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The in�uence of helicity on the anomalous scaling of the single-time structure functions of
a passive scalar advected by a non-Gaussian velocity ˇeld driven by the stochastic NavierÄStokes
equation is investigated by the ˇeld theoretic renormalization group and the operator-product expansion
within the second order of the perturbation theory (two-loop approximation). The set of composite
operators with the minimal critical dimensions is identiˇed, and their dependence on the helicity
parameter is found. It is shown that the contribution to the critical dimensions of the structure
functions of a passive scalar is given only by parts of the composite operators which are independent
of the helicity parameter. Therefore, it is shown that the spatial parity violation has no impact on the
anomalous scaling behavior of the passively advected scalar quantity in the turbulent environment.

PACS: 11.10.-z

INTRODUCTION

During the last two decades considerable progress has been achieved in the
understanding of intermittency and anomalous scaling of �uid turbulence [1Ä
3]. Both natural and numerical experiments suggest that deviations from the
phenomenological KolmogorovÄObukhov theory [4, 5] are even more strongly
pronounced for a passively advected scalar ˇeld (e.g., temperature or density
of an impurity) than for the velocity ˇeld itself (see, e.g., [2, 3] and references
cited therein). These deviations are manifested in a singular dependence of the
corresponding correlation or structure functions on distances and on the external
(integral) turbulence scale, and they are related to strong �uctuations of the energy
�ux (intermittency).

The central role in the studies of a passive advection is played by a simple
model of a passive scalar quantity advected by a random Gaussian velocity ˇeld,
white in time and self-similar in space, the so-called Kraichnan rapid-change
model [6], and by various of its descendants. Namely, in the framework of the
rapid-change model, for the ˇrst time, the anomalous scaling was established on
the basis of a microscopic model and corresponding anomalous exponents were
calculated within controlled approximations (see, e.g., [2, 3] and references cited
therein).
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An effective method for investigation of self-similar scaling behavior is the
renormalization group (RG) technique [7, 8]. It was shown that within the ˇeld
theoretic RG approach the anomalous scaling is related to the existence of the
so-called ®dangerous¯ composite operators with negative critical dimensions in
the operator product expansion (OPE) of the scaling functions. The RG method
allows us to construct a systematic perturbation expansion for the anomalous
exponents and to calculate them to higher orders [8].

Although the models of the passive advection by the so-called synthetic
velocity ˇelds reproduce many anomalous features of genuine turbulent heat
or mass transport, nevertheless, they are not able to describe some important
properties, e.g., within the RG approach to the Kraichnan model it is impossible to
study the in�uence of helicity (spatial parity violation) of a turbulent environment
on the anomalous scaling. Thus, to be able to study such phenomena, it seems,
that it is necessary to go beyond Gaussian statistics of the velocity ˇeld.

In the present paper, the ˇeld theoretic RG investigation of the anomalous
behavior of the single-time structure functions of a scalar ˇeld passively advected
by the velocity ˇeld which is governed by the stochastic Navier-Stokes equation
with a given helical external random stirring force is done to the second order
(two-loop) approximation in the corresponding perturbation theory. The main aim
of the present work is to ˇnd possible dependence of the corresponding critical
dimensions on the helicity parameter and to compare them to the results without
presence of helicity [9] and to that obtained within the model with a Gaussian
statistics [10].

1. THE MODEL AND ITS FIELD THEORETIC FORMULATION

The advection-diffusion equation for the scalar ˇeld θ ≡ θ(t,x) has the form

∂tθ = κ0�θ − (v.∂)θ + f, (1)

where ∂t ≡ ∂/∂t ∂ is d-dimensional gradient; � = ∂.∂ is the Laplace opera-
tor; κ0 is the molecular diffusivity or thermal conductivity (subscript 0 denotes
unrenormalized parameters of the theory), v(t,x) is a transverse (due to incom-
pressibility) velocity ˇeld, and f(t,x) is a random force with the correlator of
the following form

Dθ ≡ 〈f(t,x)f(t′,x′)〉 = δ(t − t′)C(r/L), r = x − x′. (2)

The noise maintains the steady state of the system but, in what follows, the
concrete form of the correlator is not essential. It is only important that C
decreases rapidly for r ≡ |r| � L, where L denotes an integral scale. In what
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follows, we shall suppose that the velocity ˇeld satisˇes the stochastic NavierÄ
Stokes equation

∂tv = ν0�v − (v · ∇)v − ∂P + f , (3)

where ν0 is the kinematic viscosity coefˇcient, and P is the pressure. The
transverse random force per unit mass f = f(t,x) simulates the energy pumping
into the system on large scales to maintain the steady state. We assume that its
statistics is Gaussian with zero mean and with pair correlation function of the
following form

Dv
ij ≡ 〈fi(t,x)fj(t′,x′)〉 =

= δ(t − t′)
∫

dk
(2π)d

Rij(k)g0ν
3
0k4−d−2ε eik·(x−x′), (4)

where the form of the tensor Rij(k), namely, Rij(k) = δij−kikj/k2+iρ εijlkl/k,
represents the transition to a helical �uid. It consists of the nonhelical isotropic
standard transverse projector Pij(k) = δij − kikj/k2 and the helical transverse
projector proportional to the helicity parameter ρ (−1 < ρ < 1). Here, εijl is the
Levi-Civita completely antisymmetric tensor of rank 3; g0ν

3
0 > 0 is the positive

amplitude and the physical value of formally small parameter 0 < ε � 2 is ε = 2.
It plays an analogous role as the parameter ε = 4 − d in the theory of critical
behavior, and the parameter g0 plays the role of the coupling constant of the
model. In addition, g0 is a formal small parameter of the ordinary perturbation
theory (for more details see, e.g., [8]).

It can be shown [8] that the afore-mentioned stochastic problem is equivalent
to the ˇeld theoretic model with doubled set of ˇelds Φ ≡ {θ,v, θ′,v′} with the
following action functional

S(Φ) =
θ′Dθθ

′

2
+

v′Dvv′

2
+θ′[−∂t+κ0�−(v.∂)]θ+v′[−∂t+ν0�−(v.∂)]v, (5)

where θ′ and v are auxiliary ˇelds and all needed integrations are assumed.
The ˇeld theoretic formulation of the stochastic problem (1)Ä(4) by the action

functional (5) corresponds to a standard Feynman diagrammatic technique with
the following bare propagators (in the frequency-momentum representation):

〈vivj〉0 =
g0ν

3
0k4−d−2εRij(k)
(ω2 + ν2

0k4)
, 〈v′ivj〉0 =

Pij

iω + ν0k2
, 〈θ′θ〉0 =

1
iω + κ0k2

,

(6)
and two interaction vertices −θ′vj∂jθ = θ′vjVjθ and −v′ivj∂jvl = v′ivjWijlvl/2,
where Vj = ikj and Wijl = i(klδij + kjδil) (in the frequency-momentum repre-
sentation).

Standard analysis of canonical dimensions of the model shows ultraviolet
(UV) superˇcial divergent one-irreducible Green functions. The action functional
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formulation of the problem gives possibility to extract large-scale asymptotic be-
havior of the correlation functions after an appropriate renormalization procedure
which is needed to remove the UV divergences.

Details of the two-loop RG analysis of the model which is rather huge will be
given elsewhere. Here we shall give only necessary conclusions of the analysis
which are important for further investigation of the anomalous scaling.

The model exhibits stable Kolmogorov-like scaling regime which is driven
by the infrared (IR) stable ˇxed point of the corresponding RG equations. It
can also be shown that to be able to consider the helicity effects in the present
model it is necessary to go to the second order of the perturbation theory (two-
loop approximation) (see also [11] for details). The main conclusion of the RG
analysis is the fact that the presence of the helicity in the model does not disturb
the stability of the scaling regime. This nontrivial fact is necessary condition for
further investigation brie�y described in the next section.

2. INERTIAL RANGE SCALING OF STRUCTURE FUNCTIONS
AND ANOMALOUS SCALING

The existence of the stable ˇxed point in the model leads to the existence of
the IR scaling behavior of various correlation functions within the inertial interval.
Let us consider the following equal-time structure functions of the advected scalar
ˇeld θ(t,x):

SN (r) = 〈[θ(t,x) − θ(t,x′)]N 〉, r = |x − x′|. (7)

The existence of IR stable ˇxed point implies that in the asymptotic region
r/l � 1 (l is a characteristic inner (viscous) scale of the model) and at any ˇxed
r/L, the function SN has the following explicit form:

SN (r) = (g0ν
3
0)−N/2r2Nε/3+γ∗

N RN (r/L), (8)

where γ∗
N denotes the ˇxed point values of the anomalous dimensions of the

composite operator FN = (∂iθ ∂iθ)N/2. The behavior of the scaling function
RN (r/L) can be estimated by the OPE [8]. Here, the main contribution to the
OPE is given by composite operators FN,p = ((n.∂)θ)p((∂θ)2)n, N = 2n + p,
where the unit vector n represents the direction of the large scale anisotropy in
the model (for details see, e.g., [9]). Then, the ˇnal asymptotic expression for
the correlation functions has the form

SN(r) ∝ rN+γ∗
N,pN , (9)

where γ∗
N,pN

means the smallest anomalous dimension of the set of operators
FN,p. Using the hierarchy relations between anomalous dimensions γ∗

N,p, it can
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be shown that the asymptotic behavior of the structure functions SN (r) is given
by γ∗

N,0 for even values of N and by γ∗
N,1 for odd values of N . Therefore our

aim is to ˇnd the dependence of the anomalous dimensions γ∗
2k,0 and γ∗

2k+1,1

for k � 1 on helicity parameter ρ. The general explicit expressions for them are
rather huge and complicated functions which contain hypergeometric functions
or integrals (see [9] where nonhelical version of the present model was studied).
Therefore, the full discussion of the calculations will be not present here but
it will be published elsewhere. Here, only some facts will be given which are
important for the main result of the present paper.

In general, within the two-loop approximation, which is used in the present
work, anomalous dimensions γ∗

N,p are given by the explicit calculation of a set of
the composite operators which contains 11 different two-loop operators. Never-
theless, as was shown in [9] by an analysis of the tensor structure of the composite
operators together with the value of γ∗

2,0 = −2ε/3 which is known exactly already
at one-loop level approximation (i.e., it has no higher-loop corrections), only 4
of these 11 operators can give a contribution to the anomalous dimensions γ∗

N,p.
Their graphical representation is shown in the Figure.

The graphical representation of the two-loop composite operators which contribute to the
anomalous dimensions γ∗

N,p. The solid lines represent the propagator 〈θθ′〉 (the end of
the propagator with a slash corresponds to the ˇeld θ′) and the dashed lines represent the
propagator 〈vivj〉. For more details see [9]

In two-loop approximation, anomalous dimensions γ∗
N,p are given as series

in ε in the following form:

γ∗
N,p = γ∗1

N,pε + γ∗2
N,pε

2, (10)

where γ∗1
N,p represents the one-loop contribution, and γ∗2

N,p represents the two-loop
contribution to the corresponding anomalous dimension. Their explicit form in
the nonhelical case was found and discussed in [9]. As was already mentioned,
the presence of helicity in the turbulent environment within the considered model
can be manifested at the two-loop level of approximation. Therefore, our aim is
to ˇnd explicit dependence of two-loop contribution γ∗2

N,p on helicity parameter ρ.
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To ˇnd this dependence it is necessary to calculate the composite operators
shown in the Figure as functions of ρ. The corresponding analysis of the opera-
tors was done, and it was shown that the parts of the composite operators which
give contributions to anomalous dimension γ∗2

N,p are independent of ρ. Thus,
our conclusion is that the anomalous dimensions γ∗

N,p of the single-time struc-
ture functions of the passively advected scalar ˇeld do not feel the presence of
spatial parity violation of the turbulent system. This conclusion is in accordance
with the result obtained in [10] where the in�uence of helicity on the anomalous
scaling of a passive scalar advected by the velocity ˇeld with a Gaussian dis-
tribution was investigated. Of course, the conclusion is right only at two-loop
level approximation and the question, whether this conclusion is valid in general
(at higher order approximations within the corresponding perturbation expansion),
is still open.

CONCLUSION

We have investigated the scaling properties of the single-time structure func-
tions of a scalar ˇeld passively advected by the turbulent velocity ˇeld driven
by the stochastic NavierÄStokes equation with presence of helicity (spatial parity
violation). The model was studied by the ˇeld theoretic renormalization group
technique and by the operator-product expansion within two-loop approximation.
First of all, it is shown that the presence of the helicity in the system does not
destroy the stability of the scaling regime. Further, the analysis of needed com-
posite operators for investigation of anomalous scaling of the single-time structure
functions of advected ˇeld is done and their dependence on helicity parameter is
found. It is shown that the ˇnal critical dimensions are independent of helicity
parameter, i.e., the helicity does not in�uence the anomalous behavior of the
model (at least at two-loop approximation).
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