg ferromagnet in [9, 10],
where it is called as instanton solution. So we may say also in the case of the
solution (2) of scalar BornÄInfeld equation that it is nonlinear composition of
instantons. The values of the coefˇcients aμ, bν , cρ are:
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The solution (2) is a generalization of well-known solution in (1+1) dimen-
sions [13]:

u(x, t) = f(−t + x), (6)

where f is arbitrary, real function of class C2.
We may obtain also, by applying decomposition method, the solution of

BornÄInfeld equation (1) in (2+1) dimensions, which has analogical form, as (2),

but of course: u = u(x, y, t) and a2 =
√

a2
0 − a2
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a1b0

a0
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2. GRAUSTEIN-KIND SOLUTIONS

In [4] (and references therein), another exact solution of (1) has been pre-
sented:

u(x, y, z, t) = f(t − z) − xg(t − z) − yh(t − z), (7)
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where f , g, h are arbitrary, real functions of their arguments. This solution
describes a domain wall moving along z axis.

We may generalize these solutions and ˇnd such solution, which describes a
domain wall moving in the plane x − y:

u(x, y, z, t) = β1 + A0f0(aμxμ + β2)+A1x
3f1(bνxν + β3)+ (8)

+ A2x
3f2(cρx

ρ + β4), (9)

where μ, ν, ρ = 0, 1, 2, a2 =
√
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and f1, f2, f3 are arbitrary, real functions of class

C2, a2
0 > a2

1, a0 �= 0, a1 �= 0, Ai(i = 0, 1, 2) ∈ R, a0, a1, b1, c0 ∈ R, βj(j =
1, 2, 3, 4) ∈ R.

3. SOME ASPECTS OF DYNAMICS OF SOLUTIONS
OF SCALAR BORNÄINFELD EQUATION

3.1. Perturbations and Backreaction of the Exact Solutions of BornÄInfeld
Equation. Now we will investigate the perturbations of the exact solutions found
in the previous section.

1) At the beginning we investigate the perturbations of exact solution in
(1 + 1) dimensions. It is well known in the literature [13] and may be found
independently by applying the decomposition method.

We search for the solution of (1) in the following form [8]:

u(x, t) =
2∑

i=0

(A)iui(x, t) = u0(x, t) + Au1(x, t) + A2u2(x, t), (10)

where u0(x, t) = f(a0(x− t)) (f Å arbitrary, real function of class C2, a0 ∈ R)
is the solution of BornÄInfeld equation in (1 + 1) dimensions, u1(x, t) is the
perturbation of u0(x, t), and u2(x, t) is the backreaction. A ∈ R is an amplitude
of excitations and A � 1. An interaction of two such solitons as u0 was
investigated in [6]. Here we assume nothing about the form either of the excitation
or of the backreaction. For u0 = tanh (a0(x − t)): after inserting (10) into (1)
and neglecting the terms by the powers of A more than 1, we obtain:
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The general solution of this equation has the form: u1(x, t) = F1(t−x)+G2(x, t),
where F1 is some arbitrary, real function of its argument and G2 Å ®a tail¯ is a
linear, unbounded function, and therefore we must reject it. Analogical situation
takes place for u0 = sech (t− x). It turns out that the above situation repeats for
the backreaction u2 (we reject the unbounded ®tail¯ function) and ˇnally:

u(x, t) = F0(t − x) + AF1(t − x) + A2F2(t − x), (12)

where F0(t − x) = tanh (a0(t − x)) and Fi, i = 1, 2 are arbitrary, real functions
of class C2.

2) In the case of the solution in (3 + 1) dimensions, given by (2) and the
values of the coefˇcients (3)Ä(5), where for the simplicity we put: a3 = 0, b2 = 0,
it turned out that the functions of the same form as the unperturbed solution u0,
given by (2) and the values of the coefˇcients (3)Ä(5) (where a3 = 0, b2 = 0)
solve the equations for the perturbation u1 and backreaction u2. However, the
search for the ®tail¯ function has not been succeeded. Similar result has taken
place in the case of the solution of I kind in (2 + 1) dimensions.

3) Analogical situation repeats in the case of Graustein-kind solutions.
3.2. Motion of Perturbed Kink in (1 + 1) Dimensions. We must require

decaying of perturbation and backreaction, when x → ±∞, t =→ ±∞, we

choose: u1 = 0.2 sech (0.5(x − t)), u2 =
0.04

(exp (t − x) + 1.7)2
. If we deˇne

the position of perturbed kink: u(x, t) = tanh (t − x) + 0.2 sech (0.5(x − t)) +
0.04

(exp (t − x) + 1.7)2
, as u(x, y, z, t) = 0, then there exists only one real solution

of such obtained equation of motion: x = t − 0.206. As is well known, the kink
may radiate when it is accelerated or it is deformated [12]. Hence we see that
our perturbed kink (of BornÄInfeld equation (1)) is not accelerated and the only
source of possible radiation is deformation of the kink.

Because of limited space of this paper, the further physical properties of
above-found solutions will be investigated in a separate paper.

3.3. Nonexistence of Boost Transformation. If in the case of the solutions (2)
(and in the case of (2 + 1)-dimensional analogous solution) we put a0 = 0 in
(3)Ä(5), we will obtain complex solutions. It is in a correspondence with the well-
known Bernstein theorem [14]. Hence we can establish a general remark: there
does not exist boost transformation from nonlinear, real, space-like and time-
independent solutions (because it does not exist) of scalar BornÄInfeld equation (1)
in Minkowski space-time, to nonlinear, real and time-dependent solution of this
equation.

CONCLUSIONS

We have obtained generalized Graustein solutions and class of solutions of
I kind in (2 + 1) dimensions. Next we have found the forms of: perturbation
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and backreaction of kink in (1 + 1) dimensions Å they replay the form of
unperturbed kink. These last results have been generalized to the solutions in
(2 + 1) and (3 + 1) dimensions. We must stress here that in all these cases,
the perturbed solutions with backreaction, with the found ®tail¯ functions and
without them, are the solutions of scalar BornÄInfeld equation. We have shown
also that the perturbed kink (with backreaction) moves without any acceleration,
so the possible source of the radiation of the kink is its deformation and that there
does not exist any boost transformation from real, static, nonlinear solution of
BornÄInfeld equation (1) to real, nonstatic, and nonlinear solution of this equation.
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